101
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
102
|
Chen C, Hu X, Ahmad MJ, Niu K, Ye T, Liang A, Yang L. Novel Insight into the Role of Squalene Epoxidase ( SQLE) Gene in Determining Milk Production Traits in Buffalo. Int J Mol Sci 2023; 24:ijms24032436. [PMID: 36768756 PMCID: PMC9916492 DOI: 10.3390/ijms24032436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Understanding the genetic mechanisms underlying milk production traits contribute to improving the production potential of dairy animals. Squalene epoxidase (SQLE) is one of the rate-limiting enzymes for cholesterol biosynthesis and was highly expressed in the buffalo mammary. The objectives of the present study were to detect the polymorphisms within SQLE in buffalo, the genetic effects of these mutations on milk production traits, and to understand the gene regulatory effects on buffalo mammary epithelial cells (BuMECs). A total of five SNPs were identified by sequencing, g.18858G > A loci were significantly associated with fat yield, and g.22834C > T loci were significantly associated with peak milk yield, milk yield, fat yield, and protein yield. Notably, linkage disequilibrium analysis indicated that 2 SNPs (g.18858G > A and g.22834C > T) formed one haplotype block, which was found to be significantly associated with milk fat yield, fat percentage, and protein yield. Furthermore, expression of SQLE was measured in different tissues of buffalo and was found to be higher in the mammary. Knockdown of SQLE gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis, and significantly downregulated the expression of related genes MYC, PCNA, and P21. In addition, knockdown of the SQLE gene significantly reduces triglyceride concentrations and the signal intensity of oil red O staining. In addition, silencing of SQLE was also found to regulate the synthesis and secretion of β-casein and κ-casein negatively. Furthermore, SQLE knockdown is accompanied by the downregulation of critical genes (RPS6KB1, JAK2, eIF4E, and SREBP1) related to milk fat and protein synthesis. The current study showed the potential of the SQLE gene as a candidate for buffalo milk production traits. It provides a new understanding of the physiological mechanisms underlying buffalo milk production regulation.
Collapse
Affiliation(s)
- Chao Chen
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangwei Hu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamil Ahmad
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaifeng Niu
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingzhu Ye
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aixin Liang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
103
|
Li H, Zhang Y, Li C, Ning P, Sun H, Wei F. Tandem mass tag-based quantitative proteomics analysis reveals the new regulatory mechanism of progranulin in influenza virus infection. Front Microbiol 2023; 13:1090851. [PMID: 36713155 PMCID: PMC9877624 DOI: 10.3389/fmicb.2022.1090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Progranulin (PGRN) plays an important role in influenza virus infection. To gain insight into the potential molecular mechanisms by which PGRN regulates influenza viral replication, proteomic analyzes of whole mouse lung tissue from wild-type (WT) versus (vs) PGRN knockout (KO) mice were performed to identify proteins regulated by the absence vs. presence of PGRN. Our results revealed that PGRN regulated the differential expression of ALOX15, CD14, CD5L, and FCER1g, etc., and also affected the lysosomal activity in influenza virus infection. Collectively these findings provide a panoramic view of proteomic changes resulting from loss of PGRN and thereby shedding light on the functions of PGRN in influenza virus infection.
Collapse
Affiliation(s)
- Haoning Li
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chengye Li
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Peng Ning
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, China,*Correspondence: Fanhua Wei, ✉
| |
Collapse
|
104
|
Janus Kinase Inhibitors: A New Tool for the Treatment of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:ijms24021027. [PMID: 36674537 PMCID: PMC9866163 DOI: 10.3390/ijms24021027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease involving the spine, peripheral joints, and entheses. This condition causes stiffness, pain, and significant limitation of movement. In recent years, several effective therapies have become available based on the use of biologics that selectively block cytokines involved in the pathogenesis of the disease, such as tumor necrosis factor-α (TNFα), interleukin (IL)-17, and IL-23. However, a significant number of patients show an inadequate response to treatment. Over 10 years ago, small synthetic molecules capable of blocking the activity of Janus kinases (JAK) were introduced in the therapy of rheumatoid arthritis. Subsequently, their indication extended to the treatment of other inflammatory rheumatic diseases. The purpose of this review is to discuss the efficacy and safety of these molecules in axSpA therapy.
Collapse
|
105
|
Liu Y, Guo J, Liu W, Yang F, Deng Y, Meng Y, Cheng B, Fu J, Zhang J, Liao X, Wei L, Lu H. Effects of haloxyfop-p-methyl on the developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108466. [PMID: 36462742 DOI: 10.1016/j.fsi.2022.108466] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Pesticides are extensively used in agricultural production, and their residues in soil, water, and agricultural products have become a threat to aquatic ecosystem. In this study, the toxicity of haloxyfop-p-methyl, an aryloxyphenoxypropionate herbicide was studied using the model animal zebrafish. The development of zebrafish larvae was affected by haloxyfop-p-methyl including spinal deformities, decreased body length, slow heart rate, and large yolk sac area. Behavior analysis revealed that behavior activity of larvae was weakened significantly including shortened displacement distance, reduced swimming speed, increased angular speed winding degrees, in accordance with higher AChE activity. Besides, exposure to haloxyfop-p-methyl could induce oxidative stress companied by the increased intents of ROS, MDA and increased activities of CAT and SOD. In immunotoxicity, haloxyfop-p-methyl not only reduced the innate immune cells such as neutrophils and macrophages, but also affected T cells mature in thymus. Furthermore, haloxyfop-p-methyl could induce neutrophils apoptosis, accompanied with the upregulation of the expression of proapoptotic protein such as Bax and P53 and the downregulation of the expression of antiapoptotic protein Bcl-2. In addition, haloxyfop-p-methyl could induce the expression of Jak, STAT and proinflammatory cytokine genes (IFN-γ, TNF-α, and IL-8). These results indicate that haloxyfop-p-methyl induces developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish, providing a perspective on the toxicological mechanism of haloxyfop-p-methyl in teleosts.
Collapse
Affiliation(s)
- Yi Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Jing Guo
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Wenjin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Fengjie Yang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunyun Deng
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Yunlong Meng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - June Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Jian, Jiangxi, China.
| |
Collapse
|
106
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
107
|
Zhang Z, Wu D, Li W, Chen W, Liu Y, Zhang J, Wan J, Yu H, Zhou S, Yang Y. Structural elucidation and anti-inflammatory activity of a proteoglycan from spent substrate of Lentinula edodes. Int J Biol Macromol 2023; 224:1509-1523. [PMID: 36550792 DOI: 10.1016/j.ijbiomac.2022.10.239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
A proteoglycan LEPS1 was firstly isolated and purified from the spent substrate of Lentinula edodes, an agricultural waste that may cause environmental pollution. The average molecular weight of LEPS1 was 1.18 × 104 g/mol, and carbohydrate moiety (88.9 %) was composed of glucose, arabinose, galactose, xylose and mannose at a molar ratio of 1.2:1.2:1.0:2.3:1.1. The protein moiety (8.5 %) of LEPS1 was bonded to the polysaccharide chain via O-glycosidic linkage. LEPS1 could significantly improve the inflammatory injury of LPS stimulated RAW264.7 macrophages by inhibiting the secretion of NO and decreasing the levels of pro-inflammatory factors (TNF-α, IL-1β and IL-6). LEPS1 inhibited JAK-STAT1 and p38 MAPK signaling pathway via modulating JAK expression, phosphorylation of STAT1 and phosphorylation of p38, respectively. Moreover, LEPS1 could promote the expression of CD 206 and IL-10 which were the markers for repairing macrophages. Overall, LEPS1 had anti-inflammatory activity and can potentially treat as a novel anti-inflammation agent. This work could provide scientific basis and valuable information for the highly efficient utilization of spent L. edodes substrates as the by-product in mushroom industries.
Collapse
Affiliation(s)
- Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jianing Wan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Hailong Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, China, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
108
|
Boccuni L, Podgorschek E, Schmiedeberg M, Platanitis E, Traxler P, Fischer P, Schirripa A, Novoszel P, Nebreda AR, Arthur JSC, Fortelny N, Farlik M, Sexl V, Bock C, Sibilia M, Kovarik P, Müller M, Decker T. Stress signaling boosts interferon-induced gene transcription in macrophages. Sci Signal 2022; 15:eabq5389. [PMID: 36512641 DOI: 10.1126/scisignal.abq5389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Promoters of antimicrobial genes function as logic boards, integrating signals of innate immune responses. One such set of genes is stimulated by interferon (IFN) signaling, and the expression of these genes [IFN-stimulated genes (ISGs)] can be further modulated by cell stress-induced pathways. Here, we investigated the global effect of stress-induced p38 mitogen-activated protein kinase (MAPK) signaling on the response of macrophages to IFN. In response to cell stress that coincided with IFN exposure, the p38 MAPK-activated transcription factors CREB and c-Jun, in addition to the IFN-activated STAT family of transcription factors, bound to ISGs. In addition, p38 MAPK signaling induced activating histone modifications at the loci of ISGs and stimulated nuclear translocation of the CREB coactivator CRTC3. These actions synergistically enhanced ISG expression. Disrupting this synergy with p38 MAPK inhibitors improved the viability of macrophages infected with Listeria monocytogenes. Our findings uncover a mechanism of transcriptional synergism and highlight the biological consequences of coincident stress-induced p38 MAPK and IFN-stimulated signal transduction.
Collapse
Affiliation(s)
- Laura Boccuni
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna 1030, Austria
| | - Elke Podgorschek
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna 1030, Austria
| | - Moritz Schmiedeberg
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna 1030, Austria
| | - Ekaterini Platanitis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna 1030, Austria
| | - Peter Traxler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Philipp Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna 1030, Austria
| | - Alessia Schirripa
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - J Simon C Arthur
- Division of Cell Signaling and Immunology and University of Dundee, Dow Street, Dundee DD1 5EH, UK
- Medical Research Council Protein Phosphorylation Unit, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Computational Systems Biology Group, Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg 5020, Austria
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna 1210, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Institute of Artificial Intelligence, Medical University of Vienna, Vienna 1090, Austria
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria
| | - Pavel Kovarik
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna 1030, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna 1030, Austria
| |
Collapse
|
109
|
Gaggero S, Martinez-Fabregas J, Cozzani A, Fyfe PK, Leprohon M, Yang J, Thomasen FE, Winkelmann H, Magnez R, Conti AG, Wilmes S, Pohler E, van Gijsel Bonnello M, Thuru X, Quesnel B, Soncin F, Piehler J, Lindorff-Larsen K, Roychoudhuri R, Moraga I, Mitra S. IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein. Sci Immunol 2022; 7:eade5686. [PMID: 36459543 DOI: 10.1126/sciimmunol.ade5686] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cytokines interact with their receptors in the extracellular space to control immune responses. How the physicochemical properties of the extracellular space influence cytokine signaling is incompletely elucidated. Here, we show that the activity of interleukin-2 (IL-2), a cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, effector differentiation, and antitumor immunity by CD8+ T cells and renders high-dose IL-2 therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein (Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Rα with higher affinity, triggers STAT5 activation, and drives CD8+ T cell effector function more potently at acidic pH than at neutral pH. Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection with reduced on-target toxicity in normal tissues. Last, we show that sensitivity to pH is a generalizable property of a diverse range of cytokines with broad relevance to immunity and immunotherapy in healthy and diseased tissues.
Collapse
Affiliation(s)
- Silvia Gaggero
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | | | - Adeline Cozzani
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Paul K Fyfe
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Malo Leprohon
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - Jie Yang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - F Emil Thomasen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hauke Winkelmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Romain Magnez
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Alberto G Conti
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Stephan Wilmes
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Elizabeth Pohler
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Xavier Thuru
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Bruno Quesnel
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, Lille, France
- CNRS IRL 2820; Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Barbarastr. 11, 49076 Osnabrück, Germany
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Ignacio Moraga
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Suman Mitra
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| |
Collapse
|
110
|
Spałek A, Wieczorkiewicz-Kabut A, Koclęga A, Woźniczka K, Węglarz P, Boral K, Kata D, Zielińska P, Helbig G. Real-world experience with ruxolitinib for steroid-refractory acute graft-versus-host disease: a single center experience. Int J Hematol 2022; 116:922-928. [PMID: 35972605 PMCID: PMC9668796 DOI: 10.1007/s12185-022-03434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Steroid-refractory acute graft-versus-host disease (SR-aGVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Ruxolitinib (RUX), an oral JAK1 and JAK2 inhibitor, has recently been approved for patients with SR-aGVHD. The aim of this study was to evaluate RUX efficacy and toxicity in a real-world setting. Eighteen patients received RUX at 5 mg or 10 mg twice a day after a median 3 lines of prior unsuccessful immunosuppressive therapy. Median time on RUX therapy was 28 days (range 7-129). Five patients (28%) responded to RUX, including 4 complete responses and 1 partial response. Response to RUX was irrespective of aGVHD grade and the number of involved organs. One-year overall survival (OS) was 60% for RUX-responders versus 31% for non-responders (p = ns). Treatment duration greater than 29.5 days was found to have a positive impact on OS (p < 0.007). Major adverse events during RUX treatment were grade 3-4 thrombocytopenia (61% of patients) and cytomegalovirus reactivation (50%). After median follow-up of 55 days (range 29-706), 14 patients (78%) died, mainly due to further progression of GVHD. RUX may represent a valuable therapeutic option for some patients with advanced SR-aGVHD, but more studies are warranted.
Collapse
Affiliation(s)
- Adrianna Spałek
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Agata Wieczorkiewicz-Kabut
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Anna Koclęga
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Krzysztof Woźniczka
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Patryk Węglarz
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Kinga Boral
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Dariusz Kata
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Patrycja Zielińska
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland
| | - Grzegorz Helbig
- School of Medicine in Katowice, Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, Dąbrowski Street 25, 40-032, Katowice, Poland.
| |
Collapse
|
111
|
Yang X, Li Z, Ren H, Peng X, Fu J. New progress of glutamine metabolism in the occurrence, development, and treatment of ovarian cancer from mechanism to clinic. Front Oncol 2022; 12:1018642. [PMID: 36523985 PMCID: PMC9745299 DOI: 10.3389/fonc.2022.1018642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2023] Open
Abstract
Glutamine is a non-essential amino acid that can be synthesized by cells. It plays a vital role in the growth and proliferation of mammalian cells cultured in vitro. In the process of tumor cell proliferation, glutamine not only contributes to protein synthesis but also serves as the primary nitrogen donor for purine and pyrimidine synthesis. Studies have shown that glutamine-addicted tumor cells depend on glutamine for survival and reprogram glutamine utilization through the Krebs cycle. Potential therapeutic approaches for ovarian cancer including blocking the entry of glutamine into the tricarboxylic acid cycle in highly aggressive ovarian cancer cells or inhibiting glutamine synthesis in less aggressive ovarian cancer cells. Glutamine metabolism is associated with poor prognosis of ovarian cancer. Combining platinum-based chemotherapy with inhibition of glutamine metabolic pathways may be a new strategy for treating ovarian cancer, especially drug-resistant ovarian cancer. This article reviews the role of glutamine metabolism in the biological behaviors of ovarian cancer cells, such as proliferation, invasion, and drug resistance. Its potential use as a new target or biomarker for ovarian cancer diagnosis, treatment, and the prognosis is investigated.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Li
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanru Ren
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Xue Peng
- Department of Breast Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
112
|
Britt AS, Huang C, Huang CH. Hyperprogressive disease in non-small cell lung cancer treated with immune checkpoint inhibitor therapy, fact or myth? Front Oncol 2022; 12:996554. [DOI: 10.3389/fonc.2022.996554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic landscape for patients with non-small cell lung cancer (NSCLC) has dramatically evolved with the development and adoption of immune checkpoint inhibitors (ICI) as front-line therapy. These novel antibodies target the interactions in immunoregulatory pathways, between programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), or cytotoxic T-lymphocyte antigen 4 (CTLA-4) and B7, resulting in the activation of T cells and cytotoxic response to induce an immunologic response. ICIs have demonstrated significant survival benefits and sustained responses in the treatment of NSCLC leading to the long-term survival of up to 5 year. One unusual response to ICI is a phenomenon termed Hyperprogressive Disease (HYD), which occurs in a subset of patients for whom ICI therapy can induce rapid disease growth, which ultimately leads to poorer outcomes with an incidence rate ranging from 5 to 37% in NSCLC patients. Prior reviews demonstrated that HYD can be defined by rapid tumor progression, deterioration of patient’s symptoms or new onset of disease. The mechanism of HYD could be related to genomic and tumor microenvironment changes and altered immune response. It will be important to establish a common definition of HYD for future research and clinical care.
Collapse
|
113
|
Kouokam JC, Meaza I, Wise JP. Inflammatory effects of hexavalent chromium in the lung: A comprehensive review. Toxicol Appl Pharmacol 2022; 455:116265. [PMID: 36208701 PMCID: PMC10024459 DOI: 10.1016/j.taap.2022.116265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022]
Abstract
Besides smoking, lung cancer can be caused by other factors, including heavy metals such as cadmium, nickel, arsenic, beryllium and hexavalent chromium [Cr(VI)], which is used in multiple settings, resulting in widespread environmental and occupational exposures as well as heavy use. The mechanism by which Cr(VI) causes lung cancer is not completely understood. Currently, it is admitted chromosome instability is a key process in the mechanism of Cr(VI)-induced cancer, and previous studies have suggested Cr(VI) impacts the lung tissue in mice by triggering tissue damage and inflammation. However, the mechanism underlying Cr(VI)-induced inflammation and its exact role in lung cancer are unclear. Therefore, this review aimed to systematically examine previous studies assessing Cr(VI)-induced inflammation and to summarize the major inflammatory pathways involved in Cr(VI)-induced inflammation. In cell culture studies, COX2, VEGF, JAK-STAT, leukotriene B4 (LTB4), MAPK, NF-ҡB and Nrf2 signaling pathways were consistently upregulated by Cr(VI), clearly demonstrating that these pathways are involved in Cr(VI)-induced inflammation. In addition, Akt signaling was also shown to contribute to Cr(VI)-induced inflammation, although discrepant findings were reported. Few mechanistic studies were performed in animal models, in which Cr(VI) upregulated oxidative pathways, NF-kB signaling and the MAPK pathway in the lung tissue. Similar to cell culture studies, opposite effects of Cr(VI) on Akt signaling were reported. This work provides insights into the mechanisms by which Cr(VI) induces lung inflammation. However, discrepant findings and other major issues in study design, both in cell and animal models, suggest that further studies are required to unveil the mechanism of Cr(VI)-induced inflammation and its role in lung cancer.
Collapse
Affiliation(s)
- J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA.
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm 1422, Louisville, KY, USA
| |
Collapse
|
114
|
Qian Y, Chen B, Wang Z, Peng Y. Genetic association between the PTPN22, IRF5 and TYK2 gene variants and susceptibility to juvenile idiopathic arthritis. Exp Ther Med 2022; 24:756. [PMID: 36605568 PMCID: PMC9808742 DOI: 10.3892/etm.2022.11692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Juvenile idiopathic arthritis (JIA) refers to a group of chronic childhood arthropathies of unknown etiology. In the present study, the genetic association between the variants in PTPN22, IRF5 and TYK2 genes and susceptibility to JIA was investigated. The distributions of 16 variants in PTPN22, IRF5 and TYK2 genes were analyzed by direct sequencing in 378 patients with JIA and 378 healthy controls. Odds ratios and 95% confidence intervals were used to evaluate the association between the gene variants and JIA. The gene-gene interactions were investigated using multifactor dimensionality reduction. All allelic and dominant models of PTPN22 rs1214414, rs1214418, rs1746853, rs3765598 and rs3811021 were significantly associated with JIA risk (P<0.05). IRF5 rs10954213 in both allelic and dominant models, as well as the allelic model of rs2004640, was significantly related to JIA risk (P<0.05). In addition, the allelic, recessive and dominant models of TYK2 rs280500, rs280519, rs2304256 and rs12720270 were significantly related to JIA risk (P<0.05). In addition, three haplotypes (HC A G T C C, HC A G T T C and HC G T T C T ) in PTPN22 gene, three haplotypes (HD T A A, HI T A C and HD T G C) in IRF5 gene and two haplotypes (HA G G A T and HG A G G T) in TYK2 gene were associated with the risk of JIA (P<0.05). Furthermore, a three-way interaction between IRF5 rs10954213, rs2004640 and PTPN22 rs1214414 was shown to be associated with JIA risk. In conclusion, PTPN22 rs1214418, rs1746853, rs3765598, IRF5 rs2004640, TYK2 rs280500, rs2304256 and a three-way interaction between IRF5 rs10954213, rs2004640 and PTPN22 rs1214414 may be risk factors for JIA.
Collapse
Affiliation(s)
- Yufeng Qian
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu 215500, P.R. China,Correspondence to: Mr Yufeng Qian, Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, 1 Shuyuan Street, Changshu, Jiangsu 215500, P.R. China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu 215500, P.R. China
| | - Zhengfei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu 215500, P.R. China
| | - Yuqin Peng
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu 215500, P.R. China
| |
Collapse
|
115
|
Liu C, Zhao W, Su J, Chen X, Zhao F, Fan J, Li X, Liu X, Zou L, Zhang M, Zhang Z, Zhang L, Fan S, Li Y, Zhao M, Chen J, Yi L. HSP90AA1 interacts with CSFV NS5A protein and regulates CSFV replication via the JAK/STAT and NF-κB signaling pathway. Front Immunol 2022; 13:1031868. [PMID: 36405689 PMCID: PMC9666401 DOI: 10.3389/fimmu.2022.1031868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 08/23/2023] Open
Abstract
Classical swine fever (CSF), caused by the classical swine fever virus (CSFV), is a highly contagious and fatal viral disease, posing a significant threat to the swine industry. Heat shock protein 90 kDa alpha class A member 1 (HSP90AA1) is a very conservative chaperone protein that plays an important role in signal transduction and viral proliferation. However, the role of HSP90AA1 in CSFV infection is unknown. In this study, we found that expression of HSP90AA1 could be promoted in PK-15 and 3D4/2 cells infected by CSFV. Over-expression of HSP90AA1 could inhibit CSFV replication and functional silencing of HSP90AA1 gene promotes CSFV replication. Further exploration revealed that HSP90AA1 interacted with CSFV NS5A protein and reduced the protein levels of NS5A. Since NS5A has an important role in CSFV replication and is closely related to type I IFN and NF-κB response, we further analyzed whether HSP90AA1 affects CSFV replication by regulating type I IFN and NF-κB pathway responses. Our research found HSP90AA1 positively regulated type I IFN response by promoting STAT1 phosphorylation and nuclear translocation processes and promoted the nuclear translocation processes of p-P65. However, CSFV infection antagonizes the activation of HSP90AA1 on JAK/STAT and NF-κB pathway. In conclusion, our study found that HSP90AA1 overexpression significantly inhibited CSFV replication and may inhibit CSFV replication by interacting with NS5A and activating JAK/STAT and NF-κB signaling pathways. These results provide new insights into the mechanism of action of HSP90AA1 in CSFV infection, which abundant the candidate library of anti-CSFV.
Collapse
Affiliation(s)
- Chenchen Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jia Su
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaochun Chen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xiaodi Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mengru Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Liangliang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
116
|
Lefler JE, MarElia-Bennett CB, Thies KA, Hildreth BE, Sharma SM, Pitarresi JR, Han L, Everett C, Koivisto C, Cuitino MC, Timmers CD, O'Quinn E, Parrish M, Romeo MJ, Linke AJ, Hobbs GA, Leone G, Guttridge DC, Zimmers TA, Lesinski GB, Ostrowski MC. STAT3 in tumor fibroblasts promotes an immunosuppressive microenvironment in pancreatic cancer. Life Sci Alliance 2022; 5:e202201460. [PMID: 35803738 PMCID: PMC9270499 DOI: 10.26508/lsa.202201460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with an incredibly dense stroma, which contributes to its recalcitrance to therapy. Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types within the PDAC stroma and have context-dependent regulation of tumor progression in the tumor microenvironment (TME). Therefore, understanding tumor-promoting pathways in CAFs is essential for developing better stromal targeting therapies. Here, we show that disruption of the STAT3 signaling axis via genetic ablation of Stat3 in stromal fibroblasts in a Kras G12D PDAC mouse model not only slows tumor progression and increases survival, but re-shapes the characteristic immune-suppressive TME by decreasing M2 macrophages (F480+CD206+) and increasing CD8+ T cells. Mechanistically, we show that loss of the tumor suppressor PTEN in pancreatic CAFs leads to an increase in STAT3 phosphorylation. In addition, increased STAT3 phosphorylation in pancreatic CAFs promotes secretion of CXCL1. Inhibition of CXCL1 signaling inhibits M2 polarization in vitro. The results provide a potential mechanism by which CAFs promote an immune-suppressive TME and promote tumor progression in a spontaneous model of PDAC.
Collapse
Affiliation(s)
- Julia E Lefler
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Catherine B MarElia-Bennett
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Katie A Thies
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Blake E Hildreth
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Sudarshana M Sharma
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Han
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Caroline Everett
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Christopher Koivisto
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Maria C Cuitino
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Cynthia D Timmers
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth O'Quinn
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Melodie Parrish
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J Romeo
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda J Linke
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - G Aaron Hobbs
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gustavo Leone
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Denis C Guttridge
- Department of Pediatrics and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Teresa A Zimmers
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Michael C Ostrowski
- Hollings Cancer Center and Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
117
|
Sk MF, Kar P. Finding inhibitors and deciphering inhibitor-induced conformational plasticity in the Janus kinase via multiscale simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:833-859. [PMID: 36398489 DOI: 10.1080/1062936x.2022.2145352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The Janus kinase (JAK) is a master regulator of the JAK/STAT pathway. Dysregulation of this signalling cascade causes neuroinflammation and autoimmune disorders. Therefore, JAKs have been characterized as an attractive target for developing anti-inflammatory drugs. Nowadays, designing efficient, effective, and specific targeted therapeutics without being cytotoxic has gained interest. We performed the virtual screening of natural products in combination with pharmacological analyses. Subsequently, we performed molecular dynamics simulations to study the stability of the ligand-bound complexes and ligand-induced inactive conformations. Notably, inactive kinases display remarkable conformational plasticity; however, ligand-induced molecular mechanisms of these conformations are still poorly understood. Herein, we performed a free energy landscape analysis to explore the conformational plasticity of the JAK1 kinase. Leonurine, STOCK1N-68642, STOCK1N-82656, and STOCK1N-85809 bound JAK1 exhibited a smooth transition from an active (αC-in) to a completely inactive conformation (αC-out). Ligand binding induces disorders in the αC-helix. Molecular mechanics Poisson Boltzmann surface area (MM/PBSA) calculation suggested three phytochemicals, namely STOCK1N-68642, Epicatechin, and STOCK1N-98615, have higher binding affinity compared to other ligand molecules. The ligand-induced conformational plasticity revealed by our simulations differs significantly from the available crystal structures, which might help in designing allosteric drugs.
Collapse
Affiliation(s)
- M F Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| |
Collapse
|
118
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
119
|
Audu CO, Melvin WJ, Joshi AD, Wolf SJ, Moon JY, Davis FM, Barrett EC, Mangum KD, Deng H, Xing X, Wasikowski R, Tsoi LC, Sharma SB, Bauer TM, Shadiow J, Corriere MA, Obi AT, Kunkel SL, Levi B, Moore BB, Gudjonsson JE, Smith AM, Gallagher KA. Macrophage-specific inhibition of the histone demethylase JMJD3 decreases STING and pathologic inflammation in diabetic wound repair. Cell Mol Immunol 2022; 19:1251-1262. [PMID: 36127466 PMCID: PMC9622909 DOI: 10.1038/s41423-022-00919-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/09/2022] [Indexed: 02/01/2023] Open
Abstract
Macrophage plasticity is critical for normal tissue repair following injury. In pathologic states such as diabetes, macrophage plasticity is impaired, and macrophages remain in a persistent proinflammatory state; however, the reasons for this are unknown. Here, using single-cell RNA sequencing of human diabetic wounds, we identified increased JMJD3 in diabetic wound macrophages, resulting in increased inflammatory gene expression. Mechanistically, we report that in wound healing, JMJD3 directs early macrophage-mediated inflammation via JAK1,3/STAT3 signaling. However, in the diabetic state, we found that IL-6, a cytokine increased in diabetic wound tissue at later time points post-injury, regulates JMJD3 expression in diabetic wound macrophages via the JAK1,3/STAT3 pathway and that this late increase in JMJD3 induces NFκB-mediated inflammatory gene transcription in wound macrophages via an H3K27me3 mechanism. Interestingly, RNA sequencing of wound macrophages isolated from mice with JMJD3-deficient myeloid cells (Jmjd3f/fLyz2Cre+) identified that the STING gene (Tmem173) is regulated by JMJD3 in wound macrophages. STING limits inflammatory cytokine production by wound macrophages during healing. However, in diabetic mice, its role changes to limit wound repair and enhance inflammation. This finding is important since STING is associated with chronic inflammation, and we found STING to be elevated in human and murine diabetic wound macrophages at late time points. Finally, we demonstrate that macrophage-specific, nanoparticle inhibition of JMJD3 in diabetic wounds significantly improves diabetic wound repair by decreasing inflammatory cytokines and STING. Taken together, this work highlights the central role of JMJD3 in tissue repair and identifies cell-specific targeting as a viable therapeutic strategy for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Christopher O Audu
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - William J Melvin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Amrita D Joshi
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Sonya J Wolf
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Jadie Y Moon
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Frank M Davis
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Emily C Barrett
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kevin D Mangum
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hongping Deng
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Wasikowski
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Sriganesh B Sharma
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Tyler M Bauer
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew A Corriere
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Andrea T Obi
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Steven L Kunkel
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bethany B Moore
- Department of Surgery, Section of General Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Andrew M Smith
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Champaign, IL, USA
| | - Katherine A Gallagher
- Department of Surgery, Section of Vascular Surgery, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
120
|
He Z, Wang J, Zhu C, Xu J, Chen P, Jiang X, Chen Y, Jiang J, Sun C. Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett 2022; 548:215751. [PMID: 35718269 DOI: 10.1016/j.canlet.2022.215751] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Inflammatory molecules and exosomes are crucial for signal transduction between tumor-associated macrophages and tumor cells. IL-6, a key inflammatory molecule secreted by M2 macrophages after polarization, can mediate malignant progression of pancreatic cancer (PC). However, the functions and mechanisms of IL-6 and tumor-derived exosomes in tumor-associated macrophages and PC remain unclear. Transcriptome chip and quantitative reverse transcription PCR experiments indicated that FGD5-AS1 induced IL-6 and high FGD5-AS1 expression correlated with the poor prognosis in PC patients. RNA pulldown, mass spectrometry, and dual luciferase reporter assays were used to identify the mechanism of exosomal FGD5-AS1 in promoting PC progression and M2 macrophage polarization. FGD5-AS1 exerted cancer-promoting functions when co-cultured with M2 macrophages. PC-derived exosomal FGD5-AS1 stimulated M2 macrophage polarization by activating STAT3/NF-κB pathway. FGD5-AS1 interacts with p300, resulting in STAT3 acetylation, thus promoting nuclear localization and transcriptional activity of STAT3/NF-κB. These data indicated that PC cells generate FGD5-AS1-rich exosomes, which cause M2 macrophage polarization to promote the malignant behaviors of PC cells. Targeting exosomal FGD5-AS1 may provide a potential diagnosis and treatment strategy for PC.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China
| | - Changhao Zhu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China
| | - Peng Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Xueyi Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Yankun Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, PR China.
| | - Chengyi Sun
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China.
| |
Collapse
|
121
|
A balance between vector survival and virus transmission is achieved through JAK/STAT signaling inhibition by a plant virus. Proc Natl Acad Sci U S A 2022; 119:e2122099119. [PMID: 36191206 PMCID: PMC9564230 DOI: 10.1073/pnas.2122099119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses pose a great threat to animal and plant health worldwide, with many being dependent on insect vectors for transmission between hosts. While the virus-host arms race has been well established, how viruses and insect vectors adapt to each other remains poorly understood. Begomoviruses comprise the largest genus of plant-infecting DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci. Here, we show that the vector Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway plays an important role in mediating the adaptation between the begomovirus tomato yellow leaf curl virus (TYLCV) and whiteflies. We found that the JAK/STAT pathway in B. tabaci functions as an antiviral mechanism against TYLCV infection in whiteflies as evidenced by the increase in viral DNA and coat protein (CP) levels after inhibiting JAK/STAT signaling. Two STAT-activated effector genes, BtCD109-2 and BtCD109-3, mediate this anti-TYLCV activity. To counteract this vector immunity, TYLCV has evolved strategies that impair the whitefly JAK/STAT pathway. Infection of TYLCV is associated with a reduction of JAK/STAT pathway activity in whiteflies. Moreover, TYLCV CP binds to STAT and blocks its nuclear translocation, thus, abrogating the STAT-dependent transactivation of target genes. We further show that inhibition of the whitefly JAK/STAT pathway facilitates TYLCV transmission but reduces whitefly survival and fecundity, indicating that this JAK/STAT-dependent TYLCV-whitefly interaction plays an important role in keeping a balance between whitefly fitness and TYLCV transmission. This study reveals a mechanism of plant virus-insect vector coadaptation in relation to vector survival and virus transmission.
Collapse
|
122
|
Bajia D, Bottani E, Derwich K. Effects of Noonan Syndrome-Germline Mutations on Mitochondria and Energy Metabolism. Cells 2022; 11:cells11193099. [PMID: 36231062 PMCID: PMC9563972 DOI: 10.3390/cells11193099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) and related Noonan syndrome with multiple lentigines (NSML) contribute to the pathogenesis of human diseases in the RASopathy family. This family of genetic disorders constitute one of the largest groups of developmental disorders with variable penetrance and severity, associated with distinctive congenital disabilities, including facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was first clinically described decades ago, and several genes have since been identified, providing a molecular foundation to understand their physiopathology and identify targets for therapeutic strategies. These genes encode proteins that participate in, or regulate, RAS/MAPK signalling. The RAS pathway regulates cellular metabolism by controlling mitochondrial homeostasis, dynamics, and energy production; however, little is known about the role of mitochondrial metabolism in NS and NSML. This manuscript comprehensively reviews the most frequently mutated genes responsible for NS and NSML, covering their role in the current knowledge of cellular signalling pathways, and focuses on the pathophysiological outcomes on mitochondria and energy metabolism.
Collapse
Affiliation(s)
- Donald Bajia
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, Piazzale L. A. Scuro 10, 37134 Verona, Italy
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Ul. Fredry 10, 61701 Poznan, Poland
- Correspondence: (E.B.); (K.D.); Tel.: +39-3337149584 (E.B.); +48-504199285 (K.D.)
| |
Collapse
|
123
|
Zheng Q, Wang D, Lin R, Lv Q, Wang W. IFI44 is an immune evasion biomarker for SARS-CoV-2 and Staphylococcus aureus infection in patients with RA. Front Immunol 2022; 13:1013322. [PMID: 36189314 PMCID: PMC9520788 DOI: 10.3389/fimmu.2022.1013322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic of severe coronavirus disease 2019 (COVID-19). Staphylococcus aureus is one of the most common pathogenic bacteria in humans, rheumatoid arthritis (RA) is among the most prevalent autoimmune conditions. RA is a significant risk factor for SARS-CoV-2 and S. aureus infections, although the mechanism of RA and SARS-CoV-2 infection in conjunction with S. aureus infection has not been elucidated. The purpose of this study is to investigate the biomarkers and disease targets between RA and SARS-CoV-2 and S. aureus infections using bioinformatics analysis, to search for the molecular mechanisms of SARS-CoV-2 and S. aureus immune escape and potential drug targets in the RA population, and to provide new directions for further analysis and targeted development of clinical treatments. Methods The RA dataset (GSE93272) and the S. aureus bacteremia (SAB) dataset (GSE33341) were used to obtain differentially expressed gene sets, respectively, and the common differentially expressed genes (DEGs) were determined through the intersection. Functional enrichment analysis utilizing GO, KEGG, and ClueGO methods. The PPI network was created utilizing the STRING database, and the top 10 hub genes were identified and further examined for functional enrichment using Metascape and GeneMANIA. The top 10 hub genes were intersected with the SARS-CoV-2 gene pool to identify five hub genes shared by RA, COVID-19, and SAB, and functional enrichment analysis was conducted using Metascape and GeneMANIA. Using the NetworkAnalyst platform, TF-hub gene and miRNA-hub gene networks were built for these five hub genes. The hub gene was verified utilizing GSE17755, GSE55235, and GSE13670, and its effectiveness was assessed utilizing ROC curves. CIBERSORT was applied to examine immune cell infiltration and the link between the hub gene and immune cells. Results A total of 199 DEGs were extracted from the GSE93272 and GSE33341 datasets. KEGG analysis of enrichment pathways were NLR signaling pathway, cell membrane DNA sensing pathway, oxidative phosphorylation, and viral infection. Positive/negative regulation of the immune system, regulation of the interferon-I (IFN-I; IFN-α/β) pathway, and associated pathways of the immunological response to viruses were enriched in GO and ClueGO analyses. PPI network and Cytoscape platform identified the top 10 hub genes: RSAD2, IFIT3, GBP1, RTP4, IFI44, OAS1, IFI44L, ISG15, HERC5, and IFIT5. The pathways are mainly enriched in response to viral and bacterial infection, IFN signaling, and 1,25-dihydroxy vitamin D3. IFI44, OAS1, IFI44L, ISG15, and HERC5 are the five hub genes shared by RA, COVID-19, and SAB. The pathways are primarily enriched for response to viral and bacterial infections. The TF-hub gene network and miRNA-hub gene network identified YY1 as a key TF and hsa-mir-1-3p and hsa-mir-146a-5p as two important miRNAs related to IFI44. IFI44 was identified as a hub gene by validating GSE17755, GSE55235, and GSE13670. Immune cell infiltration analysis showed a strong positive correlation between activated dendritic cells and IFI44 expression. Conclusions IFI144 was discovered as a shared biomarker and disease target for RA, COVID-19, and SAB by this study. IFI44 negatively regulates the IFN signaling pathway to promote viral replication and bacterial proliferation and is an important molecular target for SARS-CoV-2 and S. aureus immune escape in RA. Dendritic cells play an important role in this process. 1,25-Dihydroxy vitamin D3 may be an important therapeutic agent in treating RA with SARS-CoV-2 and S. aureus infections.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wanming Wang
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
124
|
Pavlinek A, Matuleviciute R, Sichlinger L, Dutan Polit L, Armeniakos N, Vernon AC, Srivastava DP. Interferon-γ exposure of human iPSC-derived neurons alters major histocompatibility complex I and synapsin protein expression. Front Psychiatry 2022; 13:836217. [PMID: 36186864 PMCID: PMC9515429 DOI: 10.3389/fpsyt.2022.836217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Human epidemiological data links maternal immune activation (MIA) during gestation with increased risk for psychiatric disorders with a putative neurodevelopmental origin, including schizophrenia and autism. Animal models of MIA provide evidence for this association and suggest that inflammatory cytokines represent one critical link between maternal infection and any potential impact on offspring brain and behavior development. However, to what extent specific cytokines are necessary and sufficient for these effects remains unclear. It is also unclear how specific cytokines may impact the development of specific cell types. Using a human cellular model, we recently demonstrated that acute exposure to interferon-γ (IFNγ) recapitulates molecular and cellular phenotypes associated with neurodevelopmental disorders. Here, we extend this work to test whether IFNγ can impact the development of immature glutamatergic neurons using an induced neuronal cellular system. We find that acute exposure to IFNγ activates a signal transducer and activator of transcription 1 (STAT1)-pathway in immature neurons, and results in significantly increased major histocompatibility complex I (MHCI) expression at the mRNA and protein level. Furthermore, acute IFNγ exposure decreased synapsin I/II protein in neurons but did not affect the expression of synaptic genes. Interestingly, complement component 4A (C4A) gene expression was significantly increased following acute IFNγ exposure. This study builds on our previous work by showing that IFNγ-mediated disruption of relevant synaptic proteins can occur at early stages of neuronal development, potentially contributing to neurodevelopmental disorder phenotypes.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Rugile Matuleviciute
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Laura Sichlinger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Nikolaos Armeniakos
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Anthony Christopher Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Deepak Prakash Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
125
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
126
|
Bloomfield M, Zentsova I, Milota T, Sediva A, Parackova Z. Immunoprofiling of monocytes in STAT1 gain-of-function chronic mucocutaneous candidiasis. Front Immunol 2022; 13:983977. [PMID: 36172362 PMCID: PMC9510987 DOI: 10.3389/fimmu.2022.983977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Patients with STAT1 gain-of-function (GOF) mutations suffer from an inborn error of immunity hallmarked by chronic mucocutaneous candidiasis (CMC). The pathogenesis behind this complex and heterogeneous disease is still incompletely understood. Beyond the well-recognized Th17 failure, linked to the STAT1/STAT3 dysbalance-driven abrogation of antifungal defense, only little is known about the consequences of augmented STAT1 signaling in other cells, including, interestingly, the innate immune cells. STAT1-mediated signaling was previously shown to be increased in STAT1 GOF CD14+ monocytes. Therefore, we hypothesized that monocytes might represent important co-orchestrators of antifungal defense failure, as well as various immunodysregulatory phenomena seen in patients with STAT1 GOF CMC, including autoimmunity. In this article, we demonstrate that human STAT1 GOF monocytes are characterized by proinflammatory phenotypes and a strong inflammatory skew of their secretory cytokine profile. Moreover, they exhibit diminished CD16 expression, and reduction of classical (CD14++C16-) and expansion of intermediate (CD14++16+) subpopulations. Amongst the functional aberrations, a selectively enhanced responsiveness to TLR7/8 stimulation, but not to other TLR ligands, was noted, which might represent a contributing mechanism in the pathogenesis of STAT1 GOF-associated autoimmunity. Importantly, some of these features extend to STAT1 GOF monocyte-derived dendritic cells and to STAT1 GOF peripheral myeloid dendritic cells, suggesting that the alterations observed in monocytes are, in fact, intrinsic due to STAT1 mutation, and not mere bystanders of chronic inflammatory environment. Lastly, we observe that the proinflammatory bias of STAT1 GOF monocytes may be ameliorated with JAK inhibition. Taken together, we show that monocytes likely play an active role in both the microbial susceptibility and autoimmunity in STAT1 GOF CMC.
Collapse
Affiliation(s)
- Marketa Bloomfield
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
- Department of Paediatrics, Thomayer University Hospital, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Irena Zentsova
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Tomas Milota
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Zuzana Parackova
- Department of Immunology, 2Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
- *Correspondence: Zuzana Parackova,
| |
Collapse
|
127
|
Li X, Liu S, Rai KR, Zhou W, Wang S, Chi X, Guo G, Chen JL, Liu S. Initial activation of STAT2 induced by IAV infection is critical for innate antiviral immunity. Front Immunol 2022; 13:960544. [PMID: 36148221 PMCID: PMC9486978 DOI: 10.3389/fimmu.2022.960544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
STAT2 is an important transcription factor activated by interferons (IFNs) upon viral infection and plays a key role in antiviral responses. Interestingly, here we found that phosphorylation of STAT2 could be induced by several viruses at early infection stage, including influenza A virus (IAV), and such initial activation of STAT2 was independent of type I IFNs and JAK kinases. Furthermore, it was observed that the early activation of STAT2 during viral infection was mainly regulated by the RIG-I/MAVS-dependent pathway. Disruption of STAT2 phosphorylation at Tyr690 restrained antiviral response, as silencing STAT2 or blocking STAT2 Y690 phosphorylation suppressed the expression of several interferon-stimulated genes (ISGs), thereby facilitating viral replication. In vitro experiments using overexpression system or kinase inhibitors showed that several kinases including MAPK12 and Syk were involved in regulation of the early phosphorylation of STAT2 triggered by IAV infection. Moreover, when MAPK12 kinase was inhibited, expression of several ISGs was clearly decreased in cells infected with IAV at the early infection stage. Accordingly, inhibition of MAPK12 accelerated the replication of influenza virus in host. These results provide a better understanding of how initial activation of STAT2 and the early antiviral responses are induced by the viral infection.
Collapse
Affiliation(s)
- Xinxin Li
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siya Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenzhuo Zhou
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Ji-Long Chen, ; Shasha Liu,
| | - Shasha Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Ji-Long Chen, ; Shasha Liu,
| |
Collapse
|
128
|
Xu F, Shi J, Qin X, Zheng Z, Chen M, Lin Z, Ye J, Li M. Hormone-Glutamine Metabolism: A Critical Regulatory Axis in Endocrine-Related Cancers. Int J Mol Sci 2022; 23:ijms231710086. [PMID: 36077501 PMCID: PMC9456462 DOI: 10.3390/ijms231710086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The endocrine-related cancers and hormones are undoubtedly highly interconnected. How hormones support or repress tumor induction and progression has been extensively profiled. Furthermore, advances in understanding the role of glutamine metabolism in mediating tumorigenesis and development, coupled with these in-depth studies on hormone (e.g., estrogen, progesterone, androgen, prostaglandin, thyroid hormone, and insulin) regulation of glutamine metabolism, have led us to think about the relationship between these three factors, which remains to be elucidated. Accordingly, in this review, we present an updated overview of glutamine metabolism traits and its influence on endocrine oncology, as well as its upstream hormonal regulation. More importantly, this hormone/glutamine metabolism axis may help in the discovery of novel therapeutic strategies for endocrine-related cancer.
Collapse
Affiliation(s)
- Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Xueyun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Jiangfeng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
129
|
Wang Y, Zhou L, Liang W, Dang Z, Wang S, Zhang Y, Zhao P, Lu Z. Cytokine receptor DOME controls wing disc development in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103828. [PMID: 36002096 DOI: 10.1016/j.ibmb.2022.103828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
In multicellular organisms, the JAK/STAT signaling pathway is involved in cell proliferation, differentiation, apoptosis, and immune regulation. Through activation of the Stat92E transcription factor, JAK/STAT signaling induced proper wing development in Drosophila. Domeless (DOME) was the first identified invertebrate JAK/STAT receptor. However, the function of DOME in Bombyx mori development remains unclear, especially in wing morphogenesis. In this study, we isolated the cytokine receptor DOME gene in B. mori and evaluated its function in DOME-knockout models. We found that overexpression of DOME at the cellular level upregulated the expression of JAK/STAT pathway-related genes, promoted proliferation, and inhibited apoptosis. The results of the interference with DOME had the opposite effects with those of overexpression at the cellular level. Using CRISPR/Cas9 technology, we constructed a DOME-knockout transgenic silkworm strain (KO-DOME) and found that the wings of the pupa and moth stages were vesicle-shaped and smaller than those of the wild-type silkworm. Some KO-DOME silkworms were unable to extend their wings from the pupal case after eclosion. We detected the expression of cyclin and apoptosis-related genes in the wing disc of the moth stage and found that some cyclin genes, such as CyclinA, CyclinB, and CyclinD, were downregulated, whereas apoptotic genes, such as Caspase1, Caspase3, and Caspase8, were upregulated. We propose that DOME regulates cell proliferation and apoptosis by affecting the JAK/STAT signaling pathway, ultimately influencing the development of wing discs. Our study provides empirical evidence for the biological function of the silkworm DOME gene, which is essential for the normal development of wings.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China.
| | - Li Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjuan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Zhuo Dang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Shiyuan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
130
|
Harris J, Borg NA. The multifaceted roles of NLRP3-modulating proteins in virus infection. Front Immunol 2022; 13:987453. [PMID: 36110852 PMCID: PMC9468583 DOI: 10.3389/fimmu.2022.987453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune response to viruses is critical for the correct establishment of protective adaptive immunity. Amongst the many pathways involved, the NLRP3 [nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3)] inflammasome has received considerable attention, particularly in the context of immunity and pathogenesis during infection with influenza A (IAV) and SARS-CoV-2, the causative agent of COVID-19. Activation of the NLRP3 inflammasome results in the secretion of the proinflammatory cytokines IL-1β and IL-18, commonly coupled with pyroptotic cell death. While this mechanism is protective and key to host defense, aberrant NLRP3 inflammasome activation causes a hyperinflammatory response and excessive release of cytokines, both locally and systemically. Here, we discuss key molecules in the NLRP3 pathway that have also been shown to have significant roles in innate and adaptive immunity to viruses, including DEAD box helicase X-linked (DDX3X), vimentin and macrophage migration inhibitory factor (MIF). We also discuss the clinical opportunities to suppress NLRP3-mediated inflammation and reduce disease severity.
Collapse
Affiliation(s)
- James Harris
- Cell Biology Assays Team, Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Natalie A. Borg
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
131
|
Inflammation: Roles in Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 11:antiox11091686. [PMID: 36139760 PMCID: PMC9495679 DOI: 10.3390/antiox11091686] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Various diseases can cause skeletal muscle atrophy, usually accompanied by inflammation, mitochondrial dysfunction, apoptosis, decreased protein synthesis, and enhanced proteolysis. The underlying mechanism of inflammation in skeletal muscle atrophy is extremely complex and has not been fully elucidated, thus hindering the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy. In this review, we elaborate on protein degradation pathways, including the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), the calpain and caspase pathways, the insulin growth factor 1/Akt protein synthesis pathway, myostatin, and muscle satellite cells, in the process of muscle atrophy. Under an inflammatory environment, various pro-inflammatory cytokines directly act on nuclear factor-κB, p38MAPK, and JAK/STAT pathways through the corresponding receptors, and then are involved in muscle atrophy. Inflammation can also indirectly trigger skeletal muscle atrophy by changing the metabolic state of other tissues or cells. This paper explores the changes in the hypothalamic-pituitary-adrenal axis and fat metabolism under inflammatory conditions as well as their effects on skeletal muscle. Moreover, this paper also reviews various signaling pathways related to muscle atrophy under inflammatory conditions, such as cachexia, sepsis, type 2 diabetes mellitus, obesity, chronic obstructive pulmonary disease, chronic kidney disease, and nerve injury. Finally, this paper summarizes anti-amyotrophic drugs and their therapeutic targets for inflammation in recent years. Overall, inflammation is a key factor causing skeletal muscle atrophy, and anti-inflammation might be an effective strategy for the treatment of skeletal muscle atrophy. Various inflammatory factors and their downstream pathways are considered promising targets for the treatment and prevention of skeletal muscle atrophy.
Collapse
|
132
|
Asgharian P, Tazekand AP, Hosseini K, Forouhandeh H, Ghasemnejad T, Ranjbar M, Hasan M, Kumar M, Beirami SM, Tarhriz V, Soofiyani SR, Kozhamzharova L, Sharifi-Rad J, Calina D, Cho WC. Potential mechanisms of quercetin in cancer prevention: focus on cellular and molecular targets. Cancer Cell Int 2022; 22:257. [PMID: 35971151 PMCID: PMC9380290 DOI: 10.1186/s12935-022-02677-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, the cancer-related disease has had a high mortality rate and incidence worldwide, despite clinical advances in cancer treatment. The drugs used for cancer therapy, have high side effects in addition to the high cost. Subsequently, to reduce these side effects, many studies have suggested the use of natural bioactive compounds. Among these, which have recently attracted the attention of many researchers, quercetin has such properties. Quercetin, a plant flavonoid found in fresh fruits, vegetables and citrus fruits, has anti-cancer properties by inhibiting tumor proliferation, invasion, and tumor metastasis. Several studies have demonstrated the anti-cancer mechanism of quercetin, and these mechanisms are controlled through several signalling pathways within the cancer cell. Pathways involved in this process include apoptotic, p53, NF-κB, MAPK, JAK/STAT, PI3K/AKT, and Wnt/β-catenin pathways. In addition to regulating these pathways, quercetin controls the activity of oncogenic and tumor suppressor ncRNAs. Therefore, in this comprehensive review, we summarized the regulation of these signalling pathways by quercetin. The modulatory role of quercetin in the expression of various miRNAs has also been discussed. Understanding the basic anti-cancer mechanisms of these herbal compounds can help prevent and manage many types of cancer.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazekand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR—Central Institute of Agricultural Engineering, Bhopal, 462038 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai, 400019 India
| | - Sohrab Minaei Beirami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research, and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
133
|
Rashid F, Xie Z, Suleman M, Shah A, Khan S, Luo S. Roles and functions of SARS-CoV-2 proteins in host immune evasion. Front Immunol 2022; 13:940756. [PMID: 36003396 PMCID: PMC9394213 DOI: 10.3389/fimmu.2022.940756] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades the host immune system through a variety of regulatory mechanisms. The genome of SARS-CoV-2 encodes 16 non-structural proteins (NSPs), four structural proteins, and nine accessory proteins that play indispensable roles to suppress the production and signaling of type I and III interferons (IFNs). In this review, we discussed the functions and the underlying mechanisms of different proteins of SARS-CoV-2 that evade the host immune system by suppressing the IFN-β production and TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)/signal transducer and activator of transcription (STAT)1 and STAT2 phosphorylation. We also described different viral proteins inhibiting the nuclear translocation of IRF3, nuclear factor-κB (NF-κB), and STATs. To date, the following proteins of SARS-CoV-2 including NSP1, NSP6, NSP8, NSP12, NSP13, NSP14, NSP15, open reading frame (ORF)3a, ORF6, ORF8, ORF9b, ORF10, and Membrane (M) protein have been well studied. However, the detailed mechanisms of immune evasion by NSP5, ORF3b, ORF9c, and Nucleocapsid (N) proteins are not well elucidated. Additionally, we also elaborated the perspectives of SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Farooq Rashid
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Zhixun Xie
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
- *Correspondence: Zhixun Xie,
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abdullah Shah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Suliman Khan
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - Sisi Luo
- Department of Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, China
| |
Collapse
|
134
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
135
|
Study on the Mechanism of Action of STAT3 in the Drug Resistance of Gastric Cancer Cells. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1426343. [PMID: 35992548 PMCID: PMC9356858 DOI: 10.1155/2022/1426343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
Gastric cancer is the most common digestive tract malignancy in China and has a poor prognosis, with a 5-year overall survival rate of only 35.1%. Because its early symptoms are not obvious and early diagnosis is complicated, there is an urgent need to find biological targets for diagnosis and treatment. This research detected the expression of STAT3 in gastric cancer tissues and adjacent tissues by Western blot and immunohistochemical experiments and conducted corresponding basic experiments to explore the role of STAT3 in inhibiting the proliferation of cisplatin-resistant gastric cancer cells and promoting their apoptosis, including the construction of cisplatin-resistant gastric cancer cell line, the knock-out STAT3 in drug-resistant gastric cancer cells by CRISPR-Cas9, and the comparison of the proliferation and apoptosis of drug-resistant cells and drug-resistant cells STAT3(-). The mechanism provides a possible intervention target for clinically improving the prognosis of patients with cisplatin-resistant gastric cancer.
Collapse
|
136
|
Bourke NM, Achilles SL, Huang SUS, Cumming HE, Lim SS, Papageorgiou I, Gearing LJ, Chapman R, Thakore S, Mangan NE, Mesiano S, Hertzog PJ. Spatiotemporal regulation of human IFNε and innate immunity in the female reproductive tract. JCI Insight 2022; 7:135407. [PMID: 35862222 DOI: 10.1172/jci.insight.135407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Although published studies have demonstrated that interferon epsilon (IFNε) has a crucial role in regulating protective immunity in the mouse female reproductive tract (mFRT), expression and regulation of IFNε in the human female reproductive tract (hFRT) have not been characterised. To characterise human IFNε, we obtained hFRT samples from a well- characterized cohort of women, enabling us to comprehensively assess ex vivo IFNε expression in the hFRT at various stages of the menstrual cycle. We found that among the various types of IFNs, IFNε is uniquely selectively and constitutively expressed in the hFRT epithelium. It has distinct expression patterns in the surface and glandular epithelia of the upper hFRT compared with basal layers of the stratified squamous epithelia of the lower hFRT. There is cyclical variation of IFNε expression in the endometrial epithelium of the upper hFRT and not in the distal FRT, consistent with selective endometrial expression of the progesterone receptor and regulation of the IFNE promoter by progesterone. Since we show IFNε stimulates important protective IFN-regulated genes (IRGs) in FRT epithelium, this characterisation is a key element in understanding the mechanisms of hormonal control of mucosal immunity.
Collapse
Affiliation(s)
| | | | - Stephanie U-Shane Huang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Helen E Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Irene Papageorgiou
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Ross Chapman
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Suruchi Thakore
- Department of Obstetrics and Gynecology, Case Western Reserve University, Cleveland, United States of America
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, United States of America
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| |
Collapse
|
137
|
Singh A, Mishra A. Molecular modelling study to discover novel JAK2 signaling pathway inhibitor. J Biomol Struct Dyn 2022:1-12. [PMID: 35838147 DOI: 10.1080/07391102.2022.2097314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The JAK2/STAT signaling cascades facilitates receptor signals which is responsible for cell growth, survival and homeostasis. Ligand binding to JAKs causes phosphorylation other proteins known as STATs, which translocate to the nucleus and regulate transcription of several important proteins. Growth hormone, prolactin and γ-interferon known agonists of JAK STAT receptors, signal to the nucleus by a more direct manner than the receptor tyrosine kinases. Mutations in JAKs may be responsible for immunodeficiency and myeloproliferative disorders because of its important role in cytokine signaling and making the pathway a therapeutic target for various disease. The present study screened Zinc database to find novel JAK2 inhibitors using virtual high throughput screening techniques. Selection of compound for further study was on the basis of docking score, free energy and binding pattern of the compound. Molecular simulation and MM/GBSA free energy was evaluated for the binding interactions and the stability of docked conformations. Several parameters which determine protein ligand interaction like RMSD, RMSF, Rg and binding pattern were observed. Hydrogen bonds (Glu 930, 932 and Asp 994) after 150 ns simulation were observed between identified compound INC000096136346 and it was similar to known inhibitor ruxolitinib. MM/GBSA free energy was comparable to known inhibitor ruxolitinib. ZINC000096136346 qualify Lipinski's rule of five, rule of three, WDI like rule and there is one violation in lead like rule.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
138
|
Abid R, Ghazanfar S, Farid A, Sulaman SM, Idrees M, Amen RA, Muzammal M, Shahzad MK, Mohamed MO, Khaled AA, Safir W, Ghori I, Elasbali AM, Alharbi B. Pharmacological Properties of 4', 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways. Molecules 2022; 27:4304. [PMID: 35807549 PMCID: PMC9267958 DOI: 10.3390/molecules27134304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | | | - Maryam Idrees
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Khurram Shahzad
- Biotechnology and Bioinformatics Department, International Islamic University, Islamabad 44100, Pakistan;
| | | | | | - Waqas Safir
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Ifra Ghori
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory, College of Applied Medical Science, University of Hail, Hail 81481, Saudi Arabia;
| |
Collapse
|
139
|
Huang J, Zhou C, Deng J, Zhou J. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Biochem Pharmacol 2022; 202:115162. [PMID: 35787993 PMCID: PMC9250821 DOI: 10.1016/j.bcp.2022.115162] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic continues to spread globally. The rapid dispersion of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 drives an urgent need for effective treatments, especially for patients who develop severe pneumonia. The excessive and uncontrolled release of pro-inflammatory cytokines has proved to be an essential factor in the rapidity of disease progression, and some cytokines are significantly associated with adverse outcomes. Most of the upregulated cytokines signal through the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. Therefore, blocking the exaggerated release of cytokines, including IL-2, IL-6, TNF-α, and IFNα/β/γ, by inhibiting JAK/STAT signaling will, presumably, offer favorable pharmacodynamics and present an attractive prospect. JAK inhibitors (JAKi) can also inhibit members of the numb-associated kinase (NAK) family, including AP2-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), which regulate the angiotensin-converting enzyme 2 (ACE-2) transmembrane protein and are involved in host viral endocytosis. According to the data released from current clinical trials, JAKi treatment can effectively control the dysregulated cytokine storm and improve clinical outcomes regarding mortality, ICU admission, and discharge. There are still some concerns surrounding thromboembolic events, opportunistic infection such as herpes zoster virus reactivation, and repression of the host's type-I IFN-dependent immune repair for both viral and bacterial infection. However, the current JAKi clinical trials of COVID-19 raised no new safety concerns except a slightly increased risk of herpes virus infection. In the updated WHO guideline, Baricitinb is strongly recommended as an alternative to IL-6 receptor blockers, particularly in combination with corticosteroids, in patients with severe or critical COVID-19. Future studies will explore the application of JAKi to COVID-19 treatment in greater detail, such as the optimal timing and course of JAKi treatment, individualized medication strategies based on pharmacogenomics, and the effect of combined medications.
Collapse
Affiliation(s)
- Jin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Chi Zhou
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 1095# Jiefang Ave., Wuhan 430030, People's Rep. of China
| | - Jinniu Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
140
|
Radovani B, Gudelj I. N-Glycosylation and Inflammation; the Not-So-Sweet Relation. Front Immunol 2022; 13:893365. [PMID: 35833138 PMCID: PMC9272703 DOI: 10.3389/fimmu.2022.893365] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic inflammation is the main feature of many long-term inflammatory diseases such as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of studies in which alterations of N-glycosylation have been observed in many pathophysiological conditions, yet studies of the underlying mechanisms that precede N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter the substrate synthesis pathways as well as the expression of glycosyltransferases required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can further contribute to disease pathogenesis through modulation of various aspects of immune cell processes, including those relevant to pathogen recognition and fine-tuning the inflammatory response. This review summarizes our current knowledge of inflammation-induced N-glycosylation changes, with a particular focus on specific subsets of immune cells of innate and adaptive immunity and how these changes affect their effector functions, cell interactions, and signal transduction.
Collapse
Affiliation(s)
- Barbara Radovani
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Ivan Gudelj
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| |
Collapse
|
141
|
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z, Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem 2022; 239:114551. [PMID: 35749986 DOI: 10.1016/j.ejmech.2022.114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.
Collapse
Affiliation(s)
- Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yezhi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xiangxiang Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| |
Collapse
|
142
|
The protective effect of Tilia amurensis honey on influenza A virus infection through stimulation of interferon-mediated IFITM3 signaling. Biomed Pharmacother 2022; 153:113259. [PMID: 35717782 DOI: 10.1016/j.biopha.2022.113259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, attention has focused on the prevention and treatment of respiratory viruses including influenza viruses. We evaluated the antiviral effect of Tilia amurensis honey (TH) against influenza A virus in murine macrophages. Influenza A virus infection was reduced following pretreatment with TH. Pretreatment of murine macrophages with TH increased the production and secretion of type-1 interferon (IFN) and proinflammatory cytokines and increased phosphorylation of the type-1 IFN-related proteins, TANK-binding kinase (TBK), and STAT. Moreover, TH increased the expression of IFN-stimulating genes and increased the expression of IFN-inducible transmembrane (IFITM3), a protein that interferes with virus replication and entry. Taken together, these findings suggest that TH suppresses influenza A virus infection by regulating the innate immune response in macrophages. This supports the development of preventive and therapeutic agents for influenza A virus and enhances the economic value of TH.
Collapse
|
143
|
Znaidia M, Demeret C, van der Werf S, Komarova AV. Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses 2022; 14:v14061247. [PMID: 35746718 PMCID: PMC9231409 DOI: 10.3390/v14061247] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. SARS-CoV-2 is characterized by an important capacity to circumvent the innate immune response. The early interferon (IFN) response is necessary to establish a robust antiviral state. However, this response is weak and delayed in COVID-19 patients, along with massive pro-inflammatory cytokine production. This dysregulated innate immune response contributes to pathogenicity and in some individuals leads to a critical state. Characterizing the interplay between viral factors and host innate immunity is crucial to better understand how to manage the disease. Moreover, the constant emergence of new SARS-CoV-2 variants challenges the efficacy of existing vaccines. Thus, to control this virus and readjust the antiviral therapy currently used to treat COVID-19, studies should constantly be re-evaluated to further decipher the mechanisms leading to SARS-CoV-2 pathogenesis. Regarding the role of the IFN response in SARS-CoV-2 infection, in this review we summarize the mechanisms by which SARS-CoV-2 evades innate immune recognition. More specifically, we explain how this virus inhibits IFN signaling pathways (IFN-I/IFN-III) and controls interferon-stimulated gene (ISG) expression. We also discuss the development and use of IFNs and potential drugs controlling the innate immune response to SARS-CoV-2, helping to clear the infection.
Collapse
|
144
|
IL-6 activates pathologic Th17 cell via STAT 3 phosphorylation in inflammatory joint of Ankylosing Spondylitis. Biochem Biophys Res Commun 2022; 620:69-75. [DOI: 10.1016/j.bbrc.2022.06.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
|
145
|
Ngwa DN, Pathak A, Agrawal A. IL-6 regulates induction of C-reactive protein gene expression by activating STAT3 isoforms. Mol Immunol 2022; 146:50-56. [PMID: 35430542 PMCID: PMC9811655 DOI: 10.1016/j.molimm.2022.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
C-reactive protein (CRP) is synthesized in hepatocytes. The serum concentration of CRP increases dramatically during the acute phase response. In human hepatoma Hep3B cells, maximal CRP expression occurs in cells treated with the combination of IL-6 and IL-1β. IL-6 induces transcription of the CRP gene and IL-1β synergistically enhances the effects of IL-6. We investigated the role of IL-6-activated transcription factor STAT3, also known as STAT3α, in inducing CRP expression since we identified four consensus STAT3-binding sites centered at positions - 72, - 108, - 134 and - 164 on the CRP promoter. It has been shown previously that STAT3 binds to the site at - 108 and induces CRP expression. We found that STAT3 also bound to the other three sites, and several STAT3-containing complexes were formed at each site, suggesting the presence of STAT3 isoforms and additional transcription factors in the complexes. Mutation of the STAT3 sites at - 108, - 134 or - 164 resulted in decreased CRP expression in response to IL-6 and IL-1β treatment, although the synergy between IL-6 and IL-1β was not affected by the mutations. The STAT3 site at - 72 could not be investigated employing mutagenesis. We also found that IL-6 activated two isoforms of STAT3 in Hep3B cells: STAT3α which contains both a DNA-binding domain and a transactivation domain and STAT3β which contains only the DNA-binding domain. Taken together, these findings raise the possibility that IL-6 not only induces CRP expression but also regulates the induction of CRP expression by activating STAT3 isoforms and by utilizing all four STAT3 sites.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Asmita Pathak
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Alok Agrawal
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| |
Collapse
|
146
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
147
|
Ma NX, Puls B, Chen G. Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion. Dev Neurobiol 2022; 82:375-391. [PMID: 35606902 PMCID: PMC9540770 DOI: 10.1002/dneu.22882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022]
Abstract
Ectopic expression of a single neural transcription factor NeuroD1 can reprogram reactive glial cells into functional neurons both in vitro and in vivo, but the underlying mechanisms are not well understood yet. Here, we used RNA-sequencing technology to capture the transcriptomic changes at different time points during the reprogramming process. We found that following NeuroD1 overexpression, astroglial genes (ACTG1, ALDH1A3, EMP1, CLDN6, SOX21) were significantly downregulated, whereas neuronal genes (DCX, RBFOX3/NeuN, CUX2, RELN, SNAP25) were significantly upregulated. NeuroD family members (NeuroD1/2/6) and signaling pathways (Wnt, MAPK, cAMP) as well as neurotransmitter receptors (acetylcholine, somatostatin, dopamine) were also significantly upregulated. Gene co-expression analysis identified many central genes among the NeuroD1-interacting network, including CABP7, KIAA1456, SSTR2, GADD45G, LRRTM2, and INSM1. Compared to chemical conversion, we found that NeuroD1 acted as a strong driving force and triggered fast transcriptomic changes during astrocyte-to-neuron conversion process. Together, this study reveals many important downstream targets of NeuroD1 such as HES6, BHLHE22, INSM1, CHRNA1/3, CABP7, and SSTR2, which may play critical roles during the transcriptomic landscape shift from a glial profile to a neuronal profile.
Collapse
Affiliation(s)
- Ning-Xin Ma
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Puls
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.,GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
148
|
Chen J, Lu Z, Yang X, Zhou Y, Gao J, Zhang S, Huang S, Cai J, Yu J, Zhao W, Zhang B. Severe Acute Respiratory Syndrome Coronavirus 2 ORF8 Protein Inhibits Type I Interferon Production by Targeting HSP90B1 Signaling. Front Cell Infect Microbiol 2022; 12:899546. [PMID: 35677655 PMCID: PMC9168264 DOI: 10.3389/fcimb.2022.899546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has currently infected over 430 million individuals worldwide. With the variant strains of SARS-CoV-2 emerging, a region of high mutation rates in ORF8 was identified during the early pandemic, which resulted in a mutation from leucine (L) to serine (S) at amino acid 84. A typical feature of ORF8 is the immune evasion by suppressing interferon response; however, the mechanisms by which the two variants of ORF8 antagonize the type I interferon (IFN-I) pathway have not yet been clearly investigated. Here, we reported that SARS-CoV-2 ORF8L and ORF8S with no difference inhibit the production of IFN-β, MDA5, RIG-I, ISG15, ISG56, IRF3, and other IFN-related genes induced by poly(I:C). In addition, both ORF8L and ORF8S proteins were found to suppress the nuclear translocation of IRF3. Mechanistically, the SARS-CoV-2 ORF8 protein interacts with HSP90B1, which was later investigated to induce the production of IFN-β and IRF3. Taken together, these results indicate that SARS-CoV-2 ORF8 antagonizes the RIG-I/MDA-5 signaling pathway by targeting HSP90B1, which subsequently exhibits an inhibitory effect on the production of IFN-I. These functions appeared not to be influenced by the genotypes of ORF8L and ORF8S. Our study provides an explanation for the antiviral immune suppression of SARS-CoV-2 and suggests implications for the pathogenic mechanism and treatment of COVID-19.
Collapse
Affiliation(s)
- Jiayi Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zixin Lu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiuwen Yang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yezhen Zhou
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Gao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shihao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shan Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jintai Cai
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianhai Yu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Bao Zhang, ; Wei Zhao,
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Bao Zhang, ; Wei Zhao,
| |
Collapse
|
149
|
Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev 2022; 77:101608. [PMID: 35283289 DOI: 10.1016/j.arr.2022.101608] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Osteocytes play a critical role in maintaining bone homeostasis and in regulating skeletal response to hormones and mechanical loading. Substantial evidence have demonstrated that osteocytes and their lacunae exhibit morphological changes in aged bone, indicating the underlying involvement of osteocytes in bone aging. Notably, recent studies have deciphered aged osteocytes to have characteristics such as impaired mechanosensitivity, accumulated cellular senescence, dysfunctional perilacunar/canalicular remodeling, and degenerated lacuna-canalicular network. However, detailed molecular mechanisms of osteocytes remain unclear. Nonetheless, osteocyte transcriptomes analyzed via advanced RNA sequencing (RNA-seq) techniques have identified several bone aging-related genes and signaling pathways, such as Wnt, Bmp/TGF, and Jak-STAT. Moreover, inflammation, immune dysfunction, energy shortage, and impaired hormone responses possibly affect osteocytes in age-related bone deterioration. In this review, we summarize the hallmarks of aging bone and osteocytes and discuss osteocytic mechanisms in age-related bone loss and impaired bone quality. Furthermore, we provide insights into the challenges faced and their possible solutions when investigating osteocyte transcriptomes. We also highlight that single-cell RNA-seq can decode transcriptomic messages in aged osteocytes; therefore, this technique can promote novel single cell-based investigations in osteocytes once a well-established standardized protocol specific for osteocytes is developed. Interestingly, improved understanding of osteocytic mechanisms have helped identify promising targets and effective therapies for aging-related osteoporosis and fragile fractures.
Collapse
|
150
|
Surgical Strikes on Host Defenses: Role of the Viral Protease Activity in Innate Immune Antagonism. Pathogens 2022; 11:pathogens11050522. [PMID: 35631043 PMCID: PMC9145062 DOI: 10.3390/pathogens11050522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
As a frontline defense mechanism against viral infections, the innate immune system is the primary target of viral antagonism. A number of virulence factors encoded by viruses play roles in circumventing host defenses and augmenting viral replication. Among these factors are viral proteases, which are primarily responsible for maturation of viral proteins, but in addition cause proteolytic cleavage of cellular proteins involved in innate immune signaling. The study of these viral protease-mediated host cleavages has illuminated the intricacies of innate immune networks and yielded valuable insights into viral pathogenesis. In this review, we will provide a brief summary of how proteases of positive-strand RNA viruses, mainly from the Picornaviridae, Flaviviridae and Coronaviridae families, proteolytically process innate immune components and blunt their functions.
Collapse
|