101
|
Monteiro MB, Santos-Bezerra DP, Thieme K, Admoni SN, Perez RV, Machado CG, Queiroz MS, Nery M, Oliveira-Souza M, Woronik V, Passarelli M, Giannella-Neto D, Machado UF, Corrêa-Giannella ML. Thioredoxin interacting protein expression in the urinary sediment associates with renal function decline in type 1 diabetes. Free Radic Res 2015; 50:101-10. [PMID: 26480949 DOI: 10.3109/10715762.2015.1109083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS Thioredoxin interacting protein (TXNIP), an inhibitor of antioxidant thioredoxin (Trx), is upregulated by hyperglycemia and implicated in pathogenesis of diabetes complications. We evaluated mRNA expressions of genes encoding TXNIP and Trx (TXN) in urinary sediment and peripheral blood mononuclear cells (PBMC) of type 1 diabetes (T1D) patients with different degrees of chronic complications. METHODS qPCR was employed to quantify target genes in urinary sediment (n = 55) and PBMC (n = 161) from patients sorted by presence or absence of diabetic nephropathy (DN), retinopathy, peripheral and cardiovascular neuropathy; 26 healthy controls and 13 patients presenting non-diabetic nephropathy (focal and segmental glomerulosclerosis, FSGS) were also included. RESULTS Regarding the urinary sediment, TXNIP (but not TXN) expression was higher in T1D (p = 0.0023) and FSGS (p = 0.0027) patients versus controls. Expressions of TXNIP and TXN were higher, respectively, in T1D patients with versus without DN (p = 0.032) and in those with estimated glomerular filtration rate (eGFR) < 60 versus ≥60 mL/min/1.73 m(2) (p = 0.008). eGFR negatively correlated with TXNIP (p = 0.04, r = -0.28) and TXN (p = 0.04, r = -0.30) expressions. T1D patients who lost ≥5 mL/min/1.73 m(2) yearly of eGFR presented higher basal TXNIP expression than those who lost <5 mL/min/1.73 m(2) yearly after median follow-up of 24 months. TXNIP (p < 0.0001) and TXN (p = 0.002) expressions in PBMC of T1D patients were significantly higher than in controls but no differences were observed between patients with or without chronic complications. CONCLUSIONS TXNIP and TXN are upregulated in urinary sediment of T1D patients with diabetic kidney disease (DKD), but only TXNIP expression is associated with magnitude of eGFR decline.
Collapse
Affiliation(s)
- Maria Beatriz Monteiro
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Daniele Pereira Santos-Bezerra
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Karina Thieme
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Sharon Nina Admoni
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | - Ricardo Vessoni Perez
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | | | | | - Marcia Nery
- c Divisão de Endocrinologia , Hospital das Clínicas, FMUSP , Brazil
| | - Maria Oliveira-Souza
- d Laboratório de Fisiologia Renal , Departamento de Fisiologia e Biofísica do Instituto de Ciências Biomédicas da Universidade de São Paulo (ICBUSP) , Brazil
| | | | | | - Daniel Giannella-Neto
- g Programa de Pós-Graduação em Medicina , Universidade Nove de Julho - UNINOVE , Brazil
| | - Ubiratan Fabres Machado
- h Laboratório de Metabolismo e Endocrinologia , Departamento de Fisiologia e Biofísica do ICBUSP , Brazil
| | - Maria Lúcia Corrêa-Giannella
- a Laboratório de Endocrinologia Celular e Molecular (LIM-25) , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil ;,i Núcleo de Terapia Celular e Molecular (NUCEL/NETCEM), FMUSP , Brazil
| |
Collapse
|
102
|
Tsuchiya A, Kaku Y, Nakano T, Nishizaki T. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway. J Pharmacol Sci 2015; 129:160-8. [PMID: 26588871 DOI: 10.1016/j.jphs.2015.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/20/2015] [Accepted: 10/06/2015] [Indexed: 01/10/2023] Open
Abstract
1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species (ROS) and inhibited activity of thioredoxin (Trx) reductase (TrxR). DAPE decreased an association of apoptosis signal-regulating kinase 1 (ASK1) with thioredoxin (Trx), thereby releasing ASK1. DAPE activated p38 mitogen-activated protein kinase (MAPK), which was inhibited by an antioxidant or knocking-down ASK1. In addition, DAPE-induced NCI-H28 cell death was also prevented by knocking-down ASK1. Taken together, the results of the present study indicate that DAPE stimulates NOX-mediated ROS production and suppresses TrxR activity, resulting in the decrease of reduced Trx and the dissociation of ASK1 from a complex with Trx, allowing sequential activation of ASK1 and p38 MAPK, to induce apoptosis of NCI-H28 MPM cells.
Collapse
Affiliation(s)
- Ayako Tsuchiya
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Yoshiko Kaku
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Takashi Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Tomoyuki Nishizaki
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan.
| |
Collapse
|
103
|
Shelar SB, Kaminska KK, Reddy SA, Kumar D, Tan CT, Yu VC, Lu J, Holmgren A, Hagen T, Chew EH. Thioredoxin-dependent regulation of AIF-mediated DNA damage. Free Radic Biol Med 2015; 87:125-36. [PMID: 26119781 DOI: 10.1016/j.freeradbiomed.2015.06.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
The thioredoxin (Trx) system is one major redox system in mammalian cells. One of its component, Trx, is involved in redox homeostasis and many cellular biological processes through participating in disulfide reduction, S-nitrosylation/S-denitrosylation reactions and protein-protein interactions. In this study, we report the identification of a novel interaction between cytosolic/nuclear Trx1 and apoptosis inducing factor (AIF), and the redox sensitivity and biological significance of the Trx-AIF interaction was characterized. Cytosolic Trx1 but not mitochondrial Trx2 was observed to interact with AIF under physiological conditions and Trx1's active site cysteines were crucial for the interaction. Under oxidative stress conditions, Trx-AIF interaction was disrupted. When the treated cells were allowed to recover from oxidative stress by means of removal of the oxidants, interaction between Trx1 and AIF was re-established time-dependently, which underpins the biological relevance of a Trx-dependent redox regulation of AIF-mediated cell death. Indeed, in times of oxidative stress, nuclear translocation of AIF was found to occur concurrently with perturbations to the Trx-AIF interaction. Once localized in the nucleus, reduced Trx1 hindered the interaction between AIF and DNA, thereby bringing about an attenuation of AIF-mediated DNA damage. In conclusion, characterization of the Trx-AIF interaction has led to an understanding of the effect of reduced Trx1 on possibly regulating AIF-dependent cell death through impeding AIF-mediated DNA damage. Importantly, identification of the novel interaction between Trx1 and AIF has provided opportunities to design and develop therapeutically relevant strategies that either promote or prevent this protein-protein interaction for the treatment of different disease states.
Collapse
Affiliation(s)
- Sandeep B Shelar
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic ofSingapore
| | - Kamila K Kaminska
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic ofSingapore
| | - Shridhivya A Reddy
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic ofSingapore
| | - Dilip Kumar
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A⁎STAR), S138648, Republic of Singapore
| | - Chong-Teik Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic ofSingapore
| | - Victor C Yu
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic ofSingapore
| | - Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, S117597, Republic of Singapore
| | - Eng-Hui Chew
- Department of Pharmacy, Faculty of Science, National University of Singapore, S117543, Republic ofSingapore.
| |
Collapse
|
104
|
Cebula M, Schmidt EE, Arnér ESJ. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 2015; 23:823-53. [PMID: 26058897 PMCID: PMC4589110 DOI: 10.1089/ars.2015.6378] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE All cells must maintain a balance between oxidants and reductants, while allowing for fluctuations in redox states triggered by signaling, altered metabolic flow, or extracellular stimuli. Furthermore, they must be able to rapidly sense and react to various challenges that would disrupt the redox homeostasis. RECENT ADVANCES Many studies have identified Keap1 as a key sensor for oxidative or electrophilic stress, with modification of Keap1 by oxidation or electrophiles triggering Nrf2-mediated transcriptional induction of enzymes supporting reductive and detoxification pathways. However, additional mechanisms for Nrf2 regulation are likely to exist upstream of, or in parallel with, Keap1. CRITICAL ISSUES Here, we propose that the mammalian selenoprotein thioredoxin reductase 1 (TrxR1) is a potent regulator of Nrf2. A high chemical reactivity of TrxR1 and its vital role for the thioredoxin (Trx) system distinguishes TrxR1 as a prime target for electrophilic challenges. Chemical modification of the selenocysteine (Sec) in TrxR1 by electrophiles leads to rapid inhibition of thioredoxin disulfide reductase activity, often combined with induction of NADPH oxidase activity of the derivatized enzyme, thereby affecting many downstream redox pathways. The notion of TrxR1 as a regulator of Nrf2 is supported by many publications on effects in human cells of selenium deficiency, oxidative stress or electrophile exposure, as well as the phenotypes of genetic mouse models. FUTURE DIRECTIONS Investigation of the role of TrxR1 as a regulator of Nrf2 activation will facilitate further studies of redox control in diverse cells and tissues of mammals, and possibly also in animals of other classes.
Collapse
Affiliation(s)
- Marcus Cebula
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Edward E Schmidt
- 2 Microbiology and Immunology, Montana State University , Bozeman, Montana
| | - Elias S J Arnér
- 1 Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
105
|
Fittipaldi S, Mercatelli N, Dimauro I, Jackson MJ, Paronetto MP, Caporossi D. Alpha B-crystallin induction in skeletal muscle cells under redox imbalance is mediated by a JNK-dependent regulatory mechanism. Free Radic Biol Med 2015; 86:331-42. [PMID: 26066304 DOI: 10.1016/j.freeradbiomed.2015.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/12/2015] [Accepted: 05/30/2015] [Indexed: 11/28/2022]
Abstract
The small heat shock protein α-B-crystallin (CRYAB) is critically involved in stress-related cellular processes such as differentiation, apoptosis, and redox homeostasis. The up-regulation of CRYAB plays a key role in the cytoprotective and antioxidant response, but the molecular pathway driving its expression in muscle cells during oxidative stress still remains unknown. Here we show that noncytotoxic exposure to sodium meta-arsenite (NaAsO2) inducing redox imbalance is able to increase the CRYAB content of C2C12 myoblasts in a transcription-dependent manner. Our in silico analysis revealed a genomic region upstream of the Cryab promoter containing two putative antioxidant-responsive elements motifs and one AP-1-like binding site. The redox-sensitive transcription factors Nrf2 and the AP-1 component c-Jun were found to be up-regulated in NaAsO2-treated cells, and we demonstrated a specific NaAsO2-mediated increase of c-Jun and Nrf2 binding activity to the genomic region identified, supporting their putative involvement in CRYAB regulation following a shift in redox balance. These changes also correlated with a specific phosphorylation of JNK and p38 MAPK kinases, the well-known molecular mediators of signaling pathways leading to the activation of these transcription factors. Pretreatment of C2C12 cells with the JNK inhibitor SP600125 induced a decrease in c-Jun and Nrf2 content and was able to counteract the NaAsO2-mediated increase in CRYAB expression. Thus these data show a direct role of JNK in CRYAB regulation under redox imbalance and also point to a previously unrecognized link between c-Jun and Nrf2 transcription factors and redox-induced CRYAB expression in muscle cells.
Collapse
Affiliation(s)
- Simona Fittipaldi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy.
| | - Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology Institute of Ageing and Chronic Disease, University of Liverpool, L69 3GA, Liverpool, UK
| | - Maria Paola Paronetto
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy; Laboratory of Molecular and Cellular Neurobiology, CERC Fondazione Santa Lucia, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 15, Rome 00135, Italy
| |
Collapse
|
106
|
Huang Y, Li W, Su ZY, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem 2015; 26:1401-13. [PMID: 26419687 DOI: 10.1016/j.jnutbio.2015.08.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
The NF-E2-related factor 2 (Nrf2)-mediated signalling pathway provides living organisms an efficient and pivotal line of defensive to counteract environmental insults and endogenous stressors. Nrf2 coordinates the basal and inducible expression of antioxidant and Phase II detoxification enzymes to adapt to different stress conditions. The stability and cellular distribution of Nrf2 is tightly controlled by its inhibitory binding protein Kelch-like ECH-associated protein 1. Nrf2 signalling is also regulated by posttranslational, transcriptional, translational and epigenetic mechanisms, as well as by other protein partners, including p62, p21 and IQ motif-containing GTPase activating protein 1. Many studies have demonstrated that Nrf2 is a promising target for preventing carcinogenesis and other chronic diseases, including cardiovascular diseases, neurodegenerative diseases and pulmonary injury. However, constitutive activation of Nrf2 in advanced cancer cells may confer drug resistance. Here, we review the molecular mechanisms of Nrf2 signalling, the diverse classes of Nrf2 activators, including bioactive nutrients and other chemicals, and the cellular functions and disease relevance of Nrf2 and discuss the dual role of Nrf2 in different contexts.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zheng-yuan Su
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Earnest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
107
|
Pham K, Pal R, Qu Y, Liu X, Yu H, Shiao SL, Wang X, O'Brian Smith E, Cui X, Rodney GG, Cheng N. Nuclear glutaredoxin 3 is critical for protection against oxidative stress-induced cell death. Free Radic Biol Med 2015; 85:197-206. [PMID: 25975981 PMCID: PMC4902114 DOI: 10.1016/j.freeradbiomed.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/17/2015] [Accepted: 05/01/2015] [Indexed: 01/12/2023]
Abstract
Mammalian glutaredoxin 3 (Grx3) has been shown to be critical in maintaining redox homeostasis and regulating cell survival pathways in cancer cells. However, the regulation of Grx3 is not fully understood. In the present study, we investigate the subcellular localization of Grx3 under normal growth and oxidative stress conditions. Both fluorescence imaging of Grx3-RFP fusion and Western blot analysis of cellular fractionation indicate that Grx3 is predominantly localized in the cytoplasm under normal growth conditions, whereas under oxidizing conditions, Grx3 is translocated into and accumulated in the nucleus. Grx3 nuclear accumulation was reversible in a redox-dependent fashion. Further analysis indicates that neither the N-terminal Trx-like domain nor the two catalytic cysteine residues in the active CGFS motif of Grx3 are involved in its nuclear translocation. Decreased levels of Grx3 render cells susceptible to cellular oxidative stress, whereas overexpression of nuclear-targeted Grx3 is sufficient to suppress cells' sensitivity to oxidant treatments and reduce reactive oxygen species production. These findings provide novel insights into the regulation of Grx3, which is crucial for cell survival against environmental insults.
Collapse
Affiliation(s)
- Khanh Pham
- USDA/ARS Children׳s Nutrition Research Center, Department of Pediatrics, Houston, TX 77030, USA
| | - Rituraj Pal
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ying Qu
- Department of Surgery and Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xi Liu
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Han Yu
- USDA/ARS Children׳s Nutrition Research Center, Department of Pediatrics, Houston, TX 77030, USA
| | - Stephen L Shiao
- Radiation Oncology and Biochemical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - E O'Brian Smith
- USDA/ARS Children׳s Nutrition Research Center, Department of Pediatrics, Houston, TX 77030, USA
| | - Xiaojiang Cui
- Department of Surgery and Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - George G Rodney
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ninghui Cheng
- USDA/ARS Children׳s Nutrition Research Center, Department of Pediatrics, Houston, TX 77030, USA.
| |
Collapse
|
108
|
Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol 2015; 5:275-289. [PMID: 26079210 PMCID: PMC4475862 DOI: 10.1016/j.redox.2015.05.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed on the emerging role of redox mechanisms regulating epigenetic pathways (e.g. miRNA, DNA methylation and histone modifications). By providing clinical correlations we discuss how oxidative stress can impact on gene regulation/activity and vise versa, how epigenetic processes, other gene regulatory mechanisms and DNA repair can influence the cellular redox state and contribute or prevent development or progression of disease.
Collapse
Affiliation(s)
- Yuliya Mikhed
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Agnes Görlach
- German Heart Center Munich at the Technical University Munich, DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Andreas Daiber
- 2nd Medical Clinic, Department of Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
109
|
Pirson M, Knoops B. Expression of peroxiredoxins and thioredoxins in the mouse spinal cord during embryonic development. J Comp Neurol 2015; 523:2599-617. [PMID: 25975898 DOI: 10.1002/cne.23807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/27/2022]
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) are natural byproducts of cellular metabolism. Although these molecules are deleterious at high concentrations, moderate levels of ROS/RNS are essential for normal cell function and take part in numerous cellular processes. The regulation of ROS/RNS is largely attended by peroxiredoxins (Prdxs) and their main reductants, thioredoxins (Trxs). Through their oxidoreductase activities, the members of the Trx/Prdx system can also affect certain cellular processes, notably many implicated in central nervous system (CNS) development. Although several studies have investigated the expression of Prdxs and Trxs in mouse, rat, and human adult CNS, few data are available concerning embryonic stages. In this work, we use immunofluorescence analyses to study the distribution of these enzymes during prenatal mouse spinal cord development. Our results highlight several patterns that contrast with available data for the adult. Indeed, Prdx1, Prdx4, and Prdx6, which are expressed in glial cells in the adult CNS, present clear neuronal localization in mouse spinal cord during embryonic development. Additionally, Prdx1, Prdx2, and to a lesser extent Prdx4, Prdx6, and Trx1 are localized mainly in the nucleus of neural cells. Finally, we identified a consistent, intense expression of all Prdxs and Trxs in groups of cells located in ventral regions of the spinal cord that express motor neuronal markers. These striking expression patterns suggest novel functions of these enzymes at these stages and offer clues to the role of the Trx/Prdx system during embryonic development of the spinal cord.
Collapse
Affiliation(s)
- Marc Pirson
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
110
|
Thakur S, Dhiman M, Tell G, Mantha AK. A review on protein-protein interaction network of APE1/Ref-1 and its associated biological functions. Cell Biochem Funct 2015; 33:101-12. [DOI: 10.1002/cbf.3100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/10/2015] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Affiliation(s)
- S. Thakur
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
| | - M. Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies; Central University of Punjab; Bathinda Punjab India
| | - G. Tell
- Department of Medical and Biological Sciences; University of Udine; Udine Italy
| | - A. K. Mantha
- Center for Biosciences, School of Basic and Applied Sciences; Central University of Punjab; Bathinda Punjab India
- Department of Biochemistry and Molecular Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
111
|
Abstract
Thioredoxin (Trx) is an inflammation-inducible small oxidoreductase protein ubiquitously expressed in all organisms. Trx acts both intracellularly and extracellularly and is involved in a wide range of physiological cellular responses. Inside the cell, Trx alleviates oxidative stress by scavenging reactive oxygen species (ROS), regulates a variety of redox-sensitive signaling pathways as well as ROS-independent genes, and exerts cytoprotective effects. Outside the cell, Trx acts as growth factors or cytokines and promotes cell growth and many other cellular responses. Trx is also implicated in tumorigenesis. Trx is a proto-oncogene and is overexpressed in many cancers and correlates with poor prognosis. Trx stimulates cancer cell survival, promotes tumor angiogenesis, and inhibits both spontaneous apoptosis and drug-induced apoptosis. Inhibitors targeting Trx pathway provide a promising therapeutic strategy for cancer prevention and intervention. More recently, data from our laboratory demonstrate an important role of Trx in expanding long-term repopulating hematopoietic stem cells. In this chapter, we first provide an overview of Trx including its isoforms, compartmentation, and functions. We then discuss the roles of Trx in hematologic malignancies. Finally, we summarize the most recent findings from our lab on the use of Trx to enhance hematopoietic reconstitution following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yubin Kang
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Current address: Division of Hematologic Malignancy and Cellular Therapy/Adult BMT, Department of Medicine, Duke University Medical Center, North Carolina, USA.
| |
Collapse
|
112
|
Vazquez DS, Sánchez IE, Garrote A, Sica MP, Santos J. The E. coli thioredoxin folding mechanism: The key role of the C-terminal helix. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:127-37. [DOI: 10.1016/j.bbapap.2014.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/23/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
113
|
Filip AA, Ciseł B, Wąsik-Szczepanek E. Guilty bystanders: nurse-like cells as a model of microenvironmental support for leukemic lymphocytes. Clin Exp Med 2015; 15:73-83. [PMID: 24337970 PMCID: PMC4308641 DOI: 10.1007/s10238-013-0268-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/29/2013] [Indexed: 12/03/2022]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is one of the most common leukemias among the elderly and, despite many efforts, still stays incurable. Recent studies point to the microenvironment as the critical factor providing leukemic lymphocytes with pro-survival signals. Thus, the neighboring cells appear to be a perfect target for antileukemic therapy. Nurse-like cells (NLCs) largely contribute to CLL microenvironmental support. We developed the CLL lymphocyte/NLC co-culture model for the investigation of microenvironmental interactions. Viability and apoptosis were investigated in CLL lymphocytes treated with dexamethasone (DEX) and chlorambucil (CLB), with and without NLCs' support. For the first time, the capacity of DEX and CLB to affect NLCs viability was also evaluated. Apoptosis-associated gene expression profiles of leukemic lymphocytes ex vivo and cultured with NLCs were assessed by expression arrays. CLL lymphocytes escaped spontaneous apoptosis for several months when cultured with NLCs. The presence of NLCs significantly reduced apoptosis induced with DEX and CLB (p < 0.001; p = 0.012, respectively), and their protective effect was more evident than the effect of recombinant SDF1. Both DEX and CLB also decreased NLCs viability, but to a lesser extent (mean viability in DEX-treated cultures was 37.79% in NLCs compared to 29.24% in lymphocytes). NLCs induced the expression of important anti-apoptotic genes in cultured CLL lymphocytes; median expression of BCL2, SURVIVIN, BCL2A1, and XIAP was significantly higher as compared to ex vivo status. The CLL lymphocyte/NLC co-culture makes up the convenient and close to the natural-state model for studying the relationship between leukemic cells and the microenvironment. Direct cell-to-cell contact with NLCs increases the expression of anti-apoptotic genes in CLL lymphocytes, thus protecting them against induced apoptosis. As the effect of antileukemic drugs is not so apparent in NLCs, the combined therapy targeted at both lymphocytes and the microenvironment should be considered for CLL patients. Simultaneous aiming at the disruption of several different signaling pathways and/or anti-apoptotic proteins may further improve treatment efficiency.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/drug effects
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Bystander Effect/genetics
- Cell Survival/drug effects
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Chlorambucil/pharmacology
- Coculture Techniques
- Dexamethasone/pharmacology
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Minor Histocompatibility Antigens
- Monocytes/drug effects
- Monocytes/metabolism
- Monocytes/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- X-Linked Inhibitor of Apoptosis Protein/genetics
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Agata A Filip
- Department of Cancer Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland,
| | | | | |
Collapse
|
114
|
Disturbed flow enhances inflammatory signaling and atherogenesis by increasing thioredoxin-1 level in endothelial cell nuclei. PLoS One 2014; 9:e108346. [PMID: 25265386 PMCID: PMC4180949 DOI: 10.1371/journal.pone.0108346] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oxidative stress occurs with disturbed blood flow, inflammation and cardiovascular disease (CVD), yet free-radical scavenging antioxidants have shown limited benefit in human CVD. Thioredoxin-1 (Trx1) is a thiol antioxidant protecting against non-radical oxidants by controlling protein thiol/disulfide status; Trx1 translocates from cytoplasm to cell nuclei due to stress signaling, facilitates DNA binding of transcription factors, e.g., NF-κB, and potentiates inflammatory signaling. Whether increased nuclear Trx1 contributes to proatherogenic signaling is unknown. METHODOLOGY/PRINCIPAL FINDINGS In vitro and in vivo atherogenic models were used to test for nuclear translocation of Trx1 and associated proinflammatory signaling. Disturbed flow by oscillatory shear stress stimulated Trx1 nuclear translocation in endothelial cells. Elevation of nuclear Trx1 in endothelial cells and transgenic (Tg) mice potentiated disturbed flow-stimulated proinflammatory signaling including NF-κB activation and increased expression of cell adhesion molecules and cytokines. Tg mice with increased nuclear Trx1 had increased carotid wall thickening due to disturbed flow but no significant differences in serum lipids or weight gain compared to wild type mice. Redox proteomics data of carotid arteries showed that disturbed flow stimulated protein thiol oxidation, and oxidation was higher in Tg mice than wild type mice. CONCLUSIONS/SIGNIFICANCE Translocation of Trx1 from cytoplasm to cell nuclei plays an important role in disturbed flow-stimulated proatherogenesis with greater cytoplasmic protein oxidation and an enhanced nuclear transcription factor activity. The results suggest that pharmacologic interventions to inhibit nuclear translocation of Trx1 may provide a new approach to prevent inflammatory diseases or progression.
Collapse
|
115
|
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem 2014; 395:203-30. [PMID: 24127541 DOI: 10.1515/hsz-2013-0241] [Citation(s) in RCA: 487] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/09/2013] [Indexed: 12/22/2022]
Abstract
Abstract The production of various reactive oxidant species in excess of endogenous antioxidant defense mechanisms promotes the development of a state of oxidative stress, with significant biological consequences. In recent years, evidence has emerged that oxidative stress plays a crucial role in the development and perpetuation of inflammation, and thus contributes to the pathophysiology of a number of debilitating illnesses, such as cardiovascular diseases, diabetes, cancer, or neurodegenerative processes. Oxidants affect all stages of the inflammatory response, including the release by damaged tissues of molecules acting as endogenous danger signals, their sensing by innate immune receptors from the Toll-like (TLRs) and the NOD-like (NLRs) families, and the activation of signaling pathways initiating the adaptive cellular response to such signals. In this article, after summarizing the basic aspects of redox biology and inflammation, we review in detail the current knowledge on the fundamental connections between oxidative stress and inflammatory processes, with a special emphasis on the danger molecule high-mobility group box-1, the TLRs, the NLRP-3 receptor, and the inflammasome, as well as the transcription factor nuclear factor-κB.
Collapse
|
116
|
Sung B, Park S, Ha YM, Kim DH, Park CH, Jung KJ, Kim MS, Kim YJ, Kim MK, Moon JO, Yokozawa T, Kim ND, Yu BP, Chung HY. Salicylideneamino-2-thiophenol modulates nuclear factor-κB through redox regulation during the aging process. Geriatr Gerontol Int 2014; 15:211-9. [PMID: 25164597 DOI: 10.1111/ggi.12255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 12/29/2022]
Abstract
AIM Many intracellular components have been implicated in the regulation of redox homeostasis, but homeostasis can be unbalanced by reactive species (RS), which also probably contribute to underlying inflammatory processes. Nuclear factor-κB (NF-κB) is a well-known redox-sensitive transcription factor that controls the genes responsible for regulating inflammation. METHODS In the present study, the authors investigated the effect of short-term salicylideneamino-2-thiophenol (SAL-2) administration on the modulation of pro-inflammatory NF-κB through redox regulation in aged rats. In addition, we compared the effects of SAL-2 and caloric restriction (CR) on inflammation and redox balance. The subjects were 24-month-old (old) Fischer 344 rats administered SAL-2 (10 mg/kg/day) by dietary supplementation or placed on a 30% restricted diet for 10 days, and 6-month-old (young) rats fed ad libitum for 10 days. RESULTS We found that NF-κB activation and the expressions of its related genes (vascular cell adhesion molecule-1, intercellular adhesion molecule-1, cyclooxygenase-2 and inducible nitric oxide synthase) were suppressed by SAL-2 supplementation in old CR rats to the levels observed in young rats. In addition, our molecular studies showed that the inhibitory effect of SAL-2 on the activation of NF-κB was mediated by the ability of SAL-2 to block the nuclear translocations of cytosolic thioredoxin and redox factor-1. CONCLUSION These findings strongly indicate that SAL-2 stabilizes age-related redox imbalance and modulates the signal transduction pathway involved in the age-associated molecular inflammatory process.
Collapse
Affiliation(s)
- Bokyung Sung
- Molecular Inflammation Research Center for Aging Intervention (MRCA), Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:730301. [PMID: 25243052 PMCID: PMC4158471 DOI: 10.1155/2014/730301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual's genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.
Collapse
|
118
|
Thioredoxin as a putative biomarker and candidate target in age-related immune decline. Biochem Soc Trans 2014; 42:922-7. [DOI: 10.1042/bst20140162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The oxidoreductase Trx-1 (thioredoxin 1) is highly conserved and found intra- and extra-cellularly in mammalian systems. There is increasing interest in its capacity to regulate immune function based on observations of altered distribution and expression during ageing and disease. We have investigated previously whether extracellular T-cell or peripheral blood mononuclear cell Trx-1 levels serve as a robust marker of ageing. In a preliminary study of healthy older adults compared with younger adults, we showed that there was a significant, but weak, relationship with age. Interestingly, patients with rheumatoid arthritis and cancer have been described by others to secrete or express greater surface Trx-1 than predicted. It is interesting to speculate whether a decline in Trx-1 during ageing protects against such conditions, but correspondingly increases risk of disease associated with Trx-1 depletion such as cardiovascular disease. These hypotheses are being explored in the MARK-AGE study, and preliminary findings confirm an inverse correlation of surface Trx-1 with age. We review recent concepts around the role of Trx-1 and its partners in T-cell function on the cell surface and as an extracellular regulator of redox state in a secreted form. Further studies on the redox state and binding partners of surface and secreted Trx-1 in larger patient datasets are needed to improve our understanding of why Trx-1 is important for lifespan and immune function.
Collapse
|
119
|
Zhang Z, Zhang J, Xiao J. Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta Gen Subj 2014; 1840:3246-3256. [PMID: 25116856 DOI: 10.1016/j.bbagen.2014.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence supports the view that selenoproteins are essential for maintaining bone health. SCOPE OF REVIEW The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized. MAJOR CONCLUSIONS Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women. GENERAL SIGNIFICANCE A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China
| | - Jinsong Zhang
- School of Tea Food Science, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China.
| |
Collapse
|
120
|
Viefhues A, Heller J, Temme N, Tudzynski P. Redox systems in Botrytis cinerea: impact on development and virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:858-74. [PMID: 24983673 DOI: 10.1094/mpmi-01-14-0012-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The thioredoxin system is of great importance for maintenance of cellular redox homeostasis. Here, we show that it has a severe influence on virulence of Botrytis cinerea, demonstrating that redox processes are important for host-pathogen interactions in this necrotrophic plant pathogen. The thioredoxin system is composed of two enzymes, the thioredoxin and the thioredoxin reductase. We identified two genes encoding for thioredoxins (bctrx1, bctrx2) and one gene encoding for a thioredoxin reductase (bctrr1) in the genome of B. cinerea. Knockout mutants of bctrx1 and bctrr1 were severely impaired in virulence and more sensitive to oxidative stress. Additionally, Δbctrr1 showed enhanced H2O2 production and retarded growth. To investigate the impact of the second major cellular redox system, glutathione, we generated deletion mutants for two glutathione reductase genes. The effects were only marginal; deletion of bcglr1 resulted in reduced germination and, correspondingly, to retarded infection as well as reduced growth on minimal medium, whereas bcglr2 deletion had no distinctive phenotype. In summary, we showed that the balanced redox status maintained by the thioredoxin system is essential for development and pathogenesis of B. cinerea, whereas the second major cellular redox system, the glutathione system, seems to have only minor impact on these processes.
Collapse
|
121
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
122
|
Taketani Y, Kinugasa K, Kitajima R, Nishiumi S, Ashida H, Nakamura H, Fujita T, Kanzaki K, Masutani H, Yodoi J. Protective effects of oral administration of yeast thioredoxin against gastric mucosal injury. Biosci Biotechnol Biochem 2014; 78:1221-30. [PMID: 25229862 DOI: 10.1080/09168451.2014.915733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thioredoxin (TRX) is a redox regulating protein which has protective effects against oxidative stress-induced damage to cells and tissues. In this study, we investigated the effects of orally administered TRX derived from edible yeast, Saccharomyces cerevisiae, on gastric mucosa. First, we examined the digestibility of orally administered yeast TRX in mice, and detected yeast TRX in the stomach for 4 h after administration. Next, we investigated the mitigation of gastric mucosal injury after the oral administration of yeast TRX in water-immersion restraint stress and HCl/ethanol-induced gastric ulcer models. Furthermore, we conducted DNA microarray analysis, using the HCl/ethanol-induced model, which revealed that several groups of genes related to tissue repair were upregulated in ulcer regions in the stomachs of rats administered with yeast TRX. These results demonstrated the viability of the use of oral administrations of yeast TRX to protect the gastric mucosa.
Collapse
Affiliation(s)
- Yukiko Taketani
- a Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd. , Nagahama , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Li L, Leung PS. Use of herbal medicines and natural products: an alternative approach to overcoming the apoptotic resistance of pancreatic cancer. Int J Biochem Cell Biol 2014; 53:224-36. [PMID: 24875648 DOI: 10.1016/j.biocel.2014.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/08/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer has a poor prognosis with a 5-year survival rate of <5%. It does not respond well to either chemotherapy or radiotherapy, due partly to apoptotic resistance (AR) of the cancer cells. AR has been attributed to certain genetic abnormalities or defects in apoptotic signaling pathways. In pancreatic cancer, significant mutations of K-ras and p53, constitutive activation of NFκB, over-expression of heat shock proteins (Hsp90, Hsp70), histone deacetylase (HDACs) and the activities of other proteins (COX-2, Nrf2 and bcl-2 family members) are closely linked with resistance to apoptosis and invasion. AR has also been associated with aberrant signaling of MAPK, PI3K-AKT, JAK/STAT, SHH, Notch, and Wnt/β-catenin pathways. Strategies targeting these signaling molecules and pathways provide an alternative for overcoming AR in pancreatic cancer. The use of herbal medicines or natural products (HM/NPs) alone or in combination with conventional anti-cancer agents has been shown to produce beneficial effects through actions upon multiple molecular pathways involved in AR. The current standard first-line chemotherapeutic agents for pancreatic cancer are gemcitabine (Gem) or Gem-containing combinations; however, the efficacy is dissatisfied and this limitation is largely attributed to AR. Meanwhile, emerging data have pointed to a combination of HM/NPs that may augment the sensitivity of pancreatic cancer cells to Gem. Greater understanding of how these compounds affect the molecular mechanisms of apoptosis may propel development of HM/NPs as anti-cancer agents and/or adjuvant therapies forward. In this review, we give a critical appraisal of the use of HM/NPs alone and in combination with anti-cancer drugs. We also discuss the potential regulatory mechanisms whereby AR is involved in these protective pathways.
Collapse
Affiliation(s)
- Lin Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
124
|
Citta A, Schuh E, Mohr F, Folda A, Massimino ML, Bindoli A, Casini A, Rigobello MP. Fluorescent silver(I) and gold(I)-N-heterocyclic carbene complexes with cytotoxic properties: mechanistic insights. Metallomics 2014; 5:1006-15. [PMID: 23661165 DOI: 10.1039/c3mt20260g] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Silver(I) and gold(I)-N-heterocyclic carbene (NHC) complexes bearing a fluorescent anthracenyl ligand were examined for cytotoxicity in normal and tumor cells. The silver(I) complex exhibits greater cytotoxicity in tumor cells compared with normal cells. Notably, in cell extracts, this complex determines a more pronounced inhibition of thioredoxin reductase (TrxR), but it is ineffective towards glutathione reductase (GR). Both gold and silver complexes lead to oxidation of the thioredoxin system, the silver(I) derivative being particularly effective. In addition, the dimerization of peroxiredoxin 3 (Prx3) was also observed, demonstrating the ability of these compounds to reach the mitochondrial target. The fluorescence microscopy visualization of the subcellular distribution of the complexes shows a larger diffusion of these molecules in tumor cells with respect to normal cells.
Collapse
Affiliation(s)
- Anna Citta
- Dipartimento di Scienze Biomediche, Università di Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Yuan L, Dietrich AK, Nardulli AM. 17β-Estradiol alters oxidative stress response protein expression and oxidative damage in the uterus. Mol Cell Endocrinol 2014; 382:218-226. [PMID: 24103313 PMCID: PMC3900311 DOI: 10.1016/j.mce.2013.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
The steroid hormone 17β-estradiol (E2) has profound effects on the uterus. However, with the E2-induced increase in uterine cell proliferation and metabolism comes increased production of reactive oxygen species (ROS). We examined the expression of an interactive network of oxidative stress response proteins including thioredoxin (Trx), Cu/Zn superoxide dismutase (SOD1), apurinic endonuclease (Ape1), and protein disulfide isomerase (PDI). We demonstrated that treatment of ovariectomized C57BL/6J female mice with E2 increased the mRNA and protein levels of Trx, but decreased SOD1 and Ape1 mRNA and protein expression. In contrast, E2 treatment increased PDI protein levels but had no effect on PDI transcript levels. Interestingly, E2 treatment also increased two markers of cellular damage, lipid peroxidation and protein carbonylation. Our studies suggest that the decreased expression of SOD1 and Ape1 caused by E2 treatment may in the long term result in disruption of ROS regulation and play a role in endometrial carcinogenesis.
Collapse
Affiliation(s)
- Lisi Yuan
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
126
|
Raninga PV, Trapani GD, Tonissen KF. Cross Talk between Two Antioxidant Systems, Thioredoxin and DJ-1: Consequences for Cancer. Oncoscience 2014; 1:95-110. [PMID: 25593990 PMCID: PMC4295760 DOI: 10.18632/oncoscience.12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress, which is associated with an increased concentration of reactive oxygen species (ROS), is involved in the pathogenesis of numerous diseases including cancer. In response to increased ROS levels, cellular antioxidant molecules such as thioredoxin, peroxiredoxins, glutaredoxins, DJ-1, and superoxide dismutases are upregulated to counteract the detrimental effect of ROS. However, cancer cells take advantage of upregulated antioxidant molecules for protection against ROS-induced cell damage. This review focuses on two antioxidant systems, Thioredoxin and DJ-1, which are upregulated in many human cancer types, correlating with tumour proliferation, survival, and chemo-resistance. Thus, both of these antioxidant molecules serve as potential molecular targets to treat cancer. However, targeting one of these antioxidants alone may not be an effective anti-cancer therapy. Both of these antioxidant molecules are interlinked and act on similar downstream targets such as NF-κβ, PTEN, and Nrf2 to exert cytoprotection. Inhibiting either thioredoxin or DJ-1 alone may allow the other antioxidant to activate downstream signalling cascades leading to tumour cell survival and proliferation. Targeting both thioredoxin and DJ-1 in conjunction may completely shut down the antioxidant defence system regulated by these molecules. This review focuses on the cross-talk between thioredoxin and DJ-1 and highlights the importance and consequences of targeting thioredoxin and DJ-1 together to develop an effective anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Prahlad V. Raninga
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| | - Giovanna Di Trapani
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
| | - Kathryn F. Tonissen
- School of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld, Australia
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
127
|
Ogata FT, Batista WL, Sartori A, Gesteira TF, Masutani H, Arai RJ, Yodoi J, Stern A, Monteiro HP. Nitrosative/oxidative stress conditions regulate thioredoxin-interacting protein (TXNIP) expression and thioredoxin-1 (TRX-1) nuclear localization. PLoS One 2013; 8:e84588. [PMID: 24376827 PMCID: PMC3869934 DOI: 10.1371/journal.pone.0084588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/15/2013] [Indexed: 11/21/2022] Open
Abstract
Thioredoxin (TRX-1) is a multifunctional protein that controls the redox status of other proteins. TRX-1 can be found in the extracellular milieu, cytoplasm and nucleus, and it has distinct functions in each environment. Previously, we studied the intracellular localization of TRX-1 and its relationship with the activation of the p21Ras - ERK1/2 MAP Kinases signaling pathway. In situations where this pathway was activated by stress conditions evoked by a nitrosothiol, S-nitroso-N-acetylpenicillamine (SNAP), TRX-1 accumulated in the nuclear compartment due to nitrosylation of p21Ras and activation of downstream ERK1/2 MAP kinases. Presently, we demonstrate that ERK1/2 MAP Kinases activation and spatial distribution within cells trigger TRX-1 nuclear translocation through down-regulation of the physiological inhibitor of TRX-1, Thioredoxin Interacting Protein (TXNIP). Once activated by the oxidants, SNAP and H2O2, the ERK1/2 MAP kinases migrate to the nucleus. This is correlated with down-regulation of TXNIP. In the presence of the MEK inhibitors (PD98059 or UO126), or in cells transfected with the Protein Enriched in Astrocytes (PEA-15), a cytoplasmic anchor of ERK1/2 MAP kinases, TRX-1 nuclear migration and TXNIP down-regulation are no longer observed in cells exposed to oxidants. On the other hand, over-expression of TXNIP abolishes nuclear migration of TRX-1 under nitrosative/oxidative stress conditions, whereas gene silencing of TXNIP facilitates nuclear migration even in the absence of stress conditions. Studies based on the TXNIP promoter support this regulation. In conclusion, changes in TRX-1 compartmentalization under nitrosative/oxidative stress conditions are dependent on the expression levels of TXNIP, which are regulated by cellular compartmentalization and activation of the ERK1/2 MAP kinases.
Collapse
Affiliation(s)
- Fernando Toshio Ogata
- Departamento de Bioquímica/Biologia Molecular and Center for Cellular and Molecular Therapy – CTCMol – Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wagner Luiz Batista
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, Brazil
| | - Adriano Sartori
- Departamento de Bioquímica/Biologia Molecular and Center for Cellular and Molecular Therapy – CTCMol – Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tarsis Ferreira Gesteira
- Departamento de Bioquímica/Biologia Molecular and Center for Cellular and Molecular Therapy – CTCMol – Universidade Federal de São Paulo, São Paulo, Brazil
| | - Hiroshi Masutani
- Department of Biological Responses, Kyoto University, Kyoto, Japan
| | - Roberto Jun Arai
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Junji Yodoi
- Department of Biological Responses, Kyoto University, Kyoto, Japan
| | - Arnold Stern
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Hugo Pequeno Monteiro
- Departamento de Bioquímica/Biologia Molecular and Center for Cellular and Molecular Therapy – CTCMol – Universidade Federal de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
128
|
Kelleher ZT, Sha Y, Foster MW, Foster WM, Forrester MT, Marshall HE. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem 2013; 289:3066-72. [PMID: 24338024 DOI: 10.1074/jbc.m113.503938] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.
Collapse
Affiliation(s)
- Zachary T Kelleher
- From the Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710 and
| | | | | | | | | | | |
Collapse
|
129
|
Zolotukhin P, Aleksandrova A, Goncharova A, Shestopalov A, Rymashevskiy A, Shkurat T. Oxidative status shifts in uterine cervical incompetence patients. Syst Biol Reprod Med 2013; 60:98-104. [PMID: 24304328 DOI: 10.3109/19396368.2013.864343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uterine cervical incompetence (UCI) is a pregnancy complication affecting about 10% of the pregnancies in the western world. Studying the etiology of the UCI requires a specific approach adequate for this highly heterogenous syndrome. Oxidative status disorders are associated with various pathologies, including pregnancy complications. As such, general oxidative status profiling is a promising methodology to treat UCI. We aimed at assaying the closely interrelated oxidative status markers in the uterine cervical incompetence patients by means of the systems biology-oriented approach. Chemiluminescent assay, circulating thioredoxin 1 protein, uric acid, and homocysteine level measurements were used to assess the character of the oxidative status regulation in the UCI patients. We found UCI to be associated with the atypical plasma oxidative status deregulation; UCI plasma samples demonstrated lowered proneness to the pro-oxidative processes, and this was not due to the excessive antioxidant activity. There were neither signs of oxidative stress nor destructive pro-oxidant feedforward circuit locking in the UCI group. We also report increased circulating levels of uric acid in the UCI patients.
Collapse
Affiliation(s)
- Petr Zolotukhin
- Laboratory of Biomedicine, Research Institute of Biology, Southern Federal University , Rostov-on-Don , Russia
| | | | | | | | | | | |
Collapse
|
130
|
García-Giménez JL, Seco-Cervera M, Aguado C, Romá-Mateo C, Dasí F, Priego S, Markovic J, Knecht E, Sanz P, Pallardó FV. Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells. Free Radic Biol Med 2013; 65:347-359. [PMID: 23850970 DOI: 10.1016/j.freeradbiomed.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Thioredoxin 1 (Trx1) is a key regulator of cellular redox balance and participates in cellular signaling events. Recent evidence from yeast indicates that members of the Trx family interact with the 20S proteasome, indicating redox regulation of proteasome activity. However, there is little information about the interrelationship of Trx proteins with the proteasome system in mammalian cells, especially in the nucleus. Here, we have investigated this relationship under various cellular conditions in mammalian cells. We show that Trx1 levels and its subcellular localization (cytosol, endoplasmic reticulum, and nucleus) depend on proteasome activity during the cell cycle in NIH3T3 fibroblasts and under stress conditions, when proteasomes are inhibited. In addition, we also studied in these cells how the main cellular antioxidant systems are stimulated when proteasome activity is inhibited. Finally, we describe a reduction in Trx1 levels in Lafora disease fibroblasts and demonstrate that the nuclear colocalization of Trx1 with 20S proteasomes in laforin-deficient cells is altered compared with control cells. Our results indicate a close relationship between Trx1 and the 20S nuclear proteasome and give a new perspective to the study of diseases or physiopathological conditions in which defects in the proteasome system are associated with oxidative stress.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Marta Seco-Cervera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Romá-Mateo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francisco Dasí
- Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Sonia Priego
- Research Core Facility, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Jelena Markovic
- Research Core Facility, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
131
|
Cell-mediated reduction of human β-defensin 1: a major role for mucosal thioredoxin. Mucosal Immunol 2013; 6:1179-90. [PMID: 23571504 PMCID: PMC3806438 DOI: 10.1038/mi.2013.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 02/19/2013] [Indexed: 02/04/2023]
Abstract
Human β-defensin 1 (hBD-1) is an antimicrobial peptide expressed by epithelia and hematopoietic cells. We demonstrated recently that hBD-1 shows activity against enteric commensals and Candida species only after its disulfide bonds have been reduced by thioredoxin (TRX) or a reducing environment. Here we show that besides TRX, glutaredoxin (GRX) is also able to reduce hBD-1, although with far less efficacy. Moreover, living intestinal and lymphoid cells can effectively catalyze reduction of extracellular hBD-1. By chemical inhibition of the TRX system or specific knockdown of TRX, we demonstrate that cell-mediated reduction is largely dependent on TRX. Quantitative PCR in intestinal tissues of healthy controls and inflammatory bowel disease patients revealed altered expression of some, although not all, redox enzymes, especially in ulcerative colitis. Reduced hBD-1 and TRX localize to extracellular colonic mucus, suggesting that secreted or membrane-bound TRX converts hBD-1 to a potent antimicrobial peptide in vivo.
Collapse
|
132
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 507] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
133
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 2013; 19:1266-303. [PMID: 23244617 DOI: 10.1089/ars.2012.4757] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Collapse
|
134
|
Tormos AM, Taléns-Visconti R, Nebreda AR, Sastre J. p38 MAPK: a dual role in hepatocyte proliferation through reactive oxygen species. Free Radic Res 2013; 47:905-16. [PMID: 23906070 DOI: 10.3109/10715762.2013.821200] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
p38 MAPKs are important mediators of signal transduction that respond to a wide range of extracellular stressors such as UV radiation, osmotic shock, hypoxia, pro-inflammatory cytokines, and oxidative stress. The most abundant family member is p38α, which helps to couple cell proliferation and growth in response to certain damaging stimuli. In fact, increased proliferation and impaired differentiation are hallmarks of p38α-deficient cells. It has been reported that reactive oxygen species (ROS) play a critical role in cytokine-induced p38α activation. Under physiological conditions, p38α can function as a mediator of ROS signaling and either activate or suppress cell cycle progression depending on the activation stimulus. The interplay between cell proliferation, p38 MAPK activation, and ROS production plays an important role in hepatocytes. In fact, low levels of ROS seem to be needed to activate several signaling pathways in response to hepatectomy and to orchestrate liver regeneration. p38 MAPK works as a sensor of oxidative stress and cells that have developed mechanisms to uncouple p38 MAPK activation from oxidative stress are more likely to become tumorigenic. So far, p38α influences the redox balance, determining cell survival, terminal differentiation, proliferation, and senescence. Further studies would be necessary in order to clarify the precise role of p38 MAPK signaling as a redox therapeutical target.
Collapse
Affiliation(s)
- A M Tormos
- Department of Physiology, Faculty of Pharmacy, University of Valencia , Valencia , Spain
| | | | | | | |
Collapse
|
135
|
Mattmiller SA, Carlson BA, Sordillo LM. Regulation of inflammation by selenium and selenoproteins: impact on eicosanoid biosynthesis. J Nutr Sci 2013; 2:e28. [PMID: 25191577 PMCID: PMC4153324 DOI: 10.1017/jns.2013.17] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/07/2022] Open
Abstract
Uncontrolled inflammation is a contributing factor to many leading causes of human morbidity and mortality including atherosclerosis, cancer and diabetes. Se is an essential nutrient in the mammalian diet that has some anti-inflammatory properties and, at sufficient amounts in the diet, has been shown to be protective in various inflammatory-based disease models. More recently, Se has been shown to alter the expression of eicosanoids that orchestrate the initiation, magnitude and resolution of inflammation. Many of the health benefits of Se are thought to be due to antioxidant and redox-regulating properties of certain selenoproteins. The present review will discuss the existing evidence that supports the concept that optimal Se intake can mitigate dysfunctional inflammatory responses, in part, through the regulation of eicosanoid metabolism. The ability of selenoproteins to alter the biosynthesis of eicosanoids by reducing oxidative stress and/or by modifying redox-regulated signalling pathways also will be discussed. Based on the current literature, however, it is clear that more research is necessary to uncover the specific beneficial mechanisms behind the anti-inflammatory properties of selenoproteins and other Se metabolites, especially as related to eicosanoid biosynthesis. A better understanding of the mechanisms involved in Se-mediated regulation of host inflammatory responses may lead to the development of dietary intervention strategies that take optimal advantage of its biological potency.
Collapse
Key Words
- 15-HETE, 15(S)-hydroxy-(5Z,8Z,11Z,13E)-eicosatetraenoic acid
- 15-HPETE, 15-hydroperoxyeicosatetraenoic acid
- 15d-PGJ2, 15-deoxy-Δ12,14PGJ2
- AA, arachidonic acid
- ASK-1, apoptosis signal-regulating kinase 1
- COX, cyclo-oxygenase
- Eicosanoid biosynthesis
- FAHP, fatty acid hydroperoxide
- GPx, glutathione peroxidase
- GPx4, glutathione peroxidase-4
- H-PGDS, haematopoietic PGD2 synthase
- HO-1, haeme oxygenase-1
- HPETE, hydroperoxyeicosatetraenoic acid
- HPODE, hydroperoxyoctadecadienoic acid
- Inflammation
- LA, linoleic acid
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LT, leukotriene
- LTA4H, leukotriene A4 hydrolase
- MAPK, itogen-activated protein kinase
- ROS, reactive oxygen species
- Selenium
- Selenoproteins
- Sepp1, selenoprotein P plasma 1
- TX, thromboxane
- TXB2, thromboxane B2
- Trx, thioredoxin
- TrxR, thioredoxin reductase
- ppm, parts per million
Collapse
Affiliation(s)
- S. A. Mattmiller
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| | - Bradley A. Carlson
- Section on the Molecular Biology of Selenium,
Laboratory of Cancer Prevention, National Cancer Institute,
National Institutes of Health, Bethesda, MD 20892,
USA
| | - L. M. Sordillo
- College of Veterinary Medicine, Michigan State
University, East Lansing, MI 48824,
USA
| |
Collapse
|
136
|
Madamanchi NR, Runge MS. Redox signaling in cardiovascular health and disease. Free Radic Biol Med 2013; 61:473-501. [PMID: 23583330 PMCID: PMC3883979 DOI: 10.1016/j.freeradbiomed.2013.04.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/05/2013] [Accepted: 04/02/2013] [Indexed: 02/07/2023]
Abstract
Spatiotemporal regulation of the activity of a vast array of intracellular proteins and signaling pathways by reactive oxygen species (ROS) governs normal cardiovascular function. However, data from experimental and animal studies strongly support that dysregulated redox signaling, resulting from hyperactivation of various cellular oxidases or mitochondrial dysfunction, is integral to the pathogenesis and progression of cardiovascular disease (CVD). In this review, we address how redox signaling modulates the protein function, the various sources of increased oxidative stress in CVD, and the labyrinth of redox-sensitive molecular mechanisms involved in the development of atherosclerosis, hypertension, cardiac hypertrophy and heart failure, and ischemia-reperfusion injury. Advances in redox biology and pharmacology for inhibiting ROS production in specific cell types and subcellular organelles combined with the development of nanotechnology-based new in vivo imaging systems and targeted drug delivery mechanisms may enable fine-tuning of redox signaling for the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Nageswara R Madamanchi
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Marschall S Runge
- McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
137
|
Stangherlin A, Reddy AB. Regulation of circadian clocks by redox homeostasis. J Biol Chem 2013; 288:26505-11. [PMID: 23861436 DOI: 10.1074/jbc.r113.457564] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Living organisms possess biological clocks that resonate with environmental cycles in light, temperature, and food availability. Recently, circadian oscillations in the redox state of peroxiredoxin have been described as an additional non-transcriptional timekeeping mechanism. Of note, this redox cycle is conserved in both prokaryotes and eukaryotes. How the classical "transcription-translation feedback loop" model and this redox oscillation are related is still poorly understood. In this minireview, we describe the most recent evidence pointing to cross-talk between the circadian clock and the redox status of the cell.
Collapse
Affiliation(s)
- Alessandra Stangherlin
- From the Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, National Institute for Health Research (NIHR), Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ Cambridge, United Kingdom
| | | |
Collapse
|
138
|
Storr SJ, Woolston CM, Zhang Y, Martin SG. Redox environment, free radical, and oxidative DNA damage. Antioxid Redox Signal 2013; 18:2399-408. [PMID: 23249296 DOI: 10.1089/ars.2012.4920] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Effective redox homeostasis is critical, and disruption of this process can have important cellular consequences. An array of systems protect the cell from potentially damaging reactive oxygen species (ROS), however if these systems are overwhelmed, for example, in aberrantly functioning cells, ROS can have a number of detrimental consequences, including DNA damage. Oxidative DNA damage can be repaired by a number of DNA repair pathways, such as base excision repair (BER). RECENT ADVANCES The role of ROS in oxidative DNA damage is well established, however, there is an emerging role for ROS and the redox environment in modulating the efficiency of DNA repair pathways targeting oxidative DNA lesions. CRITICAL ISSUES Oxidative DNA damage and modulation of DNA damage and repair by the redox environment are implicated in a number of diseases. Understanding how the redox environment plays such a critical role in DNA damage and repair will allow us to further understand the far reaching cellular consequence of ROS. FUTURE DIRECTIONS In this review, we discuss the detrimental effects of ROS, oxidative DNA damage repair, and the redox systems that exist to control redox homeostasis. We also describe how DNA pathways can be modulated by the redox environment and how the redox environment and oxidative DNA damage plays a role in disease.
Collapse
Affiliation(s)
- Sarah J Storr
- Academic Oncology, University of Nottingham, School of Molecular Medical Sciences, Nottingham University Hospitals Trust, City Hospital Campus, Nottingham, United Kingdom
| | | | | | | |
Collapse
|
139
|
Zolotukhin P, Kozlova Y, Dovzhik A, Kovalenko K, Kutsyn K, Aleksandrova A, Shkurat T. Oxidative status interactome map: towards novel approaches in experiment planning, data analysis, diagnostics and therapy. MOLECULAR BIOSYSTEMS 2013; 9:2085-96. [PMID: 23698602 DOI: 10.1039/c3mb70096h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Experimental evidence suggests an immense variety of processes associated with and aimed at producing reactive oxygen and/or nitrogen species. Clinical studies implicate an enormous range of pathologies associated with reactive oxygen/nitrogen species metabolism deregulation, particularly oxidative stress. Recent advances in biochemistry, proteomics and molecular biology/biophysics of cells suggest oxidative stress to be an endpoint of complex dysregulation events of conjugated pathways consolidated under the term, proposed here, "oxidative status". The oxidative status concept, in order to allow for novel diagnostic and therapeutic approaches, requires elaboration of a new logic system comprehending all the features, versatility and complexity of cellular pro- and antioxidative components of different nature. We have developed a curated and regularly updated interactive interactome map of human cellular-level oxidative status allowing for systematization of the related most up-to-date experimental data. A total of more than 600 papers were selected for the initial creation of the map. The map comprises more than 300 individual factors with respective interactions, all subdivided hierarchically for logical analysis purposes. The pilot application of the interactome map suggested several points for further development of oxidative status-based technologies.
Collapse
Affiliation(s)
- Peter Zolotukhin
- Southern Federal University, Stachki av., 194/1, Rostov-on-Don, Russia.
| | | | | | | | | | | | | |
Collapse
|
140
|
Zschauer TC, Matsushima S, Altschmied J, Shao D, Sadoshima J, Haendeler J. Interacting with thioredoxin-1--disease or no disease? Antioxid Redox Signal 2013; 18:1053-62. [PMID: 22867430 PMCID: PMC3567779 DOI: 10.1089/ars.2012.4822] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Many cardiovascular disorders are accompanied by a deregulated cellular redox balance resulting in elevated levels of intracellular reactive oxygen species (ROS). One major antioxidative cellular molecule is thioredoxin-1 (Trx-1). Its indispensability is demonstrated by the embryonic lethality of Trx-1 deficient mice. Trx-1 is ubiquitously expressed in cells and has numerous, diverse functions. It not only reduces oxidized proteins or, together with peroxiredoxins, detoxifies H(2)O(2), but also binds to several proteins and thereby regulates their functions. The interaction partners of Trx-1 differ depending on its localization in the cytosol or in the nucleus. RECENT ADVANCES/CRITICAL ISSUES Over the past decade it has become clear that Trx-1 is not only critical for tumor functions, which has resulted in therapeutic approaches targeting this protein, but also essential for proper functions of the vasculature and the heart. Changes in post-translational modifications of Trx-1 or in its interactions with other proteins can lead to a switch from a physiologic state of cells and organs to diverse pathologies. This review provides insights into the role of Trx-1 in different physiological situations and cardiac hypertrophy, ischemia reperfusion injury, heart failure, atherosclerosis, and diabetes mellitus type 2, underscoring the central role of Trx-1 in cardiovascular health and disease. FUTURE DIRECTIONS Thus, the manipulation of Trx-1 activity in the heart and/or vasculature, for example, by small molecules, seems to be a promising therapeutic option in cardiovascular diseases, as general anti-oxidant treatments would not take into account interactions of Trx-1 with other proteins and also eliminate vital ROS.
Collapse
Affiliation(s)
- Tim-Christian Zschauer
- Molecular Cell and Aging Research, IUF--Leibniz Research Institute for Environmental Medicine, University of Duesseldorf gGmbH, Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
141
|
Jia JJ, Zeng XS, Li Y, Ma S, Bai J. Ephedrine induced thioredoxin-1 expression through β-adrenergic receptor/cyclic AMP/protein kinase A/dopamine- and cyclic AMP-regulated phosphoprotein signaling pathway. Cell Signal 2013; 25:1194-201. [PMID: 23416460 DOI: 10.1016/j.cellsig.2013.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 01/04/2023]
Abstract
Ephedrine (Eph) is one of alkaloids that has been isolated from the ancient herb ephedra (ma huang) and is used as the treatment of asthma, hypotension and fatigue. However, its molecular mechanism remains unknown. Thioredoxin-1 (Trx-1) is a redox regulating protein, which has various biological activities, including regulating transcription factor DNA binding activity and neuroprotection. In this study, we found that Eph induced Trx-1 expression, which was inhibited by propranolol (β-adrenergic receptor inhibitor), but not by phenoxybenzamine (α-adrenergic receptor inhibitor) in rat pheochromocytoma PC12 cells. Moreover, the increase of Trx-1 expression was inhibited by SQ22536 (adenylyl cyclase inhibitor) and H-89 (protein kinase A inhibitor). Interestingly, the effect of Eph on dopamine- and cyclic AMP-regulated phosphoprotein (DARPP-32) was similar to Trx-1. Thus, the relationship between Trx-1 and DARPP-32 was further studied. The DARPP-32 siRNA significantly reduced Trx-1 expression, but Trx-1 siRNA did not exchange DARPP-32. These results suggested that Eph induced the Trx-1 expression through β-adrenergic receptor/cyclic AMP/PKA/DARPP-32 signaling pathway. Furthermore, Eph induced PKA-mediated cyclic AMP response element-binding protein (CREB) phosphorylation. Down-regulation of DARPP-32 expression decreased phosphorylated CREB. In addition, Eph had a significant effect on the viability of the rat pheochromocytoma PC12 cells through β-adrenergic receptors. Trx-1 may play an important role in the actions of Eph.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | | | | | | | | |
Collapse
|
142
|
Ono R, Fukunaga A, Masaki T, Yu X, Yodoi J, Nishigori C. Suppressive effect of administration of recombinant human thioredoxin on cutaneous inflammation caused by UV. Bioengineered 2013; 4:254-7. [PMID: 23328539 DOI: 10.4161/bioe.23612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thioredoxin (TRX) is small ubiquitous protein, which regulates cellular redox status and scavenges reactive oxygen species (ROS). TRX has been shown to exert suppressive effect on skin inflammation where oxidative stress is involved in its pathogenesis. We investigated the effect of TRX on UVB response. Ear swelling after UVB irradiation was significantly reduced in TRX-transgenic mouse compared with wild-type mouse. Furthermore, we have demonstrated that intraperitoneal administration of recombinant human thioredoxin (rhTRX) also reduced acute skin inflammatory reaction, such as skin erythema and edema. Histologically, inflammatory cells including neutrophils and lymphocytes were significantly reduced and average size of the caliber of blood vessels were also reduced in rhTRX-injected mice. The number of apoptotic keratinocytes, were significantly reduced in rhTRX-injected mice. Immunohistochemical intensity of 8-hydroxy-2'-deoxyguanosine was strikingly reduced in rhTRX-injected mouse. Western blotting showed that administration of rhTRX inhibited phosphorylation of p38 mitogen-activated protein kinases and c-Jun NH 2-terminal kinase, which play important roles in inflammatory and apoptotic signaling. These findings indicated that rhTRX attenuated inflammatory and apoptotic responses by UVB. Possible mechanisms for this might be via redox regulation of stress signaling and reduction of reactive oxygen species. We discussed the future use of TRX for sedative use of skin inflammation.
Collapse
Affiliation(s)
- Ryusuke Ono
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
143
|
Hansen JM, Harris C. Redox control of teratogenesis. Reprod Toxicol 2013; 35:165-79. [DOI: 10.1016/j.reprotox.2012.09.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/19/2023]
|
144
|
Abstract
SIGNIFICANCE The thioredoxin (Trx) system, comprising nicotinamide adenine dinucleotide phosphate, Trx reductase (TrxR), and Trx, is critical for maintaining cellular redox balance and antioxidant function, including control of oxidative stress and cell death. RECENT ADVANCES Here, we focus on the research progress that is involved in the regulation of apoptosis by Trx systems. In mammalian cells, cytosolic Trx1 and mitochondrial Trx2 systems are the major disulfide reductases supplying electrons to enzymes for cell proliferation and viability. The reduced/dithiol form of Trxs binds to apoptosis signal-regulating kinase 1 (ASK1) and inhibits its activity to prevent stress- and cytokine-induced apoptosis. When Trx is oxidized, it dissociates from ASK1 and apoptosis is stimulated. The binding of Trx by its inhibitor Trx interacting protein (TXNIP) also contributes to the apoptosis process by removing Trx from ASK1. TrxRs are large homodimeric selenoproteins with an overall structure which is similar to that of glutathione reductase, and contain an active site GCUG in the C-terminus. CRITICAL ISSUES AND FUTURE DIRECTIONS In the regulation of cell death processes, Trx redox state and TrxR activities are key factors that determine the cell fate. The high reactivity of Sec in TrxRs and its accessible location make TrxR enzymes emerge as targets for pharmaceutic drugs. TrxR inactivation by covalent modification does not only change the redox state and activity of Trx, but may also convert TrxR into a reactive oxygen species generator. Numerous electrophilic compounds including some environmental toxins and pharmaceutical drugs inhibit TrxR. We have classified these compounds into four types and propose some useful principles to understand the reaction mechanism of the TrxR inhibition by these compounds.
Collapse
Affiliation(s)
- Jun Lu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
145
|
Dimauro I, Pearson T, Caporossi D, Jackson MJ. In vitro susceptibility of thioredoxins and glutathione to redox modification and aging-related changes in skeletal muscle. Free Radic Biol Med 2012; 53:2017-27. [PMID: 23022873 PMCID: PMC3657158 DOI: 10.1016/j.freeradbiomed.2012.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/22/2022]
Abstract
Thioredoxins (Trx's) regulate redox signaling and are localized to various cellular compartments. Specific redox-regulated pathways for adaptation of skeletal muscle to contractions are attenuated during aging, but little is known about the roles of Trx's in regulating these pathways. This study investigated the susceptibility of Trx1 and Trx2 in skeletal muscle to oxidation and reduction in vitro and the effects of aging and contractions on Trx1, Trx2, and thioredoxin reductase (TrxR) 1 and 2 contents and nuclear and cytosolic Trx1 and mitochondrial Trx2 redox potentials in vivo. The proportions of cytosolic and nuclear Trx1 and mitochondrial Trx2 in the oxidized or reduced forms were analyzed using redox Western blotting. In myotubes, the mean redox potentials were nuclear Trx1, -251 mV; cytosolic Trx1, -242mV; mitochondrial Trx2, -346mV, data supporting the occurrence of differing redox potentials between cell compartments. Exogenous treatment of myoblasts and myotubes with hydrogen peroxide or dithiothreitol modified glutathione redox status and nuclear and cytosolic Trx1, but mitochondrial Trx2 was unchanged. Tibialis anterior muscles from young and old mice were exposed to isometric muscle contractions in vivo. Aging increased muscle contents of Trx1, Trx2, and TrxR2, but neither aging nor endogenous ROS generated during contractions modified Trx redox potentials, although oxidation of glutathione and other thiols occurred. We conclude that glutathione redox couples in skeletal muscle are more susceptible to oxidation than Trx and that Trx proteins are upregulated during aging, but do not appear to modulate redox-regulated adaptations to contractions that fail during aging.
Collapse
Affiliation(s)
- Ivan Dimauro
- Department of Health Sciences, University of Rome “Foro Italico,” 00194 Rome, Italy
| | - Timothy Pearson
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3 GA, UK
| | - Daniela Caporossi
- Department of Health Sciences, University of Rome “Foro Italico,” 00194 Rome, Italy
| | - Malcolm J. Jackson
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L69 3 GA, UK
- Corresponding author. Fax: +44 (0) 151706580.
| |
Collapse
|
146
|
Wu CS, Lan CCE, Kuo HY, Chai CY, Chen WT, Chen GS. Differential regulation of nuclear factor-kappa B subunits on epidermal keratinocytes by ultraviolet B and tacrolimus. Kaohsiung J Med Sci 2012; 28:577-85. [DOI: 10.1016/j.kjms.2012.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/09/2011] [Indexed: 10/28/2022] Open
|
147
|
Abstract
Pyridine nucleotides (PNs), such as NAD(H) and NADP(H), mediate electron transfer in many catabolic and anabolic processes. In general, NAD(+) and NADP(+) receive electrons to become NADH and NADPH by coupling with catabolic processes. These electrons are utilized for biologically essential reactions such as ATP production, anabolism and cellular oxidation-reduction (redox) regulation. Thus, in addition to ATP, NADH and NADPH could be defined as high-energy intermediates and "molecular units of currency" in energy transfer. We discuss the significance of PNs as energy/electron transporters and signal transducers, in regulating cell death and/or survival processes. In the first part of this review, we describe the role of NADH and NADPH as electron donors for NADPH oxidases (Noxs), glutathione (GSH), and thioredoxin (Trx) systems in cellular redox regulation. Noxs produce superoxide/hydrogen peroxide yielding oxidative environment, whereas GSH and Trx systems protect against oxidative stress. We then describe the role of NAD(+) and NADH as signal transducers through NAD(+)-dependent enzymes such as PARP-1 and Sirt1. PARP-1 is activated by damaged DNA in order to repair the DNA, which attenuates energy production through NAD(+) consumption; Sirt1 is activated by an increased NAD(+)/NADH ratio to facilitate signal transduction for metabolic adaption as well as stress responses. We conclude that PNs serve as an important interface for distinct cellular responses, including stress response, energy metabolism, and cell survival/death.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- Cardiovascular Research Institute, UMDNJ-Newark, 185 S Orange Ave, MSB G609, Newark, NJ 07103, USA
| | | | | |
Collapse
|
148
|
Shipman M, Lubick K, Fouchard D, Guram R, Grieco P, Jutila M, Dratz EA. Proteomic and systems biology analysis of monocytes exposed to securinine, a GABA(A) receptor antagonist and immune adjuvant. PLoS One 2012; 7:e41278. [PMID: 23028424 PMCID: PMC3441550 DOI: 10.1371/journal.pone.0041278] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Securinine, a GABA(A) receptor antagonist, has been reported to enhance monocyte cell killing of Coxiella burnetii without obvious adverse effects in vivo. We employed multiplex 2D gel electrophoresis using Zdyes, a new generation of covalently linked fluorescent differential protein detection dyes to analyze changes in the monocyte proteome in response to Securinine. Securinine antagonism of GABA(A) receptors triggers the activation of p38. We used the differential protein expression results to guide a search of the literature and network analysis software to construct a systems biology model of the effect of Securinine on monocytes. The model suggests that various metabolic modulators (fatty acid binding protein 5, inosine 5'-monophosphate dehydrogenase, and thioredoxin) are at least partially reshaping the metabolic landscape within the monocytes. The actin bundling protein L-plastin, and the Ca(2+) binding protein S100A4 also appear to have important roles in the immune response stimulated by Securinine. Fatty acid binding protein 5 (FABP5) may be involved in effecting lipid raft composition, inflammation, and hormonal regulation of monocytes, and the model suggests that FABP5 may be a central regulator of metabolism in activated monocytes. The model also suggests that the heat shock proteins have a significant impact on the monocyte immune response. The model provides a framework to guide future investigations into the mechanisms of Securinine action and with elaboration may help guide development of new types of immune adjuvants.
Collapse
Affiliation(s)
- Matt Shipman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
149
|
Go YM, Orr M, Jones DP. Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity. Toxicol Sci 2012; 131:84-94. [PMID: 22961094 DOI: 10.1093/toxsci/kfs271] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cadmium (Cd) is a widely dispersed environmental agent that causes oxidative toxicity through mechanisms that are sensitive to thioredoxin-1 (Trx1). Trx1 is a cytoplasmic protein that translocates to nuclei during oxidative stress. Recent research shows that interaction of Trx1 with actin plays a critical role in cell survival and that increased nuclear Trx-1 potentiates proinflammatory signaling and death in cell and mouse models. These observations indicate that oxidative toxicity caused by low-dose Cd could involve disruption of actin-Trx1 interaction, nuclear Trx1 translocation, and potentiation of proinflammatory cell death mechanisms. In this study, we investigated the role of nuclei-localized Trx1 in Cd-induced inflammation and cytotoxicity using in vitro and in vivo models. The results show that Cd stimulated nuclear translocation of Trx1 and p65 of NF-κB. Elevation of Trx1 in nuclei in in vitro cells and kidney of transgenic mice potentiated Cd-stimulated NF-κB activation and cell death. Cd-stimulated Trx1 nuclear translocation and NF-κB activation were inhibited by cytochalasin D, an inhibitor of actin polymerization, suggesting that actin regulates Trx1 nuclear translocation and NF-κB activation by Cd. A nuclear-targeted dominant negative form of Trx1 blocked Cd-stimulated NF-κB activation and decreased cell death. Addition of zinc, known to antagonize Cd toxicity by increasing metallothionein, had no effect on Cd-stimulated nuclear translocation of Trx1 and NF-κB activation. Taken together, the results show that nuclear translocation and accumulation of redox-active Trx1 in nuclei play an important role in Cd-induced inflammation and cell death.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
150
|
Thioredoxin-1 expression regulated by morphine in SH-SY5Y cells. Neurosci Lett 2012; 523:50-5. [DOI: 10.1016/j.neulet.2012.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
|