101
|
Zhuang Y, Zhang X, Chen Q, Li S, Cao H, Huang Y. Co3O4/CuO hollow nanocage hybrids with high oxidase-like activity for biosensing of dopamine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:858-866. [DOI: 10.1016/j.msec.2018.10.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/07/2018] [Accepted: 10/08/2018] [Indexed: 01/08/2023]
|
102
|
Investigation of diverse interactions of amino acids (Asp and Glu) in aqueous Dopamine hydrochloride with the manifestation of the catecholamine molecule recognition tool in solution phase. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
103
|
Nam E, Derrick JS, Lee S, Kang J, Han J, Lee SJC, Chung SW, Lim MH. Regulatory Activities of Dopamine and Its Derivatives toward Metal-Free and Metal-Induced Amyloid-β Aggregation, Oxidative Stress, and Inflammation in Alzheimer's Disease. ACS Chem Neurosci 2018; 9:2655-2666. [PMID: 29782798 DOI: 10.1021/acschemneuro.8b00122] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A catecholamine neurotransmitter, dopamine (DA), is suggested to be linked to the pathology of dementia; however, the involvement of DA and its structural analogues in the pathogenesis of Alzheimer's disease (AD), the most common form of dementia, composed of multiple pathogenic factors has not been clear. Herein, we report that DA and its rationally designed structural derivatives (1-6) based on DA's oxidative transformation are able to modulate multiple pathological elements found in AD [i.e., metal ions, metal-free amyloid-β (Aβ), metal-bound Aβ (metal-Aβ), and reactive oxygen species (ROS)], with demonstration of detailed molecular-level mechanisms. Our multidisciplinary studies validate that the protective effects of DA and its derivatives on Aβ aggregation and Aβ-mediated toxicity are induced by their oxidative transformation with concomitant ROS generation under aerobic conditions. In particular, DA and the derivatives (i.e., 3 and 4) show their noticeable anti-amyloidogenic ability toward metal-free Aβ and/or metal-Aβ, verified to occur via their oxidative transformation that facilitates Aβ oxidation. Moreover, in primary pan-microglial marker (CD11b)-positive cells, the major producers of inflammatory mediators in the brain, DA and its derivatives significantly diminish inflammation and oxidative stress triggered by lipopolysaccharides and Aβ through the reduced induction of inflammatory mediators as well as upregulated expression of heme oxygenase-1, the enzyme responsible for production of antioxidants. Collectively, we illuminate how DA and its derivatives could prevent multiple pathological features found in AD. The overall studies could advance our understanding regarding distinct roles of neurotransmitters in AD and identify key interactions for alleviation of AD pathology.
Collapse
Affiliation(s)
- Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeffrey S. Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seunghee Lee
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin Jung C. Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
104
|
Biosa A, Arduini I, Soriano ME, Giorgio V, Bernardi P, Bisaglia M, Bubacco L. Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for Preferential Neurodegeneration in Parkinson's Disease. ACS Chem Neurosci 2018; 9:2849-2858. [PMID: 29906101 DOI: 10.1021/acschemneuro.8b00276] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The preferential degeneration of dopaminergic neurons in the substantia nigra pars compacta is responsible for the motor impairment associated with Parkinson's disease. Dopamine is a highly reactive molecule, which is usually stored inside synaptic vesicles where it is stabilized by the ambient low pH. However, free cytosolic dopamine can auto-oxidize, generating reactive oxygen species, and lead to the formation of toxic quinones. In the present work, we have analyzed the mechanisms through which the dysfunction of dopamine homeostasis could induce cell toxicity, by focusing in particular on the damage induced by dopamine oxidation products at the mitochondrial level. Our results indicate that dopamine derivatives affect mitochondrial morphology and induce mitochondrial membrane depolarization, leading to a reduction of ATP synthesis. Moreover, our results suggest that opening of the mitochondrial transition pore induced by dopamine-derived quinones may contribute to the specific Parkinson's disease-associated vulnerability of dopamine containing neurons.
Collapse
Affiliation(s)
- Alice Biosa
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Irene Arduini
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Maria Eugenia Soriano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, 35121 Padova, Italy
| | - Valentina Giorgio
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, 35121 Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padova, 35121 Padova, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, 35121 Padova, Italy
| |
Collapse
|
105
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
106
|
Hong S, Wang Y, Park SY, Lee H. Progressive fuzzy cation-π assembly of biological catecholamines. SCIENCE ADVANCES 2018; 4:eaat7457. [PMID: 30202784 PMCID: PMC6128673 DOI: 10.1126/sciadv.aat7457] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 05/21/2023]
Abstract
Biological functions depend on biomolecular assembly processes. Assemblies of lipid bilayers, actins, microtubules, or chromosomes are indispensable for cellular functions. These hierarchical assembly processes are reasonably predictable by understanding chemical structures of the defined building blocks and their interactions. However, biopigment assembly is rather fuzzy and unpredictable because a series of covalently coupled intermediates from catecholamine oxidation pathways progressively form a higher-level hierarchy. This study reports a different yet unexplored type of assembly process named "cation-π progressive assembly." We demonstrated for the first time that the cation-π is the primary mechanism for intermolecular assembly in dopamine-melanin biopigment. We also found that the self-assembled products physically grow and chemically gain new functions "progressively" over time in which cation-π plays important roles. The progressive assembly explains how biological systems produce wide spectra of pigment colors and broad wavelength absorption through energy-efficient processes. Furthermore, we also demonstrate surface-independent wettability control using cation-π progressive assembly.
Collapse
Affiliation(s)
- Seonki Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 42988, Republic of Korea
- Corresponding author. (H.L.); (S.H.)
| | - Younseon Wang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Corresponding author. (H.L.); (S.H.)
| |
Collapse
|
107
|
Juriga D, Laszlo I, Ludanyi K, Klebovich I, Chae CH, Zrinyi M. Kinetics of dopamine release from poly(aspartamide)-based prodrugs. Acta Biomater 2018; 76:225-238. [PMID: 29940369 DOI: 10.1016/j.actbio.2018.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/22/2023]
Abstract
Preparation of novel biocompatible and biodegradable polymer-based prodrugs that can be applied in complex drug delivery systems is one of the most researched fields in pharmaceutics. The kinetics of the drug release strongly depends on the physicochemical parameters of prodrugs as well as environmental properties, therefore precise kinetical description is crucial to design the appropriate polymer prodrug formula. The aim of the present study was to investigate the dopamine release from different poly(aspartamide) based dopamine drug conjugates in different environments and to work out a kinetic description which can be extended to describe drug release in similar systems. Poly(aspartamide) was conjugated with different amounts of dopamine. In order to alter the solubility of the conjugates, 2-aminoethanol was also grafted to the main chain. Chemical structure as well as physical properties such as solubility, lipophilicity measurements and thermogravimetric analysis has been carried out. Kinetics of dopamine release from the macromolecular prodrugs which has good water solubility has been studied and compared in different environments (phosphate buffer, Bromelain and α-Chymotrypsin). It was found that the kinetics of release in those solutions can be satisfactorily described by first order reaction rate. For poorly-soluble conjugates, the release of dopamine was considered as a result of coupling of diffusion and chemical reaction. Besides the time dependence of dopamine cleavage, a practical quantity, the half-life of the release of loading capacity has been introduced and evaluated. It was found, that dopamine containing macromolecular prodrugs exhibit prolonged release kinetics and the quantitative description of the kinetics, including the most important physical parameters provides a solid base for future pharmaceutical and medical studies. STATEMENT OF SIGNIFICANCE Poly(aspartamide) based polymer-drug conjugates are promising for controlled and prolonged drug delivery due to their biocompatibility and biodegradability. In this study different poly(aspartamide) based dopamine conjugates were synthesized which can protect dopamine from deactivation in the human body. Since there is no satisfying kinetics description for drug release from covalent polymer-drug conjugates in the literature, dopamine release was investigated in different environments and a complete kinetical description was worked out. This study demonstrates that poly(aspartamide) is able to protect conjugated dopamine from deactivation and provide prolonged release in alkaline pH as well as in the presence of different enzymes. Furthermore, detailed kinetical descriptions were demonstrated which can be used in case of other covalent polymer-drug conjugates.
Collapse
|
108
|
Du S, Luo Y, Liao Z, Zhang W, Li X, Liang T, Zuo F, Ding K. New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent. J Colloid Interface Sci 2018; 523:27-34. [DOI: 10.1016/j.jcis.2018.03.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/30/2022]
|
109
|
Salomäki M, Marttila L, Kivelä H, Ouvinen T, Lukkari J. Effects of pH and Oxidants on the First Steps of Polydopamine Formation: A Thermodynamic Approach. J Phys Chem B 2018; 122:6314-6327. [PMID: 29787272 PMCID: PMC6150685 DOI: 10.1021/acs.jpcb.8b02304] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a general thermodynamic top-down analysis of the effects of oxidants and pH on dopamine oxidation and cyclization, supplemented with UV-vis and electrochemical studies. The model is applicable to other catecholamines and various experimental conditions. The results show that the decisive physicochemical parameters in autoxidation are the p K values of the semiquinone and the amino group in the oxidized quinone. Addition of Ce(IV) or Fe(III) enhances dopamine oxidation in acidic media in aerobic and anaerobic conditions by the direct oxidation of dopamine and, in the presence of oxygen, also by the autoxidation of the formed semiquinone. At pH 4.5, the enhancement of the one-electron oxidation of dopamine explains the overall reaction enhancement, but at a lower pH, cyclization becomes rate-determining. Oxidation by Cu(II) at reasonable rates requires the presence of oxygen or chloride ions.
Collapse
Affiliation(s)
- Mikko Salomäki
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Turku University Centre for Surfaces and Materials (MatSurf) , FI-20014 Turku , Finland
| | - Lauri Marttila
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Doctoral Programme in Physical and Chemical Sciences , University of Turku Graduate School (UTUGS) , FI-20014 Turku , Finland
| | - Henri Kivelä
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Turku University Centre for Surfaces and Materials (MatSurf) , FI-20014 Turku , Finland
| | - Tuomo Ouvinen
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Doctoral Programme in Physical and Chemical Sciences , University of Turku Graduate School (UTUGS) , FI-20014 Turku , Finland
| | - Jukka Lukkari
- Department of Chemistry , University of Turku , FI-20014 Turku , Finland.,Turku University Centre for Surfaces and Materials (MatSurf) , FI-20014 Turku , Finland
| |
Collapse
|
110
|
Sieste S, Mack T, Synatschke CV, Schilling C, Meyer zu Reckendorf C, Pendi L, Harvey S, Ruggeri FS, Knowles TPJ, Meier C, Ng DYW, Weil T, Knöll B. Water-Dispersible Polydopamine-Coated Nanofibers for Stimulation of Neuronal Growth and Adhesion. Adv Healthc Mater 2018; 7:e1701485. [PMID: 29635761 DOI: 10.1002/adhm.201701485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/14/2018] [Indexed: 11/11/2022]
Abstract
Hybrid nanomaterials have shown great potential in regenerative medicine due to the unique opportunities to customize materials properties for effectively controlling cellular growth. The peptide nanofiber-mediated auto-oxidative polymerization of dopamine, resulting in stable aqueous dispersions of polydopamine-coated peptide hybrid nanofibers, is demonstrated. The catechol residues of the polydopamine coating on the hybrid nanofibers are accessible and provide a platform for introducing functionalities in a pH-responsive polymer analogous reaction, which is demonstrated using a boronic acid modified fluorophore. The resulting hybrid nanofibers exhibit attractive properties in their cellular interactions: they enhance neuronal cell adhesion, nerve fiber growth, and growth cone area, thus providing great potential in regenerative medicine. Furthermore, the facile modification by pH-responsive supramolecular polymer analog reactions allows tailoring the functional properties of the hybrid nanofibers in a reversible fashion.
Collapse
Affiliation(s)
- Stefanie Sieste
- Institute of Organic Chemistry III/Macromolecular Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
- Department Synthesis of Macromolecules; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Thomas Mack
- Institute of Organic Chemistry III/Macromolecular Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
- Department Synthesis of Macromolecules; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Christopher V. Synatschke
- Department Synthesis of Macromolecules; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Corinna Schilling
- Institute of Physiological Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | | | - Laura Pendi
- Institute of Organic Chemistry III/Macromolecular Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sean Harvey
- Institute of Organic Chemistry III/Macromolecular Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
- Department Synthesis of Macromolecules; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Francesco S. Ruggeri
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
| | - Tuomas P. J. Knowles
- Department of Chemistry; University of Cambridge; Lensfield Road CB2 1EW Cambridge UK
| | - Christoph Meier
- Institute of Organic Chemistry III/Macromolecular Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - David Y. W. Ng
- Institute of Organic Chemistry III/Macromolecular Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
- Department Synthesis of Macromolecules; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Tanja Weil
- Institute of Organic Chemistry III/Macromolecular Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
- Department Synthesis of Macromolecules; Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
111
|
Trapani A, Mandracchia D, Tripodo G, Cometa S, Cellamare S, De Giglio E, Klepetsanis P, Antimisiaris SG. Protection of dopamine towards autoxidation reaction by encapsulation into non-coated- or chitosan- or thiolated chitosan-coated-liposomes. Colloids Surf B Biointerfaces 2018; 170:11-19. [PMID: 29859476 DOI: 10.1016/j.colsurfb.2018.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/13/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
Abstract
The aim of this work is to evaluate the potential of non-coated-, chitosan-(CS)- or chitosan-glutathione conjugate- (CS-GSH)-coated liposomes to protect the neurotransmitter Dopamine (DA) from the autoxidation reaction in neutral/alkaline conditions. This may be of interest in the development of nanotechnology-based approaches to improve Parkinson's disease treatment because decreased ROS production and reduced DA associated neurotoxicity are expected. For the mentioned purposes, DA-loaded vesicles were prepared by the Dried Reconstituted Vesicles (DRV) method, and were subsequently coated using solutions of polycations. As for the mean diameters of liposomes so prepared, the CS-GSH coated liposomes showed a significant decrease in size compared to the corresponding non-coated and CS-coated vesicles. The surface charge of DA-loaded non-coated liposomes was -10.8 mV, whereas the CS or CS-GSH coated vesicles showed a slightly positive ζ-potential. The capability of the herein studied vesicles to prevent DA autoxidation was evaluated by visual inspection, monitoring DA/lipid ratio as such and under stressed conditions. The results suggest that liposome formulations partially protect the neurotransmitter from the autoxidation reaction. In particular, the CS-GSH coated liposomes were more stable than the corresponding CS-coated and non-coated ones against the oxidative damage and were found to deliver the neurotransmitter in a sustained manner. Probably, this is due to the localization of the neurotransmitter in the core of the vesicles as indicated by XPS which confirmed the absence of the neurotransmitter on the surface of these vesicles.
Collapse
Affiliation(s)
- A Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125, Bari, Italy.
| | - D Mandracchia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125, Bari, Italy
| | - G Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli, 12, 27100, Pavia, Italy
| | - S Cometa
- Jaber Innovation s.r.l., Via Calcutta 8, Rome, 00144, Italy
| | - S Cellamare
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125, Bari, Italy
| | - E De Giglio
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona, 4, 70125, Bari, Italy
| | - P Klepetsanis
- Dept. of Pharmacy, University of Patras, and FORTH/ICE-HT, Rio, 26504, Greece; Institute of Chemical Engineering Foundation for Research and Technology Hellas, FORTH/ICE-HT, 26504, Platani, Patras, Greece.
| | - S G Antimisiaris
- Dept. of Pharmacy, University of Patras, and FORTH/ICE-HT, Rio, 26504, Greece; Institute of Chemical Engineering Foundation for Research and Technology Hellas, FORTH/ICE-HT, 26504, Platani, Patras, Greece
| |
Collapse
|
112
|
Han X, Tang F, Jin Z. Free-standing polydopamine films generated in the presence of different metallic ions: the comparison of reaction process and film properties. RSC Adv 2018; 8:18347-18354. [PMID: 35541137 PMCID: PMC9080560 DOI: 10.1039/c8ra02930j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Polydopamine is widely used in surface modification, nanofiltration, photonic devices and drug delivery. The formation mechanism and properties of polydopamine are modified by the experimental conditions. Herein we demonstrated a comparison study of free-standing polydopamine films generated at the air-solution interface and their corresponding nanoparticles in solutions, in the presence of various metallic cations, Na+, Ca2+, Mg2+ and Co2+. Adding metallic ions influenced the intermediates in dopamine polymerization, and in turn the morphology and properties of the produced free-standing polydopamine films. Moreover, we observed that the polymerization process accompanying the stratification determines the formation of free-standing films at the air-solution interface: the fast polymerization of dopamine in a Co2+ environment leads to a rugged film surface and porous film body, whereas the comparatively slow polymerization of dopamine under conditions of other metallic ions results in a smooth and solid film. In addition, the water contact angles of the upper and lower surface of the polydopamine films were different. This investigation enriches our knowledge of dopamine polymerization in different environments, which is particularly useful for further application of free-standing polydopamine films.
Collapse
Affiliation(s)
- Xuwen Han
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| | - Feng Tang
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China Beijing 100872 People's Republic of China
| |
Collapse
|
113
|
Fabrication of Metal-Substituted Polyoxometalates for Colorimetric Detection of Dopamine and Ractopamine. MATERIALS 2018; 11:ma11050674. [PMID: 29701649 PMCID: PMC5978051 DOI: 10.3390/ma11050674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022]
Abstract
A novel colorimetric detection method based on the peroxidase-like activity of metal-substituted polyoxometalates (POMs) of SiW9M3 (M = Co2+, Fe3+, Cu2+, Mn2+) has been established. POMs can catalyze oxidation of dopamine (DA) and ractopamine (RAC) by H2O2 in aqueous solutions. SiW9Co3-based POMs detect DA at concentrations as low as 5.38 × 10−6 mol·L−1 simply by observation of the color change from colorless to orange using the naked eye. RAC is detected by observing the change from colorless to slight red by SiW9Cu3 with a detection limit of 7.94 × 10−5 mol·L−1. This study shows that colorimetric DA and RAC detection using SiW9Co3 and SiW9Cu3 is highly selective and sensitive as well as visually observable.
Collapse
|
114
|
Biosa A, Outeiro TF, Bubacco L, Bisaglia M. Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View. Mol Neurobiol 2018; 55:8754-8763. [PMID: 29594935 DOI: 10.1007/s12035-018-1025-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by elevated concentrations of glucose in the blood. The chronic hyperglycemic state accounts for most of the vascular complications associated to the disease and the prevalent mechanism proposed is related to the glycating chemistry mediated by methylglyoxal (MG), which accumulates in T2DM. In recent years, a higher risk of Parkinson's disease (PD) onset in people affected by T2DM has become evident, but the molecular mechanisms underlying the interplay between T2DM and PD are still unknown. The oxidative chemistry of dopamine and its reactivity towards the protein α-Synuclein (aS) has been associated to the pathogenesis of PD. Recently, aS has also been described to interact with MG. Interestingly, MG and the dopamine oxidation products share both structural similarity and chemical reactivity. The ability of MG to spread over the site of its production and react with aS could represent the rationale to explain the higher incidence of PD in T2DM-affected people and may open opportunities for the development of novel strategies to antagonize the raise of PD.
Collapse
Affiliation(s)
- Alice Biosa
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, Padova, Italy
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Max Planck Institute for Experimental Medicine, Goettingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Luigi Bubacco
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, Padova, Italy
| | - Marco Bisaglia
- Molecular Physiology and Biophysics Unit, Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
115
|
Segura-Aguilar J, Huenchuguala S. Aminochrome Induces Irreversible Mitochondrial Dysfunction by Inducing Autophagy Dysfunction in Parkinson's Disease. Front Neurosci 2018; 12:106. [PMID: 29593482 PMCID: PMC5859232 DOI: 10.3389/fnins.2018.00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/12/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, Faculty of Medicine, Instituto de Ciencias Biomédicas (ICBM), University of Chile, Santiago, Chile
| | - Sandro Huenchuguala
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| |
Collapse
|
116
|
Chen Q, Liang C, Zhang X, Huang Y. High oxidase-mimic activity of Fe nanoparticles embedded in an N-rich porous carbon and their application for sensing of dopamine. Talanta 2018; 182:476-483. [PMID: 29501181 DOI: 10.1016/j.talanta.2018.02.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/18/2022]
Abstract
The N-doped porous carbon (NC) has been regarded as one of the promising support materials for nanoparticles (NPs) catalyst due to its inherent virtues such as porosity, large surface areas, and heteroatom incorporation. In this work, Fe/NC-800 hybrid was facilely prepared by uniform dispersion of in situ formed FeNPs onto NC-800 from carbonization of ZIF-8 at 800 °C for the first time. The optimized Fe/NC-800 catalyst was characterized by TEM, XPS and XRD. Compared with sole FeNPs and NC-800, the Fe/NC-800 catalyst exhibited an enhanced oxidase-like activity that could oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to the heavy blue without extra oxidants such as H2O2. The possible reason for the enhanced oxidase-like activity of the Fe/NC-800 was discussed on the basis of the experiments of radical scavengers, indicating the importance of superoxide (O2•-) and singlet (1O2) in colorimetric reaction between TMB and Fe/NC-800 hybrid. Furthermore, the oxidase-like activity of Fe/NC-800 was significantly inhibited by dopamine (DA), leading to blue color fading. On this basis, a sensitive and selective colorimetric sensor was fabricated for the quantitative analysis of DA with a linear range of 0.01-40 μM and a low detection limit of 10 nM. The proposed colorimetric method was successfully applied to determine DA in human serum and injection samples, suggesting a promising application in biological analysis.
Collapse
Affiliation(s)
- Qiumeng Chen
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chunhong Liang
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- The Key Laboratory of Luminescence and Real-time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
117
|
Tokura Y, Harvey S, Chen C, Wu Y, Ng DYW, Weil T. Fabrication of Defined Polydopamine Nanostructures by DNA Origami-Templated Polymerization. Angew Chem Int Ed Engl 2018; 57:1587-1591. [PMID: 29211331 PMCID: PMC5817404 DOI: 10.1002/anie.201711560] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 12/20/2022]
Abstract
A versatile, bottom-up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage-mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase-mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as "supramolecular glue" for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami-controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template.
Collapse
Affiliation(s)
- Yu Tokura
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Ulm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sean Harvey
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Chaojian Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Ulm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Yuzhou Wu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology1037 Luoyu Load430074WuhanChina
| | - David Y. W. Ng
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Ulm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
118
|
Sun Y, Pham AN, Waite TD. Effect of release of dopamine on iron transformations and reactive oxygen species (ROS) generation under conditions typical of coastal waters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:232-244. [PMID: 29265130 DOI: 10.1039/c7em00497d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Seasonally persistent blooms of Ulvaria obscura var. blyttii, the prominent species present in green tides in the northern Pacific and Atlantic, have been well documented in recent decades. The synthesis and release of dopamine (DA) by Ulvaria obscura var. blyttii has been proposed to be associated with the suppression and inhibition of the growth of other organisms competing for limited resources. To better understand the potential benefits obtained from the release of DA, the transformation of DA as well its concomitant impact on the local seawater environment are investigated in this study. The results show that, despite several toxic quinones being produced during the oxidation of DA, aminochrome (DAC) is likely to be the only quinone playing an allelopathic role in view of its expected accumulation in the surrounding environment. As a consequence of the direct oxidation of DA and DA induced generation of 5,6-dihydroxyindole (DHI), high concentrations of H2O2 accumulate over time, especially in the presence of elements including iron, calcium and magnesium. The oxidative stress to other organisms induced by the release of DA may be particularly detrimental as a result of H2O2 induced reduction in photosynthesis, inactivation of antioxidant systems or even the generation of ˙OH. DA induced iron mobilization may benefit the continuously persistent blooms of Ulvaria obscura var. blyttii or even the whole community via alleviation in iron deficiency within the bloom region.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
119
|
Tokura Y, Harvey S, Chen C, Wu Y, Ng DYW, Weil T. Fabrication of Defined Polydopamine Nanostructures by DNA Origami-Templated Polymerization. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Tokura
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sean Harvey
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Chaojian Chen
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Yuzhou Wu
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; 1037 Luoyu Load 430074 Wuhan China
| | - David Y. W. Ng
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
- Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
120
|
Segura-Aguilar J. Neurotoxins as Preclinical Models for Parkinson's Disease. Neurotox Res 2018; 34:870-877. [PMID: 29313219 DOI: 10.1007/s12640-017-9856-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Translational medicine is one of the major concerns in this century. While significant advances have been made with scientific knowledge, the translation of their promising results has not led to any new therapies. In Parkinson's disease, a long list of clinical studies, based on preclinical models with exogenous neurotoxins, has failed. Therefore, the aim of this opinion paper is to open discussion about preclinical models for Parkinson's disease based on neurotoxins.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Department of Molecular and Clinical Pharmacology, Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
121
|
Guo Z, Mi S, Sun W. The multifaceted nature of catechol chemistry: bioinspired pH-initiated hyaluronic acid hydrogels with tunable cohesive and adhesive properties. J Mater Chem B 2018; 6:6234-6244. [DOI: 10.1039/c8tb01776j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
By regulating pH, a series of bioinspired, pH-initiated hyaluronic acid hydrogels that possess tunable cohesive and adhesive properties were developed based on catechol-related chemistry.
Collapse
Affiliation(s)
- Zhongwei Guo
- Precision Medicine and Healthcare Research Center
- Tsinghua-Berkeley Shenzhen Institute
- Shenzhen
- China
- Biomanufacturing Engineering Laboratory
| | - Shengli Mi
- Biomanufacturing Engineering Laboratory
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen
- China
| | - Wei Sun
- Precision Medicine and Healthcare Research Center
- Tsinghua-Berkeley Shenzhen Institute
- Shenzhen
- China
- Biomanufacturing Engineering Laboratory
| |
Collapse
|
122
|
Won SY, Park MH, You ST, Choi SW, Kim HK, McLean C, Bae SC, Kim SR, Jin BK, Lee KH, Shin EY, Kim EG. Nigral dopaminergic PAK4 prevents neurodegeneration in rat models of Parkinson's disease. Sci Transl Med 2017; 8:367ra170. [PMID: 27903866 DOI: 10.1126/scitranslmed.aaf1629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic (DA) neurons in the substantia nigra. No neuroprotective treatments have successfully prevented the progression of this disease. We report that p21-activated kinase 4 (PAK4) is a key survival factor for DA neurons. We observed PAK4 immunoreactivity in rat and human DA neurons in brain tissue, but not in microglia or astrocytes. PAK4 activity was markedly decreased in postmortem brain tissue from PD patients and in rodent models of PD. Expression of constitutively active PAK4S445N/S474E (caPAK4) protected DA neurons in both the 6-hydroxydopamine and α-synuclein rat models of PD and preserved motor function. This neuroprotective effect of caPAK4 was mediated by phosphorylation of CRTC1 [CREB (adenosine 3',5'-monophosphate response element-binding protein)-regulated transcription coactivator] at S215. The nonphosphorylated form of CRTC1S215A compromised the ability of caPAK4 to induce the expression of the CREB target proteins Bcl-2, BDNF, and PGC-1α. Our results support a neuroprotective role for the PAK4-CRTC1S215-CREB signaling pathway and suggest that this pathway may be a useful therapeutic target in PD.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Mee-Hee Park
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Soon-Tae You
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Seung-Won Choi
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Hyong-Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Suk-Chul Bae
- Department of Biochemistry, School of Medicine, Institute for Tumor Research, Chungbuk National University, Cheongju 28644, South Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, South Korea
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, Department of Neuroscience, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Chosun University, Gwangju 61452, South Korea.,Department of Biomedical Science, Chosun University, Gwangju 61452, South Korea
| | - Eun-Young Shin
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea
| | - Eung-Gook Kim
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, South Korea.
| |
Collapse
|
123
|
Goldstein DS, Jinsmaa Y, Sullivan P, Sharabi Y. N-Acetylcysteine Prevents the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Neurochem Res 2017; 42:3289-3295. [PMID: 28840582 PMCID: PMC10792588 DOI: 10.1007/s11064-017-2371-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022]
Abstract
The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease proposes that the deaminated dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is toxic to nigrostriatal dopaminergic neurons. Inhibiting monoamine oxidase (MAO) should therefore slow the disease progression; however, MAO inhibition increases spontaneous oxidation of dopamine, as indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels, and the oxidation products may also be toxic. This study examined whether N-acetylcysteine (NAC), a precursor of the anti-oxidant glutathione, attenuates the increase in Cys-DA production during MAO inhibition. Rat pheochromocytoma PC12 cells were incubated with NAC, the MAO-B inhibitor selegiline, or both. Selegiline decreased DOPAL and increased Cys-DA levels (p < 0.0001 each). Co-incubation of NAC at pharmacologically relevant concentrations (1-10 µM) with selegiline (1 µM) attenuated or prevented the Cys-DA response to selegiline, without interfering with the selegiline-induced decrease in DOPAL production or inhibiting tyrosine hydroxylation. NAC therefore mitigates the increase in spontaneous oxidation of dopamine during MAO inhibition.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA.
| | - Yunden Jinsmaa
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Patti Sullivan
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Yehonatan Sharabi
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
124
|
Huenchuguala S, Muñoz P, Segura-Aguilar J. The Importance of Mitophagy in Maintaining Mitochondrial Function in U373MG Cells. Bafilomycin A1 Restores Aminochrome-Induced Mitochondrial Damage. ACS Chem Neurosci 2017; 8:2247-2253. [PMID: 28763613 DOI: 10.1021/acschemneuro.7b00152] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aminochrome, an orthoquinone formed during the dopamine oxidation of neuromelanin, is neurotoxic because it induces mitochondria dysfunction, protein degradation dysfunction (both autophagy and proteasomal systems), α-synuclein aggregation to neurotoxic oligomers, neuroinflammation, and oxidative and endoplasmic reticulum stress. In this study, we investigated the relationship between aminochrome-induced autophagy/lysosome dysfunction and mitochondrial dysfunction in U373MGsiGST6 cells. Aminochrome (75 μM) induces mitochondrial dysfunction as determined by (i) a significant decrease in ATP levels (70%; P < 0.001) and (ii) a significant decrease in mitochondrial membrane potential (P < 0.001). Interestingly, the pretreatment of U373MGsiGST6 cells with 100 nM bafilomycin-A1, an inhibitor of lysosomal vacuolar-type H+-ATPase, restores ATP levels, mitochondrial membrane potential, and mitophagy, and decreases cell death. These results reveal (i) the importance of macroautophagy/the lysosomal degradation system for the normal functioning of mitochondria and for cell survival, and (ii) aminochrome-induced lysosomal dysfunction depends on the aminochrome-dependent inactivation of the vacuolar-type H+-ATPase, which pumps protons into the lysosomes. This study also supports the proposed protective role of glutathione transferase mu2-2 (GSTM2) in astrocytes against aminochrome toxicity, mediated by mitochondrial and lysosomal dysfunction.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
125
|
Iftikhar I, El-Nour KMA, Brajter-Toth A. Detection of transient dopamine antioxidant radicals using electrochemistry in electrospray ionization mass spectrometry. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
126
|
Amin DR, Sugnaux C, Lau KHA, Messersmith PB, d’Ischia M, Ruiz-Molina D. Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging. Biomimetics (Basel) 2017; 2:17. [PMID: 29360110 PMCID: PMC5774220 DOI: 10.3390/biomimetics2030017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/30/2017] [Indexed: 11/25/2022] Open
Abstract
As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (bio)functional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs) with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), X-ray photoelectron spectroscopy (XPS), zeta-potential, ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS) and in cell culture media and exhibit no cytotoxicity up to at least 100 μg mL-1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions.
Collapse
Affiliation(s)
- Devang R. Amin
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720, USA; (D.R.A.); (C.S.)
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Caroline Sugnaux
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720, USA; (D.R.A.); (C.S.)
| | - King Hang Aaron Lau
- WestCHEM/Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral St., Glasgow G1 1XL, UK;
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, 210 Hearst Mining Building, Berkeley, CA 94720, USA; (D.R.A.); (C.S.)
| | | | | |
Collapse
|
127
|
Furkan M, Rizvi A, Alam MT, Zaman M, Khan RH, Naeem A. Serotonin abrogates dopamine induced aggregation of cytochrome c. Int J Biol Macromol 2017; 102:893-900. [DOI: 10.1016/j.ijbiomac.2017.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022]
|
128
|
Dell'Acqua S, Bacchella C, Monzani E, Nicolis S, Di Natale G, Rizzarelli E, Casella L. Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress. Inorg Chem 2017; 56:11317-11325. [PMID: 28846410 DOI: 10.1021/acs.inorgchem.7b01757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper(II) binding to prion peptides does not prevent Cu redox cycling and formation of reactive oxygen species (ROS) in the presence of reducing agents. The toxic effects of these species are exacerbated in the presence of catecholamines, indicating that dysfunction of catecholamine vesicular sequestration or recovery after synaptic release is a dangerous amplifier of Cu induced oxidative stress. Cu bound to prion peptides including the high affinity site involving histidines adjacent to the octarepeats exhibits marked catalytic activity toward dopamine and 4-methylcatechol. The resulting quinone oxidation products undergo parallel oligomerization and endogenous peptide modification yielding catechol adducts at the histidine binding ligands. These modifications add to the more common oxidation of Met and His residues produced by ROS. Derivatization of Cu-prion peptides is much faster than that undergone by Cu-β-amyloid and Cu-α-synuclein complexes in the same conditions.
Collapse
Affiliation(s)
- Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Stefania Nicolis
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppe Di Natale
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via P. Gaifami 18, Catania, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via P. Gaifami 18, Catania, Italy
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
129
|
Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease. Prog Neurobiol 2017; 155:96-119. [PMID: 26455458 PMCID: PMC4826627 DOI: 10.1016/j.pneurobio.2015.09.012] [Citation(s) in RCA: 423] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 12/11/2022]
Abstract
There are several interrelated mechanisms involving iron, dopamine, and neuromelanin in neurons. Neuromelanin accumulates during aging and is the catecholamine-derived pigment of the dopamine neurons of the substantia nigra and norepinephrine neurons of the locus coeruleus, the two neuronal populations most targeted in Parkinson's disease. Many cellular redox reactions rely on iron, however an altered distribution of reactive iron is cytotoxic. In fact, increased levels of iron in the brain of Parkinson's disease patients are present. Dopamine accumulation can induce neuronal death; however, excess dopamine can be removed by converting it into a stable compound like neuromelanin, and this process rescues the cell. Interestingly, the main iron compound in dopamine and norepinephrine neurons is the neuromelanin-iron complex, since neuromelanin is an effective metal chelator. Neuromelanin serves to trap iron and provide neuronal protection from oxidative stress. This equilibrium between iron, dopamine, and neuromelanin is crucial for cell homeostasis and in some cellular circumstances can be disrupted. Indeed, when neuromelanin-containing organelles accumulate high load of toxins and iron during aging a neurodegenerative process can be triggered. In addition, neuromelanin released by degenerating neurons activates microglia and the latter cause neurons death with further release of neuromelanin, then starting a self-propelling mechanism of neuroinflammation and neurodegeneration. Considering the above issues, age-related accumulation of neuromelanin in dopamine neurons shows an interesting link between aging and neurodegeneration.
Collapse
Affiliation(s)
- Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Juan Segura-Aguilar
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Emanuele Ferrari
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Patricia Muñoz
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile
| | - Irmgard Paris
- Faculty of Medicine, Molecular and Clinical Pharmacology, ICBM, University of Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Sciences, Santo Tomás University, Viña del Mar, Chile
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
130
|
Chen TP, Liu T, Su TL, Liang J. Self-Polymerization of Dopamine in Acidic Environments without Oxygen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5863-5871. [PMID: 28505456 DOI: 10.1021/acs.langmuir.7b01127] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An alkaline environment and the presence of oxygen are essential requirements for dopamine polymerization. In this study, we are the first to demonstrate the self-polymerization of dopamine through plasma-activated water (PAW) under acidic environments (pH < 5.5). Resulting poly(dopamine) (PDA) was characterized using Nanosizer, SEM, FTIR, UV-vis, 1H NMR, and fluorescence spectrophotometers and proved to have similar physical and chemical properties to those polymerized under a basic condition, except that the PDA particles formed in PAW were more stable and hardly aggregated at varied pHs. The PAW polymerization method avoids alkaline solutions and the presence of oxygen and thus extends the applications of dopamine polymerization, particularly in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Tung-Po Chen
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer School of Egnieering and Science, and ‡Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Egnieering and Science, Stevens Institute of Technology , Hoboken, New Jersey 07307, United States
| | - Tianchi Liu
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer School of Egnieering and Science, and ‡Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Egnieering and Science, Stevens Institute of Technology , Hoboken, New Jersey 07307, United States
| | - Tsan-Liang Su
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer School of Egnieering and Science, and ‡Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Egnieering and Science, Stevens Institute of Technology , Hoboken, New Jersey 07307, United States
| | - Junfeng Liang
- Department of Civil, Environmental and Ocean Engineering, Charles V. Schaefer School of Egnieering and Science, and ‡Department of Chemistry, Chemical Biology, and Biomedical Engineering, Charles V. Schaefer School of Egnieering and Science, Stevens Institute of Technology , Hoboken, New Jersey 07307, United States
| |
Collapse
|
131
|
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Mol Neurodegener 2017; 12:45. [PMID: 28592304 PMCID: PMC5463308 DOI: 10.1186/s13024-017-0186-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease.
Collapse
Affiliation(s)
- James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK. .,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia.
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia
| | - Hannah Durham
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM U1171, CHU of Lille, Lille, France
| |
Collapse
|
132
|
Mechanistic investigation on the electropolymerization of phenol red by cyclic voltammetry and the catalytic reactions toward acetaminophen and dopamine using poly(phenol red)-modified GCE. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
133
|
Linking Stress, Catecholamine Autotoxicity, and Allostatic Load with Neurodegenerative Diseases: A Focused Review in Memory of Richard Kvetnansky. Cell Mol Neurobiol 2017; 38:13-24. [PMID: 28488009 DOI: 10.1007/s10571-017-0497-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
In this Focused Review, we provide an update about evolving concepts that may link chronic stress and catecholamine autotoxicity with neurodegenerative diseases such as Parkinson's disease. Richard Kvetnansky's contributions to the field of stress and catecholamine systems inspired some of the ideas presented here. We propose that coordination of catecholaminergic systems mediates adjustments maintaining health and that senescence-related disintegration of these systems leads to disorders of regulation and to neurodegenerative diseases such as Parkinson's disease. Chronically repeated episodes of stress-related catecholamine release and reuptake, with attendant increases in formation of the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde, might accelerate this process.
Collapse
|
134
|
Muñoz PS, Segura-Aguilar J. DT-diaphorase Protects Against Autophagy Induced by Aminochrome-Dependent Alpha-Synuclein Oligomers. Neurotox Res 2017; 32:362-367. [DOI: 10.1007/s12640-017-9747-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/09/2022]
|
135
|
Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? ACS Chem Neurosci 2017; 8:702-711. [PMID: 28233992 DOI: 10.1021/acschemneuro.7b00034] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 1967, L-dopa was introduced as part of the pharmacological therapy of Parkinson's disease (PD) and, in spite of extensive research, no additional effective drugs have been discovered to treat PD. This brings forward the question: why have no new drugs been developed? We consider that one of the problems preventing the discovery of new drugs is that we still have no information on the pathophysiology of the neurodegeneration of the neuromelanin-containing nigrostriatal dopaminergic neurons. Currently, it is widely accepted that the degeneration of dopaminergic neurons, i.e., in the substantia nigra pars compacta, involves mitochondrial dysfunction, the formation of neurotoxic oligomers of alpha-synuclein, the dysfunction of protein degradation systems, neuroinflammation, and oxidative and endoplasmic reticulum stress. However, the initial trigger of these mechanisms in the nigrostriatal system is still unknown. It has been reported that aminochrome induces the majority of these mechanisms involved in the neurodegeneration process. Aminochrome is formed within the cytoplasm of neuromelanin-containing dopaminergic neurons during the oxidation of dopamine to neuromelanin. The oxidation of dopamine to neuromelanin is a normal and harmless process, because healthy individuals have intact neuromelanin-containing dopaminergic neurons. Interestingly, aminochrome-induced neurotoxicity is prevented by two enzymes: DT-diaphorase and glutathione transferase M2-2, which explains why melanin-containing dopaminergic neurons are intact in healthy human brains.
Collapse
Affiliation(s)
- Andrea Herrera
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Harry W. M. Steinbusch
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
136
|
Chistiakov DA, Chistiakov AA. α-Synuclein-carrying extracellular vesicles in Parkinson's disease: deadly transmitters. Acta Neurol Belg 2017; 117:43-51. [PMID: 27473175 DOI: 10.1007/s13760-016-0679-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
Abstract
Exosomes play a key role in delivery of various biological material and complex signals from one cell to another at long distances. These small extracellular vehicles are involved in mediating multiple physiological and pathogenic processes. In neurodegenerative diseases such as Parkinson's disease (PD), exosomes contribute to disease propagation through transferring misfolded proteins from affected cells to normal cells. In PD, progressive degeneration of neurons arises from the extensive accumulation of toxic forms of α-synuclein in the cytoplasm. α-Synuclein could exist in several forms, some of which (i.e., oligomeric and polymeric forms) are cytotoxic. Neuron-derived exosomes were found to transfer α-synuclein toxic forms between neuronal and non-neuronal cells (such as astrocytes and microglia) thereby contributing to PD spreading. Deposition of α-synuclein in glial cells induces inflammation that could be further propagated to other glial cells and neurons. Neuroinflammation promotes degeneration of neurons and aggravates the pathogenesis of PD.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Serbsky Federal Research Center of Psychiatry and Addiction Medicine, Moscow, Russian Federation.
| | - Alexander A Chistiakov
- Serbsky Federal Research Center of Psychiatry and Addiction Medicine, Moscow, Russian Federation
| |
Collapse
|
137
|
Haney CM, Cleveland CL, Wissner RF, Owei L, Robustelli J, Daniels M, Canyurt M, Rodriguez P, Ischiropoulos H, Baumgart T, Petersson EJ. Site-Specific Fluorescence Polarization for Studying the Disaggregation of α-Synuclein Fibrils by Small Molecules. Biochemistry 2017; 56:683-691. [PMID: 28045494 PMCID: PMC5520965 DOI: 10.1021/acs.biochem.6b01060] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fibrillar aggregates of the protein α-synuclein (αS) are one of the hallmarks of Parkinson's disease. Here, we show that measuring the fluorescence polarization (FP) of labels at several sites on αS allows one to monitor changes in the local dynamics of the protein after binding to micelles or vesicles, and during fibril formation. Most significantly, these site-specific FP measurements provide insight into structural remodeling of αS fibrils by small molecules and have the potential for use in moderate-throughput screens to identify small molecules that could be used to treat Parkinson's disease.
Collapse
Affiliation(s)
- Conor M. Haney
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Christina L. Cleveland
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Rebecca F. Wissner
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Lily Owei
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Jaclyn Robustelli
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - Malcolm Daniels
- Pharmacology Graduate Group; University of Pennsylvania; 3400 Civic Center Blvd, Philadelphia, PA 19104
| | | | | | - Harry Ischiropoulos
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104
| |
Collapse
|
138
|
An T, Lee N, Cho HJ, Kim S, Shin DS, Lee SM. Ultra-selective detection of Fe2+ ion by redox mechanism based on fluorescent polymerized dopamine derivatives. RSC Adv 2017. [DOI: 10.1039/c7ra04107a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The origin of the fluorescence of polymerized dopamine derivatives was first clarified and the fluorescent oligomeric dopamine (F-ODA) could detect Fe2+ ions with very high specificity.
Collapse
Affiliation(s)
- Taeuk An
- Department of Chemical Engineering
- Kangwon National University
- Republic of Korea
| | - Namhun Lee
- Department of Chemical Engineering
- Kangwon National University
- Republic of Korea
| | - Hong-Jun Cho
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Seongsoo Kim
- Department of Chemical Engineering
- Kangwon National University
- Republic of Korea
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering
- Sookmyung Women's University
- Seoul 04310
- Republic of Korea
| | - Sang-Myung Lee
- Department of Chemical Engineering
- Kangwon National University
- Republic of Korea
| |
Collapse
|
139
|
Liu M, Kou L, Bin Y, Wan L, Xiang J. Complicated function of dopamine in Aβ-related neurotoxicity: Dual interactions with Tyr10 and SNK(26–28) of Aβ. J Inorg Biochem 2016; 164:119-128. [DOI: 10.1016/j.jinorgbio.2016.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/31/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022]
|
140
|
Feng J, Fan H, Zha DA, Wang L, Jin Z. Characterizations of the Formation of Polydopamine-Coated Halloysite Nanotubes in Various pH Environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10377-10386. [PMID: 27643526 DOI: 10.1021/acs.langmuir.6b02948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies demonstrated that polydopamine (PDA) coating is universal to nearly all substrates, and it endows substrates with biocompatibility, postfunctionality, and other useful properties. Surface chemistry of PDA coating is important for its postmodifications and applications. However, there is less understanding of the formation mechanism and surface functional groups of PDA layers generated in different conditions. Halloysite is a kind of clay mineral with tubular nanostructure. Water-swellable halloysite has unique reactivity. In this study, we have investigated the reaction of dopamine in the presence of water-swellable halloysite. We have tracked the reaction progresses in different pH environments by using UV-vis spectroscopy and surface-enhanced Raman spectroscopy (SERS). The surface properties of PDA on halloysite were clarified by X-ray photoelectron spectroscopy (XPS), SERS, Fourier transform infrared (FTIR) characterizations, zeta potential, surface wettability, and morphological characterizations. We noticed that the interaction between halloysite surface and dopamine strongly influences the surface functionality of coated PDA. In addition, pH condition further modulates surface functional groups, resulting in less content of secondary/aromatic amine in PDA generated in weak acidic environment. This study demonstrates that the formation mechanism of polydopamine becomes complex in the presence of inorganic nanomaterials. Substrate property and reaction condition dominate the functionality of obtained PDA together.
Collapse
Affiliation(s)
- Junran Feng
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Hailong Fan
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Dao-An Zha
- School of Science, Beijing Jiaotong University , No. 3 Shang Yuan Cun, Haidian District, Beijing 100044, People's Republic of China
| | - Le Wang
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China , 100872 Beijing, People's Republic of China
| |
Collapse
|
141
|
Studies on the early oxidation process of dopamine by electrochemical measurements and quantum chemical calculations. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
142
|
Jin Z, Fan H. The modulation of melanin-like materials: methods, characterization and applications. POLYM INT 2016. [DOI: 10.1002/pi.5187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhaoxia Jin
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| | - Hailong Fan
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| |
Collapse
|
143
|
Goldstein DS, Jinsmaa Y, Sullivan P, Holmes C, Kopin IJ, Sharabi Y. 3,4-Dihydroxyphenylethanol (Hydroxytyrosol) Mitigates the Increase in Spontaneous Oxidation of Dopamine During Monoamine Oxidase Inhibition in PC12 Cells. Neurochem Res 2016; 41:2173-8. [PMID: 27220335 DOI: 10.1007/s11064-016-1959-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023]
Abstract
The catecholaldehyde hypothesis predicts that monoamine oxidase (MAO) inhibition should slow the progression of Parkinson's disease, by decreasing production of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). Inhibiting MAO, however, diverts the fate of cytoplasmic dopamine toward potentially harmful spontaneous oxidation products, indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels. 3,4-Dihydroxyphenylethanol (hydroxytyrosol) is an abundant anti-oxidant phenol in constituents of the Mediterranean diet. Whether hydroxytyrosol alters enzymatic or spontaneous oxidation of dopamine has been unknown. Rat pheochromocytoma PC12 cells were incubated with hydroxytyrosol (10 µM, 180 min) alone or with the MAO-A inhibitor clorgyline (1 nM) or the MAO-B inhibitors rasagiline or selegiline (0.5 µM). Hydroxytyrosol decreased levels of DOPAL by 30 % and Cys-DA by 49 % (p < 0.0001 each). Co-incubation with hydroxytyrosol prevented the increases in Cys-DA seen with all 3 MAO inhibitors. Hydroxytyrosol therefore inhibits both enzymatic and spontaneous oxidation of endogenous dopamine and mitigates the increase in spontaneous oxidation during MAO inhibition.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA.
| | - Yunden Jinsmaa
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Patti Sullivan
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Courtney Holmes
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Irwin J Kopin
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
| | - Yehonatan Sharabi
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, 9000 Rockville Pike, Bldg. 10 Rm. 5N220, Bethesda, MD, 20892-1620, USA
- Sackler Faculty of Medicine, Chaim Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
144
|
Zhou HY, Li M, Qu J, Jing S, Xu H, Zhao JZ, Zhang J, He MF. Effective Antitumor Candidates Based upon Ferrocenylseleno-Dopamine Derivatives: Growth Inhibition by Induction Cell Apoptosis and Antivascular Effects. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Jian Qu
- Institute
of Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | | | | | - Juan-Zhi Zhao
- Laboratory
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People’s Republic of China
| | - Jian Zhang
- Laboratory
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People’s Republic of China
| | | |
Collapse
|
145
|
Salomäki M, Tupala M, Parviainen T, Leiro J, Karonen M, Lukkari J. Preparation of Thin Melanin-Type Films by Surface-Controlled Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4103-4112. [PMID: 27049932 DOI: 10.1021/acs.langmuir.6b00402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The preparation of thin melanin films suitable for applications is challenging. In this work, we present a new alternative approach to thin melanin-type films using oxidative multilayers prepared by the sequential layer-by-layer deposition of cerium(IV) and inorganic polyphosphate. The interfacial reaction between cerium(IV) in the multilayer and 5,6-dihydroxyindole (DHI) in the adjacent aqueous solution leads to the formation of a thin uniform film. The oxidation of DHI by cerium(IV) proceeds via known melanin intermediates. We have characterized the formed DHI-melanin films using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), UV-vis spectroscopy, and spectroelectrochemistry. When a five-bilayer oxidative multilayer is used, the film is uniform with a thickness of ca. 10 nm. Its chemical composition, as determined using XPS, is typical for melanin. It is also redox active, and its oxidation occurs in two steps, which can be assigned to semiquinone and quinone formation within the indole structural motif. Oxidative multilayers can also oxidize dopamine, but the reaction stops at the dopamine quinone stage because of the limited amount of the multilayer-based oxidizing agent. However, dopamine oxidation by Ce(IV) was studied also in solution by UV-vis spectroscopy and mass spectrometry in order to verify the reaction mechanism and the final product. In solution, the oxidation of dopamine by cerium shows that the indole ring formation takes place already at low pH and that the mass spectrum of the final product is practically identical with that of commercial melanin. Therefore, layer-by-layer formed oxidative multilayers can be used to deposit functional melanin-type thin films on arbitrary substrates by a surface-controlled reaction.
Collapse
Affiliation(s)
- Mikko Salomäki
- Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
| | | | | | - Jarkko Leiro
- Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
| | | | - Jukka Lukkari
- Turku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
| |
Collapse
|
146
|
Zhao J, Yu S, Zheng Y, Yang H, Zhang J. Oxidative Modification and Its Implications for the Neurodegeneration of Parkinson’s Disease. Mol Neurobiol 2016; 54:1404-1418. [DOI: 10.1007/s12035-016-9743-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
|
147
|
Wu H, Ang JM, Kong J, Zhao C, Du Y, Lu X. One-pot synthesis of polydopamine–Zn complex antifouling coatings on membranes for ultrafiltration under harsh conditions. RSC Adv 2016. [DOI: 10.1039/c6ra19858a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, dopamine is polymerized in a basic aqueous solution that contains zinc species to form a hybrid coating on polysulfone (PSf) ultrafiltration membranes.
Collapse
Affiliation(s)
- Huiqing Wu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- School of Materials Science and Engineering
- Xiamen University of Technology
| | - Jia Ming Ang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| | - Junhua Kong
- Institute of Materials Research and Engineering
- A*STAR (Agency for Science, Technology and Research)
- Singapore 138634
| | - Chenyang Zhao
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Jurong Island
- Singapore 627833
| | - Xuehong Lu
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| |
Collapse
|
148
|
Yu G, Liu H, Zhou W, Zhu X, Yu C, Wang N, Zhang Y, Ma J, Zhao Y, Xu Y, Liao L, Ji H, Yuan C, Ma J. In vivo protein targets for increased quinoprotein adduct formation in aged substantia nigra. Exp Neurol 2015; 271:13-24. [DOI: 10.1016/j.expneurol.2015.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 11/16/2022]
|
149
|
Pavlin M, Repič M, Vianello R, Mavri J. The Chemistry of Neurodegeneration: Kinetic Data and Their Implications. Mol Neurobiol 2015; 53:3400-3415. [PMID: 26081152 DOI: 10.1007/s12035-015-9284-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
We collected experimental kinetic rate constants for chemical processes responsible for the development and progress of neurodegeneration, focused on the enzymatic and non-enzymatic degradation of amine neurotransmitters and their reactive and neurotoxic metabolites. A gross scheme of neurodegeneration on the molecular level is based on two pathways. Firstly, reactive species oxidise heavy atom ions, which enhances the interaction with alpha-synuclein, thus promoting its folding to the beta form and giving rise to insoluble amyloid plaques. The latter prevents the function of vesicular transport leading to gradual neuronal death. In the second pathway, radical species, OH(·) in particular, react with the methylene groups of the apolar part of the lipid bilayer of either the cell or mitochondrial wall, resulting in membrane leakage followed by dyshomeostasis, loss of resting potential and neuron death. Unlike all other central neural system (CNS)-relevant biogenic amines, dopamine and noradrenaline are capable of a non-enzymatic auto-oxidative reaction, which produces hydrogen peroxide. This reaction is not limited to the mitochondrial membrane where scavenging enzymes, such as catalase, are located. On the other hand, dopamine and its metabolites, such as dopamine-o-quinone, dopaminechrome, 5,6-dihydroxyindole and indo-5,6-quinone, also interact directly with alpha-synuclein and reversibly inhibit plaque formation. We consider the role of the heavy metal ions, selected scavengers and scavenging enzymes, and discuss the relevance of certain foods and food supplements, including curcumin, garlic, N-acetyl cysteine, caffeine and red wine, as well as the long-term administration of non-steroid anti-inflammatory drugs and occasional tobacco smoking, that could all act toward preventing neurodegeneration. The current analysis can be employed in developing strategies for the prevention and treatment of neurodegeneration, and, hopefully, aid in the building of an overall kinetic molecular model of neurodegeneration itself.
Collapse
Affiliation(s)
- Matic Pavlin
- Computational Biophysics, German Research School for Simulation Sciences, Joint Venture of RWTH Aachen University and Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Computational Biomedicine, Institute for Advanced Simulations (IAS-5/INM-9), 52425, Jülich, Germany
| | - Matej Repič
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Robert Vianello
- Quantum Organic Chemistry Group, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Janez Mavri
- National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
150
|
Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LKS, Saxena PN, Arun J, Chaudhari BP, Patel DK, Singh SP, Shukla R, Khanna VK, Kumar P, Chaturvedi RK, Gupta KC. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS NANO 2015; 9:4850-71. [PMID: 25825926 DOI: 10.1021/nn506408v] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sustained and safe delivery of dopamine across the blood brain barrier (BBB) is a major hurdle for successful therapy in Parkinson's disease (PD), a neurodegenerative disorder. Therefore, in the present study we designed neurotransmitter dopamine-loaded PLGA nanoparticles (DA NPs) to deliver dopamine to the brain. These nanoparticles slowly and constantly released dopamine, showed reduced clearance of dopamine in plasma, reduced quinone adduct formation, and decreased dopamine autoxidation. DA NPs were internalized in dopaminergic SH-SY5Y cells and dopaminergic neurons in the substantia nigra and striatum, regions affected in PD. Treatment with DA NPs did not cause reduction in cell viability and morphological deterioration in SH-SY5Y, as compared to bulk dopamine-treated cells, which showed reduced viability. Herein, we report that these NPs were able to cross the BBB and capillary endothelium in the striatum and substantia nigra in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Systemic intravenous administration of DA NPs caused significantly increased levels of dopamine and its metabolites and reduced dopamine-D2 receptor supersensitivity in the striatum of parkinsonian rats. Further, DA NPs significantly recovered neurobehavioral abnormalities in 6-OHDA-induced parkinsonian rats. Dopamine delivered through NPs did not cause additional generation of ROS, dopaminergic neuron degeneration, and ultrastructural changes in the striatum and substantia nigra as compared to 6-OHDA-lesioned rats. Interestingly, dopamine delivery through nanoformulation neither caused alterations in the heart rate and blood pressure nor showed any abrupt pathological change in the brain and other peripheral organs. These results suggest that NPs delivered dopamine into the brain, reduced dopamine autoxidation-mediated toxicity, and ultimately reversed neurochemical and neurobehavioral deficits in parkinsonian rats.
Collapse
Affiliation(s)
- Richa Pahuja
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Kavita Seth
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Anshi Shukla
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Rajendra Kumar Shukla
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | | | | | - Prem Narain Saxena
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Jharna Arun
- ∥CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226001, India
| | - Bhushan Pradosh Chaudhari
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Devendra Kumar Patel
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Sheelendra Pratap Singh
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Rakesh Shukla
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
- ∥CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226001, India
| | - Vinay Kumar Khanna
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Pradeep Kumar
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Rajnish Kumar Chaturvedi
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| | - Kailash Chand Gupta
- †CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
- §Academy of Scientific and Innovative Research (AcSIR), Delhi 110001, India
| |
Collapse
|