101
|
Faulkner C. A cellular backline: specialization of host membranes for defence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1565-71. [PMID: 25716696 DOI: 10.1093/jxb/erv021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plant-pathogen interactions, the host plasma membrane serves as a defence front for pathogens that invade from the extracellular environment. As such, the lipid bilayer acts as a scaffold that targets and delivers defence responses to the site of attack. During pathogen infection, numerous changes in plasma membrane composition, organization, and structure occur. There is increasing evidence that this facilitates the execution of a variety of responses, highlighting the regulatory role membranes play in cellular responses. Membrane microdomains such as lipid rafts are hypothesized to create signalling platforms for receptor signalling in response to pathogen perception and for callose synthesis. Further, the genesis of pathogen-associated structures such as papillae and the extra-haustorial membrane necessitates polarization of membranes and membrane trafficking pathways. Unlocking the mechanisms by which this occurs will enable greater understanding of how targeted defences, some of which result in resistance, are executed. This review will survey some of the changes that occur in host membranes during pathogen attack and how these are associated with the generation of defence responses.
Collapse
Affiliation(s)
- Christine Faulkner
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| |
Collapse
|
102
|
Tapken W, Murphy AS. Membrane nanodomains in plants: capturing form, function, and movement. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1573-86. [PMID: 25725094 DOI: 10.1093/jxb/erv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.
Collapse
Affiliation(s)
- Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
103
|
Moscatelli A, Gagliardi A, Maneta-Peyret L, Bini L, Stroppa N, Onelli E, Landi C, Scali M, Idilli AI, Moreau P. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.). Biol Open 2015; 4:378-99. [PMID: 25701665 PMCID: PMC4359744 DOI: 10.1242/bio.201410249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion.
Collapse
Affiliation(s)
- Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Assunta Gagliardi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Lilly Maneta-Peyret
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| | - Luca Bini
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Claudia Landi
- Laboratorio di Proteomica Funzionale, Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via P. A. Mattioli 4, 53100 Siena, Italy
| | - Aurora Irene Idilli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy Present address: Institute of Biophysics, National Research Council and FBK, 38123 Trento, Italy
| | - Patrick Moreau
- Laboratoire de Biogenèse Membranaire, Université Bordeaux Segalen, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon, France
| |
Collapse
|
104
|
Coursol S, Fromentin J, Noirot E, Brière C, Robert F, Morel J, Liang YK, Lherminier J, Simon-Plas F. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells. THE NEW PHYTOLOGIST 2015; 205:1239-1249. [PMID: 25303640 DOI: 10.1111/nph.13094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/06/2014] [Indexed: 06/04/2023]
Abstract
The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells.
Collapse
Affiliation(s)
- Sylvie Coursol
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Jérôme Fromentin
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Elodie Noirot
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Christian Brière
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, BP 42617, F-31326, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Franck Robert
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Johanne Morel
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jeannine Lherminier
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Françoise Simon-Plas
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| |
Collapse
|
105
|
Zhao X, Li R, Lu C, Baluška F, Wan Y. Di-4-ANEPPDHQ, a fluorescent probe for the visualisation of membrane microdomains in living Arabidopsis thaliana cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:53-60. [PMID: 25549979 DOI: 10.1016/j.plaphy.2014.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/21/2014] [Indexed: 05/19/2023]
Abstract
Cholesterol-enriched microdomains, also called lipid rafts, are nanoscale membrane structures with a high degree of structural order. Since these microdomains play important roles in dynamic cytological events, such as cell signalling and membrane trafficking, the detection and tracking of microdomain behaviours are crucial to studies on modern membrane physiology. Currently, observation of microdomains is mostly based on the detection of specific raft-resident constituents using artificial cross-link fluorescent probes. However, only a few microdomain-specific fluorescent dyes are available for plant cell biology studies. In this study, the photophysical properties of di-4-ANEPPDHQ were analysed. The use of confocal laser scanning microscope (CLSM)-based methods in the visualisation of microdomains in living cells of Arabidopsis thaliana was assessed. The results confirmed that the generalised polarisation (GP) method can be used to quantitatively visualise the membrane orders in live plant cells. This dye was found to have low cytotoxicity in plant root epidermal cells and root hairs. These findings suggest that di-4-ANEPPDHQ is an appropriate tool for the visualisation of microdomains in living plant cells.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D53115, Germany.
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
106
|
Grosjean K, Mongrand S, Beney L, Simon-Plas F, Gerbeau-Pissot P. Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. J Biol Chem 2015; 290:5810-25. [PMID: 25575593 DOI: 10.1074/jbc.m114.598805] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains.
Collapse
Affiliation(s)
- Kevin Grosjean
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Sébastien Mongrand
- the Laboratoire de Biogenèse Membranaire (LBM), CNRS, UMR 5200, F-33000 Villenave d'Ornon, France, the Laboratoire de Biogenèse Membranaire (LBM), Université de Bordeaux, UMR 5200, F-33000 Villenave d'Ornon, France
| | - Laurent Beney
- the Laboratoire Procédés Alimentaires et Microbiologiques, AgroSup Dijon, F-21000 Dijon, France, and
| | - Françoise Simon-Plas
- ERL 6300 CNRS, INRA, UMR1347 Agroécologie, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | - Patricia Gerbeau-Pissot
- From UMR1347 Agroécologie, ERL 6300 CNRS, Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France,
| |
Collapse
|
107
|
Carmona-Salazar L, El Hafidi M, Gutiérrez-Nájera N, Noyola-Martínez L, González-Solís A, Gavilanes-Ruíz M. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species. PHYTOCHEMISTRY 2015; 109:25-35. [PMID: 25457489 DOI: 10.1016/j.phytochem.2014.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/17/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Dpto. de Bioquímica, Edif. E, Facultad de Química, UNAM. Ciudad Universitaria, Coyoacán, 04510 Mexico, D.F., Mexico
| | - Mohammed El Hafidi
- Dpto. de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Tlalpan, 14080 México, D.F., Mexico
| | - Nora Gutiérrez-Nájera
- Laboratorio de Bioquímica, Instituto Nacional de Medicina Genómica, Periférico Sur No. Col. Arenal Tepepan, Tlalpan, México, D.F., Mexico
| | - Liliana Noyola-Martínez
- Dpto. de Bioquímica, Edif. E, Facultad de Química, UNAM. Ciudad Universitaria, Coyoacán, 04510 Mexico, D.F., Mexico
| | - Ariadna González-Solís
- Dpto. de Bioquímica, Edif. E, Facultad de Química, UNAM. Ciudad Universitaria, Coyoacán, 04510 Mexico, D.F., Mexico
| | - Marina Gavilanes-Ruíz
- Dpto. de Bioquímica, Edif. E, Facultad de Química, UNAM. Ciudad Universitaria, Coyoacán, 04510 Mexico, D.F., Mexico.
| |
Collapse
|
108
|
Gui J, Zheng S, Shen J, Li L. Grain setting defect1 (GSD1) function in rice depends on S-acylation and interacts with actin 1 (OsACT1) at its C-terminal. FRONTIERS IN PLANT SCIENCE 2015; 6:804. [PMID: 26483819 PMCID: PMC4590517 DOI: 10.3389/fpls.2015.00804] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/15/2015] [Indexed: 05/19/2023]
Abstract
Grain setting defect1 (GSD1), a plant-specific remorin protein specifically localized at the plasma membrane (PM) and plasmodesmata of phloem companion cells, affects grain setting in rice through regulating the transport of photoassimilates. Here, we show new evidence demonstrating that GSD1 is localized at the cytoplasmic face of the PM and a stretch of 45 amino acid residues at its C-terminal is required for its localization. Association with the PM is mediated by S-acylation of cysteine residues Cys-524 and Cys-527, in a sequence of 45 amino acid residues essential for GSD1 function in rice. Furthermore, the coiled-coil domain in GSD1 is necessary for sufficient interaction with OsACT1. Together, these results reveal that GSD1 attaches to the PM through S-acylation and interacts with OsACT1 through its coiled-coil domain structure to regulate plasmodesmata conductance for photoassimilate transport in rice.
Collapse
Affiliation(s)
| | | | | | - Laigeng Li
- *Correspondence: Laigeng Li, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China,
| |
Collapse
|
109
|
Zhao X, Zhang X, Qu Y, Li R, Baluška F, Wan Y. Mapping of Membrane Lipid Order in Root Apex Zones of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:1151. [PMID: 26734047 PMCID: PMC4685293 DOI: 10.3389/fpls.2015.01151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/04/2015] [Indexed: 05/18/2023]
Abstract
In this study, we used the fluorescence probe, Di-4-ANEPPDHQ, to map the distribution of membrane lipid order in the apical region of Arabidopsis roots. The generalized polarization (GP) value of Di-4-ANEPPDHQ-stained roots indicated the highest lipid order in the root transition zone (RTZ). The cortical cells have higher lipid order than the epidermal cells in same regions, while the developing root hairs show very prominent cell polarity with high lipid order in apical region. Moreover, the endosomes had lower lipid order than that of the plasma membrane (PM). Brefeldin A (BFA) treatment decreased the lipid order in both the plasma and endosomal membranes of epidermal cells in the RTZ. The lipid order of BFA-induced compartments became higher than that of the PM after BFA treatment in epidermal cells. Meanwhile, the polarly growing tips of root hairs did not show the same behavior. The lipid order of the PM remained unchanged, with higher values than that of the endosomes. This suggests that the lipid ordering in the PM was affected by recycling of endosomal vesicles in epidermal cells of the root apex transition zone but not in the root hairs of Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Xiran Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Yanli Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Yinglang Wan,
| |
Collapse
|
110
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
111
|
Frescatada-Rosa M, Stanislas T, Backues SK, Reichardt I, Men S, Boutté Y, Jürgens G, Moritz T, Bednarek SY, Grebe M. High lipid order of Arabidopsis cell-plate membranes mediated by sterol and DYNAMIN-RELATED PROTEIN1A function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:745-57. [PMID: 25234576 PMCID: PMC4280860 DOI: 10.1111/tpj.12674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/21/2014] [Accepted: 09/04/2014] [Indexed: 05/22/2023]
Abstract
Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis.
Collapse
Affiliation(s)
- Márcia Frescatada-Rosa
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversitySE-90187, Umeå, Sweden
| | - Thomas Stanislas
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversitySE-90187, Umeå, Sweden
| | - Steven K Backues
- Department of Biochemistry, University of Wisconsin-MadisonMadison, WI, 53706, USA
- ‡Present address: 6036 Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA
| | - Ilka Reichardt
- Department of Developmental Genetics, Centre for Plant Molecular Biology, University of TübingenAuf der Morgenstelle 3, D-72076, Tübingen, Germany
- §Present address: Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr Bohr Gasse 3, A-1030, Vienna, Austria
| | - Shuzhen Men
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversitySE-90187, Umeå, Sweden
- ¶Present address: College of Life Sciences, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Yohann Boutté
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversitySE-90187, Umeå, Sweden
- **Present address: Membrane Biogenesis Laboratory, UMR 5200 CNRS, Université Bordeaux Segalen Bâtiment A3, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, 33883, F-Villenave d'Ornon, France
| | - Gerd Jürgens
- Department of Developmental Genetics, Centre for Plant Molecular Biology, University of TübingenAuf der Morgenstelle 3, D-72076, Tübingen, Germany
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural SciencesSE-90183, Umeå, Sweden
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-MadisonMadison, WI, 53706, USA
| | - Markus Grebe
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå UniversitySE-90187, Umeå, Sweden
- Institute for Biochemistry and Biology, Plant Physiology, University of PotsdamKarl Liebknecht Straße 24-25, Building 20, D-14476, Potsdam-Golm, Germany
- *For correspondence (e-mail )
| |
Collapse
|
112
|
Li M, Markham JE, Wang X. Overexpression of patatin-related phospholipase AIIIβ altered the content and composition of sphingolipids in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:553. [PMID: 25374574 PMCID: PMC4204433 DOI: 10.3389/fpls.2014.00553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/27/2014] [Indexed: 05/26/2023]
Abstract
In plants, fatty acids are primarily synthesized in plastids and then transported to the endoplasmic reticulum (ER) for synthesis of most of the complex membrane lipids, including glycerolipids and sphingolipids. The first step of sphingolipid synthesis, which uses a fatty acid and a serine as substrates, is critical for sphingolipid homeostasis; its disruption leads to an altered plant growth. Phospholipase As have been implicated in the trafficking of fatty acids from plastids to the ER. Previously, we found that overexpression of a patatin-related phospholipase, pPLAIIIβ, resulted in a smaller plant size and altered anisotropic cell expansion. Here, we determined the content and composition of sphingolipids in pPLAIIIβ-knockout and overexpression plants (pPLAIIIβ-KO and -OE). 3-keto-sphinganine, the product of the first step of sphingolipid synthesis, had a 26% decrease in leaves of pPLAIIIβ-KO while a 52% increase in pPLAIIIβ-OE compared to wild type (WT). The levels of free long-chain base species, dihydroxy-C18:0 and trihydroxy-18:0 (d18:0 and t18:0), were 38 and 97% higher, respectively, in pPLAIIIβ-OE than in WT. The level of complex sphingolipids ceramide d18:0-16:0 and t18:1-16:0 had a twofold increase in pPLAIIIβ-OE. The level of hydroxy ceramide d18:0-h16:0 was 72% higher in pPLAIIIβ-OE compared to WT. The levels of several species of glucosylceramide and glycosylinositolphosphoceramide tended to be higher in pPLAIIIβ-OE than in WT. The total content of the complex sphingolipids showed a slightly higher in pPLAIIIβ-OE than in WT. These results revealed an involvement of phospholipase-mediated lipid homeostasis in plant growth.
Collapse
Affiliation(s)
- Maoyin Li
- Department of Biology, University of MissouriSt. Louis, MO, USA
- Donald Danforth Plant Science CenterSt. Louis, MO, USA
| | | | - Xuemin Wang
- Department of Biology, University of MissouriSt. Louis, MO, USA
- Donald Danforth Plant Science CenterSt. Louis, MO, USA
| |
Collapse
|
113
|
Guillier C, Cacas JL, Recorbet G, Deprêtre N, Mounier A, Mongrand S, Simon-Plas F, Wipf D, Dumas-Gaudot E. Direct purification of detergent-insoluble membranes from Medicago truncatula root microsomes: comparison between floatation and sedimentation. BMC PLANT BIOLOGY 2014; 14:255. [PMID: 25267185 PMCID: PMC4193990 DOI: 10.1186/s12870-014-0255-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/20/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Membrane microdomains are defined as highly dynamic, sterol- and sphingolipid-enriched domains that resist to solubilization by non-ionic detergents. In plants, these so-called Detergent Insoluble Membrane (DIM) fractions have been isolated from plasma membrane by using conventional ultracentrifugation on density gradient (G). In animals, a rapid (R) protocol, based on sedimentation at low speed, which avoids the time-consuming sucrose gradient, has also been developed to recover DIMs from microsomes as starting material. In the current study, we sought to compare the ability of the Rapid protocol versus the Gradient one for isolating DIMs directly from microsomes of M. truncatula roots. For that purpose, Triton X-100 detergent-insoluble fractions recovered with the two methods were analyzed and compared for their sterol/sphingolipid content and proteome profiles. RESULTS Inferred from sterol enrichment, presence of typical sphingolipid long-chain bases from plants and canonical DIM protein markers, the possibility to prepare DIMs from M. truncatula root microsomes was confirmed both for the Rapid and Gradient protocols. Contrary to sphingolipids, the sterol and protein profiles of DIMs were found to depend on the method used. Namely, DIM fractions were differentially enriched in spinasterol and only shared 39% of common proteins as assessed by GeLC-MS/MS profiling. Quantitative analysis of protein indicated that each purification procedure generated a specific subset of DIM-enriched proteins from Medicago root microsomes. Remarkably, these two proteomes were found to display specific cellular localizations and biological functions. In silico analysis of membrane-associative features within R- and G-enriched proteins, relative to microsomes, showed that the most noticeable difference between the two proteomes corresponded to an increase in the proportion of predicted signal peptide-containing proteins after sedimentation (R) compared to its decrease after floatation (G), suggesting that secreted proteins likely contribute to the specificity of the R-DIM proteome. CONCLUSIONS Even though microsomes were used as initial material, we showed that the protein composition of the G-DIM fraction still mostly mirrored that of plasmalemma-originating DIMs conventionally retrieved by floatation. In parallel, the possibility to isolate by low speed sedimentation DIM fractions that seem to target the late secretory pathway supports the existence of plant microdomains in other organelles.
Collapse
Affiliation(s)
- Christelle Guillier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Jean-Luc Cacas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Ghislaine Recorbet
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Nicolas Deprêtre
- />UMR CSGA: Centre des Sciences du Goût et de l’alimentation, UMR 6265 CNRS, 1324 INRA-uB, Dijon, France
| | - Arnaud Mounier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Sébastien Mongrand
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Françoise Simon-Plas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Daniel Wipf
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
114
|
Son S, Oh CJ, An CS. Arabidopsis thaliana Remorins Interact with SnRK1 and Play a Role in Susceptibility to Beet Curly Top Virus and Beet Severe Curly Top Virus. THE PLANT PATHOLOGY JOURNAL 2014; 30:269-78. [PMID: 25289013 PMCID: PMC4181108 DOI: 10.5423/ppj.oa.06.2014.0061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 05/19/2023]
Abstract
Remorins, a family of plant-specific proteins containing a variable N-terminal region and conserved C-terminal domain, play a role in various biotic and abiotic stresses, including host-microbe interactions. However, their functions remain to be completely elucidated, especially for the Arabidopsis thaliana remorin group 4 (AtREM4). To elucidate the role of remorins in Arabidopsis, we first showed that AtREM4s have typical molecular characteristics of the remorins, such as induction by various types of biotic and abiotic stresses, localization in plasma membrane and homo- and hetero-oligomeric interaction. Next, we showed that their loss-of-function mutants displayed reduced susceptibility to geminiviruses, Beet Curly Top Virus and Beet Severe Curly Top Virus, while overexpressors enhanced susceptibility. Moreover, we found that they interacted with SnRK1, which phosphorylated AtREM4.1, and were degraded by the 26S proteasome pathway. These results suggest that AtREM4s may be involved in the SnRK1-mediated signaling pathway and play a role as positive regulators of the cell cycle during geminivirus infection.
Collapse
Affiliation(s)
| | | | - Chung Sun An
- Corresponding author. Phone) +82-2-880-6678, FAX) +82-2-872-1993 E-mail)
| |
Collapse
|
115
|
Noirot E, Der C, Lherminier J, Robert F, Moricova P, Kiêu K, Leborgne-Castel N, Simon-Plas F, Bouhidel K. Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5011-22. [PMID: 24987013 PMCID: PMC4144778 DOI: 10.1093/jxb/eru265] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), have been identified as a major source of reactive oxygen species (ROS) during plant-microbe interactions. The subcellular localization of the tobacco (Nicotiana tabacum) ROS-producing enzyme RBOHD was examined in Bright Yellow-2 cells before and after elicitation with the oomycete protein cryptogein using electron and confocal microscopy. The plasma membrane (PM) localization of RBOHD was confirmed and immuno-electron microscopy on purified PM vesicles revealed its distribution in clusters. The presence of the protein fused to GFP was also seen in intracellular compartments, mainly Golgi cisternae. Cryptogein induced, within 1h, a 1.5-fold increase in RBOHD abundance at the PM and a concomitant decrease in the internal compartments. Use of cycloheximide revealed that most of the proteins targeted to the PM upon elicitation were not newly synthesized but may originate from the Golgi pool. ROS accumulation preceded RBOHD transcript- and protein-upregulation, indicating that ROS resulted from the activation of a PM-resident pool of enzymes, and that enzymes newly addressed to the PM were inactive. Taken together, the results indicate that control of RBOH abundance and subcellular localization may play a fundamental role in the mechanism of ROS production.
Collapse
Affiliation(s)
- Elodie Noirot
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, BP 86510, F-21065 Dijon Cedex, France
| | - Christophe Der
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Jeannine Lherminier
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, BP 86510, F-21065 Dijon Cedex, France
| | - Franck Robert
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Pavla Moricova
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France Present address: Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Kiên Kiêu
- INRA, UR341 Mathématiques et Informatique Appliquées, F-78352 Jouy-en-Josas Cedex, France
| | - Nathalie Leborgne-Castel
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Françoise Simon-Plas
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Karim Bouhidel
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
116
|
Bozkurt TO, Richardson A, Dagdas YF, Mongrand S, Kamoun S, Raffaele S. The Plant Membrane-Associated REMORIN1.3 Accumulates in Discrete Perihaustorial Domains and Enhances Susceptibility to Phytophthora infestans. PLANT PHYSIOLOGY 2014; 165:1005-1018. [PMID: 24808104 PMCID: PMC4081318 DOI: 10.1104/pp.114.235804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Filamentous pathogens such as the oomycete Phytophthora infestans infect plants by developing specialized structures termed haustoria inside the host cells. Haustoria are thought to enable the secretion of effector proteins into the plant cells. Haustorium biogenesis, therefore, is critical for pathogen accommodation in the host tissue. Haustoria are enveloped by a specialized host-derived membrane, the extrahaustorial membrane (EHM), which is distinct from the plant plasma membrane. The mechanisms underlying the biogenesis of the EHM are unknown. Remarkably, several plasma membrane-localized proteins are excluded from the EHM, but the remorin REM1.3 accumulates around P. infestans haustoria. Here, we used overexpression, colocalization with reporter proteins, and superresolution microscopy in cells infected by P. infestans to reveal discrete EHM domains labeled by REM1.3 and the P. infestans effector AVRblb2. Moreover, SYNAPTOTAGMIN1, another previously identified perihaustorial protein, localized to subdomains that are mainly not labeled by REM1.3 and AVRblb2. Functional characterization of REM1.3 revealed that it is a susceptibility factor that promotes infection by P. infestans. This activity, and REM1.3 recruitment to the EHM, require the REM1.3 membrane-binding domain. Our results implicate REM1.3 membrane microdomains in plant susceptibility to an oomycete pathogen.
Collapse
Affiliation(s)
- Tolga O Bozkurt
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Annis Richardson
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Yasin F Dagdas
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Sébastien Mongrand
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Sophien Kamoun
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| | - Sylvain Raffaele
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom (T.O.B., A.R., Y.F.D., S.K., S.R.);Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (T.O.B.);John Innes Centre, Norwich NR4 7UH, United Kingdom (A.R.);Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200 Centre National de la Recherche Scientifique-Université Bordeaux Segalen-Institut National de la Recherche Agronomique, F-33883 Villenave d'Ornon cedex, France (S.M.); andLaboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche 441 Institut National de la Recherche Agronomique-Unité Mixte de Recherche 2594 Centre National de la Recherche Scientifique, F-31326 Castanet-Tolosan, France (S.R.)
| |
Collapse
|
117
|
Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C. The sucrose transporter SlSUT2 from tomato interacts with brassinosteroid functioning and affects arbuscular mycorrhiza formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:877-89. [PMID: 24654931 DOI: 10.1111/tpj.12515] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
Mycorrhizal plants benefit from the fungal partners by getting better access to soil nutrients. In exchange, the plant supplies carbohydrates to the fungus. The additional carbohydrate demand in mycorrhizal plants was shown to be balanced partially by higher CO2 assimilation and increased C metabolism in shoots and roots. In order to test the role of sucrose transport for fungal development in arbuscular mycorrhizal (AM) tomato, transgenic plants with down-regulated expression of three sucrose transporter genes were analysed. Plants that carried an antisense construct of SlSUT2 (SlSUT2as) repeatedly exhibited increased mycorrhizal colonization and the positive effect of plants to mycorrhiza was abolished. Grafting experiments between transgenic and wild-type rootstocks and scions indicated that mainly the root-specific function of SlSUT2 has an impact on colonization of tomato roots with the AM fungus. Localization of SISUT2 to the periarbuscular membrane indicates a role in back transport of sucrose from the periarbuscular matrix into the plant cell thereby affecting hyphal development. Screening of an expression library for SlSUT2-interacting proteins revealed interactions with candidates involved in brassinosteroid (BR) signaling or biosynthesis. Interaction of these candidates with SlSUT2 was confirmed by bimolecular fluorescence complementation. Tomato mutants defective in BR biosynthesis were analysed with respect to mycorrhizal symbiosis and showed indeed decreased mycorrhization. This finding suggests that BRs affect mycorrhizal infection and colonization. If the inhibitory effect of SlSUT2 on mycorrhizal growth involves components of BR synthesis and of the BR signaling pathway is discussed.
Collapse
Affiliation(s)
- Michael Bitterlich
- Plant Physiology Department, Humboldt University of Berlin, Philippstr. 13, Building 12, 10115, Berlin, Germany; Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | | | | | | | | |
Collapse
|
118
|
Eugenia de la Torre-Hernández M, Sánchez-Rangel D, Galeana-Sánchez E, Plasencia-de la Parra J. Fumonisinas –Síntesis y función en la interacción Fusarium verticillioides-maíz. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70321-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
119
|
Payne G, Lad M, Foster T, Khosla A, Gray D. Composition and properties of the surface of oil bodies recovered from Echium plantagineum. Colloids Surf B Biointerfaces 2014; 116:88-92. [DOI: 10.1016/j.colsurfb.2013.11.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/22/2013] [Accepted: 11/24/2013] [Indexed: 10/25/2022]
|
120
|
Valitova J, Sulkarnayeva A, Kotlova E, Ponomareva A, Mukhitova FK, Murtazina L, Ryzhkina I, Beckett R, Minibayeva F. Sterol binding by methyl-β-cyclodextrin and nystatin--comparative analysis of biochemical and physiological consequences for plants. FEBS J 2014; 281:2051-60. [PMID: 24612537 DOI: 10.1111/febs.12761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Abstract
The dependence of membrane function on its sterol component has been intensively studied with model lipids and isolated animal membranes, but to a much lesser extent with plant membranes. Depleting membrane sterols could be predicted to have a strong effect on membrane activity and have harmful physiological consequences. In this study, we characterized membrane lipid composition, membrane permeability for ions, some physiological parameters, such as H2O2 accumulation, formation of autophagosomal vacuoles, and expression of peroxidase and autophagic genes, and cell viability in the roots of wheat (Triticum aestivum L.) seedlings in the presence of two agents that specifically bind to endogenous sterols. The polyene antibiotic nystatin binds to endogenous sterols, forming so-called 'nystatin pores' or 'channels' in the membrane, and methyl-β-cyclodextrin has the capacity to sequester sterols in its hydrophobic core. Unexpectedly, although application of both methyl-β-cyclodextrin and nystatin reduced the sterol content, their effects on membrane permeability, oxidative status and autophagosome formation in roots differed dramatically. For comparison, we also tested the effects of the antibiotic gramicidin S, which does not bind to sterols but forms nonspecific channels in the membrane. Gramicidin S considerably increased membrane permeability, caused oxidative stress, and reduced cell viability. Our results suggest that a decrease in the sterol content is, in itself, not sufficient to have deleterious effects on a cell. The disturbance of membrane integrity, rather than the decrease in the sterol content, is responsible for the toxicity of sterol-binding compounds.
Collapse
Affiliation(s)
- Julia Valitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Huchelmann A, Gastaldo C, Veinante M, Zeng Y, Heintz D, Tritsch D, Schaller H, Rohmer M, Bach TJ, Hemmerlin A. S-carvone suppresses cellulase-induced capsidiol production in Nicotiana tabacum by interfering with protein isoprenylation. PLANT PHYSIOLOGY 2014; 164:935-50. [PMID: 24367019 PMCID: PMC3912117 DOI: 10.1104/pp.113.232546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/20/2013] [Indexed: 05/27/2023]
Abstract
S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway-dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism.
Collapse
Affiliation(s)
- Alexandre Huchelmann
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Clément Gastaldo
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Mickaël Veinante
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | | - Dimitri Heintz
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Denis Tritsch
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Hubert Schaller
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Michel Rohmer
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | - Thomas J. Bach
- Unité Propre de Recherche 2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, conventionné avec l’Université de Strasbourg, F-67083 Strasbourg, France (Al.H., M.V., Y.Z., D.H., H.S., T.J.B., An.H.); and
- Institut de Chimie Unité Mixte de Recherche 7177, Université de Strasbourg/Centre National de la Recherche Scientifique, F-67070 Strasbourg, France (C.G., D.T., M.R.)
| | | |
Collapse
|
122
|
González-Solís A, Cano-Ramírez DL, Morales-Cedillo F, Tapia de Aquino C, Gavilanes-Ruiz M. Arabidopsis mutants in sphingolipid synthesis as tools to understand the structure and function of membrane microdomains in plasmodesmata. FRONTIERS IN PLANT SCIENCE 2014; 5:3. [PMID: 24478783 PMCID: PMC3900917 DOI: 10.3389/fpls.2014.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/03/2014] [Indexed: 05/08/2023]
Abstract
Plasmodesmata-intercellular channels that communicate adjacent cells-possess complex membranous structures. Recent evidences indicate that plasmodesmata contain membrane microdomains. In order to understand how these submembrane regions collaborate to plasmodesmata function, it is necessary to characterize their size, composition and dynamics. An approach that can shed light on these microdomain features is based on the use of Arabidopsis mutants in sphingolipid synthesis. Sphingolipids are canonical components of microdomains together with sterols and some glycerolipids. Moreover, sphingolipids are transducers in pathways that display programmed cell death as a defense mechanism against pathogens. The study of Arabidopsis mutants would allow determining which structural features of the sphingolipids are important for the formation and stability of microdomains, and if defense signaling networks using sphingoid bases as second messengers are associated to plasmodesmata operation. Such studies need to be complemented by analysis of the ultrastructure and the use of protein probes for plasmodesmata microdomains and may constitute a very valuable source of information to analyze these membrane structures.
Collapse
Affiliation(s)
| | | | | | | | - Marina Gavilanes-Ruiz
- *Correspondence: Marina Gavilanes-Ruiz, Departamento de Bioquímica, Facultad de Química, Conj. E., Universidad Nacional Autónoma de Mexico, UNAM. Cd. Universitaria, 04510 Mexico City, Mexico e-mail:
| |
Collapse
|
123
|
Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS. Methods Mol Biol 2014; 1072:481-98. [PMID: 24136542 DOI: 10.1007/978-1-62703-631-3_33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.
Collapse
|
124
|
Gerbeau-Pissot P, Der C, Thomas D, Anca IA, Grosjean K, Roche Y, Perrier-Cornet JM, Mongrand S, Simon-Plas F. Modification of plasma membrane organization in tobacco cells elicited by cryptogein. PLANT PHYSIOLOGY 2014; 164:273-86. [PMID: 24235133 PMCID: PMC3875808 DOI: 10.1104/pp.113.225755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/05/2013] [Indexed: 05/07/2023]
Abstract
Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe. This allowed the in vivo characterization of the global level of order of this membrane, by which we could demonstrate that an increase in its proportion of ordered phases transiently occurred in the early steps of the signaling triggered by cryptogein and flagellin, two elicitors of plant defense reactions. The use of fluorescence recovery after photobleaching revealed an increase in plasma membrane fluidity induced by cryptogein, but not by flagellin. Moreover, we characterized the spatial distribution of liquid-ordered phases on the membrane of living plant cells and monitored their variations induced by cryptogein elicitation. We analyze these results in the context of plant defense signaling, discuss their meaning within the framework of the "membrane raft" hypothesis, and propose a new mechanism of signaling platform formation in response to elicitor treatment.
Collapse
Affiliation(s)
| | - Christophe Der
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Dominique Thomas
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Iulia-Andra Anca
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Kevin Grosjean
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Yann Roche
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Jean-Marie Perrier-Cornet
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Sébastien Mongrand
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| | - Françoise Simon-Plas
- Université de Bourgogne (P.G.-P., C.D., D.T., K.G.), and Institut National de la Recherche Agronomique (I.-A.A., Y.R., F.S.-P.), Unité Mixte de Recherche 1347 Agroécologie, Equipe de Recherche Labelisée 6300 Centre National de la Recherche Scientifique, BP 86510, F–21000 Dijon, France
- AgroSup Dijon, Laboratoire Procédés Alimentaires et Microbiologiques, F–21000 Dijon, France (J.-M.P.-C.); and
- Centre National de la Recherche Scientifique, Laboratoire de Biogenèse Membranaire, Unité Mixte de Recherche 5200, Université Victor Segalen, Institut National de la Recherche Agronomique Bordeaux Aquitaine, BP 81, F–33883 Villenave d’Ornon, France (S.M.)
| |
Collapse
|
125
|
Bouhidel K. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view. FRONTIERS IN PLANT SCIENCE 2014; 5:735. [PMID: 25566303 PMCID: PMC4273610 DOI: 10.3389/fpls.2014.00735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/03/2014] [Indexed: 05/21/2023]
Abstract
In order to ensure their physiological and cellular functions, plasma membrane (PM) proteins must be properly conveyed from their site of synthesis, i.e., the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.
Collapse
Affiliation(s)
- Karim Bouhidel
- UMR1347 Agroécologie AgroSup/INRA/uB, ERL CNRS 6300, Université de Bourgogne , Dijon, France
| |
Collapse
|
126
|
Naulin PA, Alveal NA, Barrera NP. Toward atomic force microscopy and mass spectrometry to visualize and identify lipid rafts in plasmodesmata. FRONTIERS IN PLANT SCIENCE 2014; 5:234. [PMID: 24910637 PMCID: PMC4038920 DOI: 10.3389/fpls.2014.00234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/11/2014] [Indexed: 05/08/2023]
Abstract
Plant cell-to-cell communication is mediated by nanopores called plasmodesmata (PDs) which are complex structures comprising plasma membrane (PM), highly packed endoplasmic reticulum and numerous membrane proteins. Although recent advances on proteomics have led to insights into mechanisms of transport, there is still an inadequate characterization of the lipidic composition of the PM where membrane proteins are inserted. It has been postulated that PDs could be formed by lipid rafts, however no structural evidence has shown to visualize and analyse their lipid components. In this perspective article, we discuss proposed experiments to characterize lipid rafts and proteins in the PDs. By using atomic force microscopy (AFM) and mass spectrometry (MS) of purified PD vesicles it is possible to determine the presence of lipid rafts, specific bound proteins and the lipidomic profile of the PD under physiological conditions and after changing transport permeability. In addition, MS can determine the stoichiometry of intact membrane proteins inserted in lipid rafts. This will give novel insights into the role of membrane proteins and lipid rafts on the PD structure.
Collapse
Affiliation(s)
| | | | - Nelson P. Barrera
- *Correspondence: Nelson P. Barrera, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile e-mail:
| |
Collapse
|
127
|
Bitterlich M, Krügel U, Boldt-Burisch K, Franken P, Kühn C. Interaction of brassinosteroid functions and sucrose transporter SlSUT2 regulate the formation of arbuscular mycorrhiza. PLANT SIGNALING & BEHAVIOR 2014; 9:e970426. [PMID: 25482803 PMCID: PMC4622791 DOI: 10.4161/15592316.2014.970426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 05/18/2023]
Abstract
Transgenic tomato plants with reduced expression of the sucrose transporter SlSUT2 showed higher efficiency of mycorrhization suggesting a sucrose retrieval function of SlSUT2 from the peri-arbuscular space back into the cell cytoplasm plant cytoplasm thereby limiting mycorrhiza fungal development. Sucrose uptake in colonized root cells requires efficient plasma membrane-targeting of SlSUT2 which is often retained intracellularly in vacuolar vesicles. Protein-protein interaction studies suggested a link between SISUT2 function and components of brassinosteroid biosynthesis and signaling. Indeed, the tomato DWARF mutant d(x) defective in BR synthesis (1) showed significantly reduced mycorrhization parameters. (2) The question has been raised whether the impact of brassinosteroids on mycorrhization is a general phenomenon. Here, we include a rice mutant defective in DIM1/DWARF1 involved in BR biosynthesis to investigate the effects on mycorrhization. A model is presented where brassinolides are able to impact mycorrhization by activating SUT2 internalization and inhibiting its role in sucrose retrieval.
Collapse
Key Words
- AM, arbuscular mycorrhiza
- BR, brassinosteroids
- DIM, diminuto
- DRM, detergent resistant membrane
- GO, gene ontology
- LRR, leucine-rich repeat
- MSBP, membrane steroid binding protein
- Oryza sativa
- PCR, polymerase chain reaction
- RNA, ribonucleic acid
- Rhizophagus irregularis
- SNARE, soluble N-ethylmaleimide-sensitive-factor attachment receptor
- SUC, sucrose carrier
- SUT, sucrose transporter
- arbuscular mycorrhiza
- brassinosteroid
- membrane trafficking
- protein-protein interactions
- sucrose transport
Collapse
Affiliation(s)
- Michael Bitterlich
- Humboldt University of Berlin; Plant Physiology Department; Berlin, Germany
- Institute of Vegetable and Ornamental Crops; Großbeeren, Germany
| | - Undine Krügel
- Humboldt University of Berlin; Plant Physiology Department; Berlin, Germany
- University of Zurich; Institute of Plant Biology, Zurich, Switzerland
| | - Katja Boldt-Burisch
- Humboldt University of Berlin; Plant Physiology Department; Berlin, Germany
- Helmholtz Center Potsdam; German Research Center for Geoscience; Potsdam, Germany
| | - Philipp Franken
- Humboldt University of Berlin; Plant Physiology Department; Berlin, Germany
- Institute of Vegetable and Ornamental Crops; Großbeeren, Germany
| | - Christina Kühn
- Humboldt University of Berlin; Plant Physiology Department; Berlin, Germany
- Correspondence to: Christina Kühn;
| |
Collapse
|
128
|
Abstract
Amyloid-β (Aβ), major constituent of senile plaques in Alzheimer's disease (AD), is generated by proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretase. Several lipids, especially cholesterol, are associated with AD. Phytosterols are naturally occurring cholesterol plant equivalents, recently been shown to cross the blood-brain-barrier accumulating in brain. Here, we investigated the effect of the most nutritional prevalent phytosterols and cholesterol on APP processing. In general, phytosterols are less amyloidogenic than cholesterol. However, only one phytosterol, stigmasterol, reduced Aβ generation by (1) directly decreasing β-secretase activity, (2) reducing expression of all γ-secretase components, (3) reducing cholesterol and presenilin distribution in lipid rafts implicated in amyloidogenic APP cleavage, and by (4) decreasing BACE1 internalization to endosomal compartments, involved in APP β-secretase cleavage. Mice fed with stigmasterol-enriched diets confirmed protective effects in vivo, suggesting that dietary intake of phytosterol blends mainly containing stigmasterol might be beneficial in preventing AD.
Collapse
|
129
|
Kimberlin AN, Majumder S, Han G, Chen M, Cahoon RE, Stone JM, Dunn TM, Cahoon EB. Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity. THE PLANT CELL 2013; 25:4627-39. [PMID: 24214397 PMCID: PMC3875740 DOI: 10.1105/tpc.113.116145] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maintenance of sphingolipid homeostasis is critical for cell growth and programmed cell death (PCD). Serine palmitoyltransferase (SPT), composed of LCB1 and LCB2 subunits, catalyzes the primary regulatory point for sphingolipid synthesis. Small subunits of SPT (ssSPT) that strongly stimulate SPT activity have been identified in mammals, but the role of ssSPT in eukaryotic cells is unclear. Candidate Arabidopsis thaliana ssSPTs, ssSPTa and ssSPTb, were identified and characterized. Expression of these 56-amino acid polypeptides in a Saccharomyces cerevisiae SPT null mutant stimulated SPT activity from the Arabidopsis LCB1/LCB2 heterodimer by >100-fold through physical interaction with LCB1/LCB2. ssSPTa transcripts were more enriched in all organs and >400-fold more abundant in pollen than ssSPTb transcripts. Accordingly, homozygous ssSPTa T-DNA mutants were not recoverable, and 50% nonviable pollen was detected in heterozygous ssspta mutants. Pollen viability was recovered by expression of wild-type ssSPTa or ssSPTb under control of the ssSPTa promoter, indicating ssSPTa and ssSPTb functional redundancy. SPT activity and sensitivity to the PCD-inducing mycotoxin fumonisin B1 (FB1) were increased by ssSPTa overexpression. Conversely, SPT activity and FB1 sensitivity were reduced in ssSPTa RNA interference lines. These results demonstrate that ssSPTs are essential for male gametophytes, are important for FB1 sensitivity, and limit sphingolipid synthesis in planta.
Collapse
Affiliation(s)
- Athen N. Kimberlin
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Saurav Majumder
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Rebecca E. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Julie M. Stone
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
- Address correspondence to
| |
Collapse
|
130
|
Takahashi D, Kawamura Y, Uemura M. Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. J Proteome Res 2013; 12:4998-5011. [PMID: 24111712 DOI: 10.1021/pr400750g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cold acclimation (CA) results in an increase in freezing tolerance of plants, which is closely associated to functional changes of the plasma membrane (PM). Although proteomic studies have revealed compositional changes of the PM during CA, there has been no large-scale study of how the microdomains in the PM, which contains specific lipids and proteins, change during CA. Therefore, we conducted semiquantitative shotgun proteomics using microdomain-enriched detergent-resistant membrane (DRM) fractions extracted from low freezing-tolerant oat and highly freezing-tolerant rye. We identified 740 and 809 DRM proteins in oat and rye, respectively. Among the proteins identified, the abundances of a variety of proteins, such as P-type ATPase and aquaporins, were affected by CA in both oat and rye. Some CA-responsive proteins in the DRM fractions, such as heat shock protein 70, changed differently in oat and rye. In addition, changes in lipocalins and sugar transporters in the DRM fractions were different from those found in total PM fraction during CA. This is the first report to describe compositional changes in the DRM during CA. The proteomic profiles obtained in the present study hint at many possible microdomain functions associated with CA and freezing tolerance.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences and ‡Cryobiofrontier Research Center, Iwate University , 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | |
Collapse
|
131
|
Molino D, Galli T. Biogenesis and transport of membrane domains-potential implications in brain pathologies. Biochimie 2013; 96:75-84. [PMID: 24075975 DOI: 10.1016/j.biochi.2013.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
Abstract
Lipids in biological membranes show astonishing chemical diversity, but they also show some key conserved structures in different organisms. In addition, some of their biophysical properties have been related to specific functions. In this review, we aim to discuss the role of sphingolipids- and cholesterol-rich micro- and nano-membrane domains (MD) and highlight their pivotal role in lipid-protein clustering processes, vesicle biogenesis and membrane fusion. We further review potential connections between human pathologies and defects in MD biosynthesis, recycling and homeostasis. Brain, which is second only to the adipose tissues in term of lipid abundance, is particularly affected by MD defects which are linked to neurodegenerative disorders. Finally we propose a potential connection between MD and several nutrient-related processes and envision how diet and autophagy could bring insights towards understanding the impact of global lipid homeostasis on human health and disease.
Collapse
Affiliation(s)
- Diana Molino
- Institut Jacques Monod, UMR 7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; INSERM ERL U950, Membrane Traffic in Neuronal and Epithelial Morphogenesis, F-75013 Paris, France.
| | | |
Collapse
|
132
|
Li S, Su X, Zhang B, Huang Q, Hu Z, Lu M. Molecular cloning and functional analysis of the Populus deltoides remorin gene PdREM. TREE PHYSIOLOGY 2013; 33:1111-1121. [PMID: 24072517 DOI: 10.1093/treephys/tpt072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Remorins play vital roles in signal transduction, energy transformation, ion flow and transport in plants. Upregulation of remorins correlates with dehiscence and cell maturation; however, no studies have been performed to elucidate the function of remorins in tree species. In this study, a Populus deltoides (Marsh.) plasma membrane-binding protein remorin gene (PdREM) was cloned and characterized by investigating its expression pattern and creating transgenic hybrid poplar (P. davidiana Dode × P. bolleana Lauche) lines expressing sense or antisense PdREM. PdREM was specifically expressed in leaf buds, and immature and mature phloem in P. deltoides. Downregulation of PdREM increased plant height, stem diameter, number of leaves, size of the xylem and phloem zones and induced expression of cell wall biosynthesis- and microfibril angle (MFA)-related genes. Overexpression of PdREM retarded vegetative growth. PdREM may negatively regulate vascular growth by inhibiting secondary cell wall expansion in poplar. In addition, antisense PdREM transgenic poplar had a lower MFA, suggesting that PdREM might contribute to sheet strength and wood properties in poplar. This study sheds light on the molecular mechanism of PdREM in P. deltoides growth and development, and lays the foundation for future functional genomics research into wood formation and the genetic engineering of forest trees with improved wood quality traits.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Forestry Experiment Center of North China, Chinese Academy of Forestry, Beijing 100023, P.R. China
| | | | | | | | | | | |
Collapse
|
133
|
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T. Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. PLANT & CELL PHYSIOLOGY 2013; 54:1571-84. [PMID: 23903016 DOI: 10.1093/pcp/pct107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The local distribution of both the vacuolar-type proton ATPase (V-ATPase) and the vacuolar-type proton pyrophosphatase (V-PPase), the main vacuolar proton pumps, was investigated in intact vacuoles isolated from Arabidopsis suspension-cultured cells. Fluorescent immunostaining showed that V-PPase was distributed evenly on the vacuolar membrane (VM), but V-ATPase localized to specific regions of the VM. We hypothesize that there may be membrane microdomains on the VM. To confirm this hypothesis, we prepared detergent-resistant membranes (DRMs) from the VM in accordance with well established conventional methods. Analyses of fatty acid composition suggested that DRMs had more saturated fatty acids compared with the whole VM in phosphatidylcholine and phosphatidylethanolamine. In the proteomic analyses of both DRMs and detergent-soluble mebranes (DSMs), we confirmed the different local distributions of V-ATPase and V-PPase. The observations of DRMs with an electron microscope supported the existence of different areas on the VM. Moreover, it was observed using total internal reflection fluorescent microscopy (TIRFM) that proton pumps were frequently immobilized at specific sites on the VM. In the proteomic analyses, we also found that many other vacuolar membrane proteins are distributed differently in DRMs and DSMs. Based on the results of this study, we discuss the possibility that VM microdomains might contribute to vacuolar dynamics.
Collapse
Affiliation(s)
- Katsuhisa Yoshida
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Srivastava V, Malm E, Sundqvist G, Bulone V. Quantitative proteomics reveals that plasma membrane microdomains from poplar cell suspension cultures are enriched in markers of signal transduction, molecular transport, and callose biosynthesis. Mol Cell Proteomics 2013; 12:3874-85. [PMID: 24051156 DOI: 10.1074/mcp.m113.029033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The plasma membrane (PM) is a highly dynamic interface that contains detergent-resistant microdomains (DRMs). The aim of this work was to determine the main functions of such microdomains in poplar through a proteomic analysis using gel-based and solution (iTRAQ) approaches. A total of 80 proteins from a limited number of functional classes were found to be significantly enriched in DRM relative to PM. The enriched proteins are markers of signal transduction, molecular transport at the PM, or cell wall biosynthesis. Their intrinsic properties are presented and discussed together with the biological significance of their enrichment in DRM. Of particular importance is the significant and specific enrichment of several callose [(1 → 3)-β-glucan] synthase isoforms, whose catalytic activity represents a final response to stress, leading to the deposition of callose plugs at the surface of the PM. An integrated functional model that connects all DRM-enriched proteins identified is proposed. This report is the only quantitative analysis available to date of the protein composition of membrane microdomains from a tree species.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
135
|
Zauber H, Szymanski W, Schulze WX. Unraveling sterol-dependent membrane phenotypes by analysis of protein abundance-ratio distributions in different membrane fractions under biochemical and endogenous sterol depletion. Mol Cell Proteomics 2013; 12:3732-43. [PMID: 24030099 DOI: 10.1074/mcp.m113.029447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions.
Collapse
Affiliation(s)
- Henrik Zauber
- Max Planck Institute of molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
136
|
Shi C, Wu F, Zhu XC, Xu J. Incorporation of beta-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3beta signaling. Biochim Biophys Acta Gen Subj 2013; 1830:2538-44. [PMID: 23266618 DOI: 10.1016/j.bbagen.2012.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Brain lipid peroxidation has long been considered a potential therapeutic target for Alzheimer's disease (AD). beta-sitosterol (BS), a plant sterol that is prevalent in plant plasma membrane, has been suggested to have antioxidant activity. Previous studies have demonstrated that dietary BS can enter the brain and accumulates in the plasma membrane of brain cells. However, it is unknown whether and how BS exerts its antioxidant activity in plasma membrane. METHODS To incorporate BS into the plasma membrane in vitro, HT22 cells and primarily cultured hippocampal cells were supplemented with BS using 2-hydroxypropyl-beta-cyclodextrin (HPbetaCD) as a carrier. The present study then tested the antioxidant effect of membrane BS against glucose oxidase (GOX)-induced oxidative stress and lipid peroxidation, and whether the antioxidant effect of membrane BS was associated with estrogen receptor (ER)-mediated phosphatidyl inositol 3-kinase (PL3K)/glycogen synthase kinase 3 (GSK3beta) signaling. RESULTS Incorporation of BS into cell membrane prevented GOX-induced oxidative stress and lipid peroxidation, which could be suppressed by the ER antagonists and PI3K inhibitor. Additional experiments showed that incorporation of BS into cell membrane induced an up-regulation of PI3K activity and a recruitment of PI3K to lipid rafts, which could be inhibited by the ER antagonist. Membrane BS also increased the expression of p-GSK3beta, which could be suppressed in the presence of the ER antagonist and PI3K inhibitor. GENERAL SIGNIFICANCE Given that BS is prevalent in foods such as plant oil, the results provide a better understanding of the beneficial effects of these BS-enriched nutrients on neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | |
Collapse
|
137
|
Hachez C, Besserer A, Chevalier AS, Chaumont F. Insights into plant plasma membrane aquaporin trafficking. TRENDS IN PLANT SCIENCE 2013; 18:344-52. [PMID: 23291163 DOI: 10.1016/j.tplants.2012.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 05/11/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
138
|
Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A 2013; 110:8296-301. [PMID: 23630285 DOI: 10.1073/pnas.1211667110] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to localize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel 1 (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21.
Collapse
|
139
|
Ozolina NV, Nesterkina IS, Kolesnikova EV, Salyaev RK, Nurminsky VN, Rakevich AL, Martynovich EF, Chernyshov MY. Tonoplast of Beta vulgaris L. contains detergent-resistant membrane microdomains. PLANTA 2013; 237:859-71. [PMID: 23143221 DOI: 10.1007/s00425-012-1800-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/26/2012] [Indexed: 05/22/2023]
Abstract
The experiments conducted on tonoplast of Beta vulgaris L. roots were performed to identify detergent-resistant lipid-protein microdomains (DRMs, interpreted as lipid rafts).The presence of DRMs can be found when dynamic clustering of sphingolipids, sterols, saturated fatty acids is registered, and the insolubility of these microdomains in nonionic detergents at low temperatures is proven. The elucidation of tonoplast microdomains has been based on results obtained with the aid of high-speed centrifuging in the sucrose gradient. The experiments have shown that tonoplast microdomains are rich in sphingolipids, free sterols and saturated fatty acids (such a lipid content is also typical of lipid-protein microdomains of other membranes), while only few phospholipids are present in tonoplast microdomains. The presence of microdomains has been confirmed by fluorescence and confocal microscopy using filipin and Laurdan as fluorescent probes. The experiments with Laurdan have shown that tonoplast microdomains are characterized by a high order compared to characteristics of the rest of the tonoplast. Thus, the presence of detergent-resistant lipid-protein microdomains in the tonoplast has been demonstrated.
Collapse
Affiliation(s)
- Natalia V Ozolina
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, 132, Lermontov St., Irkutsk, 664033, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Silvestro D, Andersen TG, Schaller H, Jensen PE. Plant sterol metabolism. Δ(7)-Sterol-C5-desaturase (STE1/DWARF7), Δ(5,7)-sterol-Δ(7)-reductase (DWARF5) and Δ(24)-sterol-Δ(24)-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. PLoS One 2013; 8:e56429. [PMID: 23409184 PMCID: PMC3568079 DOI: 10.1371/journal.pone.0056429] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Sterols are crucial lipid components that regulate membrane permeability and fluidity and are the precursors of bioactive steroids. The plant sterols exist as three major forms, free sterols, steryl glycosides and steryl esters. The storage of steryl esters in lipid droplets has been shown to contribute to cellular sterol homeostasis. To further document cellular aspects of sterol biosynthesis in plants, we addressed the question of the subcellular localization of the enzymes implicated in the final steps of the post-squalene biosynthetic pathway. In order to create a clear localization map of steroidogenic enzymes in cells, the coding regions of Δ7-sterol-C5-desaturase (STE1/DWARF7), Δ24-sterol-Δ24-reductase (DIMINUTO/DWARF1) and Δ5,7-sterol-Δ7-reductase (DWARF5) were fused to the yellow fluorescent protein (YFP) and transformed into Arabidopsis thaliana mutant lines deficient in the corresponding enzymes. All fusion proteins were found to localize in the endoplasmic reticulum in functionally complemented plants. The results show that both Δ5,7-sterol-Δ7-reductase and Δ24-sterol-Δ24-reductase are in addition localized to the plasma membrane, whereas Δ7-sterol-C5-desaturase was clearly detected in lipid particles. These findings raise new challenging questions about the spatial and dynamic cellular organization of sterol biosynthesis in plants.
Collapse
Affiliation(s)
- Daniele Silvestro
- Department of Plant and Environmental Science, Villum Kann Rasmussen Foundation VKR Research Centre Pro-Active Plants, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
141
|
Kopischke M, Westphal L, Schneeberger K, Clark R, Ossowski S, Wewer V, Fuchs R, Landtag J, Hause G, Dörmann P, Lipka V, Weigel D, Schulze-Lefert P, Scheel D, Rosahl S. Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:456-68. [PMID: 23072470 DOI: 10.1111/tpj.12046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 05/06/2023]
Abstract
Non-host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre- and post-invasive resistance responses. Pre-invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non-host resistance to P. infestans, a genetic screen was performed by re-mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2-1 erp1-3 and pen2-1 erp1-4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T-DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen-inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1 psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non-autonomous defense responses against invasive filamentous pathogens.
Collapse
Affiliation(s)
- Michaela Kopischke
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Rivas-San Vicente M, Larios-Zarate G, Plasencia J. Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses and compromises resistance to Alternaria alternata f. sp. lycopersici. PLANTA 2013; 237:121-36. [PMID: 22990908 DOI: 10.1007/s00425-012-1758-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/29/2012] [Indexed: 05/08/2023]
Abstract
Sphingolipids play an important role in signal transduction pathways that regulate physiological functions and stress responses in eukaryotes. In plants, recent evidence suggests that their metabolic precursors, the long-chain bases (LCBs) act as bioactive molecules in the immune response. Interestingly, the virulence of two unrelated necrotrophic fungi, Fusarium verticillioides and Alternaria alternata, which are pathogens of maize and tomato plants, respectively, depends on the production of sphinganine-analog mycotoxins (SAMs). These metabolites inhibit de novo synthesis of sphingolipids in their hosts causing accumulation of LCBs, which are key regulators of programmed cell death. Therefore, to gain more insight into the role of sphingolipids in plant immunity against SAM-producing necrotrophic fungi, we disrupted sphingolipid metabolism in Nicotiana benthamiana through virus-induced gene silencing (VIGS) of the serine palmitoyltransfersase (SPT). This enzyme catalyzes the first reaction in LCB synthesis. VIGS of SPT profoundly affected N. benthamiana development as well as LCB composition of sphingolipids. While total levels of phytosphingosine decreased, sphinganine and sphingosine levels increased in SPT-silenced plants, compared with control plants. Plant immunity was also affected as silenced plants accumulated salicylic acid (SA), constitutively expressed the SA-inducible NbPR-1 gene and showed increased susceptibility to the necrotroph A. alternata f. sp. lycopersici. In contrast, expression of NbPR-2 and NbPR-3 genes was delayed in silenced plants upon fungal infection. Our results strongly suggest that LCBs modulate the SA-dependent responses and provide a working model of the potential role of SAMs from necrotrophic fungi to disrupt the plant host response to foster colonization.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico D.F., Mexico
| | | | | |
Collapse
|
143
|
|
144
|
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:501-29. [PMID: 23638827 DOI: 10.1146/annurev-arplant-050312-120103] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Collapse
Affiliation(s)
- Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | |
Collapse
|
145
|
Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov EI, Torrance L. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. FRONTIERS IN PLANT SCIENCE 2012; 3:290. [PMID: 23269927 PMCID: PMC3529358 DOI: 10.3389/fpls.2012.00290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 05/27/2023]
Abstract
The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1-2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.
Collapse
Affiliation(s)
| | | | | | - Angelika Ziegler
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Institute for Epidemiology and Pathogen DiagnosticsQuedlinburg, Germany
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| | | |
Collapse
|
146
|
Potocký M, Pejchar P, Gutkowska M, Jiménez-Quesada MJ, Potocká A, Alché JDD, Kost B, Žárský V. NADPH oxidase activity in pollen tubes is affected by calcium ions, signaling phospholipids and Rac/Rop GTPases. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1654-63. [PMID: 22762791 DOI: 10.1016/j.jplph.2012.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase (NOX) are crucial for tip growth of pollen tubes. However, the regulation of NOX activity in pollen tubes remains unknown. Using purified plasma membrane fractions from tobacco and olive pollen and tobacco BY-2 cells, we demonstrate that pollen NOX is activated by calcium ions and low abundant signaling phospholipids, such as phosphatidic acid and phosphatidylinositol 4,5-bisphosphate in vitro and in vivo. Our data also suggest possible synergism between Ca(2+) and phospholipid-mediated NOX activation in pollen. Rac/Rop small GTPases are also necessary for normal pollen tube growth and have been proposed to regulate ROS production in root hairs. We show here elevated ROS formation in pollen tubes overexpressing wild-type NtRac5 and constitutively active NtRac5, while overexpression of dominant-negative NtRac5 led to a decrease of ROS in pollen tubes. We also show that PA formed by distinct phospholipases D (PLD) is involved in pathways both upstream and downstream of NOX-mediated ROS generation and identify NtPLDδ as a PLD isoform acting in the ROS response pathway.
Collapse
Affiliation(s)
- Martin Potocký
- Institute of Experimental Botany, vvi, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Perraki A, Cacas JL, Crowet JM, Lins L, Castroviejo M, German-Retana S, Mongrand S, Raffaele S. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement]. PLANT PHYSIOLOGY 2012; 160:624-37. [PMID: 22855937 PMCID: PMC3461544 DOI: 10.1104/pp.112.200519] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/31/2012] [Indexed: 05/18/2023]
Abstract
The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.
Collapse
|
148
|
Adam T, Bouhidel K, Der C, Robert F, Najid A, Simon-Plas F, Leborgne-Castel N. Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells. FEBS Lett 2012; 586:3293-8. [PMID: 22796492 DOI: 10.1016/j.febslet.2012.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
Endocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associated genes.
Collapse
Affiliation(s)
- T Adam
- UMR Agroécologie 1347, AgroSup/INRA/Université de Bourgogne, Pôle Interaction Plantes Microorganismes, ERL6300 CNRS, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
149
|
Blachutzik JO, Demir F, Kreuzer I, Hedrich R, Harms GS. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues. PLANT METHODS 2012; 8:28. [PMID: 22867517 PMCID: PMC3544639 DOI: 10.1186/1746-4811-8-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/20/2012] [Indexed: 05/19/2023]
Abstract
UNLABELLED BACKGROUND Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. RESULTS Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. CONCLUSION Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.
Collapse
Affiliation(s)
- Jörg O Blachutzik
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
- Microscopy Group, Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, D15, D-97080, Würzburg, Germany
| | - Fatih Demir
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
- Present address: Institute of Neuro- and Sensory Physiology, Düsseldorf University Hospital, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Gregory S Harms
- Microscopy Group, Rudolf Virchow Center, University of Würzburg, Josef Schneider Str. 2, D15, D-97080, Würzburg, Germany
- Departments of Biology and Physics, Wilkes University, 84 W. South St., Wilkes-Barre, PA 18766, USA
| |
Collapse
|
150
|
Nguema-Ona E, Coimbra S, Vicré-Gibouin M, Mollet JC, Driouich A. Arabinogalactan proteins in root and pollen-tube cells: distribution and functional aspects. ANNALS OF BOTANY 2012; 110:383-404. [PMID: 22786747 PMCID: PMC3394660 DOI: 10.1093/aob/mcs143] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/22/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.
Collapse
Affiliation(s)
- Eric Nguema-Ona
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Sílvia Coimbra
- Sexual Plant Reproduction and Development Laboratory, Departamento de Biologia, F.C. Universidade do Porto, Rua do Campo Alegre 4169-007 Porto, Portugal
- Center for Biodiversity, Functional & Integrative Genomics (BioFIG), http://biofig.fc.ul.pt
| | - Maïté Vicré-Gibouin
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), Grand Réseau de Recherche VASI de Haute Normandie, PRES Normandie Université, Université de Rouen, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|