101
|
Borlak J, Niehof M. HNF4alpha and HNF1alpha dysfunction as a molecular rational for cyclosporine induced posttransplantation diabetes mellitus. PLoS One 2009; 4:e4662. [PMID: 19252740 PMCID: PMC2646130 DOI: 10.1371/journal.pone.0004662] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 01/22/2009] [Indexed: 12/21/2022] Open
Abstract
Posttransplantation diabetes mellitus (PTDM) is a frequent complication in
immunosuppressive therapy. To better understand the molecular events associated
with PTDM we investigated the effect of cyclosporine on expression and activity
of hepatic nuclear factor (HNF)1alpha and 4alpha and on genes coding for glucose
metabolism in cultures of the rat insulinoma cell line INS-1E, the human
epithelial cell line Caco-2 and with Zucker diabetic fatty (ZDF) rats. In the
pancreas of untreated but diabetic animals expression of HNF4alpha, insulin1,
insulin2 and of phosphoenolpyruvate carboxykinase was significantly repressed.
Furthermore, cyclosporine treatment of the insulinoma-1E cell line resulted in
remarkable reduction in HNF4alpha protein and INS1 as well as INS2 gene
expression, while transcript expression of HNF4alpha, apolipoprotein C2,
glycerolkinase, pyruvatekinase and aldolase B was repressed in treated Caco-2
cells. Furthermore, with nuclear extracts of cyclosporine treated cell lines
protein expression and DNA binding activity of hepatic nuclear factors was
significantly repressed. As cyclosporine inhibits the calcineurin dependent
dephosphorylation of nuclear factor of activated T-cells (NFAT) we also searched
for binding sites for NFAT in the pancreas specific P2 promoter of HNF4alpha.
Notably, we observed repressed NFAT binding to a novel DNA binding site in the
P2 promoter of HNF4alpha. Thus, cyclosporine caused inhibition of DNA binding of
two important regulators for insulin signaling, i.e. NFAT and HNF4alpha. We
further investigated HNF4alpha transcript expression and observed
>200-fold differences in abundance in
n = 14 patients. Such variability in expression
might help to identify individuals at risk for developing PTDM. We propose
cyclosporine to repress HNF4alpha gene and protein expression, DNA-binding to
targeted promoters and subsequent regulation of genes coding for glucose
metabolism and of pancreatic beta-cell function.
Collapse
Affiliation(s)
- Jürgen Borlak
- Fraunhofer Institute of Toxicology and Experimental Medicine, Medical School of Hannover, Hannover, Germany.
| | | |
Collapse
|
102
|
Xie X, Liao H, Dang H, Pang W, Guan Y, Wang X, Shyy JYJ, Zhu Y, Sladek FM. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrinol 2009; 23:434-43. [PMID: 19179483 DOI: 10.1210/me.2007-0531] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the coding region of hepatocyte nuclear factor 4alpha (HNF4alpha), and its upstream promoter (P2) that drives expression in the pancreas, are known to lead to maturity-onset diabetes of the young 1 (MODY1). HNF4alpha also controls gluconeogenesis and lipid metabolism in the liver, where the proximal promoter (P1) predominates. However, very little is known about the role of hepatic HNF4alpha in diabetes. Here, we examine the expression of hepatic HNF4alpha in two diabetic mouse models, db/db mice (type 2, insulin resistant) and streptozotocin-treated mice (type 1, insulin deficient). We found that the level of HNF4alpha protein and mRNA was decreased in the liver of db/db mice but increased in streptozotocin-treated mice. Because insulin increases the activity of sterol regulatory element-binding proteins (SREBP)-1c and -2, we also examined the effect of SREBPs on hepatic HNF4alpha gene expression and found that, like insulin, ectopic expression of SREBPs decreases the level of hepatic HNF4alpha protein and mRNA both in vitro in primary hepatocytes and in vivo in the liver of C57BL/6 mice. Finally, we use gel shift, chromatin immunoprecipitation, small interfering RNA, and reporter gene analysis to show that SREBP2 binds the human HNF4alpha P1 promoter and negatively regulates its expression. These data indicate that hyperinsulinemia down-regulates HNF4alpha in the liver through the up-regulation of SREBPs, thereby establishing a link between these two critical transcription factor pathways that regulate lipid and glucose metabolism in the liver. These findings also provide new insights into diabetes-associated complications such as fatty liver disease.
Collapse
Affiliation(s)
- Xuefen Xie
- Department of Physiology and Pathophysiology, Peking University, Health Sciences Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Fang XS, Tu QN, Lu FE, Wang ZQ. Effect of berberine on hepatic nuclear factor-4α expression of NIT-1 cells. Shijie Huaren Xiaohua Zazhi 2009; 17:130-134. [DOI: 10.11569/wcjd.v17.i2.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the possible molecular mechanism underling the stimulatory effects of berberine on insulin secretion by NIT-1 cells.
METHODS: NIT-1 cells were cultured with different concentrations of berberine for 24 hours. MTT assay was conducted to evaluate the prohibitory effect of berberine on cell proliferation. The mRNA level of hepatic nuclear factor-4α (HNF-4α) was determined using reverse transcription polymerase chain reaction (RT-PCR). Protein expression of HNF-4α was detected using Western blot.
RESULTS: Compared with the control group, berberine enhanced markedly insulin secretion stimulated by glucose and showed no remarkable effect on insulin secretion. The proliferation of NIT-1 cells not prohibited by berberine < 10 μmol/L. The proliferation of NIT-1 cells was prohibited significantly by berberine > 10 mmol/L (0.341 ± 0.041 vs 0.392 ± 0.033, P < 0.05). The mRNA and protein expression of NIT-1 cells treated with berberine were increased significantly in a general dose-dependent manner (P < 0.05 or 0.01). No stimulating effect was observed in the glibenclamide treated group.
CONCLUSION: Berberine can enhance the glucose-stimulating insulin secretion by NIT-1 cells, which might be correlated with the up-regulation of HNF-4α.
Collapse
|
104
|
Raikwar SP, Zavazava N. Insulin producing cells derived from embryonic stem cells: are we there yet? J Cell Physiol 2008; 218:256-63. [PMID: 18932230 DOI: 10.1002/jcp.21615] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Derivation of insulin producing cells (IPCs) from embryonic stem (ES) cells provides a potentially innovative form of treatment for type 1 diabetes. Here, we discuss the current state of the art, unique challenges, and future directions on generating IPCs.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Division of Allergy and Immunology, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
105
|
Tokunaga A, Horikawa Y, Fukuda-Akita E, Okita K, Iwahashi H, Shimomura I, Takeda J, Yamagata K. A common P2 promoter polymorphism of the hepatocyte nuclear factor-4alpha gene is associated with insulin secretion in non-obese Japanese with type 2 diabetes. Endocr J 2008; 55:999-1004. [PMID: 18654034 DOI: 10.1507/endocrj.k08e-083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIMS Heterozygous mutations of the hepatocyte nuclear factor (HNF)-4alpha gene cause a particular form of maturity-onset diabetes of the young (MODY1). Recent genetic studies have shown that single nucleotide polymorphisms (SNPs) of the beta-cell type P2 promoter of the HNF-4alpha gene are associated with type 2 diabetes in some populations. In the Japanese population, a haplotype consisting of two SNPs (rs1884614 and rs2144908) in the P2 promoter region is reported to show a significant association with type 2 diabetes. METHODS Both rs1884614 and rs2144908 were genotyped in 349 type 2 diabetic patients and 203 non-diabetic controls. The relation of these SNPs to clinical characteristics was also examined in the diabetic subjects. RESULTS There were no differences in the genotype distribution of the two SNPs between the control and diabetic subjects, and the haplotype distribution was also similar in the two groups. However, the rs1884614 T/T genotype was significantly associated with a smaller area under the plasma insulin curve (AUC) during the OGTT in non-obese (BMI <25 kg/m(2)) patients (p=0.0272; adjusted for age and sex). CONCLUSIONS SNP rs1884614 in the P2 promoter region of the HNF-4alpha gene may influence insulin secretion in non-obese Japanese subjects with type 2 diabetes.
Collapse
Affiliation(s)
- Ayumi Tokunaga
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Wang ZQ, Lu FE, Leng SH, Fang XS, Chen G, Wang ZS, Dong LP, Yan ZQ. Facilitating effects of berberine on rat pancreatic islets through modulating hepatic nuclear factor 4 alpha expression and glucokinase activity. World J Gastroenterol 2008; 14:6004-11. [PMID: 18932278 PMCID: PMC2760199 DOI: 10.3748/wjg.14.6004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of berberine on insulin secretion in rat pancreatic islets and to explore its possible molecular mechanism.
METHODS: Primary rat islets were isolated from male Sprague-Dawley rats by collagenase digestion and treated with different concentrations (1, 3, 10 and 30 μmol/L) of berberine or 1 μmol/L Glibenclamide (GB) for 24 h. Glucose-stimulated insulin secretion (GSIS) assay was conducted and insulin was determined by radioimmunoassay. 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate cytotoxicity. The mRNA level of hepatic nuclear factor 4 alpha (HNF4α) was determined by reverse transcription polymerase chain reaction (RT-PCR). Indirect immunofluorescence staining and Western blot analysis were employed to detect protein expression of HNF4α in the islets. Glucokinase (GK) activity was measured by spectrophotometric method.
RESULTS: Berberine enhanced GSIS rather than basal insulin secretion dose-dependently in rat islets and showed no significant cytotoxicity on islet cells at the concentration of 10 μmol/L. Both mRNA and protein expressions of HNF4α were up-regulated by berberine in a dose-dependent manner, and GK activity was also increased accordingly. However, GB demonstrated no regulatory effects on HNF4α expression or GK activity.
CONCLUSION: Berberine can enhance GSIS in rat islets, and probably exerts the insulinotropic effect via a pathway involving HNF4α and GK, which is distinct from sulphonylureas (SUs).
Collapse
|
107
|
Huang J, Karakucuk V, Levitsky LL, Rhoads DB. Expression of HNF4alpha variants in pancreatic islets and Ins-1 beta cells. Diabetes Metab Res Rev 2008; 24:533-43. [PMID: 18561282 DOI: 10.1002/dmrr.870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatocyte nuclear factor (HNF4alpha) is a nuclear receptor essential for endodermal differentiation and cell functions in the adult pancreas, liver, and other tissues. Mutations in the HNF4A gene cause MODY1. Up to nine protein variants arise from two developmentally regulated promoters. Because some variants lack the N-terminal activation function 1 (AF-1) and/or C-terminal inhibitory F domain, defining their tissue-specific regulation and function is important for understanding pancreatic beta cell behaviour. METHODS Expression of HNF4alpha variants in islets, rat Ins-1 insulinoma cells, and human Hep3B hepatocellular carcinoma cells was assessed using a long-range reverse transcription-polymerase chain reaction (RT-PCR) strategy capable of recognizing each combination of mRNA termini. Protein expression was verified by immuno-blotting with terminus-specific antibodies and DNA-binding assays. RESULTS Mouse islets and both cell lines express HNF4alpha9, which lacks both AF-1 and the F domain. Islets also expressed the HNF4alpha P1 promoter variants HNF4alpha1/alpha2, and Hep3B cells expressed HNF4alpha3. When ectopically expressed in COS-7 cells, HNF4alpha1, alpha3, alpha7, and alpha9 each stimulated an HNF4alpha-dependent promoter. Variants containing exon 1B (HNF4alpha4 - alpha6) were not detected. Lack of canonical splicing signals and species conservation argues against exon 1B usage. CONCLUSIONS This is the first report of HNF4alpha9 expression in any tissue. Our findings extend our understanding of HNF4alpha gene transcription and function. This knowledge may be useful in efforts to recover or establish regulated insulin secretion.
Collapse
Affiliation(s)
- Jianmin Huang
- Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, MA 02114-2696, USA
| | | | | | | |
Collapse
|
108
|
Lu P, Rha GB, Melikishvili M, Wu G, Adkins BC, Fried MG, Chi YI. Structural basis of natural promoter recognition by a unique nuclear receptor, HNF4alpha. Diabetes gene product. J Biol Chem 2008; 283:33685-97. [PMID: 18829458 DOI: 10.1074/jbc.m806213200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HNF4alpha (hepatocyte nuclear factor 4alpha) plays an essential role in the development and function of vertebrate organs, including hepatocytes and pancreatic beta-cells by regulating expression of multiple genes involved in organ development, nutrient transport, and diverse metabolic pathways. As such, HNF4alpha is a culprit gene product for a monogenic and dominantly inherited form of diabetes, known as maturity onset diabetes of the young (MODY). As a unique member of the nuclear receptor superfamily, HNF4alpha recognizes target genes containing two hexanucleotide direct repeat DNA-response elements separated by one base pair (DR1) by exclusively forming a cooperative homodimer. We describe here the 2.0 angstroms crystal structure of human HNF4alpha DNA binding domain in complex with a high affinity promoter element of another MODY gene, HNF1alpha, which reveals the molecular basis of unique target gene selection/recognition, DNA binding cooperativity, and dysfunction caused by diabetes-causing mutations. The predicted effects of MODY mutations have been tested by a set of biochemical and functional studies, which show that, in contrast to other MODY gene products, the subtle disruption of HNF4alpha molecular function can cause significant effects in afflicted MODY patients.
Collapse
Affiliation(s)
- Peng Lu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
The major forms of diabetes are characterized by pancreatic islet beta-cell dysfunction and decreased beta-cell numbers, raising hope for cell replacement therapy. Although human islet transplantation is a cell-based therapy under clinical investigation for the treatment of type 1 diabetes, the limited availability of human cadaveric islets for transplantation will preclude its widespread therapeutic application. The result has been an intense focus on the development of alternate sources of beta cells, such as through the guided differentiation of stem or precursor cell populations or the transdifferentiation of more plentiful mature cell populations. Realizing the potential for cell-based therapies, however, requires a thorough understanding of pancreas development and beta-cell formation. Pancreas development is coordinated by a complex interplay of signaling pathways and transcription factors that determine early pancreatic specification as well as the later differentiation of exocrine and endocrine lineages. This review describes the current knowledge of these factors as they relate specifically to the emergence of endocrine beta cells from pancreatic endoderm. Current therapeutic efforts to generate insulin-producing beta-like cells from embryonic stem cells have already capitalized on recent advances in our understanding of the embryonic signals and transcription factors that dictate lineage specification and will most certainly be further enhanced by a continuing emphasis on the identification of novel factors and regulatory relationships.
Collapse
Affiliation(s)
- Jennifer M. Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
110
|
Chuang JC, Cha JY, Garmey JC, Mirmira RG, Repa JJ. Research resource: nuclear hormone receptor expression in the endocrine pancreas. Mol Endocrinol 2008; 22:2353-63. [PMID: 18669644 DOI: 10.1210/me.2007-0568] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The endocrine pancreas comprises the islets of Langerhans, tiny clusters of cells that contribute only about 2% to the total pancreas mass. However, this little endocrine organ plays a critical role in maintaining glucose homeostasis by the regulated secretion of insulin (by beta-cells) and glucagon (by alpha-cells). The rapid increase in the incidence of diabetes worldwide has spurred renewed interest in islet cell biology. Some of the most widely prescribed oral drugs for treating type 2 diabetes include agents that bind and activate the nuclear hormone receptor, peroxisome proliferator-activated receptor-gamma. As a first step in addressing potential roles of peroxisome proliferator-activated receptor-gamma and other nuclear hormone receptors (NHRs) in the biology of the endocrine pancreas, we have used quantitative real-time PCR to profile the expression of all 49 members of the mouse NHR superfamily in primary islets, and cell lines that represent alpha-cells (alphaTC1) and beta-cells (betaTC6 and MIN6). In summary, 19 NHR members were highly expressed in both alpha- and beta-cell lines, 13 receptors showed predominant expression (at least an 8-fold difference) in alpha- vs. beta-cell lines, and 10 NHRs were not expressed in the endocrine pancreas. In addition we evaluated the relative expression of these transcription factors during hyperglycemia and found that 16 NHRs showed significantly altered mRNA levels in mouse islets. A similar survey was conducted in primary human islets to reveal several significant differences in NHR expression between mouse and man. These data identify potential therapeutic targets in the endocrine pancreas for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9077, USA
| | | | | | | | | |
Collapse
|
111
|
Ahn SH, Shah YM, Inoue J, Morimura K, Kim I, Yim S, Lambert G, Kurotani R, Nagashima K, Gonzalez FJ, Inoue Y. Hepatocyte nuclear factor 4alpha in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm Bowel Dis 2008; 14:908-20. [PMID: 18338782 PMCID: PMC2435391 DOI: 10.1002/ibd.20413] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatocyte nuclear factor 4alpha (HNF4alpha; NR2A1) is an orphan member of the nuclear receptor superfamily expressed in liver and intestine. While HNF4alpha expression is critical for liver function, its role in the gut and in the pathogenesis of inflammatory bowel disease (IBD) is unknown. METHODS Human intestinal biopsies from control and IBD patients were examined for expression of mRNAs encoding HNF4alpha and other nuclear receptors. An intestine-specific HNF4alpha null mouse line (Hnf4alpha(DeltaIEpC)) was generated using an Hnf4alpha-floxed allele and villin-Cre transgene. These mice and their control floxed counterparts (Hnf4alpha(F/F)), were subjected to a dextran sulfate sodium (DSS)-induced IBD colitis protocol and their clinical symptoms and gene expression patterns determined. RESULTS In human intestinal biopsies, HNF4alpha was significantly decreased in intestinal tissues from Crohn's disease and ulcerative colitis patients. HNF4alpha expression was also suppressed in the intestine of DSS-treated mice. In Hnf4alpha(DeltaIEpC) mice, disruption of HNF4alpha expression was observed in the epithelial cells throughout the intestine. In the DSS-induced colitis model Hnf4alpha(DeltaIEpC) mice showed markedly more severe changes in clinical symptoms and pathologies associated with IBD including loss of body weight, colon length, and histological morphology as compared with Hnf4alpha(F/F) mice. Furthermore, the Hnf4alpha(DeltaIEpC) mice demonstrate a significant alteration of mucin-associated genes and increased intestinal permeability, which may play an important role in the increased susceptibility to acute colitis following an inflammatory insult. CONCLUSIONS While HNF4alpha does not have a major role in normal function of the intestine, it protects the gut against DSS-induced colitis.
Collapse
Affiliation(s)
- Sung-Hoon Ahn
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yatrik M. Shah
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Junko Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Keiichiro Morimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Department of Pathology, Osaka City University Medical School, Osaka 545-8585, Japan
| | - Insook Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - SunHee Yim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Gilles Lambert
- Universite de Nantes, Inserm U539, CHU Hotel-Dieu, Nantes 44035, France and The Heart Research Institute, Camperdown, NSW 2050, Australia
| | - Reiko Kurotani
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Cardiovascular Research Institute, Yokohama City University, Yokohama 236-0004, Japan
| | - Kunio Nagashima
- Image Analysis Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Yusuke Inoue
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma 376-8515 Japan
| |
Collapse
|
112
|
Affiliation(s)
- Ben Z Stanger
- Division of Gastroenterology, Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
113
|
Kapoor RR, Locke J, Colclough K, Wales J, Conn JJ, Hattersley AT, Ellard S, Hussain K. Persistent hyperinsulinemic hypoglycemia and maturity-onset diabetes of the young due to heterozygous HNF4A mutations. Diabetes 2008; 57:1659-63. [PMID: 18268044 DOI: 10.2337/db07-1657] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Mutations in the human HNF4A gene encoding the hepatocyte nuclear factor (HNF)-4alpha are known to cause maturity-onset diabetes of the young (MODY), which is characterized by autosomal-dominant inheritance and impaired glucose-stimulated insulin secretion from pancreatic beta-cells. HNF-4alpha has a key role in regulating the multiple transcriptional factor networks in the islet. Recently, heterozygous mutations in the HNF4A gene were reported to cause transient hyperinsulinemic hypoglycemia associated with macrosomia. RESEARCH DESIGN AND METHODS Three infants presented with macrosomia and severe hypoglycemia with a positive family history of MODY. The hypoglycemia was confirmed to be due to hyperinsulinism, and all three patients required diazoxide therapy to maintain normoglycemia. Two of the three infants are still requiring diazoxide therapy at 8 and 18 months, whereas one of them had resolution of hyperinsulinemic hypoglycemia at 32 months of age. RESULTS Sequencing of the HNF4A gene identified heterozygous mutations in all three families. In family 1, a frameshift mutation L330fsdel17ins9 (c.987 1003del17ins9; p.Leu330fs) was present in the proband; a mutation affecting the conserved A nucleotide of the intron 2 branch site (c.264-21A>G) was identified in the proband of family 2; and finally a nonsense mutation, Y16X (c.48C>G, p.Tyr16X), was found in the proband of family 3. CONCLUSIONS Heterozygous HNF4A mutations can therefore cause both transient and persistent hyperinsulinemic hypoglycemia associated with macrosomia. We recommend that macrosomic infants with transient or persistent hyperinsulinemic hypoglycemia should be screened for HNF4A mutations if there is a family history of youth-onset diabetes.
Collapse
Affiliation(s)
- Ritika R Kapoor
- London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, and The Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
114
|
The MODY1 gene for hepatocyte nuclear factor 4alpha and a feedback loop control COUP-TFII expression in pancreatic beta cells. Mol Cell Biol 2008; 28:4588-97. [PMID: 18474611 DOI: 10.1128/mcb.01191-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pancreatic islet beta cell differentiation and function are dependent upon a group of transcription factors that maintain the expression of key genes and suppress others. Knockout mice with the heterozygous deletion of the gene for chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) or the complete disruption of the gene for hepatocyte nuclear factor 4alpha (HNF4alpha) in pancreatic beta cells have similar insulin secretion defects, leading us to hypothesize that there is transcriptional cross talk between these two nuclear receptors. Here, we demonstrate specific HNF4alpha activation of a reporter plasmid containing the COUP-TFII gene promoter region in transfected pancreatic beta cells. The stable association of the endogenous HNF4alpha with a region of the COUP-TFII gene promoter that contains a direct repeat 1 (DR-1) binding site was revealed by chromatin immunoprecipitation. Mutation experiments showed that this DR-1 site is essential for HNF4alpha transactivation of COUP-TFII. The dominant negative suppression of HNF4alpha function decreased endogenous COUP-TFII expression, and the specific inactivation of COUP-TFII by small interfering RNA caused HNF4alpha mRNA levels in 832/13 INS-1 cells to decrease. This positive regulation of HNF4alpha by COUP-TFII was confirmed by the adenovirus-mediated overexpression of human COUP-TFII (hCOUP-TFII), which increased HNF4alpha mRNA levels in 832/13 INS-1 cells and in mouse pancreatic islets. Finally, hCOUP-TFII overexpression showed that there is direct COUP-TFII autorepression, as COUP-TFII occupies the proximal DR-1 binding site of its own gene in vivo. Therefore, COUP-TFII may contribute to the control of insulin secretion through the complex HNF4alpha/maturity-onset diabetes of the young 1 (MODY1) transcription factor network operating in beta cells.
Collapse
|
115
|
Holloway MG, Miles GD, Dombkowski AA, Waxman DJ. Liver-specific hepatocyte nuclear factor-4alpha deficiency: greater impact on gene expression in male than in female mouse liver. Mol Endocrinol 2008; 22:1274-86. [PMID: 18276827 PMCID: PMC2366185 DOI: 10.1210/me.2007-0564] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/05/2008] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte nuclear factor (HNF)-4alpha is a liver-enriched transcription factor that regulates numerous liver-expressed genes including several sex-specific cytochrome P450 genes. Presently, a liver-specific HNF4alpha-deficient mouse model was used to characterize the impact of liver HNF4alpha deficiency on a global scale using 41,174 feature microarrays. A total of 4994 HNF4alpha-dependent genes were identified, of which about 1000 fewer genes responded to the loss of HNF4alpha in female liver as compared with male liver. Sex differences in the impact of liver HNF4alpha deficiency were even more dramatic when genes showing sex-specific expression were examined. Thus, 372 of the 646 sex-specific genes characterized by a dependence on HNF4alpha responded to the loss of HNF4alpha in males only, as compared with only 61 genes that responded in females only. Moreover, in male liver, 78% of 508 male-specific genes were down-regulated and 42% of 356 female-specific genes were up-regulated in response to the loss of HNF4alpha, with sex specificity lost for 90% of sex-specific genes. This response to HNF4alpha deficiency is similar to the response of male mice deficient in the GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b), where 90% of male-specific genes were down-regulated and 61% of female-specific genes were up-regulated, suggesting these two factors cooperatively regulate liver sex specificity by mechanisms that are primarily active in males. Finally, 203 of 648 genes previously shown to bind HNF4alpha near the transcription start site in mouse hepatocytes were affected by HNF4alpha deficiency in mouse liver, with the HNF4alpha-bound gene set showing a 5-fold enrichment for genes positively regulated by HNF4alpha. Thus, a substantial fraction of the HNF4alpha-dependent genes reported here are likely to be direct targets of HNF4alpha.
Collapse
Affiliation(s)
- Minita G Holloway
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
116
|
Gonzalez FJ. Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription. Drug Metab Pharmacokinet 2008; 23:2-7. [PMID: 18305369 DOI: 10.2133/dmpk.23.2] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha, NR2A1) is required for development of the liver and for controlling the expression of many genes specifically expressed in the liver and associated with a number of critical metabolic pathways. Among the genes regulated by HNF4alpha are the xenobiotic-metabolizing cytochromes P450, UDP-glucuronosyltransferases and sulfotransferases thus making this transcription factor critical in the control of drug metabolism. HNF4alpha, a member of the nuclear receptor superfamily, binds as a homodimer to direct repeat elements upstream of target genes. However, in contrast to many other nuclear receptors, there is no convincing evidence that HNF4alpha is activated by exogenous ligands, at least in the classic mechanism used by other steroid and metabolic nuclear receptors. X-ray crystallographic studies revealed that HNF4alpha has a fatty acid embedded in its putative ligand binding site that may not be easily released or displaced by exogenous ligands. HNF4alpha, as a general rule, controls constitutive expression of many hepatic genes but under certain circumstances can be subjected to regulation by differential co-activator recruitment, by phosphorylation and by interaction with other nuclear receptors. The ability of HNF4alpha to be regulated offers hope that it could be a drug target.
Collapse
Affiliation(s)
- Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Instituted of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
117
|
Grigo K, Wirsing A, Lucas B, Klein-Hitpass L, Ryffel GU. HNF4 alpha orchestrates a set of 14 genes to down-regulate cell proliferation in kidney cells. Biol Chem 2008; 389:179-87. [PMID: 18163890 DOI: 10.1515/bc.2008.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract Few genes are known to be involved in renal cell carcinoma (RCC) development and progression. The cell-specific transcription factor hepatocyte nuclear factor 4 alpha (HNF4 alpha) is down-regulated in RCC and we have shown that HNF4 alpha inhibits cell proliferation in the embryonic kidney cell line HEK293. To clarify the possible tumor suppressor activity of HNF4 alpha we analyzed the whole human expression profile in HEK293 cells upon HNF4 alpha induction. By comparing induced and uninduced cells, we identified 1411 differentially expressed genes. Using RNA interference, we screened 56 HNF4 alpha-regulated genes for their possible role in mediating inhibition of cell proliferation triggered by HNF4 alpha. We demonstrate that 14 of these regulated genes are able to contribute to the inhibitory effect of HNF4 alpha on cell proliferation, including well-known cancer genes, such as CDKN1A (p21), TGFA, MME (NEP) and ADAMTS1. In addition, the genes SEPP1, THEM2, BPHL, DSC2, ANK3, ALDH6A1, EPHX2, NELL2, EFHD1 and PROS1 are also part of the network of HNF4 alpha target genes that regulate proliferation in HEK293 cells. Therefore, we postulate that HNF4 alpha orchestrates, at least, these 14 genes to regulate cell proliferation in HEK293 cells and that down-regulation of HNF4 alpha could contribute to the progression of kidney cancer.
Collapse
Affiliation(s)
- Karen Grigo
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, D-45122 Essen, Germany
| | | | | | | | | |
Collapse
|
118
|
Dunn KW, Sutton TA. Functional studies in living animals using multiphoton microscopy. ILAR J 2008; 49:66-77. [PMID: 18172334 DOI: 10.1093/ilar.49.1.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In vivo microscopy is a powerful method for studying fundamental issues of physiology and pathophysiology. The recent development of multiphoton fluorescence microscopy has extended the reach of in vivo microscopy, supporting high-resolution imaging deep into the tissues and organs of living animals. As compared with other in vivo imaging techniques, multiphoton microscopy is uniquely capable of providing a window into cellular and subcellular processes in the context of the intact, functioning animal. In addition, the ability to collect multiple colors of fluorescence from the same sample makes in vivo microscopy uniquely capable of characterizing up to three parameters from the same volume, supporting powerful correlative analyses. Since its invention in 1990, multiphoton microscopy has been increasingly applied to numerous areas of medical investigation, providing invaluable insights into cell physiology and pathology. However, researchers have only begun to realize the true potential of this powerful technology as it has proliferated beyond the laboratories of a relatively few pioneers. In this article we present an overview of the advantages and limitations of multiphoton microscopy as applied to in vivo imaging. We also review specific examples of the application of in vivo multiphoton microscopy to studies of physiology and pathology in a variety of organs including the brain, skin, skeletal muscle, tumors, immune cells, and visceral organs.
Collapse
Affiliation(s)
- Kenneth William Dunn
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202-5116, USA.
| | | |
Collapse
|
119
|
Lu P, Liu J, Melikishvili M, Fried MG, Chi YI. Crystallization of hepatocyte nuclear factor 4 alpha (HNF4 alpha) in complex with the HNF1 alpha promoter element. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:313-7. [PMID: 18391435 PMCID: PMC2374247 DOI: 10.1107/s1744309108007136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/14/2008] [Indexed: 12/31/2022]
Abstract
Sample preparation, characterization, crystallization and preliminary X-ray analysis are reported for the HNF4α–DNA binary complex. Hepatocyte nuclear factor 4α (HNF4α) is a member of the nuclear receptor superfamily that plays a central role in organ development and metabolic functions. Mutations on HNF4α cause maturity-onset diabetes of the young (MODY), a dominant monogenic cause of diabetes. In order to understand the molecular mechanism of promoter recognition and the molecular basis of disease-causing mutations, the recombinant HNF4α DNA-binding domain was prepared and used in a study of its binding properties and in crystallization with a 21-mer DNA fragment that contains the promoter element of another MODY gene, HNF1α. The HNF4α protein displays a cooperative and specific DNA-binding activity towards its target gene-recognition elements. Crystals of the complex diffract to 2.0 Å using a synchrotron-radiation source under cryogenic (100 K) conditions and belong to space group C2, with unit-cell parameters a = 121.63, b = 35.43, c = 70.99 Å, β = 119.36°. A molecular-replacement solution has been obtained and structure refinement is in progress. This structure and the binding studies will provide the groundwork for detailed functional and biochemical studies of the MODY mutants.
Collapse
Affiliation(s)
- Peng Lu
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
120
|
Nammo T, Yamagata K, Tanaka T, Kodama T, Sladek FM, Fukui K, Katsube F, Sato Y, Miyagawa JI, Shimomura I. Expression of HNF-4α (MODY1), HNF-1β (MODY5), and HNF-1α (MODY3) proteins in the developing mouse pancreas. Gene Expr Patterns 2008; 8:96-106. [DOI: 10.1016/j.modgep.2007.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/19/2007] [Accepted: 09/27/2007] [Indexed: 01/14/2023]
|
121
|
Abstract
Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that regulate development, reproduction, and metabolism of lipids, drugs and energy. The importance of this family of proteins in metabolic disease is exemplified by NR ligands used in the clinic or under exploratory development for the treatment of diabetes mellitus, dyslipidemia, hypercholesterolemia, or other metabolic abnormalities. Genetic studies in humans and rodents support the notion that NRs control a wide variety of metabolic processes by regulating the expression of genes encoding key enzymes, transporters and other proteins involved in metabolic homeostasis. Current knowledge of complex NR metabolic networks is summarized here.
Collapse
|
122
|
Qi L, van Dam RM, Asselbergs FW, Hu FB. Gene-gene interactions between HNF4A and KCNJ11 in predicting Type 2 diabetes in women. Diabet Med 2007; 24:1187-91. [PMID: 17894829 DOI: 10.1111/j.1464-5491.2007.02255.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Recent studies indicate transcription factor hepatocyte nuclear factor 4 alpha (HNF-4 alpha, HNF4A) modulates the transcription of the pancreatic B-cell ATP-sensitive K+ (KATP) channel subunit Kir6.2 gene (KCNJ11). Both HNF4A and KCNJ11 have previously been associated with diabetes risk but little is known whether the variations in these genes interact with each other. METHODS We conducted a prospective, nested case-control study of 714 incident cases of Type 2 diabetes and 1120 control subjects from the Nurses' Health Study. RESULTS KCNJ11 E23K was significantly associated with an increased diabetes risk (odds ratio 1.26, 95% CI 1.03-1.53) while HNF4A P2 promoter polymorphisms were associated with a moderately increased risk at borderline significance. By using a logistic regression model, we found significant interactions between HNF4A rs2144908, rs4810424 and rs1884613 and KCNJ11 E23K (P for interaction = 0.017, 0.012 and 0.004, respectively). Carrying the minor alleles of the three HNF4A polymorphisms was associated with significantly greater diabetes risk in women carrying the KCNJ11 allele 23K, but not in those who did not carry this allele. Analyses using the multifactor dimensionality reduction (MDR) method confirmed the gene-gene interaction. We identified that the best interaction model included HNF4A rs2144908 and KCNJ11 E23K. Such a two-locus model showed the maximum cross-validation consistency of 10 out of 10 and a significant prediction accuracy of 54.2% (P = 0.01) on the basis of 1000-fold permutation testing. CONCLUSIONS Our data indicate that HNF4A P2 promoter polymorphisms may interact with KCNJ11 E23K in predicting Type 2 diabetes in women.
Collapse
Affiliation(s)
- L Qi
- Department of Nutrition, Harvard Medical School of Public Health, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
123
|
Abstract
PURPOSE OF REVIEW Variants in the hepatocyte nuclear factor 4alpha (HNF4A) gene play a role in the development of diabetes mellitus. Although genetic variation in and around HNF4A regulatory regions has received considerable attention, the significance of these variants in the common type 2 diabetes varies in the literature. This review will provide a general overview of recent genetic studies involving the evaluation of HNF4A as a contributor to the risk and pathophysiology of diabetes mellitus and related risk factors. RECENT FINDINGS These studies report newly identified variants, evaluate previously reported polymorphisms that were associated with type 2 diabetes in several distinct populations with maturity-onset diabetes of the young, type 2 diabetes, gestational diabetes, and diabetes related risk factors, and propose a role for HNF4A in insulin secretion via the potassium ATP channel. SUMMARY HNF4A variants identified so far appear to modestly contribute to predisposition for type 2 diabetes. Continued identification and especially functional characterization of variants, however, will be critical in future studies to enhance our understanding of the metabolic impact of this gene.
Collapse
Affiliation(s)
- Latisha Love-Gregory
- Nutritional Sciences, Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
124
|
Gupta RK, Gao N, Gorski RK, White P, Hardy OT, Rafiq K, Brestelli JE, Chen G, Stoeckert CJ, Kaestner KH. Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4alpha. Genes Dev 2007; 21:756-69. [PMID: 17403778 PMCID: PMC1838528 DOI: 10.1101/gad.1535507] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The failure to expand functional pancreatic beta-cell mass in response to increased metabolic demand is a hallmark of type 2 diabetes. Lineage tracing studies indicate that replication of existing beta-cells is the principle mechanism for beta-cell expansion in adult mice. Here we demonstrate that the proliferative response of beta-cells is dependent on the orphan nuclear receptor hepatocyte nuclear factor-4alpha (HNF-4alpha), the gene that is mutated in Maturity-Onset Diabetes of the Young 1 (MODY1). Computational analysis of microarray expression profiles from isolated islets of mice lacking HNF-4alpha in pancreatic beta-cells reveals that HNF-4alpha regulates selected genes in the beta-cell, many of which are involved in proliferation. Using a physiological model of beta-cell expansion, we show that HNF-4alpha is required for beta-cell replication and the activation of the Ras/ERK signaling cascade in islets. This phenotype correlates with the down-regulation of suppression of tumorigenicity 5 (ST5) in HNF-4alpha mutants, which we identify as a novel regulator of ERK phosphorylation in beta-cells and a direct transcriptional target of HNF-4alpha in vivo. Together, these results indicate that HNF-4alpha is essential for the physiological expansion of adult beta-cell mass in response to increased metabolic demand.
Collapse
Affiliation(s)
- Rana K. Gupta
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Nan Gao
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Regina K. Gorski
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Peter White
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Olga T. Hardy
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Kiran Rafiq
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - John E. Brestelli
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Guang Chen
- Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Christian J. Stoeckert
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Corresponding author.E-MAIL ; FAX (215) 573-5892
| |
Collapse
|
125
|
Abstract
To elucidate the spatiotemporal profiles of final secretory stage, we have established two-photon extracellular polar tracer (TEP) imaging, with which we can quantify all exocytic events in the plane of focus within the intact tissues. With such technique, we can estimate the precise diameters of vesicles independently of the spatial resolution of optical microscope, and measure the fusion pore dynamics at nanometer resolution. At insulin exocytosis in the pancreatic islets, it took two seconds for the fusion pore to dilate from 1.4 nm in diameter to 6 nm in diameter, and such unusual stability of the pore may be due to the crystallization of the intragranular contents. Opening of the pore was preceded by unrestricted lateral diffusion of lipids along the inner wall of the pores, supporting the idea that this structure was mainly composed of membrane lipids. TEP imaging has been also applied to other representative secretory glands, and has revealed hitherto unexpected diversity in spatial organizations of exocytosis and endocytosis, which are relevant for physiology and pathology of secretory tissues. In the pancreatic islet, compound exocytosis was characteristically inhibited (<5%), partly due to the rarity of SNAP25 redistribution into the exocytosed vesicle membrane. Such mechanisms necessitate transport of insulin granules to the cell surface for fusion, and possibly rendering exocytosis more sensitive to metabolic state. Two-photon imaging will be powerful tools to elucidate molecular and cellular mechanisms of exocytosis and related disease, and to develop new therapeutic agencies as well as diagnostic tools.
Collapse
Affiliation(s)
- Noriko Takahashi
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, Japan
| | | |
Collapse
|
126
|
Pearson ER, Boj SF, Steele AM, Barrett T, Stals K, Shield JP, Ellard S, Ferrer J, Hattersley AT. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med 2007; 4:e118. [PMID: 17407387 PMCID: PMC1845156 DOI: 10.1371/journal.pmed.0040118] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 02/01/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4alpha) and HNF1A/TCF1 (encoding HNF-1alpha), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. METHODS AND FINDINGS We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic beta-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth. CONCLUSIONS HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and diabetes later in life.
Collapse
Affiliation(s)
- Ewan R Pearson
- Peninsula Medical School, Exeter, United Kingdom
- Division of Medicine and Therapeutics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Sylvia F Boj
- Department of Endocrinology, Hospital Clinic de Barcelona, Barcelona, Spain
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | - Karen Stals
- Peninsula Medical School, Exeter, United Kingdom
| | - Julian P Shield
- Bristol Royal Hospital for Children, Bristol, United Kingdom
- University of Bristol, Bristol, United Kingdom
| | - Sian Ellard
- Peninsula Medical School, Exeter, United Kingdom
| | - Jorge Ferrer
- Department of Endocrinology, Hospital Clinic de Barcelona, Barcelona, Spain
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Andrew T Hattersley
- Peninsula Medical School, Exeter, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
127
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2007; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
|
129
|
Hardy OT, Hohmeier HE, Becker TC, Manduchi E, Doliba NM, Gupta RK, White P, Stoeckert CJ, Matschinsky FM, Newgard CB, Kaestner KH. Functional genomics of the beta-cell: short-chain 3-hydroxyacyl-coenzyme A dehydrogenase regulates insulin secretion independent of K+ currents. Mol Endocrinol 2006; 21:765-73. [PMID: 17185391 DOI: 10.1210/me.2006-0411] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in functional genomics afford the opportunity to interrogate the expression profiles of thousands of genes simultaneously and examine the function of these genes in a high-throughput manner. In this study, we describe a rational and efficient approach to identifying novel regulators of insulin secretion by the pancreatic beta-cell. Computational analysis of expression profiles of several mouse and cellular models of impaired insulin secretion identified 373 candidate genes involved in regulation of insulin secretion. Using RNA interference, we assessed the requirements of 10 of these candidates and identified four genes (40%) as being essential for normal insulin secretion. Among the genes identified was Hadhsc, which encodes short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD), an enzyme of mitochondrial beta-oxidation of fatty acids whose mutation results in congenital hyperinsulinism. RNA interference-mediated gene suppression of Hadhsc in insulinoma cells and primary rodent islets revealed enhanced basal but normal glucose-stimulated insulin secretion. This increase in basal insulin secretion was not attenuated by the opening of the KATP channel with diazoxide, suggesting that SCHAD regulates insulin secretion through a KATP channel-independent mechanism. Our results suggest a molecular explanation for the hyperinsulinemia hypoglycemic seen in patients with SCHAD deficiency.
Collapse
Affiliation(s)
- Olga T Hardy
- Department of Genetics, University of Pennsylvania School of Medicine, 415 Curie Boulevard, 560 Clinical Research Building, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N. Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 2006; 58:850-77. [PMID: 16996640 DOI: 10.1016/j.addr.2006.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/13/2006] [Indexed: 12/17/2022]
Abstract
Two-photon excitation imaging is the least invasive optical approach to study living tissues. We have established two-photon extracellular polar-tracer (TEP) imaging with which it is possible to visualize and quantify all exocytic events in the plane of focus within secretory tissues. This technology also enables estimate of the precise diameters of vesicles independently of the spatial resolution of the optical microscope, and determination of the fusion pore dynamics at nanometer resolution using TEP-imaging based quantification (TEPIQ). TEP imaging has been applied to representative secretory glands, e.g., exocrine pancreas, endocrine pancreas, adrenal medulla and a pheochromocytoma cell line (PC12), and has revealed unexpected diversity in the spatial organization of exocytosis and endocytosis crucial for the physiology and pathology of secretory tissues and neurons. TEP imaging and TEPIQ analysis are powerful tools for elucidating the molecular and cellular mechanisms of exocytosis and certain related diseases, such as diabetes mellitus, and the development of new therapeutic agents and diagnostic tools.
Collapse
Affiliation(s)
- Haruo Kasai
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
131
|
Eeckhoute J, Briche I, Kurowska M, Formstecher P, Laine B. Hepatocyte nuclear factor 4 alpha ligand binding and F domains mediate interaction and transcriptional synergy with the pancreatic islet LIM HD transcription factor Isl1. J Mol Biol 2006; 364:567-81. [PMID: 17022998 DOI: 10.1016/j.jmb.2006.07.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 12/30/2022]
Abstract
The orphan nuclear receptor HNF4alpha and the LIM homeodomain factor Isl1 are co-expressed in pancreatic beta-cells and are required for the differentiation and function of these endocrine cells. HNF4alpha activates numerous genes and mutations in its gene are associated with maturity onset diabetes of the young. Cofactors and transcription factors that interact with HNF4alpha are crucial to modulate its transcriptional activity, since the latter is not regulated by conventional ligands. These transcriptional partners interact mainly through the HNF4alpha AF-1 module and the ligand binding domain, which contains the AF-2 module. Here, we showed that Isl1 could enhance the HNF4alpha-mediated activation of transcription of the HNF1alpha, PPARalpha and insulin I promoters. Isl1 interacted with the HNF4alpha AF-2 but also required the HNF4alpha carboxy-terminal F domain for optimal interaction and transcriptional synergy. More specifically, we found that naturally occurring HNF4alpha isoforms, differing only in their F domain, exhibited different abilities to interact and synergize with Isl1, extending the crucial transcriptional modulatory role of the HNF4alpha F domain. HNF4alpha interacted with both the homeodomain and the first LIM domain of Isl1. We found that the transcriptional synergy between HNF4alpha and Isl1 involved an increase in HNF4alpha loading on promoter. The effect was more pronounced on the rat insulin I promoter containing binding sites for both HNF4alpha and Isl1 than on the human HNF1alpha promoter lacking an Isl1 binding site. Moreover, Isl1 could mediate the recruitment of the cofactor CLIM2 resulting in a further transcriptional enhancement of the HNF1alpha promoter activity.
Collapse
|
132
|
Ueki K, Okada T, Hu J, Liew CW, Assmann A, Dahlgren GM, Peters JL, Shackman JG, Zhang M, Artner I, Satin LS, Stein R, Holzenberger M, Kennedy RT, Kahn CR, Kulkarni RN. Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 2006; 38:583-8. [PMID: 16642022 DOI: 10.1038/ng1787] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 03/20/2006] [Indexed: 11/08/2022]
Abstract
An appropriate beta cell mass is pivotal for the maintenance of glucose homeostasis. Both insulin and IGF-1 are important in regulation of beta cell growth and function (reviewed in ref. 2). To define the roles of these hormones directly, we created a mouse model lacking functional receptors for both insulin and IGF-1 only in beta cells (betaDKO), as the hormones have overlapping mechanisms of action and activate common downstream proteins. Notably, betaDKO mice were born with a normal complement of islet cells, but 3 weeks after birth, they developed diabetes, in contrast to mild phenotypes observed in single mutants. Normoglycemic 2-week-old betaDKO mice manifest reduced beta cell mass, reduced expression of phosphorylated Akt and the transcription factor MafA, increased apoptosis in islets and severely compromised beta cell function. Analyses of compound knockouts showed a dominant role for insulin signaling in regulating beta cell mass. Together, these data provide compelling genetic evidence that insulin and IGF-I-dependent pathways are not critical for development of beta cells but that a loss of action of these hormones in beta cells leads to diabetes. We propose that therapeutic improvement of insulin and IGF-I signaling in beta cells might protect against type 2 diabetes.
Collapse
Affiliation(s)
- Kohjiro Ueki
- Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|