101
|
Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses 2021; 13:v13040575. [PMID: 33805458 PMCID: PMC8066409 DOI: 10.3390/v13040575] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3−/− mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNβ), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3′s RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.
Collapse
|
102
|
Garcia-del-Barco D, Risco-Acevedo D, Berlanga-Acosta J, Martos-Benítez FD, Guillén-Nieto G. Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Front Immunol 2021; 12:655528. [PMID: 33841439 PMCID: PMC8033157 DOI: 10.3389/fimmu.2021.655528] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The pandemic distribution of SARS-CoV-2 together with its particular feature of inactivating the interferon-based endogenous response and accordingly, impairing the innate immunity, has become a challenge for the international scientific and medical community. Fortunately, recombinant interferons as therapeutic products have accumulated a long history of beneficial therapeutic results in the treatment of chronic and acute viral diseases and also in the therapy of some types of cancer. One of the first antiviral treatments during the onset of COVID-19 in China was based on the use of recombinant interferon alfa 2b, so many clinicians began to use it, not only as therapy but also as a prophylactic approach, mainly in medical personnel. At the same time, basic research on interferons provided new insights that have contributed to a much better understanding of how treatment with interferons, initially considered as antivirals, actually has a much broader pharmacological scope. In this review, we briefly describe interferons, how they are induced in the event of a viral infection, and how they elicit signaling after contact with their specific receptor on target cells. Additionally, some of the genes stimulated by type I interferons are described, as well as the way interferon-mediated signaling is torpedoed by coronaviruses and in particular by SARS-CoV-2. Angiotensin converting enzyme 2 (ACE2) gene is one of the interferon response genes. Although for many scientists this fact could result in an adverse effect of interferon treatment in COVID-19 patients, ACE2 expression contributes to the balance of the renin-angiotensin system, which is greatly affected by SARS-CoV-2 in its internalization into the cell. This manuscript also includes the relationship between type I interferons and neutrophils, NETosis, and interleukin 17. Finally, under the subtitle of "take-home messages", we discuss the rationale behind a timely treatment with interferons in the context of COVID-19 is emphasized.
Collapse
Affiliation(s)
- Diana Garcia-del-Barco
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Daniela Risco-Acevedo
- Neuroprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | - Jorge Berlanga-Acosta
- Cytoprotection Project, Center for Genetic Engineering and Biotechnology, Pharmaceutical Division, Havana, Cuba
| | | | - Gerardo Guillén-Nieto
- Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
103
|
Khan S, Shafiei MS, Longoria C, Schoggins J, Savani RC, Zaki H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33758854 PMCID: PMC7987013 DOI: 10.1101/2021.03.16.435700] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pathogenesis of COVID-19 is associated with a hyperinflammatory response; however, the precise mechanism of SARS-CoV-2-induced inflammation is poorly understood. Here we investigated direct inflammatory functions of major structural proteins of SARS-CoV-2. We observed that spike (S) protein potently induces inflammatory cytokines and chemokines including IL-6, IL-1β, TNFα, CXCL1, CXCL2, and CCL2, but not IFNs in human and mouse macrophages. No such inflammatory response was observed in response to membrane (M), envelope (E), and neucleocapsid (N) proteins. When stimulated with extracellular S protein, human lung epithelial cells A549 also produce inflammatory cytokines and chemokines. Interestingly, epithelial cells expressing S protein intracellularly are non-inflammatory, but elicit an inflammatory response in macrophages when co-cultured. Biochemical studies revealed that S protein triggers inflammation via activation of the NF-κB pathway in a MyD88-dependent manner. Further, such an activation of the NF-κB pathway is abrogated in Tlr2-deficient macrophages. Consistently, administration of S protein induces IL-6, TNF-α, and IL-1β in wild-type, but not Tlr2-deficient mice. Together these data reveal a mechanism for the cytokine storm during SARS-CoV-2 infection and suggest that TLR2 could be a potential therapeutic target for COVID-19.
Collapse
|
104
|
Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Curr Drug Targets 2021; 22:254-281. [PMID: 33081670 DOI: 10.2174/1389450121666201020154033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) is becoming the major health issue in recent human history with thousands of deaths and millions of cases worldwide. Newer research and old experience with other coronaviruses highlighted a probable underlying mechanism of disturbance of the renin-angiotensin system (RAS) that is associated with the intrinsic effects of SARS-CoV-2 infection. OBJECTIVE In this review, we aimed to describe the intimate connections between the RAS components, the immune system and COVID-19 pathophysiology. METHODS This non-systematic review article summarizes recent evidence on the relationship between COVID-19 and the RAS. RESULTS Several studies have indicated that the downregulation of membrane-bound ACE2 may exert a key role for the impairment of immune functions and for COVID-19 patients' outcomes. The downregulation may occur by distinct mechanisms, particularly: (1) the shedding process induced by the SARS-CoV-2 fusion pathway, which reduces the amount of membrane-bound ACE2, stimulating more shedding by the high levels of Angiotensin II; (2) the endocytosis of ACE2 receptor with the virus itself and (3) by the interferon inhibition caused by SARS-CoV-2 effects on the immune system, which leads to a reduction of ACE2 receptor expression. CONCLUSION Recent research provides evidence of a reduction of the components of the alternative RAS axis, including ACE2 and Angiotensin-(1-7). In contrast, increased levels of Angiotensin II can activate the AT1 receptor in several organs. Consequently, increased inflammation, thrombosis and angiogenesis occur in patients infected with SARS-COV-2. Attention should be paid to the interactions of the RAS and COVID-19, mainly in the context of novel vaccines and proposed medications.
Collapse
Affiliation(s)
- Cristina Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Nery
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ludimila Martins
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Jabour
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raphael Dias
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
105
|
Abstract
Background The COVID-19 agent, SARS-CoV-2, is conspecific with SARS-CoV, the causal agent of the severe acute respiratory syndrome epidemic in 2002–03. Although the viruses share a completely homologous repertoire of proteins and use the same cellular entry receptor, their transmission efficiencies and pathogenetic traits differ. We aimed to compare interferon antagonism by SARS-CoV and SARS-CoV-2. Methods For this functional study, we infected Vero E6 and Calu-3 cells with strains of SARS-CoV and SARS-CoV-2. We studied differences in cell line-specific replication (Vero E6 vs Calu-3 cells) and analysed these differences in relation to TMPRSS2-dependent cell entry based on inhibition with the drug camostat mesilate. We evaluated viral sensitivity towards type I interferon treatment and assessed cytokine induction and type I interferon signalling in the host cells by RT-PCR and analysis of transcription factor activation and nuclear translocation. Based on reverse genetic engineering of SARS-CoV, we investigated the contribution of open reading frame 6 (ORF6) to the observed phenotypic differences in interferon signalling, because ORF6 encodes an interferon signalling antagonist. We did a luciferase-based interferon-stimulated response element promotor activation assay to evaluate the antagonistic capacity of SARS-CoV-2 wild-type ORF6 constructs and three mutants (Gln51Glu, Gln56Glu, or both) that represent amino acid substitutions between SARS-CoV and SARS-CoV-2 protein 6 in the carboxy-terminal domain. Findings Overall, replication was higher for SARS-CoV in Vero E6 cells and for SARS-CoV-2 in Calu-3 cells. SARS-CoV-2 was reliant on TMPRSS2, found only in Calu-3 cells, for more efficient entry. SARS-CoV-2 was more sensitive to interferon treatment, less efficient in suppressing cytokine induction via IRF3 nuclear translocation, and permissive of a higher level of induction of interferon-stimulated genes MX1 and ISG56. SARS-CoV-2 ORF6 expressed in the context of a fully replicating SARS-CoV backbone suppressed MX1 gene induction, but this suppression was less efficient than that by SARS-CoV ORF6. Mutagenesis showed that charged amino acids in residues 51 and 56 shift the phenotype towards more efficient interferon antagonism, as seen in SARS-CoV. Interpretation SARS-CoV-2 ORF6 interferes less efficiently with human interferon induction and interferon signalling than SARS-CoV ORF6. Because of the homology of the genes, onward selection for fitness could involve functional optimisation of interferon antagonism. Charged amino acids at positions 51 and 56 in ORF6 should be monitored for potential adaptive changes. Funding Bundesministerium für Bildung und Forschung, EU RECOVER project.
Collapse
|
106
|
Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 2021; 13:369. [PMID: 33652634 PMCID: PMC7996891 DOI: 10.3390/v13030369] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis. Emerging viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses like Zika and dengue, as well as highly pathogenic viruses like Ebola and Nipah, have the ability to directly use the ubiquitination process to enhance their viral-replication cycle, and evade immune responses. Some of these mechanisms are conserved among different virus families, especially early during virus entry, providing an opportunity to develop broad-spectrum antivirals. Here, we discuss the mechanisms used by emergent viruses to exploit the host ubiquitin system, with the main focus on the role of ubiquitin in enhancing virus replication.
Collapse
Affiliation(s)
- Karl M. Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| |
Collapse
|
107
|
Mohammed MEA. SARS-CoV-2 proteins: Are they useful as targets for COVID-19 drugs and vaccines? Curr Mol Med 2021; 22:50-66. [PMID: 33622224 DOI: 10.2174/1566524021666210223143243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
The proteins of coronavirus are classified to nonstructural, structural, and accessory. There are 16 nonstructural viral proteins beside their precursors (1a and 1ab polyproteins). The nonstructural proteins are named as nsp1 to nsp16 and they act as enzymes, coenzymes, and binding proteins to facilitate the replication, transcription, and translation of the virus. The structural proteins are bound to the RNA in the nucleocapsid (N- protein) or to the lipid bilayer membrane of the viral envelope. The lipid bilayer proteins include the membrane protein (M), envelope protein (E), and spike protein (S). Beside their role as structural proteins, they are essential for the host cells binding and invasion. The SARS-CoV-2 contains six accessory proteins which participates in the viral replication, assembly and virus- host interactions. The SARS-CoV-2 accessory proteins are orf3a, orf6, orf7a, orf7b, orf8, and orf10. The functions of the SARS-CoV-2 are not well known, while the functions of their corresponding proteins in SARS-CoV are either well known or poorly studied. Recently, the Oxford University and Pfizer and BioNTech made SARS-CoV-2 vaccines through targeting the spike protein gene. The US Food and Drug Administration (FDA) and the health authorities of the United Kingdom approved and started vaccination using the Pfizer and BioNTech mRNA vaccine. Also, The FDA of USA approved the treatment of COVID-19 using two monoclonal antibodies produced by Regeneron pharmaceuticals to target the spike protein. The SARS-CoV-2 proteins can be used for the diagnosis, as drug targets and in vaccination trials for COVID-19. For future COVID-19 research, more efforts should be done to elaborate the functions and structure of the SARS-CoV-2 proteins so as to use them as targets for COVID-19 drug and vaccines. Special attention should be drawn to extensive research on the SARS-CoV-2 nsp3, orf8, and orf10.
Collapse
|
108
|
Weglarz-Tomczak E, Tomczak JM, Talma M, Burda-Grabowska M, Giurg M, Brul S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci Rep 2021; 11:3640. [PMID: 33574416 PMCID: PMC7878891 DOI: 10.1038/s41598-021-83229-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient treatment against a COVID-19 disease, caused by the novel coronavirus SARS-CoV-2 (CoV2), remains a challenge. The papain-like protease (PLpro) from the human coronavirus is a protease that plays a critical role in virus replication. Moreover, CoV2 uses this enzyme to modulate the host’s immune system to its own benefit. Therefore, it represents a highly promising target for the development of antiviral drugs. We used Approximate Bayesian Computation tools, molecular modelling and enzyme activity studies to identify highly active inhibitors of the PLpro. We discovered organoselenium compounds, ebselen and its structural analogues, as a novel approach for inhibiting the activity of PLproCoV2. Furthermore, we identified, for the first time, inhibitors of PLproCoV2 showing potency in the nanomolar range. Moreover, we found a difference between PLpro from SARS and CoV2 that can be correlated with the diverse dynamics of their replication, and, putatively to disease progression.
Collapse
Affiliation(s)
- Ewelina Weglarz-Tomczak
- Molecular Biology and Microbial Food Safety Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jakub M Tomczak
- Computational Intelligence Group, Department of Computer Science, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Małgorzata Burda-Grabowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland.,Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Stanley Brul
- Molecular Biology and Microbial Food Safety Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
109
|
Quarleri J, Delpino MV. Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. Cytokine Growth Factor Rev 2021; 58:55-65. [PMID: 33608189 PMCID: PMC7871890 DOI: 10.1016/j.cytogfr.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is a recently identified coronavirus accountable for the current pandemic disease known as COVID-19. Different patterns of disease progression infer a diverse host immune response, with interferon (IFN) being pivotal. IFN-I and III are produced and released by virus-infected cells during the interplay with SARS-CoV-2, thus establishing an antiviral state in target cells. However, the efficacy of IFN and its role in the possible outcomes of the disease are not yet defined, as it is influenced both by factors inherent to the virus and to the host. The virus exhibits multiple strategies to counteract the innate immune response, including those shared by SARS-CoV and MERS-CoV and other novel ones. Inborn errors in the host may affect IFN-related effector proteins or decrease its levels in plasma upon neutralization by preexistent autoantibodies. This battle between the IFN response triggered upon SARS-CoV-2 infection, its magnitude and timing, and the efficacy of its antiviral tools in dispute against the viral evasion strategies together with the genetic factors of the host, generate a scenario whose fate contributes to defining the severity of COVID-19.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS). Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
110
|
Moustaqil M, Ollivier E, Chiu HP, Van Tol S, Rudolffi-Soto P, Stevens C, Bhumkar A, Hunter DJB, Freiberg AN, Jacques D, Lee B, Sierecki E, Gambin Y. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 2021; 10:178-195. [PMID: 33372854 PMCID: PMC7850364 DOI: 10.1080/22221751.2020.1870414] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of cytokines and inflammatory response observed in COVID-19 patients. We demonstrate that in the mouse NLRP12 protein, one of the recognition site is not cleaved in our in-vitro assay. We pushed this comparative alignment of IRF-3 and NLRP12 homologs and show that the lack or presence of cognate cleavage motifs in IRF-3 and NLRP12 could contribute to the presentation of disease in cats and tigers, for example. Our findings provide an explanatory framework for indepth studies into the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Mehdi Moustaqil
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Emma Ollivier
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Van Tol
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Paulina Rudolffi-Soto
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Christian Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akshay Bhumkar
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Dominic J B Hunter
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Alexander N Freiberg
- Department of Pathology, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - David Jacques
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| |
Collapse
|
111
|
Wu J, Shi Y, Pan X, Wu S, Hou R, Zhang Y, Zhong T, Tang H, Du W, Wang L, Wo J, Mu J, Qiu Y, Yang K, Zhang LK, Ye BC, Qi N. SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Rep 2021; 34:108761. [PMID: 33567255 PMCID: PMC7857071 DOI: 10.1016/j.celrep.2021.108761] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a current global health threat caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that SARS-CoV-2 elicits a dysregulated immune response and a delayed interferon (IFN) expression in patients, which contribute largely to the viral pathogenesis and development of COVID-19. However, underlying mechanisms remain to be elucidated. Here, we report the activation and repression of the innate immune response by SARS-CoV-2. We show that SARS-CoV-2 RNA activates the RIG-I-MAVS-dependent IFN signaling pathway. We further uncover that ORF9b immediately accumulates and antagonizes the antiviral type I IFN response during SARS-CoV-2 infection on primary human pulmonary alveolar epithelial cells. ORF9b targets the nuclear factor κB (NF-κB) essential modulator NEMO and interrupts its K63-linked polyubiquitination upon viral stimulation, thereby inhibiting the canonical IκB kinase alpha (IKKα)/β/γ-NF-κB signaling and subsequent IFN production. Our findings thus unveil the innate immunosuppression by ORF9b and provide insights into the host-virus interplay during the early stage of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuheng Shi
- Institutes of Biomedical Sciences, Fudan University, Shanghai 20032, China
| | - Xiaoyan Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China
| | - Shuang Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruixia Hou
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yong Zhang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tiansheng Zhong
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wei Du
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Luying Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jingfang Mu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China
| | - Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, China.
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
112
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
113
|
Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and in vitro validation of protease activity inhibition using an enzymatic inhibition assay. J Mol Graph Model 2021; 104:107851. [PMID: 33556646 PMCID: PMC7837617 DOI: 10.1016/j.jmgm.2021.107851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 virus is causing COVID-19, an ongoing pandemic, with extraordinary global health, social, and political implications. Currently, extensive research and development efforts are aimed at producing a safe and effective vaccine. In the interim, small molecules are being widely investigated for antiviral effects. With respect to viral replication, the papain-like (PLpro) and main proteases (Mpro), are critical for processing viral replicase polypeptides. Further, the PLpro possesses deubiquitinating activity affecting key signalling pathways, including inhibition of interferon and innate immune antagonism. Therefore, inhibition of PLpro activity with small molecules is an important research direction. Our aim was to focus on identification of potential inhibitors of the protease activity of SARS-CoV-2 PLpro. We investigated 300 small compounds derived predominantly from our OliveNet™ library (222 phenolics) and supplemented with synthetic and dietary compounds with reported antiviral activities. An initial docking screen, using the potent and selective noncovalent PLpro inhibitor, GRL-0617 as a control, enabled a selection of 30 compounds for further analyses. From further in silico analyses, including docking to scenes derived from a publicly available molecular dynamics simulation trajectory (100 μs PDB 6WX4; DESRES-ANTON-11441075), we identified lead compounds for further in vitro evaluation using an enzymatic inhibition assay measuring SARS-CoV-2 PLpro protease activity. Our findings indicate that hypericin possessed inhibition activity, and both rutin and cyanidin-3-O-glucoside resulted in a concentration-dependent inhibition of the PLpro, with activity in the micromolar range. Overall, hypericin, rutin, and cyanidin-3-O-glucoside can be considered lead compounds requiring further characterisation for potential antiviral effects in appropriate model systems.
Collapse
|
114
|
Mdkhana B, Saheb Sharif-Askari N, Ramakrishnan RK, Goel S, Hamid Q, Halwani R. Nucleic Acid-Sensing Pathways During SARS-CoV-2 Infection: Expectations versus Reality. J Inflamm Res 2021; 14:199-216. [PMID: 33531826 PMCID: PMC7847386 DOI: 10.2147/jir.s277716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people and crippled economies worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for this pandemic has triggered avid research on its pathobiology to better understand the pathophysiology of COVID-19. In the absence of approved antiviral therapeutic strategies or vaccine platforms capable of effectively targeting this global threat, the hunt for effective therapeutics has led to many candidates being actively evaluated for their efficacy in controlling or preventing COVID-19. In this review, we gathered current evidence on the innate nucleic acid-sensing pathways expected to be elicited by SARS-CoV-2 and the immune evasion mechanisms they have developed to promote viral replication and infection. Within the nucleic acid-sensing pathways, SARS-CoV-2 infection and evasion mechanisms trigger the activation of NOD-signaling and NLRP3 pathways leading to the production of inflammatory cytokines, IL-1β and IL-6, while muting or blocking cGAS-STING and interferon type I and III pathways, resulting in decreased production of antiviral interferons and delayed innate response. Therefore, blocking the inflammatory arm and boosting the interferon production arm of nucleic acid-sensing pathways could facilitate early control of viral replication and dissemination, prevent disease progression, and cytokine storm development. We also discuss the rationale behind therapeutic modalities targeting these sensing pathways and their implications in the treatment of COVID-19.
Collapse
Affiliation(s)
- Bushra Mdkhana
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Swati Goel
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
115
|
Su H, Zhou F, Huang Z, Ma X, Natarajan K, Zhang M, Huang Y, Su H. Molecular Insights into Small-Molecule Drug Discovery for SARS-CoV-2. Angew Chem Int Ed Engl 2021; 60:9789-9802. [PMID: 32729180 DOI: 10.1002/anie.202008835] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Indexed: 01/03/2023]
Abstract
The mainstream approach to antiviral drugs against COVID-19 is to focus on key stages of the SARS-CoV-2 life cycle. The vast majority of candidates under investigation are repurposed from agents of other indications. Understanding protein-inhibitor interactions at the molecular scale will provide crucial insights for drug discovery to stop this pandemic. In this article, we summarize and analyze the most recent structural data on several viral targets in the presence of promising inhibitors for COVID-19 in the context of the perspective of modes of action (MOA) to unravel insightful mechanistic features with atomistic resolution. The targets include spike glycoprotein and various host proteases mediating the entry of the virus into the cells, viral chymotrypsin- and papain-like proteases, and RNA-dependent RNA polymerase. The main purpose of this review is to present detailed MOA analysis to inspire fresh ideas for both de novo drug design and optimization of known scaffolds to combat COVID-19.
Collapse
Affiliation(s)
- Hailei Su
- Bengbu Hospital of Traditional Chinese Medicine, 4339 Huai-shang Road, Bengbu, Anhui, 233080, P. R. China
| | - Feng Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ziru Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaohua Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | - Minchuan Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, Singapore
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Haibin Su
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
116
|
Su H, Zhou F, Huang Z, Ma X, Natarajan K, Zhang M, Huang Y, Su H. Molecular Insights into Small‐Molecule Drug Discovery for SARS‐CoV‐2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hailei Su
- Bengbu Hospital of Traditional Chinese Medicine 4339 Huai-shang Road Bengbu Anhui 233080 P. R. China
| | - Feng Zhou
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Ziru Huang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Xiaohua Ma
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | | | - Minchuan Zhang
- Lee Kong Chian School of Medicine Nanyang Technological University 11 Mandalay Road Singapore Singapore
| | - Yong Huang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Haibin Su
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) The Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| |
Collapse
|
117
|
Bakadia BM, He F, Souho T, Lamboni L, Ullah MW, Boni BO, Ahmed AAQ, Mukole BM, Yang G. Prevention and treatment of COVID-19: Focus on interferons, chloroquine/hydroxychloroquine, azithromycin, and vaccine. Biomed Pharmacother 2021; 133:111008. [PMID: 33227708 PMCID: PMC7831445 DOI: 10.1016/j.biopha.2020.111008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn the attention of researchers and clinicians from several disciplines and sectors who are trying to find durable solutions both at preventive and treatment levels. To date, there is no approved effective treatment or vaccine available to control the coronavirus disease-2019 (COVID-19). The preliminary in vitro studies on viral infection models showed potential antiviral activities of type I and III interferons (IFNs), chloroquine (CQ)/hydroxychloroquine (HCQ), and azithromycin (AZM); however, the clinical studies on COVID-19 patients treated with CQ/HCQ and AZM led to controversies in different regions due to their adverse side effects, as well as their combined treatment could prolong the QT interval. Interestingly, the treatment with type I IFNs showed encouraging results. Moreover, the different preliminary reports of COVID-19 candidate vaccines showcase promising results by inducing the production of a high level of neutralizing antibodies (NAbs) and specific T cell-mediated immune response in almost all participants. The present review aims to summarize and analyze the recent progress evidence concerning the use of IFNs, CQ/HCQ, and AZM for the treatment of COVID-19. The available data on immunization options to prevent the COVID-19 are also analyzed with the aim to present the promising options which could be investigated in future for sustainable control of the pandemic.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 43800, PR China.
| | - Tiatou Souho
- Laboratoire de Biochimie des Aliments et Nutrition, Faculté des Sciences et Techniques, Université de Kara, Kara, Togo
| | - Lallepak Lamboni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Laboratoire de Biologie Moléculaire et Virologie, Institut National d'Hygiène-Togo, 26 Rue Nangbéto, Quartier Administratif- PO. Box 1396, Lomé, Togo
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Biaou Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Biampata Mutu Mukole
- Institut National de Recherche Biomédicale, Ministère de la Santé, Democratic Republic of the Congo
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
118
|
Elseginy SA, Anwar MM. In silico analysis of SARS-CoV-2 papain-like protease potential inhibitors. RSC Adv 2021; 11:38616-38631. [PMID: 35493238 PMCID: PMC9044241 DOI: 10.1039/d1ra07845c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The emergent outbreak caused by severe acute respiratory syndrome coronavirus 2 continues spreading and causing huge social and economic disruption. Papain-like protease (PLpro) has a crucial role in the cleavage of viral polyproteins, and disruption of host responses. PLpro is considered an important goal for the development of SARS-CoV-2 inhibitors. ZINC101291108 (lead 1) and ZINC16449029 (lead 2) were identified as potent SARS-CoV-2 PLpro inhibitors with IC50 values of 0.085 μM and 0.063 μM, respectively. Molecular dynamics simulations (MD) were carried out for lead 1, 2 and several reported SARS-CoV-2 inhibitors. Analysis results of the simulations confirmed the stability of both compounds and showed that they adopted two confirmations along the simulation period. The per-residue decomposition results revealed that the key residues involved in inhibitor binding were E167, P247, P248, Y264, Y268 and Q269. H-bond analyses showed H-bonds with G266 and N267 and salt bridges with G209 and Y273, which are essential for strengthening the substrate-binding pocket. Both inhibitors showed hydrophobic interactions with the S4 site and BL2 loop residues. The RMSD of the BL2 loop with the two inhibitors was investigated, and the results showed that the Y268 and Q269 BL2 loop residues moved outward to accommodate the large size of lead 2. The van der Waals interaction was the main energy contribution that stabilized lead 2, while van der Waals and electrostatic interactions were the main energy contributions stabilizing lead 1. Rational design strategies were suggested to replace the 2-(2-hydroxybenzylidene) hydrazine moiety with naphthalene or nitrobenzene at the P4 position of lead 2 and introduce polar substituents as aniline and benzoate groups at position P1 to enhance hydrophobic interactions and H-bonds, respectively. The emergent outbreak caused by severe acute respiratory syndrome coronavirus 2 continues spreading and causing huge social and economic disruption.![]()
Collapse
Affiliation(s)
- Samia A. Elseginy
- Green Chemistry Department, Chemical Industries Research Division, National Research Centre, P.O. Box 12622, Egypt
| | - Manal M. Anwar
- Therapeutical Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
119
|
Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The Functional Deubiquitinating Enzymes in Control of Innate Antiviral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002484. [PMID: 33511009 PMCID: PMC7816709 DOI: 10.1002/advs.202002484] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Innate antiviral immunity is the first line of host defense against invading viral pathogens. Immunity activation primarily relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Viral proteins or nucleic acids mainly engage three classes of PRRs: Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors initiate a series of signaling cascades that lead to the production of proinflammatory cytokines and type I interferon (IFN-I) in response to viral infection. This system requires precise regulation to avoid aberrant activation. Emerging evidence has unveiled the crucial roles that the ubiquitin system, especially deubiquitinating enzymes (DUBs), play in controlling immune responses. In this review, an overview of the most current findings on the function of DUBs in the innate antiviral immune pathways is provided. Insights into the role of viral DUBs in counteracting host immune responses are also provided. Furthermore, the prospects and challenges of utilizing DUBs as therapeutic targets for infectious diseases are discussed.
Collapse
Affiliation(s)
- Zhi Zong
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Zhengkui Zhang
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
| | - Long Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
120
|
Littler DR, MacLachlan BJ, Watson GM, Vivian JP, Gully BS. A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Biochem Soc Trans 2020; 48:2625-2641. [PMID: 33258925 PMCID: PMC7752054 DOI: 10.1042/bst20200396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023]
Abstract
The race to identify a successful treatment for COVID19 will be defined by fundamental research into the replication cycle of the SARS-CoV-2 virus. This has identified five distinct stages from which numerous vaccination and clinical trials have emerged alongside an innumerable number of drug discovery studies currently in development for disease intervention. Informing every step of the viral replication cycle has been an unprecedented 'call-to-arms' by the global structural biology community. Of the 20 main SARS-CoV-2 proteins, 13 have been resolved structurally for SARS-CoV-2 with most having a related SARS-CoV and MERS-CoV structural homologue totalling some 300 structures currently available in public repositories. Herein, we review the contribution of structural studies to our understanding of the virus and their role in structure-based development of therapeutics.
Collapse
Affiliation(s)
- Dene R. Littler
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Bruce J. MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Gabrielle M. Watson
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Julian P. Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Benjamin S. Gully
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| |
Collapse
|
121
|
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol 2020; 41:1100-1115. [PMID: 33132005 PMCID: PMC7556779 DOI: 10.1016/j.it.2020.10.004] [Citation(s) in RCA: 693] [Impact Index Per Article: 173.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) marks the third highly pathogenic coronavirus to spill over into the human population. SARS-CoV-2 is highly transmissible with a broad tissue tropism that is likely perpetuating the pandemic. However, important questions remain regarding its transmissibility and pathogenesis. In this review, we summarize current SARS-CoV-2 research, with an emphasis on transmission, tissue tropism, viral pathogenesis, and immune antagonism. We further present advances in animal models that are important for understanding the pathogenesis of SARS-CoV-2, vaccine development, and therapeutic testing. When necessary, comparisons are made from studies with SARS to provide further perspectives on coronavirus infectious disease 2019 (COVID-19), as well as draw inferences for future investigations.
Collapse
Affiliation(s)
- Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
122
|
Miller K, McGrath ME, Hu Z, Ariannejad S, Weston S, Frieman M, Jackson WT. Coronavirus interactions with the cellular autophagy machinery. Autophagy 2020; 16:2131-2139. [PMID: 32964796 PMCID: PMC7755319 DOI: 10.1080/15548627.2020.1817280] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is the most recent example of an emergent coronavirus that poses a significant threat to human health. Virus-host interactions play a major role in the viral life cycle and disease pathogenesis, and cellular pathways such as macroautophagy/autophagy prove to be either detrimental or beneficial to viral replication and maturation. Here, we describe the literature over the past twenty years describing autophagy-coronavirus interactions. There is evidence that many coronaviruses induce autophagy, although some of these viruses halt the progression of the pathway prior to autophagic degradation. In contrast, other coronaviruses usurp components of the autophagy pathway in a non-canonical fashion. Cataloging these virus-host interactions is crucial for understanding disease pathogenesis, especially with the global challenge of SARS-CoV-2 and COVID-19. With the recognition of autophagy inhibitors, including the controversial drug chloroquine, as possible treatments for COVID-19, understanding how autophagy affects the virus will be critical going forward. Abbreviations: 3-MA: 3-methyladenine (autophagy inhibitor); AKT/protein kinase B: AKT serine/threonine kinase; ATG: autophagy related; ATPase: adenosine triphosphatase; BMM: bone marrow macrophage; CGAS: cyclic GMP-AMP synthase; CHO: Chinese hamster ovary/cell line; CoV: coronaviruses; COVID-19: Coronavirus disease 2019; DMV: double-membrane vesicle; EAV: equine arteritis virus; EDEM1: ER degradation enhancing alpha-mannosidase like protein 1; ER: endoplasmic reticulum; ERAD: ER-associated degradation; GFP: green fluorescent protein; HCoV: human coronavirus; HIV: human immunodeficiency virus; HSV: herpes simplex virus; IBV: infectious bronchitis virus; IFN: interferon; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCoV: mouse coronavirus; MERS-CoV: Middle East respiratory syndrome coronavirus; MHV: mouse hepatitis virus; NBR1: NBR1 autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2 (autophagy receptor that directs cargo to phagophores); nsp: non-structural protein; OS9: OS9 endoplasmic reticulum lectin; PEDV: porcine epidemic diarrhea virus; PtdIns3K: class III phosphatidylinositol 3-kinase; PLP: papain-like protease; pMEF: primary mouse embryonic fibroblasts; SARS-CoV: severe acute respiratory syndrome coronavirus; SKP2: S-phase kinase associated protein 2; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; ULK1: unc-51 like autophagy activating kinase 1; Vps: vacuolar protein sorting.
Collapse
Affiliation(s)
- Katelyn Miller
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marisa E. McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhiqiang Hu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sohha Ariannejad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
123
|
Sohag AAM, Hannan MA, Rahman S, Hossain M, Hasan M, Khan MK, Khatun A, Dash R, Uddin MJ. Revisiting potential druggable targets against SARS-CoV-2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Dev Res 2020; 81:919-941. [PMID: 32632960 PMCID: PMC7361641 DOI: 10.1002/ddr.21709] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the most contagious diseases in human history that has already affected millions of lives worldwide. To date, no vaccines or effective therapeutics have been discovered yet that may successfully treat COVID-19 patients or contain the transmission of the virus. Scientific communities across the globe responded rapidly and have been working relentlessly to develop drugs and vaccines, which may require considerable time. In this uncertainty, repurposing the existing antiviral drugs could be the best strategy to speed up the discovery of effective therapeutics against SARS-CoV-2. Moreover, drug repurposing may leave some vital information on druggable targets that could be capitalized in target-based drug discovery. Information on possible drug targets and the progress on therapeutic and vaccine development also needs to be updated. In this review, we revisited the druggable targets that may hold promise in the development of the anti-SARS-CoV-2 agent. Progresses on the development of potential therapeutics and vaccines that are under the preclinical studies and clinical trials have been highlighted. We anticipate that this review will provide valuable information that would help to accelerate the development of therapeutics and vaccines against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural UniversityMymensingh2202Bangladesh
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural UniversityMymensingh2202Bangladesh
- Department of AnatomyDongguk University College of MedicineGyeongju38066South Korea
- ABEx Bio‐Research CenterEast Azampur, DhakaBangladesh
| | - Sadaqur Rahman
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhetBangladesh
| | - Motaher Hossain
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial BiotechnologySylhet Agricultural UniversitySylhetBangladesh
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhetBangladesh
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Amena Khatun
- Northern International Medical College HospitalDhakaBangladesh
| | - Raju Dash
- Department of AnatomyDongguk University College of MedicineGyeongju38066South Korea
| | - Md Jamal Uddin
- ABEx Bio‐Research CenterEast Azampur, DhakaBangladesh
- Graduate School of Pharmaceutical Sciences, College of PharmacyEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
124
|
Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020; 11:588409. [PMID: 33335518 PMCID: PMC7736111 DOI: 10.3389/fmicb.2020.588409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Hyperactivation of the host immune system during infection by SARS-CoV-2 is the leading cause of death in COVID-19 patients. It is also evident that patients who develop mild/moderate symptoms and successfully recover display functional and well-regulated immune response. Whereas a delayed initial interferon response is associated with severe disease outcome and can be the tipping point towards immunopathological deterioration, often preceding death in COVID-19 patients. Further, adaptive immune response during COVID-19 is heterogeneous and poorly understood. At the same time, some studies suggest activated T and B cell response in severe and critically ill patients and the presence of SARS-CoV2-specific antibodies. Thus, understanding this problem and the underlying molecular pathways implicated in host immune function/dysfunction is imperative to devise effective therapeutic interventions. In this comprehensive review, we discuss the emerging immunopathological determinants and the mechanism of virus evasion by the host cell immune system. Using the knowledge gained from previous respiratory viruses and the emerging clinical and molecular findings on SARS-CoV-2, we have tried to provide a holistic understanding of the host innate and adaptive immune response that may determine disease outcome. Considering the critical role of the adaptive immune system during the viral clearance, we have presented the molecular insights of the plausible mechanisms involved in impaired T cell function/dysfunction during various stages of COVID-19.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Rituparna Chaudhuri
- Department of Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Haryana, India
| | - Mohan C. Joshi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
125
|
Choudhry N, Zhao X, Xu D, Zanin M, Chen W, Yang Z, Chen J. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Med Chem 2020; 63:13205-13227. [PMID: 32845145 PMCID: PMC7489051 DOI: 10.1021/acs.jmedchem.0c00626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 20 million people infected worldwide with an average mortality rate of 3.6%. This virus poses major challenges to public health, as it not only is highly contagious but also can be transmitted by asymptomatic infected individuals. COVID-19 is clinically difficult to manage due to a lack of specific antiviral drugs or vaccines. In this article, Chinese therapy strategies for treating COVID-19 patients, including current applications of traditional Chinese medicine (TCM), are comprehensively reviewed. Furthermore, 72 small molecules from natural products and TCM with reported antiviral activity against human coronaviruses (CoVs) are identified from published literature, and their potential applications in combating SARS-CoV-2 are discussed. Among these, the clinical efficacies of some accessible drugs such as remdesivir (RDV) and favipiravir (FPV) for COVID-19 are emphatically summarized. We hope this review provides a foundation for managing the worsening pandemic and developing antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Namrta Choudhry
- Guangdong Provincial Key Laboratory of
Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong
Laboratory for Lingnan Modern Agriculture, College of Veterinary
Medicine, South China Agricultural
University, Guangzhou 510642,
China
| | - Xin Zhao
- Guangdong Institute of
Analysis (China National Analytical Center,
Guangzhou), Guangzhou 510070,
China
| | - Dan Xu
- Guangdong Provincial Key Laboratory of
Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong
Laboratory for Lingnan Modern Agriculture, College of Veterinary
Medicine, South China Agricultural
University, Guangzhou 510642,
China
| | - Mark Zanin
- State Key Laboratory of Respiratory
Disease, National Clinical Research Center for Respiratory Disease,
Guangzhou Institute of Respiratory Health, First
Affiliated Hospital of Guangzhou Medical
University, Guangzhou 510120,
China
- School of Public Health,
The University of Hong Kong, 7
Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Weisan Chen
- Department of Biochemistry and
Genetics, La Trobe Institute for Molecular Science, La
Trobe University, Melbourne, Victoria 3086,
Australia
| | - Zifeng Yang
- State Key Laboratory of Respiratory
Disease, National Clinical Research Center for Respiratory Disease,
Guangzhou Institute of Respiratory Health, First
Affiliated Hospital of Guangzhou Medical
University, Guangzhou 510120,
China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of
Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong
Laboratory for Lingnan Modern Agriculture, College of Veterinary
Medicine, South China Agricultural
University, Guangzhou 510642,
China
| |
Collapse
|
126
|
Mazewski C, Perez RE, Fish EN, Platanias LC. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front Immunol 2020; 11:606456. [PMID: 33329603 PMCID: PMC7719805 DOI: 10.3389/fimmu.2020.606456] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
127
|
Shin D, Bhattacharya A, Cheng YL, Alonso MC, Mehdipour AR, van der Heden van Noort GJ, Ovaa H, Hummer G, Dikic I. Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. eLife 2020; 9:58277. [PMID: 33185526 PMCID: PMC7690952 DOI: 10.7554/elife.58277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Legionella pneumophila causes a severe pneumonia known as Legionnaires' disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1'), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host-pathogen interactions.
Collapse
Affiliation(s)
- Donghyuk Shin
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany.,Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Anshu Bhattacharya
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Yi-Lin Cheng
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Marta Campos Alonso
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, Netherlands
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany.,Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
128
|
Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020; 63:12359-12386. [PMID: 32511912 PMCID: PMC7323060 DOI: 10.1021/acs.jmedchem.0c00606] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Currently, humans are immersed in a pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which threatens public health worldwide. To date, no drug or vaccine has been approved to treat the severe disease caused by this coronavirus, COVID-19. In this paper, we will focus on the main virus-based and host-based targets that can guide efforts in medicinal chemistry to discover new drugs for this devastating disease. In principle, all CoV enzymes and proteins involved in viral replication and the control of host cellular machineries are potentially druggable targets in the search for therapeutic options for SARS-CoV-2. This Perspective provides an overview of the main targets from a structural point of view, together with reported therapeutic compounds with activity against SARS-CoV-2 and/or other CoVs. Also, the role of innate immune response to coronavirus infection and the related therapeutic options will be presented.
Collapse
Affiliation(s)
- Carmen Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Tiziana Ginex
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Inés Maestro
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Lucía Barrado-Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Jesús Urquiza
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas,
Universidad Autónoma de Chile,
Llano Subercaseaux 2801- piso 6, 7500912 Santiago,
Chile
| | - Covadonga Alonso
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - Nuria E. Campillo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
129
|
Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I, Terenzi A, Grandemange S, Barone G, Marazzi M, Monari A. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. J Proteome Res 2020; 19:4291-4315. [PMID: 33119313 PMCID: PMC7640986 DOI: 10.1021/acs.jproteome.0c00779] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Indexed: 01/18/2023]
Abstract
The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of key viral processes. In this Review, we focus on how in silico studies have contributed to the understanding of the SARS-CoV-2 infection mechanism and the proposal of novel and original agents to inhibit the viral key functioning. This Review deals with the SARS-CoV-2 spike protein, including the mode of action that this structural protein uses to entry human cells, as well as with nonstructural viral proteins, focusing the attention on the most studied proteases and also proposing alternative mechanisms involving some of its domains, such as the SARS unique domain. We demonstrate that molecular modeling and simulation represent an effective approach to gather information on key biological processes and thus guide rational molecular design strategies.
Collapse
Affiliation(s)
- Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| | - Cécilia Hognon
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Tom Miclot
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Cristina García-Iriepa
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Isabel Iriepa
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
- Department
of Organic and Inorganic Chemistry, Universidad
de Alcalá, Ctra.
Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
| | - Alessio Terenzi
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | | | - Giampaolo Barone
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Marco Marazzi
- Department
of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona, Km 33,600, 28871 Alcalá de Henares, Madrid, Spain
- Chemical
Research Institute “Andrés M. del Río”
(IQAR), Universidad de Alcalá, 28871 Alcalá de
Henares, Madrid, Spain
| | - Antonio Monari
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
| |
Collapse
|
130
|
Kirtipal N, Bharadwaj S, Kang SG. From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104502. [PMID: 32798769 PMCID: PMC7425554 DOI: 10.1016/j.meegid.2020.104502] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023]
Abstract
Human Coronaviruses (HCoV), periodically emerging across the world, are potential threat to humans such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) - diseases termed as COVID-19. Current SARS-CoV-2 outbreak have fueled ongoing efforts to exploit various viral target proteins for therapy, but strategies aimed at blocking the viral proteins as in drug and vaccine development have largely failed. In fact, evidence has now shown that coronaviruses undergoes rapid recombination to generate new strains of altered virulence; additionally, escaped the host antiviral defense system and target humoral immune system which further results in severe deterioration of the body such as by cytokine storm. This demands the understanding of phenotypic and genotypic classification, and pathogenesis of SARS-CoV-2 for the production of potential therapy. In lack of clear clinical evidences for the pathogenesis of COVID-19, comparative analysis of previous pandemic HCoVs associated immunological responses can provide insights into COVID-19 pathogenesis. In this review, we summarize the possible origin and transmission mode of CoVs and the current understanding on the viral genome integrity of known pandemic virus against SARS-CoV-2. We also consider the host immune response and viral evasion based on available clinical evidences which would be helpful to remodel COVID-19 pathogenesis; and hence, development of therapeutics against broad spectrum of coronaviruses.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Dhalwala, Rishikesh, Uttarakhand, India
| | - Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
131
|
Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, Schulz L, Widera M, Mehdipour AR, Tascher G, Geurink PP, Wilhelm A, van der Heden van Noort GJ, Ovaa H, Müller S, Knobeloch KP, Rajalingam K, Schulman BA, Cinatl J, Hummer G, Ciesek S, Dikic I. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020; 587:657-662. [PMID: 32726803 PMCID: PMC7116779 DOI: 10.1038/s41586-020-2601-5] [Citation(s) in RCA: 729] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023]
Abstract
The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3-5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.
Collapse
Affiliation(s)
- Donghyuk Shin
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Rukmini Mukherjee
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Diana Grewe
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany
| | - Kheewoong Baek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anshu Bhattacharya
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Laura Schulz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Marek Widera
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ahmad Reza Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Paul P Geurink
- Oncode Institute and Department of Chemical Immunology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alexander Wilhelm
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt, Germany
| | | | - Huib Ovaa
- Oncode Institute and Department of Chemical Immunology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Sandra Ciesek
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Max Planck Institute of Biophysics, Frankfurt, Germany.
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt, Germany.
| |
Collapse
|
132
|
Pišlar A, Mitrović A, Sabotič J, Pečar Fonović U, Perišić Nanut M, Jakoš T, Senjor E, Kos J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog 2020; 16:e1009013. [PMID: 33137165 PMCID: PMC7605623 DOI: 10.1371/journal.ppat.1009013] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the last 2 decades, several coronaviruses (CoVs) have crossed the species barrier into humans, causing highly prevalent and severe respiratory diseases, often with fatal outcomes. CoVs are a large group of enveloped, single-stranded, positive-sense RNA viruses, which encode large replicase polyproteins that are processed by viral peptidases to generate the nonstructural proteins (Nsps) that mediate viral RNA synthesis. Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets. Furthermore, CoVs utilize the activation of their envelope spike glycoproteins by host cell peptidases to gain entry into cells. CoVs have evolved multiple strategies for spike protein activation, including the utilization of lysosomal cysteine cathepsins. In this review, viral and host peptidases involved in CoV cell entry and replication are discussed in depth, with an emphasis on papain-like cysteine cathepsins. Furthermore, important findings on cysteine peptidase inhibitors with regard to virus attenuation are highlighted as well as the potential of such inhibitors for future treatment strategies for CoV-related diseases.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Urša Pečar Fonović
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Tanja Jakoš
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Senjor
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
133
|
Burtscher J, Cappellano G, Omori A, Koshiba T, Millet GP. Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. iScience 2020; 23:101631. [PMID: 33015593 PMCID: PMC7524535 DOI: 10.1016/j.isci.2020.101631] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The pathophysiology, immune reaction, and differential vulnerability of different population groups and viral host immune system evasion strategies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not yet well understood. Here, we reviewed the multitude of known strategies of coronaviruses and other viruses to usurp mitochondria-associated mechanisms involved in the host innate immune response and put them in context with the current knowledge on SARS-CoV-2. We argue that maintenance of mitochondrial integrity is essential for adequate innate immune system responses and to blunt mitochondrial modulation by SARS-CoV-2. Mitochondrial health thus may determine differential vulnerabilities to SARS-CoV-2 infection rendering markers of mitochondrial functions promising potential biomarkers for SARS-CoV-2 infection risk and severity of outcome. Current knowledge gaps on our understanding of mitochondrial involvement in SARS-CoV-2 infection, lifestyle, and pharmacological strategies to improve mitochondrial integrity and potential reciprocal interactions with chronic and age-related diseases, e.g., Parkinson disease, are pointed out.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases- IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Akiko Omori
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, 814-0180 Fukuoka, Japan
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
134
|
Dong Y, Dai T, Liu J, Zhang L, Zhou F. Coronavirus in Continuous Flux: From SARS-CoV to SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001474. [PMID: 32837848 PMCID: PMC7361144 DOI: 10.1002/advs.202001474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Indexed: 05/07/2023]
Abstract
The world is currently experiencing a global pandemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes severe respiratory disease similar to SARS. Previous studies have suggested that SARS-CoV-2 shares 79% and 96% sequence identity to SARS-CoV and to bat coronavirus RaTG13, respectively, at the whole-genome level. Furthermore, a series of studies have shown that SARS-CoV-2 induces clusters of severe respiratory illnesses (i.e., pneumonia, acute lung injury, acute respiratory distress syndrome) resembling SARS-CoV. Moreover, the pathological syndrome may, in part, be caused by cytokine storms and dysregulated immune responses. Thus, in this work the recent literature surrounding the biology, clinical manifestations, and immunology of SARS-CoV-2 is summarized, with the aim of aiding prevention, diagnosis, and treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yetian Dong
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123P. R. China
- Life Sciences Institute and Innovation Center for Cell Signaling NetworkHangzhouZhejiang310058P. R. China
| | - Tong Dai
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Jun Liu
- Pinghu Food and Drug Inspection CenterPinghuZhejiang314200P. R. China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling NetworkHangzhouZhejiang310058P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
135
|
Henderson JA, Verma N, Harris RC, Liu R, Shen J. Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors. J Chem Phys 2020; 153:115101. [PMID: 32962355 PMCID: PMC7499820 DOI: 10.1063/5.0020458] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broad-spectrum antiviral drugs are urgently needed to stop the Coronavirus Disease 2019 pandemic and prevent future ones. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is related to the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which have caused the previous outbreaks. The papain-like protease (PLpro) is an attractive drug target due to its essential roles in the viral life cycle. As a cysteine protease, PLpro is rich in cysteines and histidines, and their protonation/deprotonation modulates catalysis and conformational plasticity. Here, we report the pKa calculations and assessment of the proton-coupled conformational dynamics of SARS-CoV-2 in comparison to SARS-CoV and MERS-CoV PLpros using the recently developed graphical processing unit (GPU)-accelerated implicit-solvent continuous constant pH molecular dynamics method with a new asynchronous replica-exchange scheme, which allows computation on a single GPU card. The calculated pKa's support the catalytic roles of the Cys-His-Asp triad. We also found that several residues can switch protonation states at physiological pH among which is C270/271 located on the flexible blocking loop 2 (BL2) of SARS-CoV-2/CoV PLpro. Simulations revealed that the BL2 can open and close depending on the protonation state of C271/270, consistent with the most recent crystal structure evidence. Interestingly, despite the lack of an analogous cysteine, BL2 in MERS-CoV PLpro is also very flexible, challenging a current hypothesis. These findings are supported by the all-atom fixed-charge simulations and provide a starting point for more detailed studies to assist the structure-based design of broad-spectrum inhibitors against CoV PLpros.
Collapse
Affiliation(s)
- Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Neha Verma
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Robert C Harris
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA
| |
Collapse
|
136
|
Li Z, Ma Z, Li Y, Gao S, Xiao S. Porcine epidemic diarrhea virus: Molecular mechanisms of attenuation and vaccines. Microb Pathog 2020; 149:104553. [PMID: 33011361 PMCID: PMC7527827 DOI: 10.1016/j.micpath.2020.104553] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/29/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes an emerging and re-emerging coronavirus disease characterized by vomiting, acute diarrhea, dehydration, and up to 100% mortality in neonatal suckling piglets, leading to huge economic losses in the global swine industry. Vaccination remains the most promising and effective way to prevent and control PEDV. However, effective vaccines for PEDV are still under development. Understanding the genomic structure and function of PEDV and the influence of the viral components on innate immunity is essential for developing effective vaccines. In the current review, we systematically describe the recent developments in vaccine against PEDV and the roles of structural proteins, non-structural proteins and accessory proteins of PEDV in affecting viral virulence and regulating innate immunity, which will provide insight into the rational design of effective and safe vaccines for PEDV or other coronaviruses. Advances in vaccines of PEDV, such as inactivated and attenuated live vaccines, subunit vaccines, and nucleic acid vaccines. The application of reverse genetics in the development of live attenuated PEDV vaccines. The roles of PEDV proteins in affecting viral virulence and regulating innate immunity.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Sheng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
137
|
Rut W, Lv Z, Zmudzinski M, Patchett S, Nayak D, Snipas SJ, El Oualid F, Huang TT, Bekes M, Drag M, Olsen SK. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti-COVID-19 drug design. SCIENCE ADVANCES 2020; 6:eabd4596. [PMID: 33067239 PMCID: PMC7567588 DOI: 10.1126/sciadv.abd4596] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 05/03/2023]
Abstract
Viral papain-like cysteine protease (PLpro, NSP3) is essential for SARS-CoV-2 replication and represents a promising target for the development of antiviral drugs. Here, we used a combinatorial substrate library and performed comprehensive activity profiling of SARS-CoV-2 PLpro. On the scaffold of the best hits from positional scanning, we designed optimal fluorogenic substrates and irreversible inhibitors with a high degree of selectivity for SARS PLpro. We determined crystal structures of two of these inhibitors in complex with SARS-CoV-2 PLpro that reveals their inhibitory mechanisms and provides a molecular basis for the observed substrate specificity profiles. Last, we demonstrate that SARS-CoV-2 PLpro harbors deISGylating activity similar to SARSCoV-1 PLpro but its ability to hydrolyze K48-linked Ub chains is diminished, which our sequence and structure analysis provides a basis for. Together, this work has revealed the molecular rules governing PLpro substrate specificity and provides a framework for development of inhibitors with potential therapeutic value or drug repurposing.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Zongyang Lv
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Stephanie Patchett
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Digant Nayak
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Scott J. Snipas
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Tony T. Huang
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shaun K. Olsen
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
138
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
139
|
Kouznetsova VL, Zhang A, Tatineni M, Miller MA, Tsigelny IF. Potential COVID-19 papain-like protease PL pro inhibitors: repurposing FDA-approved drugs. PeerJ 2020; 8:e9965. [PMID: 32999768 PMCID: PMC7505060 DOI: 10.7717/peerj.9965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Using the crystal structure of SARS-CoV-2 papain-like protease (PLpro) as a template, we developed a pharmacophore model of functional centers of the PLpro inhibitor-binding pocket. With this model, we conducted data mining of the conformational database of FDA-approved drugs. This search identified 147 compounds that can be potential inhibitors of SARS-CoV-2 PLpro. The conformations of these compounds underwent 3D fingerprint similarity clusterization, followed by docking of possible conformers to the binding pocket of PLpro. Docking of random compounds to the binding pocket of protease was also done for comparison. Free energies of the docking interaction for the selected compounds were lower than for random compounds. The drug list obtained includes inhibitors of HIV, hepatitis C, and cytomegalovirus (CMV), as well as a set of drugs that have demonstrated some activity in MERS, SARS-CoV, and SARS-CoV-2 therapy. We recommend testing of the selected compounds for treatment of COVID-19.
Collapse
Affiliation(s)
| | - Aidan Zhang
- REHS Program at San Diego Dupercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Mahidhar Tatineni
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Mark A. Miller
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Science, CureMatch Inc., San Diego, CA, USA
| |
Collapse
|
140
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
141
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
142
|
Ahmed-Hassan H, Sisson B, Shukla RK, Wijewantha Y, Funderburg NT, Li Z, Hayes D, Demberg T, Liyanage NPM. Innate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections. Front Immunol 2020; 11:1979. [PMID: 32973803 PMCID: PMC7468245 DOI: 10.3389/fimmu.2020.01979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The new pandemic virus SARS-CoV-2 emerged in China and spread around the world in <3 months, infecting millions of people, and causing countries to shut down public life and businesses. Nearly all nations were unprepared for this pandemic with healthcare systems stretched to their limits due to the lack of an effective vaccine and treatment. Infection with SARS-CoV-2 can lead to Coronavirus disease 2019 (COVID-19). COVID-19 is respiratory disease that can result in a cytokine storm with stark differences in morbidity and mortality between younger and older patient populations. Details regarding mechanisms of viral entry via the respiratory system and immune system correlates of protection or pathogenesis have not been fully elucidated. Here, we provide an overview of the innate immune responses in the lung to the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2. This review provides insight into key innate immune mechanisms that will aid in the development of therapeutics and preventive vaccines for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Brianna Sisson
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | - Namal P M Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
143
|
Perrin-Cocon L, Diaz O, Jacquemin C, Barthel V, Ogire E, Ramière C, André P, Lotteau V, Vidalain PO. The current landscape of coronavirus-host protein-protein interactions. J Transl Med 2020; 18:319. [PMID: 32811513 PMCID: PMC7432461 DOI: 10.1186/s12967-020-02480-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
In less than 20 years, three deadly coronaviruses, SARS-CoV, MERS-CoV and SARS-CoV-2, have emerged in human population causing hundreds to hundreds of thousands of deaths. Other coronaviruses are causing epizootic representing a significant threat for both domestic and wild animals. Members of this viral family have the longest genome of all RNA viruses, and express up to 29 proteins establishing complex interactions with the host proteome. Deciphering these interactions is essential to identify cellular pathways hijacked by these viruses to replicate and escape innate immunity. Virus-host interactions also provide key information to select targets for antiviral drug development. Here, we have manually curated the literature to assemble a unique dataset of 1311 coronavirus-host protein–protein interactions. Functional enrichment and network-based analyses showed coronavirus connections to RNA processing and translation, DNA damage and pathogen sensing, interferon production, and metabolic pathways. In particular, this global analysis pinpointed overlooked interactions with translation modulators (GIGYF2-EIF4E2), components of the nuclear pore, proteins involved in mitochondria homeostasis (PHB, PHB2, STOML2), and methylation pathways (MAT2A/B). Finally, interactome data provided a rational for the antiviral activity of some drugs inhibiting coronaviruses replication. Altogether, this work describing the current landscape of coronavirus-host interactions provides valuable hints for understanding the pathophysiology of coronavirus infections and developing effective antiviral therapies.
Collapse
Affiliation(s)
- Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Valentine Barthel
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Eva Ogire
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France.,UMR Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, CNRS, 9192 INSERM U1187, IRD 249, Plateforme de Recherche CYROI, Sainte Clotilde La Réunion, France
| | - Christophe Ramière
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France.,Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Patrice André
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007, Lyon, France.
| |
Collapse
|
144
|
Freitas BT, Durie IA, Murray J, Longo JE, Miller HC, Crich D, Hogan RJ, Tripp RA, Pegan SD. Characterization and Noncovalent Inhibition of the Deubiquitinase and deISGylase Activity of SARS-CoV-2 Papain-Like Protease. ACS Infect Dis 2020; 6:2099-2109. [PMID: 32428392 PMCID: PMC7274171 DOI: 10.1021/acsinfecdis.0c00168] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, is a novel human betacoronavirus that is rapidly spreading worldwide. The outbreak currently includes over 3.7 million cases and 260,000 fatalities. As a betacoronavirus, SARS-CoV-2 encodes for a papain-like protease (PLpro) that is likely responsible for cleavage of the coronavirus (CoV) viral polypeptide. The PLpro is also responsible for suppression of host innate immune responses by virtue of its ability to reverse host ubiquitination and ISGylation events. Here, the biochemical activity of SARS-CoV-2 PLpro against ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15) substrates is evaluated, revealing that the protease has a marked reduction in its ability to process K48 linked Ub substrates compared to its counterpart in SARS-CoV. Additionally, its substrate activity more closely mirrors that of the PLpro from the Middle East respiratory syndrome coronavirus and prefers ISG15s from certain species including humans. Additionally, naphthalene based PLpro inhibitors are shown to be effective at halting SARS-CoV-2 PLpro activity as well as SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Brendan T. Freitas
- Department of Pharmaceutical and
Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, Georgia 30602, United
States
| | - Ian A. Durie
- Department of Pharmaceutical and
Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, Georgia 30602, United
States
| | - Jackelyn Murray
- Department of Infectious Diseases,
College of Veterinary Medicine, University of
Georgia, Athens, Georgia 30602, United
States
| | - Jaron E. Longo
- Department of Pharmaceutical and
Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, Georgia 30602, United
States
| | - Holden C. Miller
- Department of Pharmaceutical and
Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, Georgia 30602, United
States
| | - David Crich
- Department of Pharmaceutical and
Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, Georgia 30602, United
States
- Department of Chemistry, Franklin
College, University of Georgia, Athens,
Georgia 30602, United States
| | - Robert Jeff Hogan
- Department of Infectious Diseases,
College of Veterinary Medicine, University of
Georgia, Athens, Georgia 30602, United
States
| | - Ralph A. Tripp
- Department of Infectious Diseases,
College of Veterinary Medicine, University of
Georgia, Athens, Georgia 30602, United
States
| | - Scott D. Pegan
- Department of Pharmaceutical and
Biomedical Sciences, College of Pharmacy, University of
Georgia, Athens, Georgia 30602, United
States
| |
Collapse
|
145
|
Yang D, Chu H, Hou Y, Chai Y, Shuai H, Lee ACY, Zhang X, Wang Y, Hu B, Huang X, Yuen TTT, Cai JP, Zhou J, Yuan S, Zhang AJ, Chan JFW, Yuen KY. Attenuated Interferon and Proinflammatory Response in SARS-CoV-2-Infected Human Dendritic Cells Is Associated With Viral Antagonism of STAT1 Phosphorylation. J Infect Dis 2020; 222:734-745. [PMID: 32563187 PMCID: PMC7337793 DOI: 10.1093/infdis/jiaa356] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023] Open
Abstract
Clinical manifestations of coronavirus disease 2019 (COVID-19) vary from asymptomatic virus shedding, nonspecific pharyngitis, to pneumonia with silent hypoxia and respiratory failure. Dendritic cells and macrophages are sentinel cells for innate and adaptive immunity that affect the pathogenesis of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). The interplay between SARS-CoV-2 and these cell types remains unknown. We investigated infection and host responses of monocyte-derived dendritic cells (moDCs) and macrophages (MDMs) infected by SARS-CoV-2. MoDCs and MDMs were permissive to SARS-CoV-2 infection and protein expression but did not support productive virus replication. Importantly, SARS-CoV-2 launched an attenuated interferon response in both cell types and triggered significant proinflammatory cytokine/chemokine expression in MDMs but not moDCs. Investigations suggested that this attenuated immune response to SARS-CoV-2 in moDCs was associated with viral antagonism of STAT1 phosphorylation. These findings may explain the mild and insidious course of COVID-19 until late deterioration.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Andrew Chak-Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
146
|
Zhang P, Yu L, Dong J, Liu Y, Zhang L, Liang P, Wang L, Chen B, Huang L, Song C. Cellular poly(C) binding protein 2 interacts with porcine epidemic diarrhea virus papain-like protease 1 and supports viral replication. Vet Microbiol 2020; 247:108793. [PMID: 32768236 PMCID: PMC7355335 DOI: 10.1016/j.vetmic.2020.108793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
PLP1 promotes PEDV replication and inhibits expression of TNF-α induced IFN-β. PLP1 interacts with cellular PCBP2. PCBP2 expression affects PEDV replication. The interaction of PCBP2 and PLP1 supports PEDV replication.
Porcine epidemic diarrhea virus (PEDV) belongs to the Alphacoronavirus genus in the Coronaviridae family. Similar to other coronaviruses, PEDV encodes two papain-like proteases. Papain-like protease (PLP)2 has been proposed to play a key role in antagonizing host innate immunity. However, the function of PLP1 remains unclear. In this study, we found that overexpression of PLP1 significantly promoted PEDV replication and inhibited production of interferon-β. Immunoprecipitation and mass spectrometry were used to identify cellular interaction partners of PLP1. Host cell poly(C) binding protein 2 (PCBP2) was determined to bind and interact with PLP1. Both endogenous and overexpressed PCBP2 co-localized with PLP1 in the cytoplasm. Overexpression of PLP1 upregulated expression of PCBP2. Furthermore, overexpression of PCBP2 promoted PEDV replication. Silencing of endogenous PCBP2 using small interfering RNAs attenuated PEDV replication. Taken together, these data demonstrated that PLP1 negatively regulated the production of type 1 interferon by interacting with PCBP2 and promoted PEDV replication.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Linyang Yu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Jianguo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yanling Liu
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Leyi Zhang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Pengshuai Liang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Lei Wang
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China
| | - Bin Chen
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Li Huang
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
| | - Changxu Song
- College of Animal Science & National Engineering Center for Swine Breeding Industry, South China Agriculture University, Guangzhou, 510642, China.
| |
Collapse
|
147
|
Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HAA, Jeda AS, Dashtbin S, Jalalifar S, Mohammadzadeh R, Teimoori A, Tari K, Salari M, Ghiasvand S, Kazemi S, Yousefimashouf R, Keyvani H, Karampoor S. Bacterial co-infections with SARS-CoV-2. IUBMB Life 2020; 72:2097-2111. [PMID: 32770825 PMCID: PMC7436231 DOI: 10.1002/iub.2356] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
The pandemic coronavirus disease 2019 (COVID‐19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‐CoV‐2), has affected millions of people worldwide. To date, there are no proven effective therapies for this virus. Efforts made to develop antiviral strategies for the treatment of COVID‐19 are underway. Respiratory viral infections, such as influenza, predispose patients to co‐infections and these lead to increased disease severity and mortality. Numerous types of antibiotics such as azithromycin have been employed for the prevention and treatment of bacterial co‐infection and secondary bacterial infections in patients with a viral respiratory infection (e.g., SARS‐CoV‐2). Although antibiotics do not directly affect SARS‐CoV‐2, viral respiratory infections often result in bacterial pneumonia. It is possible that some patients die from bacterial co‐infection rather than virus itself. To date, a considerable number of bacterial strains have been resistant to various antibiotics such as azithromycin, and the overuse could render those or other antibiotics even less effective. Therefore, bacterial co‐infection and secondary bacterial infection are considered critical risk factors for the severity and mortality rates of COVID‐19. Also, the antibiotic‐resistant as a result of overusing must be considered. In this review, we will summarize the bacterial co‐infection and secondary bacterial infection in some featured respiratory viral infections, especially COVID‐19.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pedram Goodarzi
- Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Muhammad Asadi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ayda Soltani
- School of Basic Sciences, Ale-Taha Institute of Higher Education, Tehran, Iran
| | - Hussain Ali Abraham Aljanabi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Alnahrain University College of Medicine, Iraq
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kamran Tari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Salari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Ghiasvand
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
148
|
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Front Immunol 2020; 11:1949. [PMID: 32849654 PMCID: PMC7426442 DOI: 10.3389/fimmu.2020.01949] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
After the 1918 flu pandemic, the world is again facing a similar situation. However, the advancement in medical science has made it possible to identify that the novel infectious agent is from the coronavirus family. Rapid genome sequencing by various groups helped in identifying the structure and function of the virus, its immunogenicity in diverse populations, and potential preventive measures. Coronavirus attacks the respiratory system, causing pneumonia and lymphopenia in infected individuals. Viral components like spike and nucleocapsid proteins trigger an immune response in the host to eliminate the virus. These viral antigens can be either recognized by the B cells or presented by MHC complexes to the T cells, resulting in antibody production, increased cytokine secretion, and cytolytic activity in the acute phase of infection. Genetic polymorphism in MHC enables it to present some of the T cell epitopes very well over the other MHC alleles. The association of MHC alleles and its downregulated expression has been correlated with disease severity against influenza and coronaviruses. Studies have reported that infected individuals can, after recovery, induce strong protective responses by generating a memory T-cell pool against SARS-CoV and MERS-CoV. These memory T cells were not persistent in the long term and, upon reactivation, caused local damage due to cross-reactivity. So far, the reports suggest that SARS-CoV-2, which is highly contagious, shows related symptoms in three different stages and develops an exhaustive T-cell pool at higher loads of viral infection. As there are no specific treatments available for this novel coronavirus, numerous small molecular drugs that are being used for the treatment of diseases like SARS, MERS, HIV, ebola, malaria, and tuberculosis are being given to COVID-19 patients, and clinical trials for many such drugs have already begun. A classical immunotherapy of convalescent plasma transfusion from recovered patients has also been initiated for the neutralization of viremia in terminally ill COVID-19 patients. Due to the limitations of plasma transfusion, researchers are now focusing on developing neutralizing antibodies against virus particles along with immuno-modulation of cytokines like IL-6, Type I interferons (IFNs), and TNF-α that could help in combating the infection. This review highlights the similarities of the coronaviruses that caused SARS and MERS to the novel SARS-CoV-2 in relation to their pathogenicity and immunogenicity and also focuses on various treatment strategies that could be employed for curing COVID-19.
Collapse
Affiliation(s)
- Vibhuti Kumar Shah
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Priyanka Firmal
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
| | - Aftab Alam
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Samit Chattopadhyay
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa Campus, Goa, India
- National Centre for Cell Science, S. P. Pune University Campus, Pune, India
- Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
149
|
Bosken YK, Cholko T, Lou YC, Wu KP, Chang CEA. Insights Into Dynamics of Inhibitor and Ubiquitin-Like Protein Binding in SARS-CoV-2 Papain-Like Protease. Front Mol Biosci 2020; 7:174. [PMID: 32850963 PMCID: PMC7417481 DOI: 10.3389/fmolb.2020.00174] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022] Open
Abstract
Covid-19 is caused by a novel form of coronavirus for which there are currently no vaccines or anti-viral drugs. This virus, termed SARS-CoV-2 (CoV2), contains Papain-like protease (PLpro) involved in viral replication and immune response evasion. Drugs targeting this protease therefore have great potential for inhibiting the virus, and have proven successful in older coronaviruses. Here, we introduce two effective inhibitors of SARS-CoV-1 (CoV1) and MERS-CoV to assess their potential for inhibiting CoV2 PLpro. We ran 1 μs molecular dynamics (MD) simulations of CoV2, CoV1, and MERS-CoV ligand-free PLpro to characterize the dynamics of CoV2 PLpro, and made comparisons between the three to elucidate important similarities and differences relevant to drug design and ubiquitin-like protein binding for deubiquitinating and deISGylating activity of CoV2. Next, we simulated the inhibitors bound to CoV1 and CoV2 PLpro in various poses and at different known binding sites to analyze their binding modes. We found that the naphthalene-based ligand shows strong potential as an inhibitor of CoV2 PLpro by binding at the putative naphthalene inhibitor binding site in both computational predictions and experimental assays. Our modeling work suggested strategies to improve naphthalene-based compounds, and our results from molecular docking showed that the newly designed compounds exhibited improved binding affinity. The other ligand, chemotherapy drug 6-mercaptopurine (6MP), showed little to no stable intermolecular interaction with PLpro and quickly dissociated or remained highly mobile. We demonstrate multiple ways to improve the binding affinity of the naphthalene-based inhibitor scaffold by engaging new residues in the unused space of the binding site. Analysis of CoV2 PLpro also brings insights into recognition of ubiquitin-like proteins that may alter innate immune response.
Collapse
Affiliation(s)
- Yuliana K Bosken
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Timothy Cholko
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
150
|
Kumar V. Emerging Human Coronavirus Infections (SARS, MERS, and COVID-19): Where They Are Leading Us. Int Rev Immunol 2020; 40:5-53. [PMID: 32744465 DOI: 10.1080/08830185.2020.1800688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus infections are responsible for mild, moderate, and severe infections in birds and mammals. These were first isolated in humans as causal microorganisms responsible for common cold. The 2002-2003 SARS epidemic caused by SARS-CoV and 2012 MERS epidemic (64 countries affected) caused by MERS-CoV showed their acute and fatal side. These two CoV infections killed thousands of patients infected worldwide. However, WHO has still reported the MERS case in December 2019 in middle-eastern country (Saudi Arabia), indicating the MERS epidemic has not ended completely yet. Although we have not yet understood completely these two CoV epidemics, a third most dangerous and severe CoV infection has been originated in the Wuhan city, Hubei district of China in December 2019. This CoV infection called COVID-19 or SARS-CoV2 infection has now spread to 210 countries and territories around the world. COVID-19 has now been declared a pandemic by the World Health Organization (WHO). It has infected more than 16.69 million people with more than 663,540 deaths across the world. Thus the current manuscript aims to describe all three (SARS, MERS, and COVID-19) in terms of their causal organisms (SARS-CoV, MERS-CoV, and SARS-CoV2), similarities and differences in their clinical symptoms, outcomes, immunology, and immunopathogenesis, and possible future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|