101
|
Ahmed-Hassan H, Abdul-Cader MS, Ahmed Sabry M, Hamza E, Sharif S, Nagy E, Abdul-Careem MF. Double-Stranded Ribonucleic Acid-Mediated Antiviral Response Against Low Pathogenic Avian Influenza Virus Infection. Viral Immunol 2018; 31:433-446. [PMID: 29813000 DOI: 10.1089/vim.2017.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor (TLR)3 signaling pathway is known to induce type 1 interferons (IFNs) and proinflammatory mediators leading to antiviral response against many viral infections. Double-stranded ribonucleic acid (dsRNA) has been shown to act as a ligand for TLR3 and, as such, has been a focus as a potential antiviral agent in many host-viral infection models. Yet, its effectiveness and involved mechanisms as a mediator against low pathogenic avian influenza virus (LPAIV) have not been investigated adequately. In this study, we used avian fibroblasts to verify whether dsRNA induces antiviral response against H4N6 LPAIV and clarify whether type 1 IFNs and proinflammatory mediators such as interleukin (IL)-1β are contributing to the dsRNA-mediated antiviral response against H4N6 LPAIV. We found that dsRNA induces antiviral response in avian fibroblasts against H4N6 LPAIV infection. The treatment of avian fibroblasts with dsRNA increases the expressions of TLR3, IFN-α, IFN-β, and IL-1β. We also confirmed that this antiviral response elicited against H4N6 LPAIV infection correlates, but is not attributable to type 1 IFNs or IL-1β. Our findings imply that the TLR3 ligand, dsRNA, can elicit antiviral response in avian fibroblasts against LPAIV infection, highlighting potential value of dsRNA as an antiviral agent against LPAIV infections. However, further investigations are required to determine the potential role of other innate immune mediators or combination of the tested cytokines in the dsRNA-mediated antiviral response against H4N6 LPAIV infection.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada .,2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Mohamed Sarjoon Abdul-Cader
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada
| | - Maha Ahmed Sabry
- 2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Eman Hamza
- 2 Zoonoses Department, Faculty of Veterinary Medicine, Cairo University , Giza, Egypt
| | - Shayan Sharif
- 3 Department of Pathobiology, University of Guelph , Guelph, Ontario, Canada
| | - Eva Nagy
- 3 Department of Pathobiology, University of Guelph , Guelph, Ontario, Canada
| | - Mohamed Faizal Abdul-Careem
- 1 Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Health Research Innovation Center 2C53, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
102
|
Garcia CC, Tavares LP, Dias ACF, Kehdy F, Alvarado-Arnez LE, Queiroz-Junior CM, Galvão I, Lima BH, Matos AR, Gonçalves APF, Soriani FM, Moraes MO, Marques JT, Siqueira MM, Machado AMV, Sousa LP, Russo RC, Teixeira MM. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients. Front Immunol 2018; 9:975. [PMID: 29867955 PMCID: PMC5962662 DOI: 10.3389/fimmu.2018.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/19/2018] [Indexed: 01/07/2023] Open
Abstract
Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.
Collapse
Affiliation(s)
- Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina F Dias
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Kehdy
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lucia Elena Alvarado-Arnez
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Coordinación Nacional de Investigación, UNIFRANZ, La Paz, Bolivia
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Braulio H Lima
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Inflamação e Dor, Departamento de Farmacologia, Prédio Central, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Aline R Matos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula F Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Frederico M Soriani
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milton O Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - João T Marques
- Laboratório de RNA de Interferência, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Alexandre M V Machado
- Laboratório de Imunologia de Doenças Virais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
103
|
Monguió-Tortajada M, Franquesa M, Sarrias MR, Borràs FE. Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes. Cell Death Dis 2018; 9:499. [PMID: 29717111 PMCID: PMC5931601 DOI: 10.1038/s41419-018-0520-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
Abstract
TLR sensing of pathogens triggers monocyte activation to initiate the host innate immune response to infection. Monocytes can dynamically adapt to different TLR agonists inducing different patterns of inflammatory response, and the sequence of exposure to TLRs can dramatically modulate cell activation. Understanding the interactions between TLR signalling that lead to synergy, priming and tolerance to TLR agonists may help explain how prior infections and inflammatory conditioning can regulate the innate immune response to subsequent infections. Our goal was to investigate the role of MyD88-independent/dependent TLR priming on modulating the monocyte response to LPS exposure. We stimulated human blood monocytes with agonists for TLR4 (LPS), TLR3 (poly(I:C)) and TLR7/8 (R848) and subsequently challenged them to low doses of endotoxin. The different TLR agonists promoted distinct inflammatory signatures in monocytes. Upon subsequent LPS challenge, LPS- and R848-primed monocytes did not enhance the previous response, whereas poly(I:C)-primed monocytes exhibited a significant inflammatory response concomitant with a sharp reduction on cell viability. Our results show that TLR3-primed monocytes are prompted to cell death by apoptosis in the presence of low endotoxin levels, concurrent with the production of high levels of TNFα and IL6. Of note, blocking of TNFR I/II in those monocytes did reduce TNFα production but did not abrogate cell death. Instead, direct signalling through TLR4 was responsible of such effect. Collectively, our study provides new insights on the effects of cross-priming and synergism between TLR3 and TLR4, identifying the selective induction of apoptosis as a strategy for TLR-mediated host innate response.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Maria-Rosa Sarrias
- Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain
- Network for Biomedical Research in Hepatic and Digestive Diseases (CIBERehd), Badalona, Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol, Can Ruti Campus, Badalona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.
| |
Collapse
|
104
|
Dai JP, Wang QW, Su Y, Gu LM, Deng HX, Chen XX, Li WZ, Li KS. Oxymatrine Inhibits Influenza A Virus Replication and Inflammation via TLR4, p38 MAPK and NF-κB Pathways. Int J Mol Sci 2018; 19:ijms19040965. [PMID: 29570670 PMCID: PMC5979549 DOI: 10.3390/ijms19040965] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Qian-Wen Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Li-Ming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Hui-Xiong Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
105
|
Cao Z, Zheng M, Lv H, Guo K, Zhang Y. Tissue expression of Toll-like receptors 2, 3, 4 and 7 in swine in response to the Shimen strain of classical swine fever virus. Mol Med Rep 2018; 17:7122-7130. [PMID: 29568891 PMCID: PMC5928672 DOI: 10.3892/mmr.2018.8734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/01/2017] [Indexed: 11/06/2022] Open
Abstract
The Toll-like receptors (TLRs) of the innate immune system provide the host with the ability to detect and respond to viral infections. The present study aimed to investigate the mRNA and protein expression levels of TLR2, 3, 4 and 7 in porcine tissues upon infection with the highly virulent Shimen strain of classical swine fever virus (CSFV). Reverse transcription-quantitative polymerase chain reaction was used to detect the mRNA expression levels of CSFV and TLR, whereas western blotting was used to detect the expression levels of TLR proteins. In addition, tissues underwent histological examination and immunohistochemistry to reveal the histopathological alterations associated with highly virulent CSFV infection and to detect TLR antigens. Furthermore, porcine monocyte-derived macrophages (pMDMs) were prestimulated with peptidoglycan from Staphylococcus aureus (PGN-SA), polyinosinic-polycytidylic acid [poly (I:C)], lipopolysaccharide from Escherichia coli 055:B5 (LPS-B5) or imiquimod (R837) in order to analyze the association between TLR expression and CSFV replication. Following stimulation for 12 h (with TLR-specific ligands), cells were infected with CSFV Shimen strain. The results revealed that the expression levels of TLR2 and TLR4 were increased in the lung and kidney, but were decreased in the spleen and lymph nodes in response to CSFV. TLR3 was strongly expressed in the heart and slightly upregulated in the spleen in response to CSFV Shimen strain infection, and TLR7 was increased in all examined tissues in the presence of CSFV. Furthermore, R837 and LPS-B5 exerted inhibitory effects on CSFV replication in pMDMs, whereas PGN-SA and poly(I:C) had no significant effect. These findings highlight the potential role of TLR expression in the context of CSFV infection.
Collapse
Affiliation(s)
- Zhi Cao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| | - Minping Zheng
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| | - Huifang Lv
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| |
Collapse
|
106
|
Ascough S, Paterson S, Chiu C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front Immunol 2018; 9:323. [PMID: 29552008 PMCID: PMC5840263 DOI: 10.3389/fimmu.2018.00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Collapse
Affiliation(s)
- Stephanie Ascough
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
107
|
Villeret B, Dieu A, Straube M, Solhonne B, Miklavc P, Hamadi S, Le Borgne R, Mailleux A, Norel X, Aerts J, Diallo D, Rouzet F, Dietl P, Sallenave JM, Garcia-Verdugo I. Silver Nanoparticles Impair Retinoic Acid-Inducible Gene I-Mediated Mitochondrial Antiviral Immunity by Blocking the Autophagic Flux in Lung Epithelial Cells. ACS NANO 2018; 12:1188-1202. [PMID: 29357226 DOI: 10.1021/acsnano.7b06934] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-β release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.
Collapse
Affiliation(s)
- Berengere Villeret
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Alexandra Dieu
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Marjolene Straube
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Brigitte Solhonne
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Pika Miklavc
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford , Salford, United Kingdom
| | - Sena Hamadi
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F-94320 Thiais, France
| | - Rémi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot , Sorbonne Paris Cité, 75205 Cedex 13 Paris, France
| | - Arnaud Mailleux
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Xavier Norel
- Inserm U1148, UMR-S1148, University Paris Nord , 75018 Paris, France
| | - Joel Aerts
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Devy Diallo
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Francois Rouzet
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Paul Dietl
- Institute of General Physiology, University of Ulm , Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Jean-Michel Sallenave
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| |
Collapse
|
108
|
Induction profiles of mRNA of toll like receptors and cytokines in chickens pre-exposed to low pathogenic avian influenza H9N2 virus followed by challenge with highly pathogenic avian influenza H5N1 virus. Microb Pathog 2018; 117:200-205. [PMID: 29476788 DOI: 10.1016/j.micpath.2018.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
Abstract
Herein, the induction of TLRs and cytokines in chickens pre-exposed to low pathogenic avian influenza H9N2 virus followed by challenge with highly pathogenic avian influenza (HPAI) H5N1 virus was studied. Four groups (1-4) of chickens inoculated with 106 EID50 of H9N2 virus were challenged with 106 EID50 of H5N1 virus on days 1, 3, 7 and 14 post H9N2 inoculation, respectively. In groups (1-4) TLRs and cytokines induction was studied in chicken PBMCs on day 3 post H5N1 challenge. In H5N1 control group TLRs (1, 2, 5 and 7) cytokines (IFNα, IFNβ, IFNγ, IL1β, IL2, IL4, IL8 and TGF β3) were down regulated. In group 1 down regulation of cytokines and TLRs was similar to H5N1 control birds. Down regulation of TLRs and cytokines in H5N1 control and group 1 resulted death of all the chickens. In group 2, up-regulation of TLRs (3, 7 and 15) and induction of TNFα, IFNα, IFNβ, IFNγ aided virus clearance leading to survival of all the chickens. In group 3 significant up-regulation of TLRs (3, 4 and 15) and significant induction of cytokines (IFNγ, TNFα, IL1β, IL4, IL6, IL8, IL10 and TGF β3) was detected. In group 4 significant up-regulation of TLRs (2, 3, 7 and 15) and significant induction of cytokines (IFNγ, TNFα, IL1β, IL2, IL6, IL8 and IL10) was detected. In groups 3 and 4 simultaneous and significant induction of pro-inflammatory, antiviral and anti-inflammatory cytokine resulted cytokine dysregulation leading to death of (2/6) and (3/6) chickens respectively. Hence, the study revealed TLRs and cytokines role in modulating the H5N1 infection outcome in chickens pre-exposed to H9N2 virus.
Collapse
|
109
|
Yang XB, Jiang H, Shi Y. WITHDRAWN: SIKE1 deficiency accelerates hepatic ischemia/reperfusion (IR) injury through enhancing Toll-like receptor-3-regulated inflammation. Biochem Biophys Res Commun 2018:S0006-291X(18)30140-2. [PMID: 29366783 DOI: 10.1016/j.bbrc.2018.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Xiao-Bo Yang
- Department of Neonatology, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Hong Jiang
- Department of Neonatology, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Yao Shi
- Department of Neonatology, The Central Hospital of Wuhan, Wuhan 430014, China
| |
Collapse
|
110
|
Lee YJ, Lee JY, Jang YH, Seo SU, Chang J, Seong BL. Non-specific Effect of Vaccines: Immediate Protection against Respiratory Syncytial Virus Infection by a Live Attenuated Influenza Vaccine. Front Microbiol 2018; 9:83. [PMID: 29445364 PMCID: PMC5797773 DOI: 10.3389/fmicb.2018.00083] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/12/2018] [Indexed: 01/21/2023] Open
Abstract
The non-specific effects (NSEs) of vaccines have been discussed for their potential long-term beneficial effects beyond direct protection against a specific pathogen. Cold-adapted, live attenuated influenza vaccine (CAIV) induces local innate immune responses that provide a broad range of antiviral immunity. Herein, we examined whether X-31ca, a donor virus for CAIVs, provides non-specific cross-protection against respiratory syncytial virus (RSV). The degree of RSV replication was significantly reduced when X-31ca was administered before RSV infection without any RSV-specific antibody responses. The vaccination induced an immediate release of cytokines and infiltration of leukocytes into the respiratory tract, moderating the immune perturbation caused by RSV infection. The potency of protection against RSV challenge was significantly reduced in TLR3-/- TLR7-/- mice, confirming that the TLR3/7 signaling pathways are necessary for the observed immediate and short-term protection. The results suggest that CAIVs provide short-term, non-specific protection against genetically unrelated respiratory pathogens. The additional benefits of CAIVs in mitigating acute respiratory infections for which vaccines are not yet available need to be assessed in future studies.
Collapse
Affiliation(s)
- Young J. Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jeong Y. Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Yo H. Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Uk Seo
- Department of Biomedical Sciences, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Baik L. Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
111
|
Ampomah PB, Moraes LA, Lukman HM, Lim LHK. Formyl peptide receptor 2 is regulated by RNA mimics and viruses through an IFN‐β‐STAT3‐dependent pathway. FASEB J 2018; 32:1468-1478. [DOI: 10.1096/fj.201700584rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Patrick B. Ampomah
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| | - Leonardo A. Moraes
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| | - Hakim M. Lukman
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| | - Lina H. K. Lim
- Department of PhysiologyYong Loo Lin School of MedicineNational University Health System Singapore
- Immunology ProgramLife Sciences InstituteNational University of Singapore Singapore
| |
Collapse
|
112
|
Wang QW, Su Y, Sheng JT, Gu LM, Zhao Y, Chen XX, Chen C, Li WZ, Li KS, Dai JP. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways. PLoS One 2018; 13:e0191793. [PMID: 29385192 PMCID: PMC5791991 DOI: 10.1371/journal.pone.0191793] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.
Collapse
Affiliation(s)
- Qian-Wen Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang-Tao Sheng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Li-Ming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Cheng Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
113
|
Pulmonary Susceptibility of Neonates to Respiratory Syncytial Virus Infection: A Problem of Innate Immunity? J Immunol Res 2017; 2017:8734504. [PMID: 29250560 PMCID: PMC5700507 DOI: 10.1155/2017/8734504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common and highly contagious viral agent responsible for acute lower respiratory infection in infants. This pathology characterized by mucus hypersecretion and a disturbed T cell immune response is one of the major causes of infant hospitalization for severe bronchiolitis. Although different risk factors are associated with acute RSV bronchiolitis, the immunological factors contributing to the susceptibility of RSV infection in infants are not clearly elucidated. Epidemiological studies have established that the age at initial infection plays a central role in the severity of the disease. Thus, neonatal susceptibility is intrinsically linked to the immunological characteristics of the young pulmonary mucosa. Early life is a critical period for the lung development with the first expositions to external environmental stimuli and microbiota colonization. Furthermore, neonates display a lung immune system that profoundly differs to those from adults, with the predominance of type 2 immune cells. In this review, we discuss the latest information about the lung immune environment in the early period of life at a steady state and upon RSV infection and how we can modulate neonatal susceptibility to RSV infection.
Collapse
|
114
|
Sarvestani ST, McAuley JL. The role of the NLRP3 inflammasome in regulation of antiviral responses to influenza A virus infection. Antiviral Res 2017; 148:32-42. [PMID: 29097227 DOI: 10.1016/j.antiviral.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022]
Abstract
The innate immune system provides the host with both a dynamic barrier to prevent infection and a means to which rapid anti-microbial responses can be mounted. The inflammasome pathway is a critical host early response mechanism that enables detection of pathogens and initiates production of inflammatory cytokines, inducing recruitment of effector cells to the site of infection. The complete mechanism of inflammasome activation requires two signals: an initial priming step upon detection of pathogen, followed by activation of intracellular pattern recognition receptors critical to the formation of the inflammasome complex. The inflammasome complex is made of intracellular multiprotein oligomers which includes a sensor protein such as the nucleotide-binding oligomerization domain (NOD) like receptor proteins (NLRP), and an adapter protein, ASC, which critically activates pro-caspase-1. The mature caspase-1 then proteolytically cleaves cytosolic pro-IL-1β and pro-IL-18, which are then secreted as inflammatory cytokines that activate the inflammatory arm of the immune response to infection. Active caspase-1 also results in pyroptosis, which is a form of cell death triggered by inflammation. The induction and activation of IL-1β and IL-18 are considered critical signatures for inflammasome activation. With focus upon influenza A virus infection, this review will address present knowledge on the mechanisms of inflammasome complex activation, particularly how the viral components modulate activation of the cytosolic NOD-like receptor protein-3 (NLRP3)-dependent inflammasome complex. We also discuss potential therapeutic strategies that target the inflammasome to ameliorate illness, as well as novel methods of vaccination that target inflammasome stimulation with the aim to increase efficacy.
Collapse
Affiliation(s)
- Soroush T Sarvestani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
115
|
|
116
|
Dai JP, Wang QW, Su Y, Gu LM, Zhao Y, Chen XX, Chen C, Li WZ, Wang GF, Li KS. Emodin Inhibition of Influenza A Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB Pathways. Molecules 2017; 22:molecules22101754. [PMID: 29057806 PMCID: PMC6151665 DOI: 10.3390/molecules22101754] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 02/08/2023] Open
Abstract
Lasting activations of toll-like receptors (TLRs), MAPK and NF-κB pathways can support influenza A virus (IAV) infection and promote pneumonia. In this study, we have investigated the effect and mechanism of action of emodin on IAV infection using qRT-PCR, western blotting, ELISA, Nrf2 luciferase reporter, siRNA and plaque inhibition assays. The results showed that emodin could significantly inhibit IAV (ST169, H1N1) replication, reduce IAV-induced expressions of TLR2/3/4/7, MyD88 and TRAF6, decrease IAV-induced phosphorylations of p38/JNK MAPK and nuclear translocation of NF-κB p65. Emodin also activated the Nrf2 pathway, decreased ROS levels, increased GSH levelss and GSH/GSSG ratio, and upregulated the activities of SOD, GR, CAT and GSH-Px after IAV infection. Suppression of Nrf2 via siRNA markedly blocked the inhibitory effects of emodin on IAV-induced activations of TLR4, p38/JNK, and NF-κB pathways and on IAV-induced production of IL-1β, IL-6 and expression of IAV M2 protein. Emodin also dramatically increased the survival rate of mice, reduced lung edema, pulmonary viral titer and inflammatory cytokines, and improved lung histopathological changes. In conclusion, emodin can inhibit IAV replication and influenza viral pneumonia, at least in part, by activating Nrf2 signaling and inhibiting IAV-induced activations of the TLR4, p38/JNK MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Qian-Wen Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Li-Ming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xua Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Cheng Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, and Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA.
| | - Ge-Fei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
117
|
Wang X, Wu W, Zhang W, Leland Booth J, Duggan ES, Tian L, More S, Zhao YD, Sawh RN, Liu L, Zou MH, Metcalf JP. RIG-I overexpression decreases mortality of cigarette smoke exposed mice during influenza A virus infection. Respir Res 2017; 18:166. [PMID: 28865477 PMCID: PMC5581920 DOI: 10.1186/s12931-017-0649-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
Background Retinoic acid-inducible gene I (RIG-I) is an important regulator of virus-induced antiviral interferons (IFNs) and proinflammatory cytokines which participate in clearing viral infections. Cigarette smoke (CS) exposure increases the frequency and severity of respiratory tract infections. Methods We generated a RIG-I transgenic (TG) mouse strain that expresses the RIG-I gene product under the control of the human lung specific surfactant protein C promoter. We compared the mortality and host immune responses of RIG-I TG mice and their litter-matched wild type (WT) mice following challenge with influenza A virus (IAV). Results RIG-I overexpression increased survival of IAV-infected mice. CS exposure increased mortality in WT mice infected with IAV. Remarkably, the effect of RIG-I overexpression on survival during IAV infection was enhanced in CS-exposed animals. CS-exposed IAV-infected WT mice had a suppressed innate response profile in the lung compared to sham-exposed IAV-infected WT mice in terms of the protein concentration, total cell count and inflammatory cell composition in the bronchoalveolar lavage fluid. RIG-I overexpression restored the innate immune response in CS-exposed mice to that seen in sham-exposed WT mice during IAV infection, and is likely responsible for enhanced survival in RIG-I TG mice as restoration preceded death of the animals. Conclusions Our results demonstrate that RIG-I overexpression in mice is protective for CS enhanced susceptibility of smokers to influenza infection, and that CS mediated RIG-I suppression may be partially responsible for the increased morbidity and mortality of the mice exposed to IAV. Thus, optimizing the RIG-I response may be an important treatment strategy for CS-enhanced lung infections, particularly those due to IAV.
Collapse
Affiliation(s)
- Xiaoqiu Wang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elizabeth S Duggan
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lili Tian
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sunil More
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yan D Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ravindranauth N Sawh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
118
|
Carneiro LC, Bedford C, Jacca S, Rosamilia A, de Lima VF, Donofrio G, Sheldon IM, Cronin JG. Coordinated Role of Toll-Like Receptor-3 and Retinoic Acid-Inducible Gene-I in the Innate Response of Bovine Endometrial Cells to Virus. Front Immunol 2017; 8:996. [PMID: 28878771 PMCID: PMC5572515 DOI: 10.3389/fimmu.2017.00996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022] Open
Abstract
Bovine herpesvirus-4 (BoHV-4) and bovine viral diarrhea virus (BVDV) infect the uterus of cattle, often resulting in reduced fertility, or abortion of the fetus, respectively. Here, exposure of primary bovine endometrial cells to BoHV-4 or BVDV modulated the production of inflammatory mediators. Viral pathogen-associated molecular patterns (PAMPs) are detected via pattern-recognition receptors (PRRs). However, the relative contribution of specific PRRs to innate immunity, during viral infection of the uterus, is unclear. Endometrial epithelial and stromal cells constitutively express the PRR Toll-like receptor (TLR)-3, but, the status of retinoic acid-inducible gene I (RIG-I), a sensor of cytosolic nucleic acids, is unknown. Primary endometrial epithelial and stromal cells had low expression of RIG-I, which was increased in stromal cells after 12 h transfection with the TLR3 ligand Poly(I:C), a synthetic analog of double-stranded RNA. Furthermore, short interfering RNA targeting TLR3, or interferon (IFN) regulatory transcription factor 3, an inducer of type I IFN transcription, reduced Poly(I:C)-induced RIG-I protein expression and reduced inflammatory mediator secretion from stromal cells. We conclude that antiviral defense of endometrial stromal cells requires coordinated recognition of PAMPs, initially via TLR3 and later via inducible RIG-I.
Collapse
Affiliation(s)
- Luisa C Carneiro
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom.,Faculty of Agricultural and Veterinary Science, Universidade Estadual Paulista, Jaboticabal, Brazil
| | - Carmen Bedford
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Sarah Jacca
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom.,Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Alfonso Rosamilia
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom.,Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Vera F de Lima
- Faculty of Agricultural and Veterinary Science, Universidade Estadual Paulista, Jaboticabal, Brazil
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - I Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
119
|
da Silva-Júnior EF, Leoncini GO, Rodrigues ÉES, Aquino TM, Araújo-Júnior JX. The medicinal chemistry of Chikungunya virus. Bioorg Med Chem 2017; 25:4219-4244. [PMID: 28689975 PMCID: PMC7126832 DOI: 10.1016/j.bmc.2017.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/06/2023]
Abstract
Arthropod-borne viruses (arboviruses) are an important threat to human and animal health globally. Among these, zoonotic diseases account for billions of cases of human illness and millions of deaths every year, representing an increasing public health problem. Chikungunya virus belongs to the genus Alphavirus of the family Togariridae, and is transmitted mainly by the bite of female mosquitoes of the Aedes aegypti and/or A. albopictus species. The focus of this review will be on the medicinal chemistry of Chikungunya virus, including synthetic and natural products, as well as rationally designed compounds.
Collapse
Affiliation(s)
- Edeildo F da Silva-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| | - Giovanni O Leoncini
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Érica E S Rodrigues
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - Thiago M Aquino
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil
| | - João X Araújo-Júnior
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil; Chemistry and Biotechnology Institute, Federal University of Alagoas, Lourival Melo Motta Avenue, Tabuleiro dos Martins, 57072-900 Maceió, Brazil.
| |
Collapse
|
120
|
Maroto R, Zhao Y, Jamaluddin M, Popov VL, Wang H, Kalubowilage M, Zhang Y, Luisi J, Sun H, Culbertson CT, Bossmann SH, Motamedi M, Brasier AR. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles 2017; 6:1359478. [PMID: 28819550 PMCID: PMC5556670 DOI: 10.1080/20013078.2017.1359478] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/16/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim: We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods: Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or -80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results: Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at -80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound "peri-exosomal" proteins. In preparations stored at -80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions: Storage destabilizes the surface characteristics, morphological features and protein content of BALF exosomes. For preservation of the exosome protein content and representative functional analysis, airway exosomes should be analysed immediately after isolation.
Collapse
Affiliation(s)
- Rosario Maroto
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
| | - Yingxin Zhao
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | - Mohammad Jamaluddin
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | | | - Hongwang Wang
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | | | - Yueqing Zhang
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | - Jonathan Luisi
- Center for Biomedical Engineering, UTMB, Galveston, TX, USA
| | - Hong Sun
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| | | | | | | | - Allan R. Brasier
- Sealy Center for Molecular Medicine, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Institute for Translational Sciences, UTMB, Galveston, TX, USA
- Department of Internal Medicine, UTMB, Galveston, TX, USA
| |
Collapse
|
121
|
Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses. J Virol 2017. [PMID: 28637754 DOI: 10.1128/jvi.00721-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis.IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up to the present. It was previously shown that the NS1 protein from the 2009 pandemic H1N1 (pH1N1) virus is not able to inhibit general gene expression. However, currently circulating pH1N1 viruses have evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) that allow the NS1 protein of contemporary pH1N1 strains to inhibit host gene expression, which correlates with its ability to interact with CPSF30. Infection with a recombinant pH1N1 virus encoding these 6 amino acid changes (pH1N1/NSs-6mut) induced lower levels of proinflammatory cytokines, resulting in viral attenuation in vivo This might represent an adaptation of pH1N1 virus to humans.
Collapse
|
122
|
Caspases control antiviral innate immunity. Cell Mol Immunol 2017; 14:736-747. [PMID: 28690332 DOI: 10.1038/cmi.2017.44] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
Caspases are a family of cysteine proteases whose functions have been scrutinized intensively in recent years. Beyond their established roles in programmed cell death and inflammatory response, some caspases are also fundamental players in antiviral immunity by fine-tuning the levels of antiviral signaling adapters and cytokines, such as type I interferons, which serves as a major, sophisticated weapon against viruses. Viral infections can result in inflammasome activation and the initiation of cell death, including apoptosis and pyroptosis, and multiple caspases are significantly involved in these processes. This review will focus on the cutting-edge discoveries regarding the multifaceted roles of caspases in antiviral innate immunity.
Collapse
|
123
|
Bryant AH, Menzies GE, Scott LM, Spencer‐Harty S, Davies LB, Smith RA, Jones RH, Thornton CA. Human gestation-associated tissues express functional cytosolic nucleic acid sensing pattern recognition receptors. Clin Exp Immunol 2017; 189:36-46. [PMID: 28295207 PMCID: PMC5461091 DOI: 10.1111/cei.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
The role of viral infections in adverse pregnancy outcomes has gained interest in recent years. Innate immune pattern recognition receptors (PRRs) and their signalling pathways, that yield a cytokine output in response to pathogenic stimuli, have been postulated to link infection at the maternal-fetal interface and adverse pregnancy outcomes. The objective of this study was to investigate the expression and functional response of nucleic acid ligand responsive Toll-like receptors (TLR-3, -7, -8 and -9), and retinoic acid-inducible gene 1 (RIG-I)-like receptors [RIG-I, melanoma differentiation-associated protein 5 (MDA5) and Laboratory of Genetics and Physiology 2(LGP2)] in human term gestation-associated tissues (placenta, choriodecidua and amnion) using an explant model. Immunohistochemistry revealed that these PRRs were expressed by the term placenta, choriodecidua and amnion. A statistically significant increase in interleukin (IL)-6 and/or IL-8 production in response to specific agonists for TLR-3 (Poly(I:C); low and high molecular weight), TLR-7 (imiquimod), TLR-8 (ssRNA40) and RIG-I/MDA5 (Poly(I:C)LyoVec) was observed; there was no response to a TLR-9 (ODN21798) agonist. A hierarchical clustering approach was used to compare the response of each tissue type to the ligands studied and revealed that the placenta and choriodecidua generate a more similar IL-8 response, while the choriodecidua and amnion generate a more similar IL-6 response to nucleic acid ligands. These findings demonstrate that responsiveness via TLR-3, TLR-7, TLR-8 and RIG-1/MDA5 is a broad feature of human term gestation-associated tissues with differential responses by tissue that might underpin adverse obstetric outcomes.
Collapse
Affiliation(s)
- A. H. Bryant
- Institute of Life Science, Swansea University Medical School
| | - G. E. Menzies
- Institute of Life Science, Swansea University Medical School
| | - L. M. Scott
- Institute of Life Science, Swansea University Medical School
| | - S. Spencer‐Harty
- Department of HistopathologyAbertawe Bro Morgannwg University Health BoardSwanseaWalesUK
| | - L. B. Davies
- Institute of Life Science, Swansea University Medical School
| | - R. A. Smith
- Institute of Life Science, Swansea University Medical School
| | - R. H. Jones
- Institute of Life Science, Swansea University Medical School
| | - C. A. Thornton
- Institute of Life Science, Swansea University Medical School
| |
Collapse
|
124
|
Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis 2017; 4:105-131. [PMID: 28748089 PMCID: PMC5507392 DOI: 10.1177/2049936117713593] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infectious diseases are the leading cause of mortality worldwide, with viruses in particular making global impact on healthcare and socioeconomic development. In addition, the rapid development of drug resistance to currently available therapies and adverse side effects due to prolonged use is a serious public health concern. The development of novel treatment strategies is therefore required. The interaction of nanostructures with microorganisms is fast-revolutionizing the biomedical field by offering advantages in both diagnostic and therapeutic applications. Nanoparticles offer unique physical properties that have associated benefits for drug delivery. These are predominantly due to the particle size (which affects bioavailability and circulation time), large surface area to volume ratio (enhanced solubility compared to larger particles), tunable surface charge of the particle with the possibility of encapsulation, and large drug payloads that can be accommodated. These properties, which are unlike bulk materials of the same compositions, make nanoparticulate drug delivery systems ideal candidates to explore in order to achieve and/or improve therapeutic effects. This review presents a broad overview of the application of nanosized materials for the treatment of common viral infections.
Collapse
Affiliation(s)
- Lavanya Singh
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
125
|
Tian B, Patrikeev I, Ochoa L, Vargas G, Belanger KK, Litvinov J, Boldogh I, Ameredes BT, Motamedi M, Brasier AR. NF-κB Mediates Mesenchymal Transition, Remodeling, and Pulmonary Fibrosis in Response to Chronic Inflammation by Viral RNA Patterns. Am J Respir Cell Mol Biol 2017; 56:506-520. [PMID: 27911568 DOI: 10.1165/rcmb.2016-0259oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway remodeling is resultant of a complex multicellular response associated with a progressive decline of pulmonary function in patients with chronic airway disease. Here, repeated infections with respiratory viruses are linked with airway remodeling through largely unknown mechanisms. Although acute activation of the Toll-like receptor (TLR) 3 pathway by extracellular polyinosinic:polycytidylic acid (poly[I:C]) induces innate signaling through the NF-κB transcription factor in normal human small airway epithelial cells, prolonged (repetitive or tonic) poly(I:C) stimulation produces chronic stress fiber formation, mesenchymal transition, and activation of a fibrotic program. Chronic poly(I:C) stimulation enhanced the expression of core mesenchymal regulators Snail family zinc finger 1, zinc finger E-box binding homeobox, mesenchymal intermediate filaments (vimentin), and extracellular matrix proteins (fibronectin-1), and collagen 1A. This mesenchymal transition was prevented by silencing expression of NF-κB/RelA or administration of a small-molecule inhibitor of the IκB kinase, BMS345541. Acute poly(I:C) exposure in vivo induced profound neutrophilic airway inflammation. When administered repetitively, poly(I:C) resulted in enhanced fibrosis observed by lung micro-computed tomography, second harmonic generation microscopy of optically cleared lung tissue, and by immunohistochemistry. Epithelial flattening, expansion of the epithelial mesenchymal trophic unit, and enhanced Snail family zinc finger 1 and fibronectin 1 expression in airway epithelium were also observed. Repetitive poly(I:C)-induced airway remodeling, fibrosis, and epithelial-mesenchymal transition was inhibited by BMS345541 administration. Based on this novel model of viral inflammation-induced remodeling, we conclude that NF-κB is a major controller of epithelial-mesenchymal transition and pulmonary fibrosis, a finding that has potentially important relevance to airway remodeling produced by repetitive viral infections.
Collapse
Affiliation(s)
- Bing Tian
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine
| | | | | | | | - KarryAnne K Belanger
- Departments of 1 Internal Medicine.,4 Department of Biochemistry and Molecular Biology, and
| | - Julia Litvinov
- Departments of 1 Internal Medicine.,5 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Istvan Boldogh
- 2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences.,5 Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Bill T Ameredes
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences
| | | | - Allan R Brasier
- Departments of 1 Internal Medicine.,2 Sealy Center for Molecular Medicine.,6 Institute for Translational Sciences
| |
Collapse
|
126
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
127
|
Ainai A, Suzuki T, Tamura SI, Hasegawa H. Intranasal Administration of Whole Inactivated Influenza Virus Vaccine as a Promising Influenza Vaccine Candidate. Viral Immunol 2017. [PMID: 28650274 DOI: 10.1089/vim.2017.0022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of the current influenza vaccine, an inactivated virus vaccine administered by subcutaneous/intramuscular injection, is limited to reducing the morbidity and mortality associated with seasonal influenza outbreaks. Intranasal vaccination, by contrast, mimics natural infection and induces not only systemic IgG antibodies but also local secretory IgA (S-IgA) antibodies found on the surface of the mucosal epithelium in the upper respiratory tract. S-IgA antibodies are highly effective at preventing virus infection. Although the live attenuated influenza vaccine (LAIV) administered intranasally can induce local antibodies, this vaccine is restricted to healthy populations aged 2-49 years because of safety concerns associated with using live viruses in a vaccine. Instead of LAIV, an intranasal vaccine made with inactivated virus could be applied to high-risk populations, including infants and elderly adults. Normally, a mucosal adjuvant would be required to enhance the effect of intranasal vaccination with an inactivated influenza vaccine. However, we found that intranasal administration of a concentrated, whole inactivated influenza virus vaccine without any mucosal adjuvant was enough to induce local neutralizing S-IgA antibodies in the nasal epithelium of healthy individuals with some immunological memory for seasonal influenza viruses. This intranasal vaccine is a novel candidate that could improve on the current injectable vaccine or the LAIV for the prevention of seasonal influenza epidemics.
Collapse
Affiliation(s)
- Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Shin-Ichi Tamura
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
128
|
Leymarie O, Meyer L, Tafforeau L, Lotteau V, Costa BD, Delmas B, Chevalier C, Le Goffic R. Influenza virus protein PB1-F2 interacts with CALCOCO2 (NDP52) to modulate innate immune response. J Gen Virol 2017; 98:1196-1208. [PMID: 28613140 DOI: 10.1099/jgv.0.000782] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PB1-F2 is a viral protein encoded by influenza A viruses (IAVs). PB1-F2 is implicated in virulence by triggering immune cell apoptosis and enhancing inflammation. To obtain an insight into the molecular mechanisms of PB1-F2-mediated virulence, we used the yeast two-hybrid approach to find new PB1-F2 cellular interactors. This allowed us to identify calcium-binding and coiled-coil domain 2 (CALCOCO2, also known as NDP52) as a binding partner of PB1-F2. Binding of PB1-F2 to CALCOCO2 was confirmed by pull-down. Surface plasmon resonance binding experiments enabled us to estimate the dissociation constant (Kd) of the two partners to be around 20 nM. Using bioinformatics tools, we designed a CALCOCO2 interaction map based on previous knowledge and showed a strong connection between this protein and the type I interferon production pathways and the I-κB kinase/NF-κB signalling pathway. NF-κB reporter assays in which CALCOCO2, MAVS and PB1-F2 were co-expressed showed a cooperation of these three proteins to increase the inflammatory response. By contrast, PB1-F2 inhibits the TBK1-dependent activation of an ISRE reporter plasmid. We also demonstrated that the signal transducer TRAF6 is implicated in the enhancement of NF-κB activity mediated by PB1-F2/CALCOCO2 binding. Altogether, this report provides evidence of an interaction link between PB1-F2 and human proteins, and allows a better understanding of the involvement of PB1-F2 in the pathologic process mediated by IAV.
Collapse
Affiliation(s)
- Olivier Leymarie
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Léa Meyer
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lionel Tafforeau
- IMAP Team, Inserm Unit 851, 21, Av. T. Garnier, 69007 Lyon, France.,Present address: Laboratory of Cellular Biology, Research Institute for Biosciences, University of Mons-UMONS, Belgium
| | - Vincent Lotteau
- INSERM U1111, Lyon, France.,CIRI, Centre de Recherche en Infectiologie, Lyon, France.,Université de Lyon, France
| | - Bruno Da Costa
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernard Delmas
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
129
|
Involvement of the Toll-Like Receptor/Nitric Oxide Signaling Pathway in the Pathogenesis of Cervical Cancer Caused by High-Risk Human Papillomavirus Infection. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28626766 PMCID: PMC5463171 DOI: 10.1155/2017/7830262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human papillomavirus (HPV) can activate Toll-like receptor (TLR)/nitric oxide (NO) signaling pathways; however, whether the TLR/NO pathway is involved in cervical cancer caused by high-risk HPV (HR-HPV) remains unclear. In this study, 43 HR-HPV-positive patients with cervical cancer (CC group), 39 HR-HPV-positive patients with a healthy cervix (HR-HPV group), and 33 HR-HPV-negative controls were recruited. NO concentration in cervical canal and expression of inducible NO synthase (iNOS) in cervical tissues were detected. Expressions of key TLR/NO pathway genes (TLR3/4/7/8, NF-κB p65, and iNOS) in cervical epithelial cells were detected by quantitative reverse transcription PCR. Expressions of TLR4, NF-κB p65, and iNOS in CaSki, HeLa, and C33a cells were determined by Western blot. NO concentration in cervical canal of CC group was significantly higher than in other groups (P < 0.05). Positive rates of iNOS in cervical tissues were 72.1%, 28.2%, and 3.1% in the CC group, HR-HPV group, and controls, respectively (P < 0.05). Levels of TLR3, TLR4, TLR7, TLR8, NF-κB p65, and iNOS in cervical epithelial cells were higher in CC group than in other groups (P < 0.05). Both mRNA and protein levels of TLR4, NF-κB p65, and iNOS were higher in HPV-positive HeLa and CaSki cells than in HPV-negative C33a cells (P < 0.05). Together, these results suggest that TLR/NO signaling pathway may be involved in pathogenesis of cervical cancer caused by HR-HPV.
Collapse
|
130
|
Wang BX, Fish EN. Interactions Between NS1 of Influenza A Viruses and Interferon-α/β: Determinants for Vaccine Development. J Interferon Cytokine Res 2017; 37:331-341. [PMID: 28514196 DOI: 10.1089/jir.2017.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Influenza A viruses (IAVs) cause mild to severe infections in humans with considerable socioeconomic and global health consequences. The host interferon (IFN)-α/β response, critical as the first line of defense against foreign pathogens, is induced upon detection of IAV genomic RNA in infected cells by host innate pattern recognition receptors. IFN-α/β production and subsequent activation of cell signaling result in the expression of antiviral IFN-stimulated genes whose products target various stages of the IAV life cycle to inhibit viral replication and the spread of infection and establish an antiviral state. IAVs, however, encode a multifunctional virulence factor, nonstructural protein 1 (NS1), that directly antagonizes the host IFN-α/β response to support viral replication. In this review, we highlight the mechanisms by which NS1 suppresses IFN-α/β production and subsequent cell signaling, and consider, therefore, the potential for recombinant IAVs lacking NS1 to be used as live-attenuated vaccines.
Collapse
Affiliation(s)
- Ben X Wang
- 1 Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| | - Eleanor N Fish
- 1 Toronto General Hospital Research Institute, University Health Network , Toronto, Ontario, Canada .,2 Department of Immunology, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
131
|
Comprendre le poumon agressé. Actes du séminaire de recherche translationnelle de la Société de Réanimation de Langue Française (6 décembre 2016). MEDECINE INTENSIVE REANIMATION 2017. [PMCID: PMC7149235 DOI: 10.1007/s13546-017-1279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Le séminaire de recherche translationnelle 2016 organisé par la Société de Réanimation de Langue Française s’est focalisé sur les mécanismes de réponse à l’agression et de réparation pulmonaire. Le poumon représente une interface essentielle entre l’hôte et son environnement et est à ce titre soumis à des agressions constantes et multiples. La réanimation s’est en grande partie construite autour de la prise en charge de la défaillance respiratoire. Au-delà du traitement étiologique et du support ventilatoire, se pose la problématique récurrente du développement de thérapeutiques adjuvantes à visée immunomodulatrice. Le développement de telles thérapeutiques innovantes est conditionné par les avancées dans la compréhension de la physiopathologie de l’agression pulmonaire aiguë, ainsi que par la validation au lit du patient d’outils d’évaluation permettant de quantifier l’effet des interventions thérapeutiques.
Collapse
|
132
|
He X, Chen Y, Kang S, Chen G, Wei P. Differential Regulation of chTLR3 by Infectious Bursal Disease Viruses with Different Virulence In Vitro and In Vivo. Viral Immunol 2017; 30:490-499. [PMID: 28402729 DOI: 10.1089/vim.2016.0134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is one of the TLRs whose ligand is double-stranded RNA (dsRNA). Infectious bursal disease virus (IBDV) is a dsRNA virus that could be recognized by TLR3. The purpose of this study was to determine the role of the virulence of IBDV on the expression of chicken TLR3 (chTLR3). For this purpose, the levels of chTLR3 expression and its downstream effectors, Interferon β (IFN-β) and Interleukin 8 (IL-8), were detected and analyzed after infection of IBDV field isolates with differential virulence in vitro (chicken embryo fibroblast and/or chicken peripheral blood mononuclear cells) and in vivo (commercial Three-Yellow chicken). The results showed that chTLR3 was activated by IBDV, resulting in the expression of antiviral IFN-β and chemokine IL-8. The expression of chTLR3, IFN-β, and IL-8 correlated well with the virulence of IBDV as the more virulent the IBDV strain that was used, the more pronounced was the expression of chTLR3, IFN-β, and IL-8. These results suggest that chTLR3 is involved in the pathogenesis of IBDV in commercial chickens and its downstream effectors (IFN-β and IL-8) might play an important role in this process.
Collapse
Affiliation(s)
- Xiumiao He
- 1 School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities , Nanning, China .,2 Institute for Poultry Science and Health, Guangxi University , Nanning, China .,3 Guangxi Key Laboratory Cultivation Base for Polysaccharide Materials and Their Modification, Guangxi University for Nationalities , Nanning, China
| | - Yanyan Chen
- 1 School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities , Nanning, China
| | - Synat Kang
- 1 School of Marine Sciences and Biotechnology/Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi University for Nationalities , Nanning, China
| | - Guo Chen
- 2 Institute for Poultry Science and Health, Guangxi University , Nanning, China
| | - Ping Wei
- 2 Institute for Poultry Science and Health, Guangxi University , Nanning, China
| |
Collapse
|
133
|
Yang M, Wang HY, Chen JC, Zhao J. Regulation of airway inflammation and remodeling in asthmatic mice by TLR3/TRIF signal pathway. Mol Immunol 2017; 85:265-272. [PMID: 28342933 DOI: 10.1016/j.molimm.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
Abstract
This paper aims to investigate the effect of Toll-like receptors 3 (TLR3)/TIR-domain-containing adapter-inducing interferon-β (TRIF) signal pathway on the airway inflammation and remodeling in asthmatic mice. C57BL/6 and TLR3-/- mice were randomly divided into three groups (10 mice per group), including Control group (mice inhaled phosphate buffer saline (PBS)), Asthma group (mice inhaled ovalbumin (OVA)) and polyriboinosinic-ribocytidylic acid (poly (I: C)) group (asthmatic mice were injected intraperitoneally with TLR3 agonist poly (I: C)). Hematoxylin-eosin (HE) staining, Wright-Giemsa staining, Enzyme-linked immunosorbent assay (ELISA), Immunohistochemistry, Hydroxyproline assay, quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to assess for the indices of airway inflammation and remodeling. In terms of WT mice, all asthma groups with or without the addition of poly (I: C) showed exaggerated inflammation and remodeling in the airways as compared to Control group, which were more seriously in poly (I: C) group than Asthma group. Furthermore, we observed the significant inhibition of airway inflammation and remodeling in the TLR3-/- mice in both Asthma no matter with or without addition of poly (I: C) than the WT mice. TLR3 knockout could obviously relieve the airway inflammation and remodeling in asthma through inhibiting TLR3/TRIF signaling pathway.
Collapse
Affiliation(s)
- Mei Yang
- Department of critical care medicine, The Third People's Hospital of Jinan, Jinan 250132, Shandong, PR China.
| | - Hao-Ying Wang
- Department of critical care medicine, The Third People's Hospital of Jinan, Jinan 250132, Shandong, PR China
| | - Jian-Chang Chen
- Department of emergency, Shandong Provincial Western Hospital, Jinan 250021, Shandong, PR China
| | - Jing Zhao
- Department of cardiology, Qilu Hospital Affiliated to Shandong University, Jinan 250012, PR China
| |
Collapse
|
134
|
Ding X, Jin S, Tong Y, Jiang X, Chen Z, Mei S, Zhang L, Billiar TR, Li Q. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury. Sci Rep 2017; 7:34278. [PMID: 28198368 PMCID: PMC5309825 DOI: 10.1038/srep34278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/08/2016] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury is a life-threatening inflammatory response caused by severe infection. Toll-like receptors in alveolar macrophages (AMΦ) recognize the molecular constituents of pathogens and activate the host's innate immune responses. Numerous studies have documented the importance of TLR-TLR cross talk, but few studies have specifically addressed the relationship between TLR4 and TLR3. We explored a novel mechanism of TLR3 up-regulation that is induced by LPS-TLR4 signaling in a dose- and time-dependent manner in AMΦ from C57BL/6 mice, while the LPS-induced TLR3 expression was significantly reduced in TLR4-/- and Myd88-/- mice and following pretreatment with a NF-κB inhibitor. The enhanced TLR3 up-regulation in AMΦ augmented the expression of cytokines and chemokines in response to sequential challenges with LPS and Poly I:C, a TLR3 ligand, which was physiologically associated with amplified AMΦ-induced PMN migration into lung alveoli. Our study demonstrates that the synergistic effect between TLR4 and TLR3 in macrophages is an important determinant in acute lung injury and, more importantly, that TLR3 up-regulation is dependent on TLR4-MyD88-NF-κB signaling. These results raise the possibility that bacterial infections can induce sensitivity to viral infections, which may have important implications for the therapeutic manipulation of the innate immune system.
Collapse
Affiliation(s)
- Xibing Ding
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuqing Jin
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Tong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Jiang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA 15213, USA
| | - Quan Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
135
|
Kedzierski L, Tate MD, Hsu AC, Kolesnik TB, Linossi EM, Dagley L, Dong Z, Freeman S, Infusini G, Starkey MR, Bird NL, Chatfield SM, Babon JJ, Huntington N, Belz G, Webb A, Wark PA, Nicola NA, Xu J, Kedzierska K, Hansbro PM, Nicholson SE. Suppressor of cytokine signaling (SOCS)5 ameliorates influenza infection via inhibition of EGFR signaling. eLife 2017; 6. [PMID: 28195529 PMCID: PMC5354519 DOI: 10.7554/elife.20444] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Influenza virus infections have a significant impact on global human health. Individuals with suppressed immunity, or suffering from chronic inflammatory conditions such as COPD, are particularly susceptible to influenza. Here we show that suppressor of cytokine signaling (SOCS) five has a pivotal role in restricting influenza A virus in the airway epithelium, through the regulation of epidermal growth factor receptor (EGFR). Socs5-deficient mice exhibit heightened disease severity, with increased viral titres and weight loss. Socs5 levels were differentially regulated in response to distinct influenza viruses (H1N1, H3N2, H5N1 and H11N9) and were reduced in primary epithelial cells from COPD patients, again correlating with increased susceptibility to influenza. Importantly, restoration of SOCS5 levels restricted influenza virus infection, suggesting that manipulating SOCS5 expression and/or SOCS5 targets might be a novel therapeutic approach to influenza.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Monash University, Clayton, Australia
| | - Alan C Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Tatiana B Kolesnik
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Edmond M Linossi
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Laura Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Zhaoguang Dong
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Sarah Freeman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Giuseppe Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Nicola L Bird
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Simon M Chatfield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nicholas Huntington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Gabrielle Belz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Andrew Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Peter Ab Wark
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Philip M Hansbro
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
136
|
Klemm C, Bruchhagen C, van Krüchten A, Niemann S, Löffler B, Peters G, Ludwig S, Ehrhardt C. Mitogen-activated protein kinases (MAPKs) regulate IL-6 over-production during concomitant influenza virus and Staphylococcus aureus infection. Sci Rep 2017; 7:42473. [PMID: 28195157 PMCID: PMC5307969 DOI: 10.1038/srep42473] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022] Open
Abstract
Bacterial super-infections are a major complication of influenza virus (IV) infections and often lead to severe pneumonia. One hallmark of IV-associated Staphylococcus aureus (S. aureus) infection is rapid progression to a serious disease outcome. Changes in immune and inflammatory host responses increase morbidity and complicate efficient therapy. A key player during inflammation is the multifunctional cytokine IL-6. Although increased IL-6 levels have been observed after severe disease upon IV and/or bacterial super-infection, the underlying molecular mechanisms still remain to be elucidated. In the present study, we focused on cellular signalling pathways regulating IL-6 production upon IV/S. aureus super-infection. Additionally, infection with viable bacteria was mimicked by lipoteichoic acid stimulation in this model. Analyses of cellular signalling mechanisms revealed synergistically increased activation of the MAPK p38 as well as enhanced phosphorylation of the MAPKs ERK1/2 and JNK in the presence of super-infecting bacteria. Interestingly, inhibition of MAPK activity indicated a strong dependence of IL-6 expression on p38 and ERK1/2, while the MAPK JNK seems not to be involved. Thus, our results provide new molecular insights into the regulation of IL-6, a marker of severe disease, which might contribute to the lethal synergism of IV and S. aureus.
Collapse
Affiliation(s)
- Carolin Klemm
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Christin Bruchhagen
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Andre van Krüchten
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital of Muenster, Domagkstr, 10, D-48149 Muenster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital Jena, Erlanger Allee 101, D-07747 Jena, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital of Muenster, Domagkstr, 10, D-48149 Muenster, Germany.,Cluster of Excellence Cells in Motion (CIM), University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany.,Cluster of Excellence Cells in Motion (CIM), University of Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von Esmarch-Str. 56, D-48149 Muenster, Germany.,Cluster of Excellence Cells in Motion (CIM), University of Muenster, Muenster, Germany
| |
Collapse
|
137
|
Studzińska M, Jabłońska A, Wiśniewska-Ligier M, Nowakowska D, Gaj Z, Leśnikowski ZJ, Woźniakowska-Gęsicka T, Wilczyński J, Paradowska E. Association of TLR3 L412F Polymorphism with Cytomegalovirus Infection in Children. PLoS One 2017; 12:e0169420. [PMID: 28046022 PMCID: PMC5207783 DOI: 10.1371/journal.pone.0169420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023] Open
Abstract
Intracellular Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA (dsRNA) and activates antiviral immune responses through the production of type I interferons (IFNs) and inflammatory cytokines. This receptor binds to dsRNA molecules produced during human cytomegalovirus (HCMV) replication. TLR7 senses viral single-stranded RNA (ssRNA) in endosomes, and it can interact with endogenous RNAs. We determined the genotype distribution of single-nucleotide polymorphisms (SNPs) within the TLR3 and TLR7 genes in children with HCMV infection and the relationship between TLR polymorphisms and viral infection. We genotyped 59 children with symptomatic HCMV infection and 78 healthy individuals for SNPs in the TLR3 (rs3775290, c.1377C>T, F459F; rs3775291, c.1234C>T, L412F; rs3775296, c.-7C>A) and TLR7 (rs179008, c.32A>T, Q11L; rs5741880, c.3+1716G>T) genes. SNP genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and capillary electrophoresis. The HCMV DNA load was quantified by real-time PCR. We found an increased frequency of the heterozygous genotype TLR3 L412F in children with HCMV infection compared with uninfected cases. In individuals with a mutation present in at least one allele of the L412F SNP, an increased risk of HCMV disease was found, and this result remained highly significant after Bonferroni’s correction for multiple testing (Pc < 0.001). The heterozygous genotype of this SNP was associated with the increased risk of HCMV disease in an adjusted model that included the HCMV DNA copy number in whole blood and urine (P < 0.001 and P = 0.008, respectively). Moreover, those with a heterozygous genotype of rs3775296 showed an increased relative risk of HCMV infection (P = 0.042), but this association did not reach statistical significance after correction for multiple testing. In contrast, the rs3775290 SNP of TLR3 and TLR7 SNPs were not related to viral infection. A moderate linkage disequilibrium (LD) was observed between the SNPs rs3775291 and rs3775296 (r2 = 0.514). We suggest that the L412F polymorphism in the TLR3 gene could be a genetic risk factor for the development of HCMV disease.
Collapse
Affiliation(s)
- Mirosława Studzińska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Agnieszka Jabłońska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Małgorzata Wiśniewska-Ligier
- Department of Pediatrics, Immunology, and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Dorota Nowakowska
- Department of Perinatology and Gynecology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Zuzanna Gaj
- Department of Perinatology and Gynecology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Zbigniew J. Leśnikowski
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Jan Wilczyński
- 2nd Department of Obstetrics and Gynecology, Warsaw Medical University, Warsaw, Poland
| | - Edyta Paradowska
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail:
| |
Collapse
|
138
|
Release of Type 2 Cytokines by Epithelial Cells of Nasal Polyps. J Immunol Res 2016; 2016:2643297. [PMID: 28127565 PMCID: PMC5227162 DOI: 10.1155/2016/2643297] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/11/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Background. T2 inflammation of chronic rhinosinusitis with nasal polyps (CRSwNP) may be influenced by epithelial cytokines release (TSLP, IL-25, and IL-33). We investigated the release of TSLP, IL-25, and IL-33 by epithelial CRSwNP cells compared to epithelial sinus mucosa cells of patients with chronic rhinosinusitis without nasal polyps (CRSsNP). Methods. IL-25, IL-33, and TSLP were measured by ELISA in the supernatant of cell cultures derived by CRSwNP (9 patients, 6 atopic) and CRSsNP (7 patients, 2 atopic) in baseline condition and following stimulation with Dermatophagoides pteronyssinus (DP), Aspergillus fumigatus (AF), and poly(I:C). Results. CRSwNP epithelial cells released increased levels of IL-25 (from 0.12 ± 0.06 pg/ml to 0.27 ± 0.1 pg/ml, p < 0.01) and TSLP (from 0.77 ± 0.5 pg/ml to 2.53 ± 1.17 pg/ml, p < 0.001) following poly(I:C) stimulation, while CRSsNP epithelial cells released increased levels of IL-25 and IL-33 following AF and DP stimulation, respectively (IL-25: from 0.18 ± 0.07 pg/ml to 0.51 ± 0.1 pg/ml, p < 0.001; IL-33: from 2.57 ± 1.3 pg/ml to 5.7 ± 3.1 pg/ml, p < 0.001). Conclusions. CRSwNP epithelial cells release TSLP and IL-25 when stimulated by poly(I:C) but not by DP or AF, suggesting that viral infection may contribute to maintain and amplify the T2 immune response seen in CRSwNP.
Collapse
|
139
|
CLEC5A-Mediated Enhancement of the Inflammatory Response in Myeloid Cells Contributes to Influenza Virus Pathogenicity In Vivo. J Virol 2016; 91:JVI.01813-16. [PMID: 27795434 PMCID: PMC5165214 DOI: 10.1128/jvi.01813-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections.
IMPORTANCE Multiple pattern recognition receptors work in synergy to sense viral RNA or proteins synthesized during influenza replication and mediate host responses for viral control. Well-orchestrated host responses may help to maintain the inflammatory response to minimize tissue damage while inducing an effective adaptive immune response for viral clearance. We identified that CLEC5A, a C-type lectin receptor which has previously been reported to mediate flavivirus-induced inflammatory responses, enhanced induction of proinflammatory cytokines and chemokines in myeloid cells after influenza infections. CLEC5A-deficient mice infected with influenza virus showed reduced inflammation in the lungs and improved survival compared to that of the wild-type mice despite comparable viral loads. The survival difference was more prominent at a lower dose of inoculum. Collectively, our results suggest that dampening CLEC5A-mediated inflammatory responses in myeloid cells reduces immunopathogenesis after influenza infections.
Collapse
|
140
|
Głobińska A, Pawełczyk M, Piechota-Polańczyk A, Olszewska-Ziąber A, Moskwa S, Mikołajczyk A, Jabłońska A, Zakrzewski PK, Brauncajs M, Jarzębska M, Taka S, Papadopoulos NG, Kowalski ML. Impaired virus replication and decreased innate immune responses to viral infections in nasal epithelial cells from patients with allergic rhinitis. Clin Exp Immunol 2016; 187:100-112. [PMID: 27667736 DOI: 10.1111/cei.12869] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to assess the immune response to parainfluenza virus type 3 (PIV3), rhinovirus 1B (RV1B) and intracellular Toll-like receptors (TLR) agonists in nasal epithelial cells (NECs) from patients with allergic rhinitis and healthy controls. NECs were obtained from eight patients with allergic rhinitis (AR) and 11 non-atopic healthy controls (HC) by nasal scraping, grown to confluence and exposed to PIV3, RV1B infection or TLR-3 and TLR-7/8 agonists. Interferon (IFN)-λ1, IFN-α, IFN-β and regulated on activation, normal T expressed and secreted (RANTES) release into the cell culture supernatants was assessed at 8, 24 and 48 h upon infection or 8 and 24 h after stimulation with poly(I:C) and R848. mRNA levels of IFNs, RANTES, interferon regulatory transcription factor (IRF)3, IRF7 and viral gene copy number were determined using real-time polymerase chain reaction (RT-PCR). PIV3 but not RV1B replication 48 h after infection was significantly lower (P < 0·01) in NECs from AR patients compared to HC. PIV3 infection induced significantly less IFN-λ1 (both protein and mRNA) in NECs from AR compared to HC. IFN-β mRNA expression and RANTES protein release and mRNA expression tended to be smaller in AR compared HC cells in response to both viruses. Stimulation with TLR-3 agonist [poly (I:C)] induced similar IFN-λ1 and RANTES generation in AR and HC subjects. Viral infections in NECs induced IRF7 expression, which correlated with IFN and RANTES expression. These data suggest that virus proliferation rates and the immune response profile are different in nasal epithelial cells from patients with allergic rhinitis compared to healthy individuals.
Collapse
Affiliation(s)
- A Głobińska
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - M Pawełczyk
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - A Piechota-Polańczyk
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - A Olszewska-Ziąber
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - S Moskwa
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland.,Microbiology and Laboratory Medical Immunology Department, Medical University of Łódź, Łódź, Poland
| | - A Mikołajczyk
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - A Jabłońska
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - P K Zakrzewski
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - M Brauncajs
- Microbiology and Laboratory Medical Immunology Department, Medical University of Łódź, Łódź, Poland
| | - M Jarzębska
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| | - S Taka
- Allergy Department, Second Paediatric Clinic, University of Athens, Athens, Greece
| | - N G Papadopoulos
- Allergy Department, Second Paediatric Clinic, University of Athens, Athens, Greece
| | - M L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Łódź, Łódź, Poland.,Healthy Ageing Research Center, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
141
|
Vidaña B, Martínez J, Martorell J, Montoya M, Córdoba L, Pérez M, Majó N. Involvement of the different lung compartments in the pathogenesis of pH1N1 influenza virus infection in ferrets. Vet Res 2016; 47:113. [PMID: 27825367 PMCID: PMC5101722 DOI: 10.1186/s13567-016-0395-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 12/29/2022] Open
Abstract
Severe cases after pH1N1 infection are consequence of interstitial pneumonia triggered by alveolar viral replication and an exacerbated host immune response, characterized by the up-regulation of pro-inflammatory cytokines and the influx of inflammatory leukocytes to the lungs. Different lung cell populations have been suggested as culprits in the unregulated innate immune responses observed in these cases. This study aims to clarify this question by studying the different induction of innate immune molecules by the distinct lung anatomic compartments (vascular, alveolar and bronchiolar) of ferrets intratracheally infected with a human pH1N1 viral isolate, by means of laser microdissection techniques. The obtained results were then analysed in relation to viral quantification in the different anatomic areas and the histopathological lesions observed. More severe lung lesions were observed at 24 h post infection (hpi) correlating with viral antigen detection in bronchiolar and alveolar epithelial cells. However, high levels of viral RNA were detected in all anatomic compartments throughout infection. Bronchiolar areas were the first source of IFN-α and most pro-inflammatory cytokines, through the activation of RIG-I. In contrast, vascular areas contributed with the highest induction of CCL2 and other pro-inflammatory cytokines, through the activation of TLR3.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jorge Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain. .,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Jaime Martorell
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - María Montoya
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Lorena Córdoba
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mónica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natàlia Majó
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
142
|
Poteet E, Lewis P, Chen C, Ho SO, Do T, Chiang S, Labranche C, Montefiori D, Fujii G, Yao Q. Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV. Vaccine 2016; 34:5886-5894. [PMID: 27997339 DOI: 10.1016/j.vaccine.2016.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 12/01/2022]
Abstract
Human Immunodeficiency Virus (HIV) Virus-Like Particles (VLPs) composed of HIVIIIB Gag and HIVBaL gp120/gp41 envelope are a pseudovirion vaccine capable of presenting antigens in their native conformations. To enhance the immunogenicity of the HIV Env antigen, VLPs were coupled to VesiVax Conjugatable Adjuvant Lipid Vesicles (CALV) containing one of four toll-like-receptor (TLR) ligands, each activating a receptor with distinct cellular localization and downstream pathways. C57BL/6 mice were vaccinated by intranasal prime followed by two sub-cheek boosts and their sera immunoglobulin and neutralizing potency were measured over a duration of 3months after vaccination. PBS control, VLPs alone, CALV+VLPs, and VLPs complexed with CALV and ligands for TLR2 (PAM3CAG), TLR3 (dsRNA), TLR4 (MPLA), or TLR7/8 (resiquimod) were evaluated based on antibody titer, IgG1 and IgG2c class switching, germinal center formation, T follicular cells and potency of neutralizing antibodies. Consistently, the TLR3 ligand dsRNA complexed to CALV and in combination with VLPs (CALV(dsRNA)+VLPs) induced the strongest response. CALV(dsRNA)+VLPs induced the highest titers against the recombinant vaccine antigens clade B Bal gp120 and pr55 Gag. Additionally, CALV(dsRNA)+VLPs induced cross-clade antibodies, represented by high titers of antibody to clade c 96ZM651 gp120. CALV(dsRNA)+VLPs induced predominantly IgG2c over IgG1, a response associated with T helper type 1 (Th1)-like cytokines. In turn, CALV(dsRNA)+VLP immunized mice generated the most potent neutralizing antibodies against HIV strain MN.3. Finally, at time of sacrifice, a significant increase in germinal center B cells and T follicular cells was detected in mice which received CALV(dsRNA)+VLPs compared to PBS. Our results indicate that CALV(dsRNA) is a superior adjuvant for HIV VLPs in generating a Th1-like immunoglobulin profile, while prolonging lymph node germinal centers, T follicular cells and generating neutralizing antibodies to a highly sensitive tier 1A variant of HIV.
Collapse
Affiliation(s)
- Ethan Poteet
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Phoebe Lewis
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sam On Ho
- Molecular Express, Inc., Rancho Domínguez, CA 90220, USA
| | - Thai Do
- Molecular Express, Inc., Rancho Domínguez, CA 90220, USA
| | - SuMing Chiang
- Molecular Express, Inc., Rancho Domínguez, CA 90220, USA
| | - Celia Labranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Gary Fujii
- Molecular Express, Inc., Rancho Domínguez, CA 90220, USA
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX 77030, USA; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA.
| |
Collapse
|
143
|
Tavares LP, Teixeira MM, Garcia CC. The inflammatory response triggered by Influenza virus: a two edged sword. Inflamm Res 2016; 66:283-302. [PMID: 27744631 DOI: 10.1007/s00011-016-0996-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023] Open
Abstract
Influenza A virus (IAV) is a relevant respiratory tract pathogen leading to a great number of deaths and hospitalizations worldwide. Secondary bacterial infections are a very common cause of IAV associated morbidity and mortality. The robust inflammatory response that follows infection is important for the control of virus proliferation but is also associated with lung damage, morbidity and death. The role of the different components of immune response underlying protection or disease during IAV infection is not completely elucidated. Overall, in the context of IAV infection, inflammation is a 'double edge sword' necessary to control infection but causing disease. Therefore, a growing number of studies suggest that immunomodulatory strategies may improve disease outcome without affecting the ability of the host to deal with infection. This review summarizes recent aspects of the inflammatory responses triggered by IAV that are preferentially involved in causing severe pulmonary disease and the anti-inflammatory strategies that have been suggested to treat influenza induced immunopathology.
Collapse
Affiliation(s)
- Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil, 4365, 21040360, Rio de Janeiro, Brazil.
| |
Collapse
|
144
|
Chan LLY, Bui CTH, Mok CKP, Ng MMT, Nicholls JM, Peiris JSM, Chan MCW, Chan RWY. Evaluation of the human adaptation of influenza A/H7N9 virus in PB2 protein using human and swine respiratory tract explant cultures. Sci Rep 2016; 6:35401. [PMID: 27739468 PMCID: PMC5064379 DOI: 10.1038/srep35401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Novel avian H7N9 virus emerged in China in 2013 resulting in a case fatality rate of around 39% and continues to pose zoonotic and pandemic risk. Amino acid substitutions in PB2 protein were shown to influence the pathogenicity and transmissibility of H7N9 following experimental infection of ferrets and mice. In this study, we evaluated the role of amino acid substitution PB2-627K or compensatory changes at PB2-591K and PB2-701N, on the tropism and replication competence of H7N9 viruses for human and swine respiratory tracts using ex vivo organ explant cultures. Recombinant viruses of A/Shanghai/2/2013 (rgH7N9) and its mutants with PB2-K627E, PB2-K627E + Q591K and PB2-K627E + D701N were generated by plasmid-based reverse genetics. PB2-E627K was essential for efficient replication of rgH7N9 in ex vivo cultures of human and swine respiratory tracts. Mutant rgPB2-K627E + D701N replicated better than rgPB2-K627E in human lung but not as well as rgH7N9 virus. The rgPB2-K627E mutant failed to replicate in human type I-like pneumocytes (ATI) and peripheral blood monocyte-derived macrophages (PMϕ) at 37 °C while the compensatory mutant rgPB2-K627E + Q591K and rgPB2-K627E + D701N had partly restored replication competence in PMϕ. Our results demonstrate that PB2-E627K was important for efficient replication of influenza H7N9 in both human and swine respiratory tracts.
Collapse
Affiliation(s)
- Louisa L. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Christine T. H. Bui
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris K. P. Mok
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mandy M. T. Ng
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John M. Nicholls
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - J. S. Malik Peiris
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C. W. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Renee W. Y. Chan
- Centre of Influenza Research and School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
145
|
Shishikura Y, Koarai A, Aizawa H, Yamaya M, Sugiura H, Watanabe M, Hashimoto Y, Numakura T, Makiguti T, Abe K, Yamada M, Kikuchi T, Hoshikawa Y, Okada Y, Ichinose M. Extracellular ATP is involved in dsRNA-induced MUC5AC production via P2Y2R in human airway epithelium. Respir Res 2016; 17:121. [PMID: 27677339 PMCID: PMC5039824 DOI: 10.1186/s12931-016-0438-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/20/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In response to tissue damage or inflammation, adenosine-5'-triphosphate (ATP) is released into the extracellular compartment and has been demonstrated to augment inflammation via purinergic P2 receptors (P2Rs). Recently, ATP has been shown to be increased in the airways of COPD patients. In the present study, we examined the possible involvement of extracellular ATP in airway mucus hypersecretion during viral-induced COPD exacerbations. METHODS The involvement of extracellular ATP in the release of a major airway mucin, MUC5AC, and its signal pathway was examined after stimulation with polyinosine-polycytidylic acid [poly(I:C)], a synthetic analog of dsRNA to mimic viral infection, and rhinovirus (RV) infection in NCI-H292 cells and differentiated airway epithelial cells from COPD patients. RESULTS Treatment with poly(I:C) significantly increased the amount of extracellular ATP and induced MUC5AC release in NCI-H292 cells. Pre-treatment with a pannexin channel inhibitor, carbenoxolone (CBX), reduced the amount of extracellular ATP and suppressed MUC5AC release from poly(I:C)-treated cells. Pre-treatment with the P2R antagonist suramin significantly reduced the expression and release of MUC5AC. The inhibitory effects of CBX and suramin on the release of ATP and/or MUC5AC were replicated with RV infection. Pre-treatment with suramin also significantly reduced the expression and amount of extracellular EGFR ligands and the phosphorylation of EGFR and ERK in poly(I:C)-treated cells. In addition, pre-treatment with a P2Y2 receptor siRNA significantly suppressed the poly(I:C)-potentiated EGFR ligands and MUC5AC release. After poly(I:C) stimulation, the expression of MUC5AC in the differentiated cells from COPD patients was significantly higher than those from healthy subjects and the values of MUC5AC expression were inversely related with forced expiratory volume in 1 s (FEV1) % predicted. The inhibitory effects of CBX and suramin on poly(I:C)-potentiated MUC5AC expression were confirmed in differentiated airway epithelium from COPD patients. CONCLUSIONS These results demonstrate that dsRNA induces the release of ATP via pannexin channel and that the extracellular ATP is involved in the expression and release of MUC5AC, mainly via P2Y2R, in an autocrine manner. Modulation of this pathway could be a therapeutic target for viral-induced mucus hypersecretion in COPD exacerbations.
Collapse
Affiliation(s)
- Yutaka Shishikura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Akira Koarai
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Hiroyuki Aizawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Mutsuo Yamaya
- Department of Advanced Preventive Medicine for Infectious Disease Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Yuichiro Hashimoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Tomonori Makiguti
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Kyoko Abe
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Mituhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8510 Japan
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery Institute of Development, Aging and Cancer Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574 Japan
| |
Collapse
|
146
|
Wu W, Zhang W, Booth JL, Hutchings DC, Wang X, White VL, Youness H, Cross CD, Zou MH, Burian D, Metcalf JP. Human primary airway epithelial cells isolated from active smokers have epigenetically impaired antiviral responses. Respir Res 2016; 17:111. [PMID: 27604339 PMCID: PMC5013564 DOI: 10.1186/s12931-016-0428-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cigarette smoking (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and most COPD exacerbations are caused by respiratory infections including influenza. Influenza infections are more severe in smokers. The mechanism of the increased risk and severity of infections in smokers is likely multifactorial, but certainly includes changes in immunologic host defenses. METHODS We investigated retinoic acid-inducible protein I (RIG-I) and interferon (IFN) induction by influenza A virus (IAV) in human bronchial epithelial cells (HBEC) isolated from smokers or nonsmokers. Subcultured HBEC cells were infected with A/Puerto Rico/8/1934 (PR8) IAV at an MOI of 1. After 24 h of infection, cells and supernatants were collected for qRT-PCR, immunoblot or ELISA to determine RIG-I, Toll-like receptor3 (TLR3) and IFN expression levels. RESULTS IAV exposure induced a vigorous IFN-β, IFN-λ 1 and IFN-λ 2/3 antiviral response in HBEC from nonsmokers and significant induction of RIG-I and TLR3. In cells from smokers, viral RIG-I and TLR3 mRNA induction was reduced 87 and 79 % compared to the response from nonsmokers. CS exposure history was associated with inhibition of viral induction of the IFN-β, IFN-λ1 and IFN-λ 2/3 mRNA response by 85, 96 and 95 %, respectively, from that seen in HBEC from nonsmokers. The demethylating agent 5-Aza-2-deoxycytidine reversed the immunosuppressive effects of CS exposure in HBEC since viral induction of all three IFNs was restored. IFN-β induction of RIG-I and TLR3 was also suppressed in the cells from smokers. CONCLUSION Our results suggest that active smoking reduces expression of antiviral cytokines in primary HBEC cells. This effect likely occurs via downregulation of RIG-I and TLR3 due to smoke-induced epigenetic modifications. Reduction in lung epithelial cell RIG-I and TLR3 responses may be a major mechanism contributing to the increased risk and severity of viral respiratory infections in smokers and to viral-mediated acute exacerbations of COPD.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - J Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Xiaoqiu Wang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vicky L White
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Houssein Youness
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Cory D Cross
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ming-Hui Zou
- Center of Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Dennis Burian
- Civil Aerospace Medical Institute, Federal Aviation Administration, Oklahoma City, OK, USA
| | - Jordan P Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
147
|
Koizumi Y, Nagase H, Nakajima T, Kawamura M, Ohta K. Toll-like receptor 3 ligand specifically induced bronchial epithelial cell death in caspase dependent manner and functionally upregulated Fas expression. Allergol Int 2016; 65 Suppl:S30-7. [PMID: 27321649 DOI: 10.1016/j.alit.2016.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Viral infections are the most common cause of asthma exacerbation. Virally infected epithelial cells undergo apoptosis. Although in healthy conditions, apoptosis may have a host-defensive role in limiting virus spread, this process may have a detrimental effect on damaged epithelium in asthma. Toll-like receptors (TLRs) are the receptors for various pathogens, and viruses possess several components that can activate TLR3, TLR4, and TLR7/8. However, as it has not been determined as to which component is responsible for virus-induced epithelial cell apoptosis, we comprehensively analyzed the effects of all TLR ligands on apoptosis. METHODS BEAS-2B cells or primary cultured human bronchial epithelial cells (PBECs) were stimulated by TLR 2, 3, 4, 5, 7/8, and 9 ligands and cell death was analyzed by flow cytometry. Chemokine generations induced by these ligands were also analyzed. RESULTS The TLR3 ligand polyinosinic-polycytidylic acid (poly I:C) specifically induced chemokine generation and apoptosis, while other TLR ligands including those for TLR5, 7/8, and 9 had no effect. The response to poly I:C had two phases, which included rapid secretion of chemokines and subsequent apoptosis in a later phase. Poly I:C induced apoptosis in a caspase-dependent manner and functionally upregulated the expression of Fas. CONCLUSIONS Previous findings indicating that viruses induced caspase-dependent death and upregulated Fas expression were reproduced by poly I:C, suggesting the central role of dsRNA/TLR3 in virus-induced apoptosis. Since these processes may have detrimental effects on pre-existing epithelial damage, the dsRNA/TLR3 pathway may be potential novel treatment target for virus-induced exacerbation of asthma.
Collapse
|
148
|
Local Innate Responses to TLR Ligands in the Chicken Trachea. Viruses 2016; 8:v8070207. [PMID: 27455308 PMCID: PMC4974541 DOI: 10.3390/v8070207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/11/2022] Open
Abstract
The chicken upper respiratory tract is the portal of entry for respiratory pathogens, such as avian influenza virus (AIV). The presence of microorganisms is sensed by pathogen recognition receptors (such as Toll-like receptors (TLRs)) of the innate immune defenses. Innate responses are essential for subsequent induction of potent adaptive immune responses, but little information is available about innate antiviral responses of the chicken trachea. We hypothesized that TLR ligands induce innate antiviral responses in the chicken trachea. Tracheal organ cultures (TOC) were used to investigate localized innate responses to TLR ligands. Expression of candidate genes, which play a role in antiviral responses, was quantified. To confirm the antiviral responses of stimulated TOC, chicken macrophages were treated with supernatants from stimulated TOC, prior to infection with AIV. The results demonstrated that TLR ligands induced the expression of pro-inflammatory cytokines, type I interferons and interferon stimulated genes in the chicken trachea. In conclusion, TLR ligands induce functional antiviral responses in the chicken trachea, which may act against some pathogens, such as AIV.
Collapse
|
149
|
Wang SH, Lee CW, Tseng FG, Liang KK, Wei PK. Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis. JOURNAL OF BIOPHOTONICS 2016; 9:738-749. [PMID: 29943945 DOI: 10.1002/jbio.201500182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/08/2023]
Abstract
The evolution of gold nanoparticle (Au NP) clusters in living cells are studied by using sectional dark-field optical microscopy and chromatic analysis approach. During endocytosis, Au NP clusters undergo fantastic color changes, from green to yellow-orange due to the plasmonic coupling effect. Analysis of brightness/hue values of the dark-field images helps estimate the numbers of Au NPs in the clusters. The Au NP clusters were further categorized into four groups within the endocytosis. As the results, the late endosomes had increased number of large Au NP clusters with time, while clustered numbers in secondary and tertiary groups were first increased and then decreased due to the fusion and fission of the endocytic vesicles. The time constants and cluster numbers for different groups are fitted by using an integrated rate equation, and show a positive correlation with the size of the Au NP cluster. The efficiency of Au NP uptake is only about 50% for normal cells, while 75% for cancer cells. Compared to normal cells, cancer cells show a larger number in uptake, while faster rate in removal. The propose method helps the kinetic study of endocytosed nanoparticles in physiological conditions.
Collapse
Affiliation(s)
- Sheng-Hann Wang
- Department of Engineering and System Science, National Tsing-Hua University, , No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, R.O.C
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
| | - Chia-Wei Lee
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing-Hua University, , No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, R.O.C
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
| | - Kuo-Kan Liang
- Research Center for Applied Sciences, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei, Taiwan, 11529, R.O.C
- Department of Biochemical Science and Technology, National Taiwan University, 1st Sec. 4 Roosevelt Road, Daan, Taipei, 10641, R.O.C
| | - Pei-Kuen Wei
- Department of Engineering and System Science, National Tsing-Hua University, , No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, R.O.C
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei, Taiwan, 11221, R.O.C
| |
Collapse
|
150
|
Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol 2016; 100:27-45. [PMID: 27162325 DOI: 10.1189/jlb.2ri1115-531r] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)-dependent signaling is required for TLR-mediated production of type-I IFN and several other proinflammatory mediators. Various pathogens target the signaling molecules and transcriptional regulators acting in the TRIF pathway, thus demonstrating the importance of this pathway in host defense. Indeed, the TRIF pathway contributes to control of both viral and bacterial pathogens through promotion of inflammatory mediators and activation of antimicrobial responses. TRIF signaling also has both protective and pathologic roles in several chronic inflammatory disease conditions, as well as an essential function in wound-repair processes. Here, we review our current understanding of the regulatory mechanisms that control TRIF-dependent TLR signaling, the role of the TRIF pathway in different infectious and noninfectious pathologic states, and the potential for manipulating TRIF-dependent TLR signaling for therapeutic benefit.
Collapse
Affiliation(s)
- M Obayed Ullah
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia; and
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - Stuart Kellie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia; Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia;
| |
Collapse
|