101
|
Xu H, Kemppainen M, El Kayal W, Lee SH, Pardo AG, Cooke JEK, Zwiazek JJ. Overexpression of Laccaria bicolor aquaporin JQ585595 alters root water transport properties in ectomycorrhizal white spruce (Picea glauca) seedlings. THE NEW PHYTOLOGIST 2015; 205:757-70. [PMID: 25323307 DOI: 10.1111/nph.13098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 08/27/2014] [Indexed: 05/20/2023]
Abstract
The contribution of hyphae to water transport in ectomycorrhizal (ECM) white spruce (Picea glauca) seedlings was examined by altering expression of a major water-transporting aquaporin in Laccaria bicolor. Picea glauca was inoculated with wild-type (WT), mock transgenic or L. bicolor aquaporin JQ585595-overexpressing (OE) strains and exposed to root temperatures ranging from 5 to 20°C to examine the root water transport properties, physiological responses and plasma membrane intrinsic protein (PIP) expression in colonized plants. Mycorrhization increased shoot water potential, transpiration, net photosynthetic rates, root hydraulic conductivity and root cortical cell hydraulic conductivity in seedlings. At 20°C, OE plants had higher root hydraulic conductivity compared with WT plants and the increases were accompanied by higher expression of P. glauca PIP GQ03401_M18.1 in roots. In contrast to WT L. bicolor, the effects of OE fungi on root and root cortical cell hydraulic conductivities were abolished at 10 and 5°C in the absence of major changes in the examined transcript levels of P. glauca root PIPs. The results provide evidence for the importance of fungal aquaporins in root water transport of mycorrhizal plants. They also demonstrate links between hyphal water transport, root aquaporin expression and root water transport in ECM plants.
Collapse
Affiliation(s)
- Hao Xu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | | | | | | | | | | | | |
Collapse
|
102
|
Wu L, Wang S, Wu J, Han Z, Wang R, Wu L, Zhang H, Chen Y, Hu X. Phosphoproteomic analysis of the resistant and susceptible genotypes of maize infected with sugarcane mosaic virus. Amino Acids 2014; 47:483-96. [PMID: 25488425 DOI: 10.1007/s00726-014-1880-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Protein phosphorylation plays a pivotal role in the regulation of many cellular events. No information is yet available, however, on protein phosphorylation in plants in response to virus infection. In this study, we characterized phosphoproteomes of resistant and susceptible genotypes of maize (Zea mays L.) in response to Sugarcane mosaic virus (SCMV) infection. Based on isotope tags for relative and absolute quantification technology, TiO2 enrichment method and LC-MS/MS analysis, we identified 65 and 59 phosphoproteins respectively, whose phosphorylation level regulated significantly in susceptible and resistant plants. Some identified phosphoproteins were shared by both genotypes, suggesting a partial overlapping of the responsive pathways to virus infection. While several phosphoproteins are well-known pathogen response phosphoproteins, virus infection differentially regulates most other phosphoproteins, which has not been reported in literature. Changes in protein phosphorylation status indicated that response to SCMV infection encompass a reformatting of major cellular processes. Our data provide new valuable insights into plant-virus interactions.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Verdoucq L, Rodrigues O, Martinière A, Luu DT, Maurel C. Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:101-107. [PMID: 25299641 DOI: 10.1016/j.pbi.2014.09.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are channel proteins present in the plasma membrane and most of intracellular compartments of plant cells. This review focuses on recent insights into the cellular function of plant aquaporins, with an emphasis on the subfamily of Plasma membrane Intrinsic Proteins (PIPs). Whereas PIPs mostly serve as water channels, novel functions associated with their ability to transport carbon dioxide and hydrogen peroxide are emerging. Phosphorylation of PIPs was found to play a central role in the mechanisms that determine their gating and subcellular dynamics. Dynamic tracking of single aquaporin molecules in native plant membranes and the search for cell signaling intermediates acting upstream of aquaporins are now used to dissect their cellular regulation by hormonal and environmental stimuli.
Collapse
Affiliation(s)
- Lionel Verdoucq
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Olivier Rodrigues
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Doan Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, CNRS/INRA/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, Cedex 2, France.
| |
Collapse
|
104
|
Venkatesh J, Yu JW, Gaston D, Park SW. Molecular evolution and functional divergence of X-intrinsic protein genes in plants. Mol Genet Genomics 2014; 290:443-60. [PMID: 25284357 DOI: 10.1007/s00438-014-0927-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Abstract
X-intrinsic proteins (XIPs) are a novel class of major intrinsic proteins found in diverse organisms. Recently, XIP genes have been reported to be involved in the transport of a wide range of hydrophobic solutes; however, the evolutionary forces driving their structural and functional divergence in plants are poorly understood. In the present study, comprehensive bioinformatics analyses were performed to gain insight into the molecular and evolutionary mechanisms driving this structural and functional diversification. Phylogenetic analyses have revealed the major lineage-specific expansions of XIP genes in plants. Within the eudicots, XIP genes have diverged into Asterid and Rosid-specific phylogenetic lineages and have also undergone several independent duplications during the course of evolution. Investigation of functional divergence at the protein level showed evidence for shifting evolutionary rate and/or altered constraints on the physiochemical properties of specific amino acid sites following gene duplication. Selection pressure analyses suggest that purifying selection is the predominant evolutionary force acting on the XIP gene subfamily, along with episodic positive selection. However, only a few amino acid sites were found to be subjected to such episodic positive selection. Furthermore, protein functional divergence analysis has identified critical amino acid residues, which must be validated by future experimental studies, that could provide new insights into the role of XIPs in transport of a wide range solutes of physiological importance.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
105
|
Abstract
Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development.
Collapse
Affiliation(s)
- Enric Zelazny
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| | - Grégory Vert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Saclay Plant Sciences, 91190 Gif-sur-Yvette, France
| |
Collapse
|
106
|
Sabir F, Leandro MJ, Martins AP, Loureiro-Dias MC, Moura TF, Soveral G, Prista C. Exploring three PIPs and three TIPs of grapevine for transport of water and atypical substrates through heterologous expression in aqy-null yeast. PLoS One 2014; 9:e102087. [PMID: 25111598 PMCID: PMC4128642 DOI: 10.1371/journal.pone.0102087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022] Open
Abstract
Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24-38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these species.
Collapse
Affiliation(s)
- Farzana Sabir
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria José Leandro
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Ana Paula Martins
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria C. Loureiro-Dias
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| | - Teresa F. Moura
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Graça Soveral
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Dept. de Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Prista
- Centre for Botany Applied to Agriculture (CBAA), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
107
|
Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B. Overexpression of a Calcium-Dependent Protein Kinase Confers Salt and Drought Tolerance in Rice by Preventing Membrane Lipid Peroxidation. PLANT PHYSIOLOGY 2014; 165:688-704. [PMID: 24784760 PMCID: PMC4044838 DOI: 10.1104/pp.113.230268] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
The OsCPK4 gene is a member of the complex gene family of calcium-dependent protein kinases in rice (Oryza sativa). Here, we report that OsCPK4 expression is induced by high salinity, drought, and the phytohormone abscisic acid. Moreover, a plasma membrane localization of OsCPK4 was observed by transient expression assays of green fluorescent protein-tagged OsCPK4 in onion (Allium cepa) epidermal cells. Overexpression of OsCPK4 in rice plants significantly enhances tolerance to salt and drought stress. Knockdown rice plants, however, are severely impaired in growth and development. Compared with control plants, OsCPK4 overexpressor plants exhibit stronger water-holding capability and reduced levels of membrane lipid peroxidation and electrolyte leakage under drought or salt stress conditions. Also, salt-treated OsCPK4 seedlings accumulate less Na+ in their roots. We carried out microarray analysis of transgenic rice overexpressing OsCPK4 and found that overexpression of OsCPK4 has a low impact on the rice transcriptome. Moreover, no genes were found to be commonly regulated by OsCPK4 in roots and leaves of rice plants. A significant number of genes involved in lipid metabolism and protection against oxidative stress appear to be up-regulated by OsCPK4 in roots of overexpressor plants. Meanwhile, OsCPK4 overexpression has no effect on the expression of well-characterized abiotic stress-associated transcriptional regulatory networks (i.e. ORYZA SATIVA DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN1 and ORYZA SATIVA No Apical Meristem, Arabidopsis Transcription Activation Factor1-2, Cup-Shaped Cotyledon6 genes) and LATE EMBRYOGENESIS ABUNDANT genes in their roots. Taken together, our data show that OsCPK4 functions as a positive regulator of the salt and drought stress responses in rice via the protection of cellular membranes from stress-induced oxidative damage.
Collapse
Affiliation(s)
- Sonia Campo
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Joaquima Messeguer
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Eric Lalanne
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - María Coca
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona-Universitat de Barcelona, Campus UAB, Bellaterra, Cerdanyola del Valles, 08193 Barcelona, Spain (S.C., P.B., J.M., M.C., B.S.S.); andOryzon Genomics, Cornella de Llobregat, 08940 Barcelona, Spain (E.L.)
| |
Collapse
|
108
|
Ovečka M, Takáč T, Komis G, Vadovič P, Bekešová S, Doskočilová A, Šamajová V, Luptovčiak I, Samajová O, Schweighofer A, Meskiene I, Jonak C, Křenek P, Lichtscheidl I, Škultéty L, Hirt H, Šamaj J. Salt-induced subcellular kinase relocation and seedling susceptibility caused by overexpression of Medicago SIMKK in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2335-50. [PMID: 24648569 PMCID: PMC4036504 DOI: 10.1093/jxb/eru115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Dual-specificity mitogen-activated protein kinases kinases (MAPKKs) are the immediate upstream activators of MAPKs. They simultaneously phosphorylate the TXY motif within the activation loop of MAPKs, allowing them to interact with and regulate multiple substrates. Often, the activation of MAPKs triggers their nuclear translocation. However, the spatiotemporal dynamics and the physiological consequences of the activation of MAPKs, particularly in plants, are still poorly understood. Here, we studied the activation and localization of the Medicago sativa stress-induced MAPKK (SIMKK)-SIMK module after salt stress. In the inactive state, SIMKK and SIMK co-localized in the cytoplasm and in the nucleus. Upon salt stress, however, a substantial part of the nuclear pool of both SIMKK and SIMK relocated to cytoplasmic compartments. The course of nucleocytoplasmic shuttling of SIMK correlated temporally with the dual phosphorylation of the pTEpY motif. SIMKK function was further studied in Arabidopsis plants overexpressing SIMKK-yellow fluorescent protein (YFP) fusions. SIMKK-YFP plants showed enhanced activation of Arabidopsis MPK3 and MPK6 kinases upon salt treatment and exhibited high sensitivity against salt stress at the seedling stage, although they were salt insensitive during seed germination. Proteomic analysis of SIMKK-YFP overexpressors indicated the differential regulation of proteins directly or indirectly involved in salt stress responses. These proteins included catalase, peroxiredoxin, glutathione S-transferase, nucleoside diphosphate kinase 1, endoplasmic reticulum luminal-binding protein 2, and finally plasma membrane aquaporins. In conclusion, Arabidopsis seedlings overexpressing SIMKK-YFP exhibited higher salt sensitivity consistent with their proteome composition and with the presumptive MPK3/MPK6 hijacking of the salt response pathway.
Collapse
Affiliation(s)
- Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Pavol Vadovič
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Slávka Bekešová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Veronika Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Ivan Luptovčiak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Olga Samajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Alois Schweighofer
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Irute Meskiene
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Claudia Jonak
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Dr Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Pavel Křenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Irene Lichtscheidl
- Institution of Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - L'udovít Škultéty
- Department of Rickettsiology, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Heribert Hirt
- Unité de Recherche en Genomique Végétale, Université d'Evry-Val-d'essone, 2, rue Gaston Crémieux, F-91057 Evry, France
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
109
|
Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. PLANT & CELL PHYSIOLOGY 2014; 55:1017-1029. [PMID: 24553847 DOI: 10.1093/pcp/pcu035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.
Collapse
Affiliation(s)
- Monica Calvo-Polanco
- Estación Experimental del Zaidín (CSIC), Department of Soil Microbiology and Symbiotic Systems, C/Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
110
|
Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta Gen Subj 2014; 1840:1596-604. [DOI: 10.1016/j.bbagen.2013.09.017] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/06/2013] [Accepted: 09/10/2013] [Indexed: 12/11/2022]
|
111
|
Insights into structural mechanisms of gating induced regulation of aquaporins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:69-79. [DOI: 10.1016/j.pbiomolbio.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 11/19/2022]
|
112
|
Chaumont F, Tyerman SD. Aquaporins: highly regulated channels controlling plant water relations. PLANT PHYSIOLOGY 2014; 164:1600-18. [PMID: 24449709 PMCID: PMC3982727 DOI: 10.1104/pp.113.233791] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/19/2014] [Indexed: 05/18/2023]
Abstract
Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.
Collapse
Affiliation(s)
| | - Stephen D. Tyerman
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4–L7.07.14, B–1348 Louvain-la-Neuve, Belgium (F.C.); and
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus PMB 1, Glen Osmond, South Australia 5064, Australia (S.D.T.)
| |
Collapse
|
113
|
Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta MDC, Carvajal M, Zamarreño AM, García-Mina JM, Maurel C, Aroca R. Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. PLANT, CELL & ENVIRONMENT 2014; 37:995-1008. [PMID: 24131347 DOI: 10.1111/pce.12214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The role of jasmonic acid in the induction of stomatal closure is well known. However, its role in regulating root hydraulic conductivity (L) has not yet been explored. The objectives of the present research were to evaluate how JA regulates L and how calcium and abscisic acid (ABA) could be involved in such regulation. We found that exogenous methyl jasmonate (MeJA) increased L of Phaseolus vulgaris, Solanum lycopersicum and Arabidopsis thaliana roots. Tomato plants defective in JA biosynthesis had lower values of L than wild-type plants, and that L was restored by addition of MeJA. The increase of L by MeJA was accompanied by an increase of the phosphorylation state of the aquaporin PIP2. We observed that MeJA addition increased the concentration of cytosolic calcium and that calcium channel blockers inhibited the rise of L caused by MeJA. Treatment with fluoridone, an inhibitor of ABA biosynthesis, partially inhibited the increase of L caused by MeJA, and tomato plants defective in ABA biosynthesis increased their L after application of MeJA. It is concluded that JA enhances L and that this enhancement is linked to calcium and ABA dependent and independent signalling pathways.
Collapse
Affiliation(s)
- Beatriz Sánchez-Romera
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Yang Z, Guo G, Zhang M, Liu CY, Hu Q, Lam H, Cheng H, Xue Y, Li J, Li N. Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase. Mol Cell Proteomics 2013; 12:3559-82. [PMID: 24043427 PMCID: PMC3861708 DOI: 10.1074/mcp.m113.031633] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/27/2013] [Indexed: 02/05/2023] Open
Abstract
Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on (15)N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein-protein interaction filter revealed a total of 14 kinase-substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light harvesting chlorophyll A/B binding protein 1.1, and flowering bHLH 3 proteins in a dual-and-opposing fashion.
Collapse
Affiliation(s)
- Zhu Yang
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guangyu Guo
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Manyu Zhang
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Y. Liu
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qin Hu
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Henry Lam
- ¶Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Han Cheng
- ‖Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- ‖Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiayang Li
- **State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Li
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
115
|
Li G, Santoni V, Maurel C. Plant aquaporins: roles in plant physiology. Biochim Biophys Acta Gen Subj 2013; 1840:1574-82. [PMID: 24246957 DOI: 10.1016/j.bbagen.2013.11.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. SCOPE OF REVIEW Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. MAJOR CONCLUSIONS In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. GENERAL SIGNIFICANCE Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France.
| |
Collapse
|
116
|
Wu XN, Sanchez Rodriguez C, Pertl-Obermeyer H, Obermeyer G, Schulze WX. Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol Cell Proteomics 2013; 12:2856-73. [PMID: 23820729 PMCID: PMC3790296 DOI: 10.1074/mcp.m113.029579] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/30/2013] [Indexed: 11/06/2022] Open
Abstract
The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis, and it contains the highest fraction of proteins with yet uncharacterized functions. Here, we present functions of SIRK1, a receptor kinase that was previously identified with rapid transient phosphorylation after sucrose resupply to sucrose-starved seedlings. SIRK1 was found to be an active kinase with increasing activity in the presence of an external sucrose supply. In sirk1 T-DNA insertional mutants, the sucrose-induced phosphorylation patterns of several membrane proteins were strongly reduced; in particular, pore-gating phosphorylation sites in aquaporins were affected. SIRK1-GFP fusions were found to directly interact with aquaporins in affinity pull-down experiments on microsomal membrane vesicles. Furthermore, protoplast swelling assays of sirk1 mutants and SIRK1-GFP expressing lines confirmed a direct functional interaction of receptor kinase SIRK1 and aquaporins as substrates for phosphorylation. A lack of SIRK1 expression resulted in the failure of mutant protoplasts to control water channel activity upon changes in external sucrose concentrations. We propose that SIRK1 is involved in the regulation of sucrose-specific osmotic responses through direct interaction with and activation of an aquaporin via phosphorylation and that the duration of this response is controlled by phosphorylation-dependent receptor internalization.
Collapse
Affiliation(s)
- Xu Na Wu
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | |
Collapse
|
117
|
di Pietro M, Vialaret J, Li GW, Hem S, Prado K, Rossignol M, Maurel C, Santoni V. Coordinated post-translational responses of aquaporins to abiotic and nutritional stimuli in Arabidopsis roots. Mol Cell Proteomics 2013; 12:3886-97. [PMID: 24056735 DOI: 10.1074/mcp.m113.028241] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, aquaporins play a crucial role in regulating root water transport in response to environmental and physiological cues. Controls achieved at the post-translational level are thought to be of critical importance for regulating aquaporin function. To investigate the general molecular mechanisms involved, we performed, using the model species Arabidopsis, a comprehensive proteomic analysis of root aquaporins in a large set of physiological contexts. We identified nine physiological treatments that modulate root hydraulics in time frames of minutes (NO and H2O2 treatments), hours (mannitol and NaCl treatments, exposure to darkness and reversal with sucrose, phosphate supply to phosphate-starved roots), or days (phosphate or nitrogen starvation). All treatments induced inhibition of root water transport except for sucrose supply to dark-grown plants and phosphate resupply to phosphate-starved plants, which had opposing effects. Using a robust label-free quantitative proteomic methodology, we identified 12 of 13 plasma membrane intrinsic protein (PIP) aquaporin isoforms, 4 of the 10 tonoplast intrinsic protein isoforms, and a diversity of post-translational modifications including phosphorylation, methylation, deamidation, and acetylation. A total of 55 aquaporin peptides displayed significant changes after treatments and enabled the identification of specific and as yet unknown patterns of response to stimuli. The data show that the regulation of PIP and tonoplast intrinsic protein abundance was involved in response to a few treatments (i.e. NaCl, NO, and nitrate starvation), whereas changes in the phosphorylation status of PIP aquaporins were positively correlated to changes in root hydraulic conductivity in the whole set of treatments. The identification of in vivo deamidated forms of aquaporins and their stimulus-induced changes in abundance may reflect a new mechanism of aquaporin regulation. The overall work provides deep insights into the in vivo post-translational events triggered by environmental constraints and their possible role in regulating plant water status.
Collapse
Affiliation(s)
- Magali di Pietro
- Biochimie et Physiologie Moléculaire des Plantes, SupAgro/INRA/CNRS/UMII/UMR 5004, 2 Place Viala, 34060 F-Montpellier cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Offringa R, Huang F. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:789-808. [PMID: 23945267 DOI: 10.1111/jipb.12096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/02/2013] [Indexed: 05/27/2023]
Abstract
In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.
Collapse
Affiliation(s)
- Remko Offringa
- Molecular and Developmental Genetics, Institute Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, Leiden University, The Netherlands
| | | |
Collapse
|
119
|
Prado K, Maurel C. Regulation of leaf hydraulics: from molecular to whole plant levels. FRONTIERS IN PLANT SCIENCE 2013; 4:255. [PMID: 23874349 PMCID: PMC3711007 DOI: 10.3389/fpls.2013.00255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/24/2013] [Indexed: 05/18/2023]
Abstract
The water status of plant leaves is dependent on both stomatal regulation and water supply from the vasculature to inner tissues. The present review addresses the multiple physiological and mechanistic facets of the latter process. Inner leaf tissues contribute to at least a third of the whole resistance to water flow within the plant. Physiological studies indicated that leaf hydraulic conductance (K leaf) is highly dependent on the anatomy, development and age of the leaf and can vary rapidly in response to physiological or environmental factors such as leaf hydration, light, temperature, or nutrient supply. Differences in venation pattern provide a basis for variations in K leaf during development and between species. On a short time (hour) scale, the hydraulic resistance of the vessels can be influenced by transpiration-induced cavitations, wall collapses, and changes in xylem sap composition. The extravascular compartment includes all living tissues (xylem parenchyma, bundle sheath, and mesophyll) that transport water from xylem vessels to substomatal chambers. Pharmacological inhibition and reverse genetics studies have shown that this compartment involves water channel proteins called aquaporins (AQPs) that facilitate water transport across cell membranes. In many plant species, AQPs are present in all leaf tissues with a preferential expression in the vascular bundles. The various mechanisms that allow adjustment of K leaf to specific environmental conditions include transcriptional regulation of AQPs and changes in their abundance, trafficking, and intrinsic activity. Finally, the hydraulics of inner leaf tissues can have a strong impact on the dynamic responses of leaf water potential and stomata, and as a consequence on plant carbon economy and leaf expansion growth. The manipulation of these functions could help optimize the entire plant performance and its adaptation to extreme conditions over short and long time scales.
Collapse
Affiliation(s)
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2Montpellier, France
| |
Collapse
|
120
|
Hachez C, Besserer A, Chevalier AS, Chaumont F. Insights into plant plasma membrane aquaporin trafficking. TRENDS IN PLANT SCIENCE 2013; 18:344-52. [PMID: 23291163 DOI: 10.1016/j.tplants.2012.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/30/2012] [Accepted: 12/05/2012] [Indexed: 05/11/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are plant aquaporins that facilitate the diffusion of water and small uncharged solutes through the cell membrane. Deciphering the network of interacting proteins that modulate PIP trafficking to and activity in the plasma membrane is essential to improve our knowledge about PIP regulation and function. This review highlights the most recent advances related to PIP subcellular routing and dynamic redistribution, identifies some key molecular interacting proteins, and indicates exciting directions for future research in this field. A better understanding of the mechanisms by which plants optimize water movement might help in identifying new molecular players of agronomical relevance involved in the control of cellular water uptake and drought tolerance.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
121
|
Luu DT, Maurel C. Aquaporin Trafficking in Plant Cells: An Emerging Membrane-Protein Model. Traffic 2013; 14:629-35. [DOI: 10.1111/tra.12062] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; F-34060; Montpellier Cedex 2; France
| |
Collapse
|
122
|
Prado K, Boursiac Y, Tournaire-Roux C, Monneuse JM, Postaire O, Da Ines O, Schäffner AR, Hem S, Santoni V, Maurel C. Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. THE PLANT CELL 2013; 25:1029-39. [PMID: 23532070 PMCID: PMC3634675 DOI: 10.1105/tpc.112.108456] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/11/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
The water status of plant leaves depends on the efficiency of the water supply, from the vasculature to inner tissues. This process is under hormonal and environmental regulation and involves aquaporin water channels. In Arabidopsis thaliana, the rosette hydraulic conductivity (Kros) is higher in darkness than it is during the day. Knockout plants showed that three plasma membrane intrinsic proteins (PIPs) sharing expression in veins (PIP1;2, PIP2;1, and PIP2;6) contribute to rosette water transport, and PIP2;1 can fully account for Kros responsiveness to darkness. Directed expression of PIP2;1 in veins of a pip2;1 mutant was sufficient to restore Kros. In addition, a positive correlation, in both wild-type and PIP2;1-overexpressing plants, was found between Kros and the osmotic water permeability of protoplasts from the veins but not from the mesophyll. Thus, living cells in veins form a major hydraulic resistance in leaves. Quantitative proteomic analyses showed that light-dependent regulation of Kros is linked to diphosphorylation of PIP2;1 at Ser-280 and Ser-283. Expression in pip2;1 of phosphomimetic and phosphorylation-deficient forms of PIP2;1 demonstrated that phosphorylation at these two sites is necessary for Kros enhancement under darkness. These findings establish how regulation of a single aquaporin isoform in leaf veins critically determines leaf hydraulics.
Collapse
Affiliation(s)
- Karine Prado
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, cedex 2, France
| | - Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, cedex 2, France
| | - Colette Tournaire-Roux
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, cedex 2, France
| | - Jean-Marc Monneuse
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique Unité de Recherche 1199, F-34060 Montpellier cedex 2, France
| | - Olivier Postaire
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, cedex 2, France
| | - Olivier Da Ines
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anton R. Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sonia Hem
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique Unité de Recherche 1199, F-34060 Montpellier cedex 2, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Unité Mixte de Recherche 5004, Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386, Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier II, F-34060 Montpellier, cedex 2, France
- Address correspondence to
| |
Collapse
|
123
|
A Brief Analysis of Subcellular Distribution and Physiological Functions of Plant Aquaporins*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
124
|
Nespoulous C, Rofidal V, Sommerer N, Hem S, Rossignol M. Phosphoproteomic analysis reveals major default phosphorylation sites outside long intrinsically disordered regions of Arabidopsis plasma membrane proteins. Proteome Sci 2012; 10:62. [PMID: 23110452 PMCID: PMC3537754 DOI: 10.1186/1477-5956-10-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/23/2012] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED BACKGROUND Genome-wide statistics established that long intrinsically disordered regions (over 30 residues) are predicted in a large part of proteins in all eukaryotes, with a higher ratio in trans-membrane proteins. At functional level, such unstructured and flexible regions were suggested for years to favour phosphorylation events. In plants, despite increasing evidence of the regulation of transport and signalling processes by phosphorylation events, only few data are available without specific information regarding plasma membrane proteins, especially at proteome scale. RESULTS Using a dedicated phosphoproteomic workflow, 75 novel and unambiguous phosphorylation sites were identified in Arabidopsis plasma membrane. Bioinformatics analysis showed that this new dataset concerned mostly integral proteins involved in key functions of the plasma membrane (such as transport and signal transduction, including protein phosphorylation). It thus expanded by 15% the directory of phosphosites previously characterized in signalling and transport proteins. Unexpectedly, 66% of phosphorylation sites were predicted to be located outside long intrinsically disordered regions. This result was further corroborated by analysis of publicly available data for the plasma membrane. CONCLUSIONS The new phosphoproteomics data presented here, with published datasets and functional annotation, suggest a previously unexpected topology of phosphorylation in the plant plasma membrane proteins. The significance of these new insights into the so far overlooked properties of the plant plasma membrane phosphoproteome and the long disordered regions is discussed.
Collapse
Affiliation(s)
- Claude Nespoulous
- UR1199 Laboratoire de Protéomique Fonctionnelle, INRA, 34060, Montpellier cedex, France.
| | | | | | | | | |
Collapse
|
125
|
Chang IF, Hsu JL, Hsu PH, Sheng WA, Lai SJ, Lee C, Chen CW, Hsu JC, Wang SY, Wang LY, Chen CC. Comparative phosphoproteomic analysis of microsomal fractions of Arabidopsis thaliana and Oryza sativa subjected to high salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:131-42. [PMID: 22325874 DOI: 10.1016/j.plantsci.2011.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 05/20/2023]
Abstract
Plants respond to salt stress by initiating phosphorylation cascades in their cells. Many key phosphorylation events take place at membranes. Microsomal fractions from 400 mM salt-treated Arabidopsis suspension plants were isolated, followed by trypsin shaving, enrichment using Zirconium ion-charged or TiO(2) magnetic beads, and tandem mass spectrometry analyses for site mapping. A total of 27 phosphorylation sites from 20 Arabidopsis proteins including photosystem II reaction center protein H PsbH were identified. In addition to Arabidopsis, microsomal fractions from shoots of 200 mM salt-treated rice was carried out, followed by trypsin digestion using shaving or tube-gel, and enrichment using Zirconium ion-charged or TiO(2) magnetic beads. This yielded identification of 13 phosphorylation sites from 8 proteins including photosystem II reaction center protein H PsbH. Label-free quantitative analysis suggests that the phosphorylation sites of PsbH were regulated by salt stress in Arabidopsis and rice. Sequence alignment of PsbH phosphorylation sites indicates that Thr-2 and Thr-4 are evolutionarily conserved in plants. Four conserved phosphorylation motifs were predicted, and these suggest that a specific unknown kinase or phosphatase is involved in high-salt stress responses in plants.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Martinière A, Li X, Runions J, Lin J, Maurel C, Luu DT. Salt stress triggers enhanced cycling of Arabidopsis root plasma-membrane aquaporins. PLANT SIGNALING & BEHAVIOR 2012; 7:529-32. [PMID: 22499180 PMCID: PMC3419046 DOI: 10.4161/psb.19350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aquaporins of the plasma membrane intrinsic protein (PIP) subfamily are channels which facilitate the diffusion of water across the plant plasma membrane (PM). Although PIPs have been considered as canonical protein markers of this compartment, their endomembrane trafficking is still not well documented. We recently obtained insights into the constitutive cycling of PIPs in Arabidopsis root cells by means of fluorescence recovery after photobleaching (FRAP). This work also uncovered the behavior of the model isoform AtPIP2;1 in response to NaCl. The present addendum connects these findings to another recent work which describes the dynamic properties of AtPIP2;1 in the PM in normal and salt stress conditions by means of single particle tracking (SPT) and fluorescence correlation spectroscopy (FCS). The results suggest that membrane rafts play an important role in the partitioning of AtPIP2;1 in normal conditions and that clathrin-mediated endocytosis is predominant. In salt stress conditions, the rate of AtPIP2;1 cycling was enhanced and endocytosis was cooperated by a membrane raft-associated salt-induced pathway and a clathrin-dependent pathway.
Collapse
Affiliation(s)
- Alexandre Martinière
- Department of Biological and Medical Sciences; Oxford Brookes University; Oxford, UK
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | - Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, China
| | - John Runions
- Department of Biological and Medical Sciences; Oxford Brookes University; Oxford, UK
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology; Institute of Botany; Chinese Academy of Sciences; Beijing, China
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| |
Collapse
|
127
|
Luu DT, Martinière A, Sorieul M, Runions J, Maurel C. Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:894-905. [PMID: 22050464 DOI: 10.1111/j.1365-313x.2011.04841.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The constitutive cycling of plant plasma membrane (PM) proteins is an essential component of their function and regulation under resting or stress conditions. Transgenic Arabidopsis plants that express GFP fusions with AtPIP1;2 and AtPIP2;1, two prototypic PM aquaporins, were used to develop a fluorescence recovery after photobleaching (FRAP) approach. This technique was used to discriminate between PM and endosomal pools of the aquaporin constructs, and to estimate their cycling between intracellular compartments and the cell surface. The membrane trafficking inhibitors tyrphostin A23, naphthalene-1-acetic acid and brefeldin A blocked the latter process. By contrast, a salt treatment (100 mm NaCl for 30 min) markedly enhanced the cycling of the aquaporin constructs and modified their pharmacological inhibition profile. Two distinct models for PM aquaporin cycling in resting or salt-stressed root cells are discussed.
Collapse
Affiliation(s)
- Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, Montpellier Cedex 2, France.
| | | | | | | | | |
Collapse
|
128
|
Vera-Estrella R, Barkla BJ, Amezcua-Romero JC, Pantoja O. Day/night regulation of aquaporins during the CAM cycle in Mesembryanthemum crystallinum. PLANT, CELL & ENVIRONMENT 2012; 35:485-501. [PMID: 21895697 DOI: 10.1111/j.1365-3040.2011.02419.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mesembryanthemum crystallinum exhibits induction of Crassulacean acid metabolism (CAM) after a threshold stage of development, by exposure to long days with high light intensities or by water and salt stress. During the CAM cycle, fluctuations in carbon partitioning within the cell lead to transient drops in osmotic potential, which are likely stabilized/balanced by passive movement of water via aquaporins (AQPs). Protoplast swelling assays were used to detect changes in water permeability during the day/night cycle of CAM. To assess the role of AQPs during the same period, we followed transcript accumulation and protein abundance of four plasma membrane intrinsic proteins (PIPs) and one tonoplast intrinsic protein (TIP). CAM plants showed a persistent rhythm of specific AQP protein abundance changes throughout the day/night cycle, including changes in amount of McPIP2;1, McTIP1;2, McPIP1;4 and McPIP1;5, while the abundance of McPIP1;2 was unchanged. These protein changes did not appear to be coordinated with transcript levels for any of the AQPs analysed; however, they did occur in parrallel to alterations in water permeability, as well as variations in cell osmolarity, pinitol, glucose, fructose and phosphoenolpyruvate carboxylase (PEPc) levels measured throughout the day/night CAM cycle. Results suggest a role for AQPs in maintaining water balance during CAM and highlight the complexity of protein expression during the CAM cycle.
Collapse
Affiliation(s)
- Rosario Vera-Estrella
- Instituto de Biotecnología, UNAM, A.P. 510-3, Colonia Miraval, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
129
|
Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proc Natl Acad Sci U S A 2012; 109:E665-72. [PMID: 22355114 DOI: 10.1073/pnas.1110215109] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis, formed by land plants and AM fungi, evolved an estimated 400 million years ago and has been maintained in angiosperms, gymnosperms, pteridophytes, and some bryophytes as a strategy for enhancing phosphate acquisition. During AM symbiosis, the AM fungus colonizes the root cortical cells where it forms branched hyphae called arbuscules that function in nutrient exchange with the plant. Each arbuscule is enveloped in a plant membrane, the periarbuscular membrane, that contains a unique set of proteins including phosphate transporters such as Medicago truncatula MtPT4 [Javot et al., (2007) Proc Natl Acad Sci USA 104:1720-1725], which are essential for symbiotic phosphate transport. The periarbuscular membrane is physically continuous with the plasma membrane of the cortical cell, but MtPT4 and other periarbuscular membrane-resident proteins are located only in the domain around the arbuscule branches. Establishing the distinct protein composition of the periarbuscular membrane is critical for AM symbiosis, but currently the mechanism by which this composition is achieved is unknown. Here we investigate the targeting of MtPT4 to the periarbuscular membrane. By expressing MtPT4 and other plasma membrane proteins from promoters active at different phases of the symbiosis, we show that polar targeting of MtPT4 is mediated by precise temporal expression coupled with a transient reorientation of secretion and alterations in the protein cargo entering the secretory system of the colonized root cell. In addition, analysis of phosphate transporter mutants implicates the trans-Golgi network in phosphate transporter secretion.
Collapse
|
130
|
Heintz D, Gallien S, Compagnon V, Berna A, Suzuki M, Yoshida S, Muranaka T, Van Dorsselaer A, Schaeffer C, Bach TJ, Schaller H. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis. J Proteome Res 2012; 11:1228-39. [PMID: 22182420 DOI: 10.1021/pr201127u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sterols are membrane-bound isoprenoid lipids that are required for cell viability and growth. In plants, it is generally assumed that 3-hydroxy-3-methylglutaryl-CoA-reductase (HMGR) is a key element of their biosynthesis, but the molecular regulation of that pathway is largely unknown. In an attempt to identify regulators of the biosynthetic flux from acyl-CoA toward phytosterols, we compared the membrane phosphoproteome of wild-type Arabidopsis thaliana and of a mutant being deficient in HMGR1. We performed a N-terminal labeling of microsomal peptides with a trimethoxyphenyl phosphonium (TMPP) derivative, followed by a quantitative assessment of phosphopeptides with a spectral counting method. TMPP derivatization of peptides resulted in an improved LC-MS/MS detection due to increased hydrophobicity in chromatography and ionization efficiency in electrospray. The phosphoproteome coverage was 40% higher with this methodology. We further found that 31 proteins were in a different phosphorylation state in the hmgr1-1 mutant as compared with the wild-type. One-third of these proteins were identified based on novel phosphopeptides. This approach revealed that phosphorylation changes in the Arabidopsis membrane proteome targets major cellular processes such as transports, calcium homeostasis, photomorphogenesis, and carbohydrate synthesis. A reformatting of these processes appears to be a response of a genetically reduced sterol biosynthesis.
Collapse
Affiliation(s)
- Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique-Unité Propre de Recherche 2357, Université de Strasbourg , 28 rue Goethe, 67083 Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Hachez C, Veselov D, Ye Q, Reinhardt H, Knipfer T, Fricke W, Chaumont F. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. PLANT, CELL & ENVIRONMENT 2012; 35:185-98. [PMID: 21950760 DOI: 10.1111/j.1365-3040.2011.02429.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
132
|
Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H. Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2012; 125:147-53. [PMID: 21390558 DOI: 10.1007/s10265-011-0413-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 05/26/2023]
Abstract
Although aquaporins have been known to transport hydrogen peroxide (H(2)O(2)) across cell membranes, the H(2)O(2)-regulated expression patterns and the permeability of every family member of the plasma membrane intrinsic protein (PIP) toward H(2)O(2) have not been determined. This study investigates the H(2)O(2)-regulated expression levels of all plasma membrane aquaporins of Arabidopsis thaliana (AtPIPs), and determines the permeability of every AtPIP for H(2)O(2) in yeast. Hydrogen peroxide treatment of Arabidopsis down-regulated the expression of AtPIP2 subfamily in roots but not in leaves, whereas the expression of AtPIP1 subfamily was not affected by H(2)O(2) treatment. The growth and survival of yeast cells that expressed AtPIP2;2, AtPIP2;4, AtPIP2;5, or AtPIP2;7 was reduced in the presence of H(2)O(2), while the growth of yeast cells expressing any other AtPIP family member was not affected by H(2)O(2). These results show that only certain isoforms of AtPIPs whose expression is regulated by H(2)O(2) treatment are permeable for H(2)O(2) in yeast cells, and suggest that the integrated regulation of aquaporin expression by H(2)O(2) and the capacity of individual aquaporin to transport H(2)O(2) are important for plant response to H(2)O(2).
Collapse
Affiliation(s)
- Cortwa Hooijmaijers
- Department of Plant Biotechnology and Agricultural Plant Stress Research Center, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757, South Korea
| | | | | | | | | | | | | |
Collapse
|
133
|
Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC. Phosphate Import in Plants: Focus on the PHT1 Transporters. FRONTIERS IN PLANT SCIENCE 2011; 2:83. [PMID: 22645553 PMCID: PMC3355772 DOI: 10.3389/fpls.2011.00083] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/03/2011] [Indexed: 05/17/2023]
Abstract
The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies.
Collapse
Affiliation(s)
- Laurent Nussaume
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Satomi Kanno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Hélène Javot
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Elena Marin
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Nathalie Pochon
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Amal Ayadi
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Marie-Christine Thibaud
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| |
Collapse
|
134
|
Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu DT, Maurel C, Lin J. Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. THE PLANT CELL 2011; 23:3780-97. [PMID: 22010034 PMCID: PMC3229149 DOI: 10.1105/tpc.111.091454] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 09/09/2011] [Accepted: 10/03/2011] [Indexed: 05/17/2023]
Abstract
PIP2;1 is an integral membrane protein that facilitates water transport across plasma membranes. To address the dynamics of Arabidopsis thaliana PIP2;1 at the single-molecule level as well as their role in PIP2;1 regulation, we tracked green fluorescent protein-PIP2;1 molecules by variable-angle evanescent wave microscopy and fluorescence correlation spectroscopy (FCS). Single-particle tracking analysis revealed that PIP2;1 presented four diffusion modes with large dispersion of diffusion coefficients, suggesting that partitioning and dynamics of PIP2;1 are heterogeneous and, more importantly, that PIP2;1 can move into or out of membrane microdomains. In response to salt stress, the diffusion coefficients and percentage of restricted diffusion increased, implying that PIP2;1 internalization was enhanced. This was further supported by the decrease in PIP2;1 density on plasma membranes by FCS. We additionally demonstrated that PIP2;1 internalization involves a combination of two pathways: a tyrphostin A23-sensitive clathrin-dependent pathway and a methyl-β-cyclodextrin-sensitive, membrane raft-associated pathway. The latter was efficiently stimulated under NaCl conditions. Taken together, our findings demonstrate that PIP2;1 molecules are heterogeneously distributed on the plasma membrane and that clathrin and membrane raft pathways cooperate to mediate the subcellular trafficking of PIP2;1, suggesting that the dynamic partitioning and recycling pathways might be involved in the multiple modes of regulating water permeability.
Collapse
Affiliation(s)
- Xiaojuan Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruili Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihua He
- Peking University Health Science Center, Beijing 100191, China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Key Laboratory of Molecular Nanostructures and Nanotechnology, Chinese Academy of Sciences, Beijing 100190, China
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, Unité Mixte de Recherche 5004 Centre National de la Recherche Scientifique/Unité Mixte de Recherche 0386 Institut National de la Recherche Agronomique/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
135
|
Sellin A, Sack L, Õunapuu E, Karusion A. Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula). PLANT, CELL & ENVIRONMENT 2011; 34:1079-87. [PMID: 21414012 DOI: 10.1111/j.1365-3040.2011.02306.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (P<0.001), K(B) on canopy position (P<0.001) and exposure time (P=0.014), and none of the three factors had effect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange.
Collapse
Affiliation(s)
- Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | | | | | | |
Collapse
|
136
|
Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L. Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. THE PLANT CELL 2011; 23:1523-35. [PMID: 21521698 PMCID: PMC3101552 DOI: 10.1105/tpc.110.081067] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/15/2011] [Accepted: 04/06/2011] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, the PHOSPHATE TRANSPORTER1 (PHT1) family encodes the high-affinity phosphate transporters. They are transcriptionally induced by phosphate starvation and require PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR (PHF1) to exit the endoplasmic reticulum (ER), indicating intracellular traffic as an additional level of regulation of PHT1 activity. Our study revealed that PHF1 acts on PHT1, upstream of vesicle coat protein COPII formation, and that additional regulatory events occur during PHT1 trafficking and determine its ER exit and plasma membrane stability. Phosphoproteomic and mutagenesis analyses revealed modulation of PHT1;1 ER export by Ser-514 phosphorylation status. Confocal microscopy analysis of root tip cells showed that PHT1;1 is localized to the plasma membrane and is present in intracellular endocytic compartments. More precisely, PHT1;1 was localized to sorting endosomes associated with prevacuolar compartments. Kinetic analysis of PHT1;1 stability and targeting suggested a modulation of PHT1 internalization from the plasma membrane to the endosomes, followed by either subsequent recycling (in low Pi) or vacuolar degradation (in high Pi). For the latter condition, we identified a rapid mechanism that reduces the pool of PHT1 proteins present at the plasma membrane. This mechanism is regulated by the Pi concentration in the medium and appears to be independent of degradation mechanisms potentially regulated by the PHO2 ubiquitin conjugase. We propose a model for differential trafficking of PHT1 to the plasma membrane or vacuole as a function of phosphate concentration.
Collapse
Affiliation(s)
- Vincent Bayle
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
| | - Jean-François Arrighi
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
| | - Audrey Creff
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
| | - Claude Nespoulous
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique UR1199, Place Viala, F-34060 Montpellier Cedex 1, France
| | - Jérôme Vialaret
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique UR1199, Place Viala, F-34060 Montpellier Cedex 1, France
| | - Michel Rossignol
- Laboratoire de Protéomique Fonctionnelle, Institut National de la Recherche Agronomique UR1199, Place Viala, F-34060 Montpellier Cedex 1, France
| | - Esperanza Gonzalez
- Centro Nacional de Biotecnologia–Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid E-28049, Spain
| | - Javier Paz-Ares
- Centro Nacional de Biotecnologia–Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid E-28049, Spain
| | - Laurent Nussaume
- Commissariat à l’Energie Atomique Cadarache, Institut de Biologie Environnementale et Biotechnologie-Service de Biologie Végétale et de Microbiologie Environnementales, Laboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 6191 Centre National de la Recherche Scientifique–Commissariat à l’Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lez-Durance Cedex, France
- Address correspondence to
| |
Collapse
|
137
|
Monneuse JM, Sugano M, Becue T, Santoni V, Hem S, Rossignol M. Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics. Proteomics 2011; 11:1789-97. [PMID: 21413151 DOI: 10.1002/pmic.201000660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/02/2010] [Accepted: 12/10/2010] [Indexed: 11/07/2022]
Abstract
Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters.
Collapse
Affiliation(s)
- Jean-Marc Monneuse
- Laboratoire de Protéomique Fonctionnelle, INRA UR1199, Montpellier, France
| | | | | | | | | | | |
Collapse
|
138
|
Muries B, Faize M, Carvajal M, Martínez-Ballesta MDC. Identification and differential induction of the expression of aquaporins by salinity in broccoli plants. MOLECULAR BIOSYSTEMS 2011; 7:1322-35. [PMID: 21321750 DOI: 10.1039/c0mb00285b] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Plant aquaporins belong to a large superfamily of conserved proteins called the major intrinsic proteins (MIPs). There is limited information about the diversity of MIPs and their water transport capacity in broccoli (Brassica oleracea) plants. In this study, the cDNAs of isoforms of Plasma Membrane Intrinsic Proteins (PIPs), a class of aquaporins, from broccoli roots have been partially sequenced. Thus, sequencing experiments led to the identification of eight PIP1 and three PIP2 genes encoding PIPs in B. oleracea plants. The occurrence of different gene products encoding PIPs suggests that they may play different roles in plants. The screening of their expression as well as the expression of two specific PIP2 isoforms (BoPIP2;2 and BoPIP2;3), in different organs and under different salt-stress conditions in two varieties, has helped to unravel the function and the regulation of PIPs in plants. Thus, a high degree of BoPIP2;3 expression in mature leaves suggests that this BoPIP2;3 isoform plays important roles, not only in root water relations but also in the physiology and development of leaves. In addition, differences between gene and protein patterns led us to consider that mRNA synthesis is inhibited by the accumulation of the corresponding encoded protein. Therefore, transcript levels, protein abundance determination and the integrated hydraulic architecture of the roots must be considered in order to interpret the response of broccoli to salinity.
Collapse
Affiliation(s)
- Beatriz Muries
- Dpto Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
139
|
Vera-Estrella R, Bohnert HJ. Physiological Roles for the PIP Family of Plant Aquaporins. THE PLANT PLASMA MEMBRANE 2011. [DOI: 10.1007/978-3-642-13431-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
140
|
Abstract
Quo Vadis: where are you going? Advances in MS-based proteomics have enabled research to move from obtaining the basic protein inventory of cells and organelles to the ability of monitoring their dynamics, including changes in abundance, location and various PTMs. In this respect, the cellular plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma membrane proteome is crucial for understanding fundamental biological processes, disease mechanisms and for finding drug targets. Protein identification, characterization of dynamic PTMs and protein-ligand interactions, and determination of transient changes in protein expression and composition are among the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required for detailed functional and comparative analysis of the dynamic plasma membrane proteome.
Collapse
Affiliation(s)
- Richard R Sprenger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
141
|
Hachez C, Chaumont F. Aquaporins: a family of highly regulated multifunctional channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 679:1-17. [PMID: 20666220 DOI: 10.1007/978-1-4419-6315-4_1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aquaporins (AQPs) were discovered as channels facilitatingwater movement across cellular membranes. Whereas much of the research has focused on characterizing AQPs with respect to cell water homeostasis, recent discoveries in terms of the transport selectivity of AQP homologs has shed new light on their physiological roles. In fact, whereas some AQPs behave as "strict" water channels, others can conduct a wide range ofnonpolar solutes, such as urea or glycerol and even more unconventional permeants, such as the nonpolar gases carbon dioxide and nitric oxide, the polar gas ammonia, the reactive oxygen species hydrogen peroxide and the metalloids antimonite, arsenite, boron and silicon. This suggests that AQPs are also key players in various physiological processes not related to water homeostasis. The function, regulation and biological importance of AQPs in the different kingdoms is reviewed in this chapter, with special emphasis on animal and plant AQPs.
Collapse
Affiliation(s)
- Charles Hachez
- Institut des Sciences de la Vie, Universit4 catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
142
|
Alleva K, Marquez M, Villarreal N, Mut P, Bustamante C, Bellati J, Martínez G, Civello M, Amodeo G. Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3935-45. [PMID: 20663858 PMCID: PMC2935871 DOI: 10.1093/jxb/erq210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/11/2010] [Accepted: 06/15/2010] [Indexed: 05/18/2023]
Abstract
In strawberry, the putative participation of aquaporins should be considered during fruit ripening. Furthermore, the availability of different firmness cultivars in this non-climacteric fruit is a very useful tool to determine their involvement in softening. In a previous work, the cloning of a strawberry fruit-specific aquaporin, FaPIP1;1, which showed an expression profile associated with fruit ripening was reported. Here, FaPIP2;1, an aquaporin subtype of PIP2 was cloned and its functional characterization in Xenopus oocytes determined. The FaPIP2;1 gene encodes a water channel with high water permeability (P(f)) that is regulated by cytosolic pH. Interestingly, the co-expression of both FaPIP subtypes resulted in an enhancement of water permeability, showing P(f) values that exceeds their individual contribution. The expression pattern of both aquaporin subtypes in two cultivars with contrasting fruit firmness showed that the firmer cultivar (Camarosa) has a higher accumulation of FaPIP1 and FaPIP2 mRNAs during fruit ripening when compared with the softer cultivar (Toyonoka). In conclusion, not only FaPIP aquaporins showed an expression pattern associated with fruit firmness but it was also shown that the enhancement of water transfer through the plasma membrane is coupled to the presence/absence of the co-expression of both subtypes.
Collapse
Affiliation(s)
- Karina Alleva
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mercedes Marquez
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Paula Mut
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | - Jorge Bellati
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | - Gabriela Amodeo
- Laboratorio de Biomembranas, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4° Piso, C1428EHA Buenos Aires, Argentina
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
143
|
In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci U S A 2010; 107:15986-91. [PMID: 20733066 DOI: 10.1073/pnas.1007879107] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abscisic acid (ABA) is a hormone that controls seed dormancy and germination as well as the overall plant response to important environmental stresses such as drought. Recent studies have demonstrated that the ABA-bound receptor binds to and inhibits a class of protein phosphatases. To identify more broadly the phosphoproteins affected by this hormone in vivo, we used (14)N/(15)N metabolic labeling to perform a quantitative untargeted mass spectrometric analysis of the Arabidopsis thaliana phosphoproteome following ABA treatment. We found that 50 different phosphopeptides had their phosphorylation state significantly altered by ABA over a treatment period lasting 5-30 min. Among these changes were increases in phosphorylation of subfamily 2 SNF1-related kinases and ABA-responsive basic leucine zipper transcription factors implicated in ABA signaling by previous in vitro studies. Furthermore, four members of the aquaporin family showed decreased phosphorylation at a carboxy-terminal serine which is predicted to cause closure of the water-transporting aquaporin gate, consistent with ABA's role in ameliorating the effect of drought. Finally, more than 20 proteins not previously known to be involved with ABA were found to have significantly altered phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that an expanded model of ABA signaling, beyond simple phosphatase inhibition, may be necessary. This quantitative proteomics dataset provides a more comprehensive, albeit incomplete, view both of the protein targets whose biochemical activities are likely to be controlled by ABA and of the nature of the emerging phosphorylation and dephosphorylation cascades triggered by this hormone.
Collapse
|
144
|
Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M. The Ca(2+) -dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:484-98. [PMID: 20497378 PMCID: PMC2988408 DOI: 10.1111/j.1365-313x.2010.04257.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 05/18/2023]
Abstract
Plants use different signalling pathways to respond to external stimuli. Intracellular signalling via calcium-dependent protein kinases (CDPKs) or mitogen-activated protein kinases (MAPKs) present two major pathways that are widely used to react to a changing environment. Both CDPK and MAPK pathways are known to be involved in the signalling of abiotic and biotic stresses in animal, yeast and plant cells. Here, we show the essential function of the CDPK CPK3 (At4g23650) for salt stress acclimation in Arabidopsis thaliana, and test crosstalk between CPK3 and the major salt-stress activated MAPKs MPK4 and MPK6 in the salt stress response. CPK3 kinase activity was induced by salt and other stresses after transient overexpression in Arabidopsis protoplasts, but endogenous CPK3 appeared to be constitutively active in roots and leaves in a strictly Ca(2+) -dependent manner. cpk3 mutants show a salt-sensitive phenotype comparable with mutants in MAPK pathways. In contrast to animal cells, where crosstalk between Ca(2+) and MAPK signalling is well established, CPK3 seems to act independently of those pathways. Salt-induced transcriptional induction of known salt stress-regulated and MAPK-dependent marker genes was not altered, whereas post-translational protein phosphorylation patterns from roots of wild type and cpk3 plants revealed clear differences. A significant portion of CPK3 was found to be associated with the plasma membrane and the vacuole, both depending on its N-terminal myristoylation. An initial proteomic study led to the identification of 28 potential CPK3 targets, predominantly membrane-associated proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Markus Teige
- *For correspondence (fax +43 142779528; e-mail )
| |
Collapse
|
145
|
Knipfer T, Fricke W. Root pressure and a solute reflection coefficient close to unity exclude a purely apoplastic pathway of radial water transport in barley (Hordeum vulgare). THE NEW PHYTOLOGIST 2010; 187:159-170. [PMID: 20412443 DOI: 10.1111/j.1469-8137.2010.03240.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
*Aquaporins can contribute to the control of root water uptake, provided that at least one membrane is crossed between the root medium and the xylem and that water does not move only along the apoplast. In the present study we have critically assessed the possibility of such a purely apoplastic pathway. *A range of methods were used to analyse root water flow (root pressure probe, root exudation, vacuum perfusion and cell pressure probe) and associated driving forces (gradients in hydrostatic pressure and osmolality). These methods were complemented by theoretical approaches in which we predicted, for a particular main pathway of water movement, values for root pressure and osmolality and compared these with measured values. *The mere existence of root pressure excludes the possibility of a purely apoplastic pathway of radial water uptake. A membrane(s) must be crossed. Equilibrium measurements of gradients in hydrostatic and osmotic pressure between the root medium and the xylem point to a root reflection coefficient for solutes close to 1.0. *The generally accepted composite model of water transport across roots should be revised. Barley (Hordeum vulgare) roots behave as perfect osmometers. Root reflection coefficients significantly smaller than unity may be experimental artefacts.
Collapse
Affiliation(s)
- Thorsten Knipfer
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
146
|
Casado-Vela J, Muries B, Carvajal M, Iloro I, Elortza F, Martínez-Ballesta M. Analysis of Root Plasma Membrane Aquaporins from Brassica oleracea: Post-Translational Modifications, de novo Sequencing and Detection of Isoforms by High Resolution Mass Spectrometry. J Proteome Res 2010; 9:3479-94. [DOI: 10.1021/pr901150g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- J. Casado-Vela
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - B. Muries
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - M. Carvajal
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - I. Iloro
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - F. Elortza
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| | - M.C. Martínez-Ballesta
- Plataforma de Proteómica, CIC bioGUNE, CIBERehd, ProteoRed, Parque Tecnológico de Bizkaia, Edifício 800, 48160, Bizkaia, Spain, and Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura - CSIC, Apdo. Correos 164, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
147
|
Törnroth-Horsefield S, Hedfalk K, Fischer G, Lindkvist-Petersson K, Neutze R. Structural insights into eukaryotic aquaporin regulation. FEBS Lett 2010; 584:2580-8. [DOI: 10.1016/j.febslet.2010.04.037] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/14/2010] [Indexed: 01/24/2023]
|
148
|
Zhang X, Fang A, Riley CP, Wang M, Regnier FE, Buck C. Multi-dimensional liquid chromatography in proteomics--a review. Anal Chim Acta 2010; 664:101-13. [PMID: 20363391 PMCID: PMC2852180 DOI: 10.1016/j.aca.2010.02.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 12/19/2022]
Abstract
Proteomics is the large-scale study of proteins, particularly their expression, structures and functions. This still-emerging combination of technologies aims to describe and characterize all expressed proteins in a biological system. Because of upper limits on mass detection of mass spectrometers, proteins are usually digested into peptides and the peptides are then separated, identified and quantified from this complex enzymatic digest. The problem in digesting proteins first and then analyzing the peptide cleavage fragments by mass spectrometry is that huge numbers of peptides are generated that overwhelm direct mass spectral analyses. The objective in the liquid chromatography approach to proteomics is to fractionate peptide mixtures to enable and maximize identification and quantification of the component peptides by mass spectrometry. This review will focus on existing multidimensional liquid chromatographic (MDLC) platforms developed for proteomics and their application in combination with other techniques such as stable isotope labeling. We also provide some perspectives on likely future developments.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, KY 40292, USA.
| | | | | | | | | | | |
Collapse
|
149
|
Amezcua-Romero JC, Pantoja O, Vera-Estrella R. Ser123 is essential for the water channel activity of McPIP2;1 from Mesembryanthemum crystallinum. J Biol Chem 2010; 285:16739-47. [PMID: 20332086 DOI: 10.1074/jbc.m109.053850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increased expression of McPIP2;1 (MipC), a root-specific aquaporin (AQP) from Mesembryanthemum crystallinum, under salt stress has suggested a role for this AQP in the salt tolerance of the plant. However, whether McPIP2;1 transports water or another solute and how its activity is regulated are so far unknown. Therefore, wild type (wt) or mutated McPIP2;1 protein was expressed in Xenopus laevis oocytes. Then, the osmotic water permeability (P(f)) of the oocytes membrane was assessed by hypotonic challenges. Selectivity of McPIP2;1 to water was determined by radiolabeled glycerol or urea uptake assays. Moreover, swelling and in vitro phosphorylation assays revealed that both water permeation and phosphorylation status of McPIP2;1 were significantly increased by the phosphorylation agonists okadaic acid (OA), phorbol myristate acetate (PMA), and 8-Br-cAMP, and markedly decreased by the inhibitory peptides PKI 14-22 and PKC 20-28, inhibitors of protein kinases A (PKA) and C (PKC), respectively. Substitution of Ser(123) or both, Ser(123) and Ser(282), abolished the water channel activity of McPIP2;1 while substitution of Ser(282) only partially inhibited it (51.9% inhibition). Despite lacking Ser(123) and/or Ser(282), the McPIP2;1 mutant forms were still phosphorylated in vitro, which suggests that phosphorylation may have a dual role on this AQP. Our results indicate that McPIP2;1 water permeability depends completely on Ser(123) and is positively regulated by PKA- and PKC-mediated phosphorylation. Regulation of the phosphorylation status of McPIP2;1 may contribute to control water transport through root cells when the plant is subjected to high salinity conditions.
Collapse
Affiliation(s)
- Julio C Amezcua-Romero
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | |
Collapse
|
150
|
Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 2010; 38:D828-34. [PMID: 19880383 PMCID: PMC2808987 DOI: 10.1093/nar/gkp810] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 11/17/2022] Open
Abstract
The PhosPhAt database of Arabidopsis phosphorylation sites was initially launched in August 2007. Since then, along with 10-fold increase in database entries, functionality of PhosPhAt (phosphat.mpimp-golm.mpg.de) has been considerably upgraded and re-designed. PhosPhAt is now more of a web application with the inclusion of advanced search functions allowing combinatorial searches by Boolean terms. The results output now includes interactive visualization of annotated fragmentation spectra and the ability to export spectra and peptide sequences as text files for use in other applications. We have also implemented dynamic links to other web resources thus augmenting PhosPhAt-specific information with external protein-related data. For experimental phosphorylation sites with information about dynamic behavior in response to external stimuli, we display simple time-resolved diagrams. We have included predictions for pT and pY sites and updated pS predictions. Access to prediction algorithm now allows 'on-the-fly' prediction of phosphorylation of any user-uploaded protein sequence. Protein Pfam domain structures are now mapped onto the protein sequence display next to experimental and predicted phosphorylation sites. Finally, we have implemented functional annotation of proteins using MAPMAN ontology. These new developments make the PhosPhAt resource a useful and powerful tool for the scientific community as a whole beyond the plant sciences.
Collapse
Affiliation(s)
- Pawel Durek
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Robert Schmidt
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Joshua L. Heazlewood
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Alexandra Jones
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Daniel MacLean
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Axel Nagel
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Birgit Kersten
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Waltraud X. Schulze
- Max Planck Institut für molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany Joint BioEnergy Institute, Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA and The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|