101
|
Abstract
The phagocytic response of innate immune cells such as macrophages is defined by the activation of complex signaling networks that are stimulated by microbial contact. Many individual proteins have been demonstrated to participate in phagocytosis, and the application of high-throughput tools has indicated that many more remain to be described. In this review, we examine this complexity and describe how during recognition, multiple receptors are simultaneously engaged to mediate internalization, activate microbial killing, and induce the production of inflammatory cytokines and chemokines. Many signaling molecules perform multiple functions during phagocytosis, and these molecules are likely to be key regulators of the process. Indeed, pathogenic microorganisms target many of these molecules in their attempts to evade destruction.
Collapse
Affiliation(s)
- David M Underhill
- Institute for Systems Biology, 1441 North 34 Street, Seattle, Washington 98103, USA.
| | | |
Collapse
|
102
|
Maehnss K, Kobarg J, Schmitt WH, Hansen HP, Lange H, Csernok E, Gross WL, Lemke H. Vitronectin- and fibronectin-containing immune complexes in primary systemic vasculitis. J Autoimmun 2002; 18:239-50. [PMID: 12126637 DOI: 10.1006/jaut.2002.0582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In primary systemic vasculitis anti endothelial cell autoantibodies (AECA) have been described frequently. They represent a heterogeneous group of autoantibodies whose target antigens are mostly unknown. We tried to find AECA-antigens by a co-operative binding assay with a panel of monoclonal antibodies (mAb) directed to human umbilical vein endothelial cells (HUVEC) and extracellular matrix proteins. The mAb were used to bind antigens from lysate of endothelial cells, and binding of human antibodies to these antigens was measured. mAb directed to Vitronectin (VN) and Fibronectin (FN) resulted in enhanced binding of antibodies in sera from patients with Churg Strauss Syndrome (CSS) and Wegener's Granulomatosis (WG) compared to normal sera. Neither free autoantibodies against VN or FN could be detected nor did the addition of endothelial cell lysate influence the binding activity from the patients' sera. This suggests that preformed VN and FN-containing immune complexes (IC) are present in the patient sera. The amount of IC was decreased by incubation with HUVEC, demonstrating that these IC can bind to endothelial cells. However, their involvement in the pathogenesis of the disease is not clearly defined. Our data suggest that there are preformed IC present in sera of patients with CSS and WG that contain VN and FN and bind to endothelial cells.
Collapse
|
103
|
Abstract
Multicellular organisms must coordinate signals from adhesion receptors with those from other signalling receptors (for example, growth factor receptors). Here, we briefly review paradigms of integrin-adhesion-receptor signalling. We discuss how adhesive signalling is coordinately regulated through intersecting networks. We also examine some examples of how some forms of integrin crosstalk may lead to unforeseen and potentially deleterious responses.
Collapse
Affiliation(s)
- Martin A Schwartz
- Division of Vascular Biology, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
104
|
Leitinger B, Hogg N. The involvement of lipid rafts in the regulation of integrin function. J Cell Sci 2002; 115:963-72. [PMID: 11870215 DOI: 10.1242/jcs.115.5.963] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin activity on cells such as T lymphocytes is tightly controlled. Here we demonstrate a key role for lipid rafts in regulating integrin function. Without stimulation integrin LFA-1 is excluded from lipid rafts, but following activation LFA-1 is mobilised to the lipid raft compartment. An LFA-1 construct from which the I domain has been deleted mimics activated integrin and is constitutively found in lipid rafts. This correlation between integrin activation and raft localisation extends to a second integrin,α4β1, and the clustering of α4β1 is also raft dependent. Both LFA-1 and α4β1-mediated adhesion is dependent upon intact lipid rafts providing proof of the functional relevance of the lipid raft localisation. Finally we find that non-raft integrins are excluded from the rafts by cytoskeletal constraints. The presence of integrin in lipid rafts under stimulating conditions that activate these receptors strongly indicates that the rafts have a key role in positively regulating integrin activity.
Collapse
Affiliation(s)
- Birgit Leitinger
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, UK
| | | |
Collapse
|
105
|
Cieslak M, Niewiarowska J, Nawrot M, Koziolkiewicz M, Stec WJ, Cierniewski CS. DNAzymes to beta 1 and beta 3 mRNA down-regulate expression of the targeted integrins and inhibit endothelial cell capillary tube formation in fibrin and matrigel. J Biol Chem 2002; 277:6779-87. [PMID: 11675378 DOI: 10.1074/jbc.m102325200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel approach based on DNA-cleaving deoxyribozymes (DNAzymes) was developed to control expression of beta(1) and beta(3) integrins in endothelial cells. To engineer a specific cleavage site in mRNA, the flanking domains of DNAzymes were derived from oligodeoxynucleotides complementary to sequences corresponding to 1053-1070 and 1243-1267 in beta(1) and beta(3) mRNA, respectively. Phosphorothioate analogues of these antisense oligodeoxynucleotides, designated beta1-1053 and beta3-1243, significantly inhibited expression of beta(1) and beta(3) integrin subunits in endothelial and K562 cells at the level of mRNA and protein synthesis. They also specifically decreased the cell surface expression of corresponding subunits in endothelial cells and K562 cells, as measured by flow cytometry. In functional tests, beta1-1053 and beta3-1243 markedly reduced adhesion of cells to fibronectin and vitronectin, respectively. We designed DNAzymes to beta(1) and beta(3) mRNAs containing a 15-deoxynucleotide catalytic domain that was flanked by two substrate recognition segments of 8 and 10 deoxynucleotides for beta(1) and beta(3) DNAzymes, respectively. Both DNAzymes in the presence of Mg(2+) specifically cleaved their substrates, synthetic beta(1) and beta(3) mRNA fragments. Although DNAzymes were partially modified with phosphorothioate and with 2'-O-methyl groups at both the 5' and 3' ends indicated similar kinetic parameters, they were significantly more potent than the unmodified DNAzymes because of their much higher resistance to nuclease degradation. Similar to the antisense oligonucleotides, DNAzymes abolished microvascular endothelial cell capillary tube formation in fibrin and Matrigel. In conclusion, DNAzymes to beta(1) and beta(3) mRNAs with 2'-O-methyl modifications are potentially useful as gene-inactivating agents and may ultimately provide a therapeutic means to inhibit angiogenesis in vivo.
Collapse
Affiliation(s)
- Marcin Cieslak
- Center for Molecular and Macromolecular Research, Polish Academy of Sciences, 90-363 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
106
|
Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002; 8:27-34. [PMID: 11786903 DOI: 10.1038/nm0102-27] [Citation(s) in RCA: 483] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of alphavbeta3 or alphavbeta5 integrin function has been reported to suppress neovascularization and tumor growth, suggesting that these integrins are critical modulators of angiogenesis. Here we report that mice lacking beta3 integrins or both beta3 and beta5 integrins not only support tumorigenesis, but have enhanced tumor growth as well. Moreover, the tumors in these integrin-deficient mice display enhanced angiogenesis, strongly suggesting that neither beta3 nor beta5 integrins are essential for neovascularization. We also observed that angiogenic responses to hypoxia and vascular endothelial growth factor (VEGF) are augmented significantly in the absence of beta3 integrins. We found no evidence that the expression or functions of other integrins were altered as a consequence of the beta3 deficiency, but we did observe elevated levels of VEGF receptor-2 (also called Flk-1) in beta3-null endothelial cells. These data indicate that alphavbeta3 and alphavbeta5 integrins are not essential for vascular development or pathological angiogenesis and highlight the need for further evaluation of the mechanisms of action of alphav-integrin antagonists in anti-angiogenic therapeutics.
Collapse
Affiliation(s)
- Louise E Reynolds
- Cell Adhesion and Disease Laboratory, Richard Dimbleby Department, Imperial Cancer Research Fund, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Crosstalk between integrins and growth factor receptors are an important signaling mechanism to provide specificity during normal development and pathological processes in vascular biology. Evidence from several model systems demonstrates the physiological importance of the coordination of signals from growth factors and the extracellular matrix to support cell proliferation, migration, and invasion in vivo. Several examples of crosstalk between these two important classes of receptors indicate that integrin ligation is required for growth factor-induced biological processes. Furthermore, integrins can directly associate with growth factor receptors, thereby regulating the capacity of integrin/growth factor receptor complexes to propagate downstream signaling. Recent data suggest that antagonists of alpha(v) integrins can provide a therapeutic benefit in human cancer patients, whereas knockout mice lacking specific integrins can provide an interesting insight into the role of integrins during development. This review will focus on the biological importance of integrin and growth factor receptor crosstalk that occurs during cell growth, migration, and invasion as well as in endothelial cells during angiogenesis.
Collapse
Affiliation(s)
- B P Eliceiri
- Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
108
|
Testaz S, Duband JL. Central role of the alpha4beta1 integrin in the coordination of avian truncal neural crest cell adhesion, migration, and survival. Dev Dyn 2001; 222:127-40. [PMID: 11668592 DOI: 10.1002/dvdy.1181] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on functional and histological studies, the fibronectin receptor of the integrin family alpha4beta1 has been ascribed a critical role during neural crest cell migration in the vertebrate embryo. In the present study, because integrins have been shown to participate in multiple basic cellular processes, including cell adhesion, migration, survival, proliferation, and differentiation, we have reexamined in detail the role of alpha4beta1 during avian truncal neural crest cell migration. RT-PCR and immunocytochemical studies revealed that migrating neural crest cells but not premigratory cells explanted in vitro expressed detectable levels of alpha4 messengers and proteins suggesting that alpha4beta1 expression was induced at the time of the initiation of the migration phase. In agreement with this observation, antibody inhibition of alpha4beta1 activity in vitro resulted in a strong, immediate and sustained reduction of neural crest cell motion on fibronectin, as judged on videomicroscopy analyses, but apparently did not prevent their delamination from the neural tube. However, alpha4beta1 appeared to exhibit a broader role in the control of cell migration on a variety of extracellular matrix molecules, presumably by regulating cellular events downstream from integrins. Moreover, blocking alpha4beta1 function caused a severe increase in apoptotic cell death among the neural crest population without influencing notably cell proliferation. Collectively, these results indicate that, notwithstanding its critical implication in cell motion, alpha4beta1 integrin could play a central role in neural crest cell development by coordinating multiple cellular events, such as cell adhesion, locomotion, and survival.
Collapse
Affiliation(s)
- S Testaz
- Laboratoire de Biologie du Développement, CNRS UMR 7622, Université Pierre et Marie Curie, 9 quai Saint Bernard, 7éme etage, 75005 Paris, France
| | | |
Collapse
|
109
|
Retta SF, Cassarà G, D'Amato M, Alessandro R, Pellegrino M, Degani S, De Leo G, Silengo L, Tarone G. Cross talk between beta(1) and alpha(V) integrins: beta(1) affects beta(3) mRNA stability. Mol Biol Cell 2001; 12:3126-38. [PMID: 11598197 PMCID: PMC60161 DOI: 10.1091/mbc.12.10.3126] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2001] [Revised: 06/27/2001] [Accepted: 07/11/2001] [Indexed: 12/25/2022] Open
Abstract
There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of beta(1)-null GD25 cells ectopically expressing the beta(1)A integrin subunit, we provide evidence for the existence of a cross talk between beta(1) and alpha(V) integrins that affects the ratio of alpha(V)beta(3) and alpha(V)beta(5) integrin cell surface levels. In particular, we demonstrate that a down-regulation of alpha(V)beta(3) and an up-regulation of alpha(V)beta(5) occur as a consequence of beta(1)A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms beta(1)B and beta(1)D, as well as two beta(1) cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (beta(1)TR) or only its "variable" region (beta(1)COM), we show that the effects of beta(1) over alpha(V) integrins take place irrespective of the type of beta(1) isoform, but require the presence of the "common" region of the beta(1) cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby beta(1) integrins exert their trans-acting functions, we have found that the down-regulation of alpha(V)beta(3) is due to a decreased beta(3) subunit mRNA stability, whereas the up-regulation of alpha(V)beta(5) is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability.
Collapse
Affiliation(s)
- S F Retta
- Department of Genetics, Biology, and Biochemistry, University of Torino, 10126 Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Recent work from several laboratories indicates that the coordination of endothelial cell adhesion events with growth factor receptor inputs regulates endothelial cell responses during angiogenesis. Analyses of the signaling pathways downstream of integrins, cadherins and growth-factor receptors are providing an insight into the molecular basis of known anti-angiogenic strategies, as well as into the design of novel therapies.
Collapse
Affiliation(s)
- B P Eliceiri
- The Scripps Research Institute, IMM-24, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
111
|
Wiedemann A, Linder S, Grassl G, Albert M, Autenrieth I, Aepfelbacher M. Yersinia enterocolitica invasin triggers phagocytosis via beta1 integrins, CDC42Hs and WASp in macrophages. Cell Microbiol 2001; 3:693-702. [PMID: 11580754 DOI: 10.1046/j.1462-5822.2001.00149.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Yersinia outer surface protein invasin binds to beta1 integrins on target cells and has been shown to trigger phagocytic uptake by macrophages. Here, we investigated the role of the actin regulator Wiskott-Aldrich syndrome protein (WASp), its effector the Arp2/3 complex and the Rho-GTPases CDC42Hs, Rac and Rho in invasin/beta1 integrin-triggered phagocytosis. During uptake of invasin-coated latex beads, the alpha5beta1 integrin, WASp and the Arp2/3 complex were recruited to the developing actin-rich phagocytic cups in primary human macrophages. Blockage of beta1 integrins by specific antibodies, inhibition of Arp2/3 function by microinjection of inhibitors or the use of WASp knockout macrophages inhibited phagocytic cup formation and uptake. Furthermore, microinjection of the dominant negative GTPase mutants N17CDC42Hs, N17Rac or the Rho-specific inhibitor C3-transferase into macrophages greatly attenuated invasin-induced formation of cups. These data suggest that during invasin-triggered phagocytosis beta1 integrins activate actin polymerization via CDC42Hs, its effector WASp and the Arp2/3 complex. The contribution of Rac and Rho to phagocytic cup formation also suggests a complex interplay between different Rho GTPases during phagocytosis of pathogens.
Collapse
Affiliation(s)
- A Wiedemann
- Max von Pettenkofer-Institut für Medizinische Mikrobiologie, Pettenkoferstrasse 9a, Ludwig-Maximilians-Universität, 80336 München, Germany
| | | | | | | | | | | |
Collapse
|
112
|
Abstract
Although hemostasis is the major role of fibrin in wound repair, once the clot is present the wound cells must deal with it. The invasion and clearing of fibrin by these cells involves multiple complex processes that may go array XXX and delay wound repair. A good example, of the latter is leg ulcers. These chronic wounds contain a plethora of proteases that digest fibronectin and growth factors in the fibrin clot resulting in a corrupt provisional matrix that no longer supports reepithelialization or granulation tissue formation. Every good wound care provider knows that these wounds will not heal unless the corrupt matrix is removed by vigorous debridement that stimulates the accumulation of a competent provisional matrix.
Collapse
Affiliation(s)
- R A Clark
- Department of Dermatology, SUNY at Stony Brook, Stony Brook, NY 11794-8165, USA
| |
Collapse
|
113
|
Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, Müller U, Reichardt LF. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J Cell Biol 2001; 154:447-58. [PMID: 11470831 PMCID: PMC2150762 DOI: 10.1083/jcb.200103069] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2001] [Revised: 05/22/2001] [Accepted: 05/23/2001] [Indexed: 12/02/2022] Open
Abstract
The epithelial-mesenchymal interactions required for kidney organogenesis are disrupted in mice lacking the integrin alpha8beta1. None of this integrin's known ligands, however, appears to account for this phenotype. To identify a more relevant ligand, a soluble integrin alpha8beta1 heterodimer fused to alkaline phosphatase (AP) has been used to probe blots and cDNA libraries. In newborn mouse kidney extracts, alpha8beta1-AP detects a novel ligand of 70-90 kD. This protein, named nephronectin, is an extracellular matrix protein with five EGF-like repeats, a mucin region containing a RGD sequence, and a COOH-terminal MAM domain. Integrin alpha8beta1 and several additional RGD-binding integrins bind nephronectin. Nephronectin mRNA is expressed in the ureteric bud epithelium, whereas alpha8beta1 is expressed in the metanephric mesenchyme. Nephronectin is localized in the extracellular matrix in the same distribution as the ligand detected by alpha8beta1-AP and forms a complex with alpha8beta1 in vivo. Thus, these results strongly suggest that nephronectin is a relevant ligand mediating alpha8beta1 function in the kidney. Nephronectin is expressed at numerous sites outside the kidney, so it may also have wider roles in development. The approaches used here should be generally useful for characterizing the interactions of novel extracellular matrix proteins identified through genomic sequencing projects.
Collapse
Affiliation(s)
- R Brandenberger
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Spring FA, Parsons SF, Ortlepp S, Olsson ML, Sessions R, Brady RL, Anstee DJ. Intercellular adhesion molecule-4 binds alpha(4)beta(1) and alpha(V)-family integrins through novel integrin-binding mechanisms. Blood 2001; 98:458-66. [PMID: 11435317 DOI: 10.1182/blood.v98.2.458] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The LW blood group glycoprotein, ICAM-4, is a member of the intercellular adhesion molecule (ICAM) family expressed in erythroid cells. To begin to address the function of this molecule, ligands for ICAM-4 on hemopoietic and nonhemopoietic cell lines were identified. Peptide inhibition studies suggest that adhesion of cell lines to an ICAM-4-Fc construct is mediated by an LDV-inhibitable integrin on hemopoietic cells and an RGD-inhibitable integrin on nonhemopoietic cells. Antibody inhibition studies identified the hemopoietic integrin as alpha(4)beta(1.) Antibody inhibition studies on alpha(4)beta(1)-negative, nonhemopoietic cell lines suggested that adhesion of these cells is mediated by alpha(V) integrins (notably alpha(V)beta(1) and alpha(V)beta(5)). The structure of ICAM-4 modeled on the crystal structure of ICAM-2 was used to identify surface-exposed amino acid residues for site-directed mutagenesis. Neither an unusual LETS nor an LDV motif in the first domain of ICAM-4 was critical for integrin binding. ICAM-4 is the first ICAM family member shown to be a ligand for integrins other than those of the beta(2) family, and the data suggest that ICAM-4 has a novel integrin-binding site(s). These findings suggest a role for ICAM-4 in normal erythropoiesis and may also be relevant to the adhesive interactions of sickle cells.
Collapse
Affiliation(s)
- F A Spring
- Bristol Institute for Transfusion Sciences, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
115
|
Castells MC, Klickstein LB, Hassani K, Cumplido JA, Lacouture ME, Austen KF, Katz HR. gp49B1-alpha(v)beta3 interaction inhibits antigen-induced mast cell activation. Nat Immunol 2001; 2:436-42. [PMID: 11323698 DOI: 10.1038/87749] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have identified the integrin alpha(v)beta3 as a ligand for mouse gp49B1, thus identifying a new class of ligand for a member of the family of inhibitory immunoreceptors that bear C2-type immunoglobulin-like domains. The specific interaction was shown by both cell-protein and cell-cell binding assays. In addition, we found that the interaction of alpha(v)beta3 with gp49B1 on bone marrow-derived mouse mast cells inhibited antigen-induced immunoglobulin E-mediated cell activation. Because neither gp49B1 nor alpha(v)beta3 exhibit substantive allelic variation, their newly appreciated interaction may reflect an innate pathway for down-regulating the activity of mast cells.
Collapse
Affiliation(s)
- M C Castells
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
116
|
Hintermann E, Bilban M, Sharabi A, Quaranta V. Inhibitory role of alpha 6 beta 4-associated erbB-2 and phosphoinositide 3-kinase in keratinocyte haptotactic migration dependent on alpha 3 beta 1 integrin. J Cell Biol 2001; 153:465-78. [PMID: 11331299 PMCID: PMC2190561 DOI: 10.1083/jcb.153.3.465] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2000] [Accepted: 03/19/2001] [Indexed: 01/13/2023] Open
Abstract
Keratinocytes and other epithelial cells express two receptors for the basement membrane (BM) extracellular matrix component laminin-5 (Ln-5), integrins alpha 3 beta 1 and alpha 6 beta 4. While alpha 3 beta 1 mediates adhesion, spreading, and migration (Kreidberg, J.A. 2000. Curr. Opin. Cell Biol. 12:548--553), alpha 6 beta 4 is involved in BM anchorage via hemidesmosomes (Borradori, L., and A. Sonnenberg. 1999. J. Invest. Dermatol. 112:411--418). We investigated a possible regulatory interplay between alpha 3 beta 1 and alpha 6 beta 4 in cell motility using HaCaT keratinocytes as a model. We found that alpha 6 beta 4 antibodies inhibit alpha 3 beta 1-mediated migration on Ln-5, but only when migration is haptotactic (i.e., spontaneous or stimulated by alpha 3 beta 1 activation), and not when chemotactic (i.e., triggered by epidermal growth factor receptor). Inhibition of migration by alpha 6 beta 4 depends upon phosphoinositide 3-kinase (PI3-K) since it is abolished by PI3-K blockers and by dominant-negative PI3-K, and constitutively active PI3-K prevents haptotaxis. In HaCaT cells incubated with anti-alpha 6 beta 4 antibodies, activation of PI3-K is mediated by alpha 6 beta 4-associated erbB-2, as indicated by erbB-2 autophosphorylation and erbB-2/p85 PI3-K coprecipitation. Furthermore, dominant-negative erbB-2 abolishes inhibition of haptotaxis by anti-alpha 6 beta 4 antibodies. These results support a model whereby (a) haptotactic cell migration on Ln-5 is regulated by concerted action of alpha 3beta 1 and alpha 6 beta 4 integrins, (b) alpha 6 beta 4-associated erbB-2 and PI3-K negatively affect haptotaxis, and (c) chemotaxis on Ln-5 is not affected by alpha 6 beta 4 antibodies and may require PI3-K activity. This model could be of general relevance to motility of epithelial cells in contact with BM.
Collapse
Affiliation(s)
- Edith Hintermann
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Martin Bilban
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Andrew Sharabi
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Vito Quaranta
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
117
|
Wang J, Chen H, Brown EJ. L-plastin peptide activation of alpha(v)beta(3)-mediated adhesion requires integrin conformational change and actin filament disassembly. J Biol Chem 2001; 276:14474-81. [PMID: 11278342 DOI: 10.1074/jbc.m007324200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.
Collapse
Affiliation(s)
- J Wang
- Program in Molecular Cell Biology, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
118
|
Wilkowsky SE, Barbieri MA, Stahl P, Isola EL. Trypanosoma cruzi: phosphatidylinositol 3-kinase and protein kinase B activation is associated with parasite invasion. Exp Cell Res 2001; 264:211-8. [PMID: 11262178 DOI: 10.1006/excr.2000.5123] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple signal transduction events are triggered in the host cell during invasion by the protozoan parasite Trypanosoma cruzi. Here, we report the regulation of host cell phosphatydilinositol 3-kinase (PI3K) and protein kinase B (PKB/Akt) activities by T. cruzi during parasite-host cell interaction. Treatment of nonphagocytic cells (Vero, L(6)E(9), and NIH 3T3) and phagocytic cells (human and J774 murine macrophages) with the selective PI3K inhibitors Wortmannin and LY294002 significantly impaired parasite invasion in a dose-dependent fashion. A strong activation of PI3K and PKB/Akt activities in Vero cells was detected when these cells were incubated with trypomastigotes or their isolated membranes. Consistently, we were unable to detect activation of PI3K or PKB/Akt activities in host cells during epimastigote (noninfective) membrane-host cell interaction. Infection of transiently transfected cells containing an inactive mutant PKB showed a significant inhibition of invasion compared with the active mutant-transfected cells. T. cruzi PI3K-like activity was also required in host cell invasion since treatment of trypomastigotes with PI3K inhibitors prior to infection reduced parasite entry. Taken together, these results indicate that PI3K and PKB/Akt activation in parasites, as in host cells induced by T. cruzi, is an early invasion signal required for successful trypomastigote internalization.
Collapse
Affiliation(s)
- S E Wilkowsky
- Departamento de Microbiologia, Universidad de Buenos Aires, 1121, Argentina
| | | | | | | |
Collapse
|
119
|
Abstract
The process of engulfing a foreign particle - phagocytosis - is of fundamental importance for a wide diversity of organisms. From simple unicellular organisms that use phagocytosis to obtain their next meal, to complex metazoans in which phagocytic cells represent an essential branch of the immune system, evolution has armed cells with a fantastic repertoire of molecules that serve to bring about this complex event. Regardless of the organism or specific molecules concerned, however, all phagocytic processes are driven by a finely controlled rearrangement of the actin cytoskeleton. A variety of signals can converge to locally reorganise the actin cytoskeleton at a phagosome, and there are significant similarities and differences between different organisms and between different engulfment processes within the same organism. Recent advances have demonstrated the complexity of phagocytic signalling, such as the involvement of phosphoinostide lipids and multicomponent signalling complexes in transducing signals from phagocytic receptors to the cytoskeleton. Similarly, a wide diversity of ‘effector molecules’ are now implicated in actin-remodelling downstream of these receptors.
Collapse
Affiliation(s)
- R C May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
120
|
Kiosses WB, Shattil SJ, Pampori N, Schwartz MA. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 2001; 3:316-20. [PMID: 11231584 DOI: 10.1038/35060120] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrin alphavbeta3 has an important role in the proliferation, survival, invasion and migration of vascular endothelial cells. Like other integrins, alphavbeta3 can exist in different functional states with respect to ligand binding. These changes involve both affinity modulation, by which conformational changes in the integrin heterodimer govern affinity for individual extracellular matrix proteins, and avidity modulation, by which changes in lateral mobility and integrin clustering affect the binding of cells to multivalent matrices. Here we have used an engineered monoclonal antibody Fab (antigen-binding fragment) named WOW-1, which binds to activated integrins alphavbeta3 and alphavbeta5 from several species, to investigate the role of alphavbeta3 activation in endothelial cell behaviour. Because WOW-1 is monovalent, it is insensitive to changes in integrin clustering and therefore reports only changes in affinity. WOW-1 contains an RGD tract in its variable region and binds only to unoccupied, high-affinity integrins. By using WOW-1, we have identified the selective recruitment of high-affinity integrins as a mechanism by which lamellipodia promote formation of new adhesions at the leading edge in cell migration.
Collapse
Affiliation(s)
- W B Kiosses
- Department of Vascular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
121
|
Tarui T, Mazar AP, Cines DB, Takada Y. Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J Biol Chem 2001; 276:3983-90. [PMID: 11053440 DOI: 10.1074/jbc.m008220200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR/CD87) regulates cellular adhesion, migration, and tumor cell invasion. However, it is unclear how glycosyl phosphatidylinositol-anchored uPAR, which lacks a transmembrane structure, mediates signal transduction. It has been proposed that uPAR forms cis-interactions with integrins as an associated protein and thereby transduces proliferative or migratory signals to cells upon binding of uPA. We provide evidence that soluble uPAR (suPAR) specifically binds to integrins alpha4beta1, alpha6beta1, alpha9beta1, and alphavbeta3 on Chinese hamster ovary cells in a cation-dependent manner. Anti-integrin and anti-uPAR antibodies effectively block binding of suPAR to these integrins. Binding of suPAR to alpha4beta1 and alphavbeta3 is blocked by known soluble ligands and by the integrin mutations that inhibit ligand binding. These results suggest that uPAR is an integrin ligand rather than, or in addition to, an integrin-associated protein. In addition, we demonstrate that glycosyl phosphatidylinositol-anchored uPAR on the cell surface specifically binds to integrins on the apposing cells, suggesting that uPAR-integrin interaction may mediate cell-cell interaction (trans-interaction). These previously unrecognized uPAR-integrin interactions may allow uPAR to transduce signals through the engaged integrin without a hypothetical transmembrane adapter and may provide a potential therapeutic target for control of inflammation and cancer.
Collapse
Affiliation(s)
- T Tarui
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
122
|
Cheng SL, Lai CF, Blystone SD, Avioli LV. Bone mineralization and osteoblast differentiation are negatively modulated by integrin alpha(v)beta3. J Bone Miner Res 2001; 16:277-88. [PMID: 11204428 DOI: 10.1359/jbmr.2001.16.2.277] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous bone matrix proteins can interact with alpha(v)-containing integrins including alpha(v)beta3. To elucidate the net effects of the interaction between these proteins and alpha(v)beta3 on osteoblast function, we developed a murine osteoblastic cell line that overexpressed human alpha(v)beta3. Human alpha(v)beta3-integrin was expressed on cell membrane, in which its presence did not alter the surface level of endogenous mouse alpha(v)beta3. The expressed human alpha(v)beta3 was functional because cell adhesion to osteopontin was increased and this increment was abolished by antibody against human alpha(v)beta3. The proliferation rate of cells overexpressing alpha(v)beta3 (alpha(v)beta3-cells) was increased whereas matrix mineralization was decreased. To elucidate the mechanisms leading to inhibition of matrix mineralization, the expression of proteins important for mineralization was analyzed. Alkaline phosphatase activity and the expression of osteocalcin, type I collagen, and bone sialoprotein (BSP) were decreased whereas osteopontin was stimulated in alpha(v)beta3-cells. The regulation of osteopontin, osteocalcin, and BSP expression was mediated via transcriptional mechanism because their promoter activities were altered. Examination of molecules involved in integrin signaling indicated that activator protein-1 (AP-1) and extracellular signal-regulated kinase (Erk) activities were enhanced whereas c-jun N-terminal kinase (JNK) activity was decreased in alpha(v)beta3-cells. The activity of p38 and the levels of focal adhesion kinase (FAK) and vinculin were not altered. Moreover, the adhesions of alpha(v)beta3-cells to type I collagen and fibronectin were inhibited, which was attributed to decreased beta1-integrin levels on cell surface. In conclusion, overexpressing alpha(v)beta3-integrin in osteoblasts stimulated cell proliferation but retarded differentiation, which were derived via altered integrin-matrix interactions, signal transduction, and matrix protein expression.
Collapse
Affiliation(s)
- S L Cheng
- Department of Internal Medicine, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
123
|
Ticchioni M, Raimondi V, Lamy L, Wijdenes J, Lindberg FP, Brown EJ, Bernard A. Integrin-associated protein (CD47/IAP) contributes to T cell arrest on inflammatory vascular endothelium under flow. FASEB J 2001; 15:341-50. [PMID: 11156950 DOI: 10.1096/fj.99-0833com] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Integrin-associated protein (CD47/IAP) is a pentaspan molecule that regulates integrin functions. We prepared a CD47-deficient Jurkat T cell line to assess its role in the arrest of T cells on inflammatory endothelium. Under flow conditions, constitutive arrest of CD47-deficient cells is strongly decreased as compared to the original cell line, whereas reexpression of CD47 reestablishes their ability to stop. Moreover, cells transfected with a chimera made with the extracellular portion of CD47 and the transmembrane domain of CD7 or several truncated forms of CD47 show that the first transmembrane domain and a short cytoplasmic loop are sufficient for this process. CD47 effect is indirect and depends mainly on the alpha4beta1/VCAM-1 pathway, as shown by blocking antibodies. We detected on endothelium the two CD47 counter receptors known to date: thrombospondin and SIRP1alpha. Blocking experiments show that both are involved. Overall, CD47 participates in the constitutive arrest of T lymphocytes on inflamed vascular endothelium by up-regulating alpha 4beta1 integrins.
Collapse
Affiliation(s)
- M Ticchioni
- Unité INSERM U343 et Laboratoire d'Immunologie, 06202 Nice cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
124
|
Thorne RF, Marshall JF, Shafren DR, Gibson PG, Hart IR, Burns GF. The integrins alpha3beta1 and alpha6beta1 physically and functionally associate with CD36 in human melanoma cells. Requirement for the extracellular domain OF CD36. J Biol Chem 2000; 275:35264-75. [PMID: 10956645 DOI: 10.1074/jbc.m003969200] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lateral association between different transmembrane glycoproteins can serve to modulate integrin function. Here we characterize a physical association between the integrins alpha(3)beta(1) and alpha(6)beta(1) and CD36 on the surface of melanoma cells and show that ectopic expression of CD36 by CD36-negative MV3 melanoma cells increases their haptotactic migration on extracellular matrix components. The association was demonstrated by co-immunoprecipitation, reimmunoprecipitation, and immunoblotting of surface-labeled cells lysed in Brij 96 detergent. Confocal microscopy illustrated the co-association of alpha(3) and CD36 in cell membrane projections and ruffles. A requirement for the extracellular domain of CD36 in this association was shown by co-immunoprecipitation experiments using surface-labeled MV3 melanoma or COS-7 cells that had been transiently transfected with chimeric constructs between CD36 and intercellular adhesion molecule 1 (ICAM-1) or with a truncation mutant of CD36. CD36 is known to engage in signal transduction and to localize to membrane microdomains or rafts in several cell types. Toward a mechanistic explanation for the functional effects of CD36 expression, we demonstrate that in fractionated Triton X-100 lysates of the MV3 cells stably transfected with CD36, CD36 was greatly enriched with the detergent-insoluble fractions that represent plasma membrane rafts. Significantly, when these fractionated lysates were reprobed for endogenous beta(1) integrin, it was found that a 4-fold increase in the proportion of the mature protein was contained within the detergent-insoluble fractions when extracted from the CD36-transfected cells compared with MV3 cells transfected with vector only. These results suggest that in melanoma cells CD36 expression may induce the sequestration of certain integrins into membrane microdomains and promote cell migration.
Collapse
Affiliation(s)
- R F Thorne
- Cancer Research Unit and Department of Microbiology, Faculty of Medicine and Health Sciences, University of Newcastle, New South Wales 2308, Australia.
| | | | | | | | | | | |
Collapse
|
125
|
Kim S, Harris M, Varner JA. Regulation of integrin alpha vbeta 3-mediated endothelial cell migration and angiogenesis by integrin alpha5beta1 and protein kinase A. J Biol Chem 2000; 275:33920-8. [PMID: 10944524 DOI: 10.1074/jbc.m003668200] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies indicate that angiogenesis depends, in part, on ligation of integrin alpha(5)beta(1) by fibronectin. Evidence is now provided that integrin alpha(5)beta(1) regulates the function of integrin alpha(v)beta(3) on endothelial cells during their migration in vitro or angiogenesis in vivo. Secretion of fibronectin by endothelial cells leads to the ligation of integrin alpha(5)beta(1), which potentiates alpha(v)beta(3)-mediated migration on vitronectin without influencing alpha(v)beta(3)-mediated cell adhesion. Endothelial cell attachment to vitronectin suppresses protein kinase A (PKA) activity, while addition of soluble anti-alpha(5)beta(1) restores this activity. Moreover, agents that activate intracellular PKA, such as forskolin, dibutyryl cAMP or alpha(5)beta(1) antagonists, suppress endothelial cell migration on vitronectin in vitro or angiogenesis in vivo. In contrast, inhibitors of PKA reverse the anti-migratory or anti-angiogenic effects mediated by alpha(5)beta(1) antagonists. Therefore, alpha(v)beta(3)-mediated endothelial cell migration and angiogenesis can be regulated by PKA activity, which depends on the ligation state of integrin alpha(5)beta(1).
Collapse
Affiliation(s)
- S Kim
- Cancer Center, University of California, San Diego, La Jolla, California 92093-0912, USA
| | | | | |
Collapse
|
126
|
Abstract
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in suppression of actin stress fibers and induction of actin-rich filopodia. This distinct morphology was associated with complete suppression of the activation of RhoA, a small GTPase that induces actin stress fiber formation. Enforced activation of RhoA circumvented the effects of tenascin. Effects of active Rho were reversed by a Rho inhibitor C3 transferase. Suppression of GTPase activation allows tenascin-C expression to act as a regulatory switch to reverse the effects of adhesive proteins on Rho function. This represents a novel paradigm for the regulation of cytoskeletal organization by ECM.
Collapse
Affiliation(s)
- Melissa B. Wenk
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
| | - Kim S. Midwood
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014
| |
Collapse
|
127
|
Tajima A, Miyamoto Y, Kadowaki H, Hayashi M. Mouse integrin alphav promoter is regulated by transcriptional factors Ets and Sp1 in melanoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:377-84. [PMID: 10899572 DOI: 10.1016/s0167-4781(00)00121-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A 17-bp region between the -31 and -15 bp region of the mouse integrin alphav gene is known to be one of the cis-acting elements for promoter activity. Experimental binding of nuclear proteins to the -31/-15 region reveals that the -27/-16 region mediates the binding. The -27/-16 region, GGCTCCTCCTCC, has a TCCTCC motif, one of the Sp1 binding motifs. An anti-Sp1 IgG and an Sp1-binding oligonucleotide interfered with the binding of nuclear proteins to the -27/-16 oligonucleotide, demonstrating that Sp1 binds to the -27/-16 region. In addition to the -27/-16 region, two other regions, -108/-89 and -64/-44, were found to bind to nuclear proteins within the -108/+1 alphav promoter region. An oligonucleotide containing the Ets-binding consensus sequence of CAGGAAGT interfered with their binding, indicating that both regions have a functional Ets-binding site; which is ACGGAAGT from -106 to -99 bp and ACTTCCTC from -61 to -54 bp, as deduced from the sequence. Mutations in or deletions from any one of three cis-acting elements, the two Ets-binding sites or one Sp1-binding site, remarkably decreased the promoter activity detected in the -108/+1 region. Cotransfection of both Sp1 and Ets-1 cDNAs with the -108/+1 region into B16F10 cells increased the promoter activity 2.9-fold. These results demonstrate that Sp1 and Ets cooperate to activate the -108/+1-alphav promoter region.
Collapse
Affiliation(s)
- A Tajima
- Department of Biology, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, 112-8610, Tokyo, Japan
| | | | | | | |
Collapse
|
128
|
Hadari YR, Arbel-Goren R, Levy Y, Amsterdam A, Alon R, Zakut R, Zick Y. Galectin-8 binding to integrins inhibits cell adhesion and induces apoptosis. J Cell Sci 2000; 113 ( Pt 13):2385-97. [PMID: 10852818 DOI: 10.1242/jcs.113.13.2385] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of cells with the extracellular matrix regulates cell adhesion, motility, growth, survival and differentiation through integrin-mediated signal transduction. Here we demonstrate that galectin-8, a secreted mammalian (beta)-galactoside binding protein, inhibits adhesion of human carcinoma (1299) cells to plates coated with integrin ligands, and induces cell apoptosis. Pretreatment of the cells with Mn(2+), which increases the affinity of integrins for their ligands, abolished the inhibitory effects of galectin-8. The inhibitory effects of galectin-8 were specific and were not mimicked by plant lectins or other galectins (galectin-1 and galectin-3). In accordance with its anti-adhesive effects, transfection of galectin-8 cDNA into 1299 cells significantly reduced (by 75%) colony formation, when compared to the number of colonies formed by cells transfected with an empty vector. Affinity chromatography over immobilized galectin-8 indicated that few membrane proteins interacted with galectin-8 in a sugar-dependent manner. Microsequencing and western immunoblotting revealed that (alpha)(3)(beta)(1)integrin derived from 1299 as well as other cells (e.g. HeLa and human endothelial cells) is a major galectin-8 binding-protein. Furthermore, immunoprecipitation and immunohistochemical studies suggested that endogenous galectin-8, secreted from 1299 cells, forms complexes with (alpha)(3)(beta)(1) integrins expressed on the surface of 1299 cells. Galectin-8 also interacts with other members of the integrin family, like (alpha)(6)(beta)(1)integrins. In contrast, galectin-8 only minimally interacts with (alpha)(4)or (beta)(3)integrins. We propose that galectin-8 is an integrin binding-protein that interacts to a different extent with several, but not all members of the integrin family. Binding of galectin-8 modulates integrin interactions with the extracellular matrix and thus regulates cell adhesion and cell survival.
Collapse
Affiliation(s)
- Y R Hadari
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel. lizick@weizmann. weizmann.ac.il
| | | | | | | | | | | | | |
Collapse
|
129
|
Meszaros AJ, Reichner JS, Albina JE. Macrophage-induced neutrophil apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:435-41. [PMID: 10861082 DOI: 10.4049/jimmunol.165.1.435] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Macrophages (Mphi) contribute to the resolution of early inflammation by recognizing and ingesting apoptotic polymorphonuclear neutrophils (PMN). In addition, experiments reported here demonstrated that Mphi can actively induce PMN apoptosis. Coculture of cells from 2- or 5-day-old wounds in rats, or of Mphi purified from such preparations, with PMN-rich wound cell populations obtained 1 day after wounding increased PMN apoptosis by >3-fold. Neither resident- nor Proprionibacterium acnes-elicited peritoneal Mphi-induced PMN apoptosis. Apoptosis was not mediated by a soluble factor and required E:T contact. Fixed wound-Mphi and membrane isolates from viable Mphi were as effective as intact cells in inducing PMN apoptosis. Mphi-induced apoptosis was inhibited by peptide Arg-Gly-Asp-Ser, anti-beta3 (CD61) Ab, CD36 peptide, or anti-TNF-alpha Ab. Soluble TNF-alpha did not induce PMN apoptosis. In additional studies, K562 cells (negative for beta3, TNF-alpha, and Fas ligand) transfected to express either alphavbeta3 integrin, an uncleavable membrane form of TNF-alpha, or both were used in cocultures with wound PMN. Only the double transfectants were able to induce PMN apoptosis, an effect inhibited by anti-beta3 (CD61) or anti-TNF-alpha Abs. These results demonstrate that wound Mphi induce PMN apoptosis through a constitutive effector mechanism requiring both intercellular binding through integrin-ligand interactions and membrane-bound TNF-alpha.
Collapse
Affiliation(s)
- A J Meszaros
- Department of Surgery, Rhode Island Hospital, Brown University School of Medicine, Providence, RI 02903, USA
| | | | | |
Collapse
|
130
|
Bayless KJ, Salazar R, Davis GE. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1673-83. [PMID: 10793078 PMCID: PMC1876924 DOI: 10.1016/s0002-9440(10)65038-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2000] [Indexed: 01/11/2023]
Abstract
Recent data have revealed the involvement of the alpha(v)beta(3) integrin in angiogenesis. However, few studies to date have provided a convincing role for this receptor in in vitro assays of endothelial cell morphogenesis where defined steps can be examined. Here, we present data showing that two integrins, alpha(v)beta(3) and alpha(5)beta(1), regulate human endothelial cell vacuolation and lumen formation in three-dimensional fibrin matrices. Cells resuspended in fibrin formed intracellular vacuoles that coalesced into lumenal structures. These morphogenic events were completely inhibited by the simultaneous addition of anti-alpha(v)beta(3) and anti-alpha(5) integrin antibodies. Complete blockade was also accomplished with a combination of the cyclic Arg-Gly-Asp (cRGD) peptide and anti-alpha(5) integrin antibodies. No blockade was observed with the control Arg-Gly-Glu (RGE) peptide alone or in combination with control antibodies. Finally, we were able to demonstrate regression of vacuoles and lumens several hours after the addition of cRGD peptides combined with anti-alpha(5) integrin antibodies. These effects were not observed with control peptides alone or in combination with control antibodies. We report here the novel involvement of both the alpha(v)beta(3) and alpha(5)beta(1) integrins in vacuolation and lumen formation in a fibrin matrix, implicating a role for multiple integrins in endothelial cell morphogenesis.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Cell Culture Techniques/methods
- Cell Line
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Fibrin/pharmacology
- Humans
- Neovascularization, Physiologic/drug effects
- Oligopeptides/pharmacology
- Peptides, Cyclic/pharmacology
- Receptors, Fibronectin/immunology
- Receptors, Fibronectin/physiology
- Receptors, Vitronectin/immunology
- Receptors, Vitronectin/physiology
- Time Factors
- Vacuoles/drug effects
- Vacuoles/metabolism
Collapse
Affiliation(s)
- K J Bayless
- Department of Pathology and Laboratory Medicine, Texas A & M University Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
131
|
Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1345-62. [PMID: 10751360 PMCID: PMC1876892 DOI: 10.1016/s0002-9440(10)65005-5] [Citation(s) in RCA: 467] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Angiogenesis depends on the cooperation of growth factors and cell adhesion events. Although alphav integrins have been shown to play critical roles in angiogenesis, recent studies in alphav-null mice suggest that other adhesion receptors and their ligands also regulate this process. Evidence is now provided that the integrin alpha5beta1 and its ligand fibronectin are coordinately up-regulated on blood vessels in human tumor biopsies and play critical roles in angiogenesis, resulting in tumor growth in vivo. Angiogenesis induced by multiple growth factors in chick embryos was blocked by monoclonal antibodies to the cell-binding domain of fibronectin. Furthermore, application of fibronectin or a proteolytic fragment of fibronectin containing the central cell-binding domain to the chick chorioallantoic membrane enhanced angiogenesis in an integrin alpha5beta1-dependent manner. Importantly, antibody, peptide, and novel nonpeptide antagonists of integrin alpha5beta1 blocked angiogenesis induced by several growth factors but had little effect on angiogenesis induced by vascular endothelial growth factor (VEGF) in both chick embryo and murine models. In fact, these alpha5beta1 antagonists inhibited tumor angiogenesis, thereby causing regression of human tumors in animal models. Thus, fibronectin and integrin alpha5beta1, like integrin alphavbeta3, contribute to an angiogenesis pathway that is distinct from VEGF-mediated angiogenesis, yet important for the growth of tumors.
Collapse
Affiliation(s)
- S Kim
- Department of Medicine/Cancer Center, Cellular and Molecular Medicine East, University of California San Diego, La Jolla, California 92093-0684, USA
| | | | | | | |
Collapse
|
132
|
Clark GJ, Angel N, Kato M, López JA, MacDonald K, Vuckovic S, Hart DN. The role of dendritic cells in the innate immune system. Microbes Infect 2000; 2:257-72. [PMID: 10758402 DOI: 10.1016/s1286-4579(00)00302-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dendritic cells (DCs) are bone-marrow-derived leucocytes that are specialised antigen-presenting cells capable of stimulating a primary T-lymphocyte response to specific antigen. In this chapter we discuss the role DCs play in the innate response acting as a critical link with the adaptive response and the influence of the innate response on dendritic cells.
Collapse
Affiliation(s)
- G J Clark
- Mater Medical Research Institute, Aubigny Place, Mater Misericordiae Hospitals, South, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
133
|
Leitinger B, Hogg N. Effects of I domain deletion on the function of the beta2 integrin lymphocyte function-associated antigen-1. Mol Biol Cell 2000; 11:677-90. [PMID: 10679023 PMCID: PMC14802 DOI: 10.1091/mbc.11.2.677] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A subset of integrin alpha subunits contain an I domain, which is important for ligand binding. We have deleted the I domain from the beta2 integrin lymphocyte function-asssociated antigen-1 (LFA-1) and expressed the resulting non-I domain-containing integrin (DeltaI-LFA-1) in an LFA-1-deficient T cell line. DeltaI-LFA-1 showed no recognition of LFA-1 ligands, confirming the essential role of the I domain in ligand binding. Except for I domain monoclonal antibodies (mAbs), DeltaI-LFA-1 was recognized by a panel of anti-LFA-1 mAbs similarly to wild-type LFA-1. However, DeltaI-LFA-1 had enhanced expression of seven mAb epitopes that are associated with beta2 integrin activation, suggesting that it exhibited an "active" conformation. In keeping with this characteristic, DeltaI-LFA-1 induced constitutive activation of alpha4beta1 and alpha5beta1, suggesting intracellular signaling to these integrins. This "cross-talk" was not due to an effect on beta1 integrin affinity. However, the enhanced activity was susceptible to inhibition by cytochalasin D, indicating a role for the cytoskeleton, and also correlated with clustering of beta1 integrins. Thus, removal of the I domain from LFA-1 created an integrin with the hallmarks of a constitutively active receptor mediating signals into the cell. These findings suggest a key role for the I domain in controlling integrin activity.
Collapse
Affiliation(s)
- B Leitinger
- Leukocyte Adhesion Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom.
| | | |
Collapse
|
134
|
Abstract
Because of the lack of function-blocking anti-integrin antibodies that react with nonprimate species, the study of the role of integrins in in vivo animal models of atherosclerosis has been limited. In contrast, peptides or small molecules have shown less species specificity and thus may be better tools to use. In an attempt to identify integrin antagonists of potential use against smooth muscle response to injury, we investigated the role of human smooth muscle cell interactions with fibrin by using a panel of integrin antagonists consisting of the snake venom disintegrin, Kistrin, as well as cyclic peptides with well-defined integrin antagonists activities. We demonstrate that Kistrin, a disintegrin that inhibits beta1, beta2, beta3, and beta5 integrin interactions, had the most potent inhibitory effect. Based on our results, Kistrin or peptides with similar pan-integrin selectivity patterns are prime candidates for use as anti-integrin antagonists in further studies of atherosclerosis and restenosis.
Collapse
Affiliation(s)
- K O Yee
- Department of Pathology, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
135
|
Chan JR, Hyduk SJ, Cybulsky MI. Alpha 4 beta 1 integrin/VCAM-1 interaction activates alpha L beta 2 integrin-mediated adhesion to ICAM-1 in human T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:746-53. [PMID: 10623819 DOI: 10.4049/jimmunol.164.2.746] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Modulation of integrin affinity and/or avidity provides a regulatory mechanism by which leukocyte adhesion to endothelium is strengthened or weakened at different stages of emigration. In this study, we demonstrate that binding of high-affinity alpha 4 beta 1 integrins to VCAM-1 strengthens alpha L beta 2 integrin-mediated adhesion. The strength of adhesion of Jurkat cells, a human leukemia T cell line, or MnCl2-treated peripheral blood T cells to immobilized chimeric human VCAM-1/Fc, ICAM-1/Fc, or both was quantified using parallel plate flow chamber leukocyte detachment assays in which shear stress was increased incrementally (0.5-30 dynes/cm2). The strength of adhesion to VCAM-1 plus ICAM-1, or to a 40-kDa fragment of fibronectin containing the CS-1 exon plus ICAM-1, was greater than the sum of adhesion to each molecule alone. Treatment of Jurkat or blood T cells with soluble cross-linked VCAM-1/Fc or HP2/1, a mAb to alpha 4, significantly increased adhesion to ICAM-1. These treatments induced clustering of alpha L beta 2 integrins, but not the high-affinity beta 2 integrin epitope recognized by mAb 24. Up-regulated adhesion to ICAM-1 was abolished by cytochalasin D, an inhibitor of cytoskeletal rearrangement. Taken together, our data suggest that the binding of VCAM-1 or fibronectin to alpha 4 beta 1 integrins initiates a signaling pathway that increases beta 2 integrin avidity but not affinity. A role for the cytoskeleton is implicated in this process.
Collapse
Affiliation(s)
- J R Chan
- Department of Laboratory Medicine, University of Toronto, Toronto General Hospital Research Institute, Toronto, Canada
| | | | | |
Collapse
|
136
|
Schor SL, Ellis I, Banyard J, Schor AM. Motogenic activity of IGD-containing synthetic peptides. J Cell Sci 1999; 112 ( Pt 22):3879-88. [PMID: 10547349 DOI: 10.1242/jcs.112.22.3879] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the IGD amino acid motif (iso-gly-asp) is a highly conserved feature of the fibronectin type I module, no biological activity has as yet been ascribed to it. We have previously reported that the gelatin-binding domain of fibronectin stimulates the migration of human skin fibroblasts into native, but not denatured, type I collagen substrata. Two IGD-containing type I modules are present within the gelatin-binding domain. The object of this study was to ascertain whether soluble synthetic peptides containing the IGD motif stimulate fibroblast migration. We found that IGD peptides stimulated fibroblast migration in the following order of activity: IGDS (as present in the ninth type I module) > IGDQ (as present in the seventh type I module) > IGD. The scrambled SDGI peptide and the well-characterised RGDS peptide were devoid of motogenic activity. The migratory response of fibroblasts to IGD-containing peptides consisted of two distinct phases: an initial period of peptide-mediated cell activation and a subsequent period of enhanced migration manifest in the absence of further IGD peptide. Cell activation was substratum-independent (occurring equally well on both native and denatured type I collagen substrata), whilst the manifestation of enhanced migration was persistent and substratum-dependent (being evident only by cells adherent to a native collagen substratum). Our data further indicated that cell activation (1) is elicited by a signal transduction cascade occurring within minutes of cell exposure to IGD-containing peptides, (2) is dependent upon integrin alphavbeta3 functionality, (3) involves the tyrosine phosphorylation of focal adhesion kinase (ppFAK125) and (4) is inhibited by signalling mediated through integrin alpha5beta1. The expression of migration stimulating activity by soluble IGD-containing peptides clearly distinguishes them from their RGD counterparts. This is the first identified biological activity of the highly conserved IGD motif and provides a rational platform for the development of a novel family of therapeutic compounds designed to stimulate cell migration in relevant clinical situations, such as impaired wound healing.
Collapse
Affiliation(s)
- S L Schor
- Unit of Cell and Molecular Biology, The Dental School, University of Dundee, Dundee, DD1 4HR, Scotland, UK.
| | | | | | | |
Collapse
|
137
|
Sinha B, François PP, Nüsse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew DP, Herrmann M, Krause KH. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1999; 1:101-17. [PMID: 11207545 DOI: 10.1046/j.1462-5822.1999.00011.x] [Citation(s) in RCA: 433] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of Staphylococcus aureus to invade mammalian cells may explain its capacity to colonize mucosa and to persist in tissues after bacteraemia. To date, the underlying molecular mechanisms of cellular invasion by S. aureus are unknown, despite its high prevalence and difficulties in treatment. Here, we show cellular invasion as a novel function for an S. aureus adhesin, previously implicated solely in attachment. S. aureus, but not S. epidermidis, invaded epithelial 293 cells in a temperature- and F-actin-dependent manner. Formaldehyde-fixed and live bacteria were equally invasive, suggesting that no active bacterial process was involved. All clinical S. aureus isolates analysed, but only a subset of laboratory strains, were invasive. Fibronectin-binding proteins (FnBPs) acted as S. aureus invasins, because: (i) FnBP deletion mutants of invasive laboratory strains lost invasiveness; (ii) expression of FnBPs in noninvasive strains conferred invasiveness; and (iii) the soluble isolated fibronectin-binding domain of FnBP (D1-D4) completely blocked invasion. Integrin alpha5beta1 served as host cell receptor, which interacted with staphylococcal FnBPs through cellular or soluble fibronectin. FnBP-deficient mutants lost invasiveness for epithelial cells, endothelial cells and fibroblasts. Thus, fibronectin-dependent bridging between S. aureus FnBPs and host cell integrin alpha5beta1 is a conserved mechanism for S. aureus invasion of human cells. This may prove useful in developing new therapeutic and vaccine strategies for S. aureus infections.
Collapse
Affiliation(s)
- B Sinha
- Division of Infectious Diseases, Geneva Medical School, Swizterland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Green JM, Zheleznyak A, Chung J, Lindberg FP, Sarfati M, Frazier WA, Brown EJ. Role of cholesterol in formation and function of a signaling complex involving alphavbeta3, integrin-associated protein (CD47), and heterotrimeric G proteins. J Cell Biol 1999; 146:673-82. [PMID: 10444074 PMCID: PMC2150554 DOI: 10.1083/jcb.146.3.673] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1999] [Accepted: 07/07/1999] [Indexed: 11/22/2022] Open
Abstract
Integrin-associated protein (CD47) is a multiply membrane spanning member of the immunoglobulin superfamily that regulates some adhesion-dependent cell functions through formation of a complex with alphavbeta3 integrin and trimeric G proteins. Cholesterol is critical for the association of the three protein components of the supramolecular complex and for its signaling. The multiply membrane spanning domain of IAP is required for complex formation because it binds cholesterol. The supramolecular complex forms preferentially in glycosphingolipid-enriched membrane domains. Binding of mAb 10G2 to the IAP Ig domain, previously shown to be required for association with alphavbeta3, is affected by both the multiply membrane spanning domain and cholesterol. These data demonstrate that cholesterol is an essential component of the alphavbeta3/IAP/G protein signaling complex, presumably acting through an effect on IAP conformation.
Collapse
Affiliation(s)
- Jennifer M. Green
- Center for Host/Pathogen Interactions, University of
California, San Francisco, San Francisco, California 94143
| | - Alexander Zheleznyak
- Division of Infectious Diseases, Washington University
School of Medicine, St. Louis, Missouri 63110
| | - Jun Chung
- Department of Biochemistry, Washington University School
of Medicine, St. Louis, Missouri 63110
| | - Frederik P. Lindberg
- Division of Infectious Diseases, Washington University
School of Medicine, St. Louis, Missouri 63110
| | - Marika Sarfati
- Centre Hospitalier Universite de Montreal (CHUM),
Montreal, Canada H2L 4M1
| | - William A. Frazier
- Department of Biochemistry, Washington University School
of Medicine, St. Louis, Missouri 63110
| | - Eric J. Brown
- Center for Host/Pathogen Interactions, University of
California, San Francisco, San Francisco, California 94143
| |
Collapse
|
139
|
Verdrengh M, Lindberg FP, Ryden C, Tarkowski A. Integrin-associated protein (IAP)-deficient mice are less susceptible to developing Staphylococcus aureus-induced arthritis. Microbes Infect 1999; 1:745-51. [PMID: 10816079 DOI: 10.1016/s1286-4579(99)80076-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integrin-associated protein (IAP) has been shown to function in a signaling complex with beta3 integrins, influencing the migration of phagocytic cells into inflamed tissues. We have previously shown that gene-targeted mice deficient for IAP succumbed to peritonitis when inoculated with gram-negative bacteria. The aim of this study was to assess the role of IAP in our recently established model of haematogenously induced Staphylococcus aureus septicaemia and arthritis. In this model, neutrophils play a crucial role in the early phase of the infection. Mice lacking IAP and congenic controls were intravenously inoculated with S. aureus LS-1. The IAP-/- mice were resistant to developing clinical signs of arthritis compared with their IAP-expressing littermates. The clinical findings were corroborated by histopathological evaluation indicating that the IAP-/- mice had less cartilage and bone destruction in the joints. We believe that a delayed migration of leukocytes into the joints of mice lacking IAP expression leads to decreased susceptibility to develop S. aureus-induced arthritis.
Collapse
Affiliation(s)
- M Verdrengh
- Department of Rheumatology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
140
|
Pampori N, Hato T, Stupack DG, Aidoudi S, Cheresh DA, Nemerow GR, Shattil SJ. Mechanisms and consequences of affinity modulation of integrin alpha(V)beta(3) detected with a novel patch-engineered monovalent ligand. J Biol Chem 1999; 274:21609-16. [PMID: 10419468 DOI: 10.1074/jbc.274.31.21609] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrin alpha(V)beta(3) mediates diverse responses in vascular cells, ranging from cell adhesion, migration, and proliferation to uptake of adenoviruses. However, the extent to which alpha(V)beta(3) is regulated by changes in receptor conformation (affinity), receptor diffusion/clustering (avidity), or post-receptor events is unknown. Affinity regulation of the related integrin, alpha(IIb)beta(3), has been established using a monovalent ligand-mimetic antibody, PAC1 Fab. To determine the role of affinity modulation of alpha(V)beta(3), a novel monovalent ligand-mimetic antibody (WOW-1) was created by replacing the heavy chain hypervariable region 3 of PAC1 Fab with a single alpha(V) integrin-binding domain from multivalent adenovirus penton base. Both WOW-1 Fab and penton base bound selectively to activated alpha(V)beta(3), but not to alpha(IIb)beta(3), in receptor and cell binding assays. alpha(V)beta(3) affinity varied with the cell type. Unstimulated B-lymphoblastoid cells bound WOW-1 Fab poorly (apparent K(d) = 2.4 microM), but acute stimulation with phorbol 12-myristate 13-acetate increased receptor affinity >30-fold (K(d) = 80 nM), with no change in receptor number. In contrast, alpha(V)beta(3) in melanoma cells was constitutively active, but ligand binding could be suppressed by overexpression of beta(3) cytoplasmic tails. Up-regulation of alpha(V)beta(3) affinity had functional consequences in that it increased cell adhesion and spreading and promoted adenovirus-mediated gene transfer. These studies establish that alpha(V)beta(3) is subject to rapid regulated changes in affinity that influence the biological functions of this integrin.
Collapse
Affiliation(s)
- N Pampori
- Department of Vascular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Affiliation(s)
- Y Shimizu
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
142
|
Abstract
Under normal conditions, platelets do not adhere to endothelium. However, when platelets or endothelial cells are stimulated by thrombin or cytokines, respectively, platelets bind avidly to endothelium. Because there is accumulating evidence that endothelial cells may become apoptotic under certain proinflammatory or prothrombotic conditions, we investigated whether endothelial cells undergoing apoptosis may become proadhesive for nonactivated platelets. Human umbilical vein endothelial cells (HUVEC) were induced to undergo apoptosis by staurosporine, a nonspecific protein kinase inhibitor, or by culture in suspension with serum-deprivation. After treatment of HUVEC or platelets with different receptor antagonists, nonactivated, washed human platelets were allowed to adhere to HUVEC for 20 minutes. To exclude matrix involvement, platelet binding was measured in suspension by using flow cytometry. Independent of the method of apoptosis induction, there was a marked increase in platelet binding to apoptotic HUVEC. Although HUVEC exhibited maximal adhesiveness for platelets after 2 to 4 hours, complete DNA fragmentation of HUVEC occurred only several hours later. Adhesion assays after blockade of different platelet receptors showed only involvement of β1-integrins. Platelet binding to apoptotic HUVEC was inhibited by more than 70% when platelets were treated with blocking anti-β1 antibodies. Treatment of apoptotic HUVEC with blocking antibodies to different potential platelet receptors, including known ligands for β1-integrins, did not affect platelet binding. As assessed by determination of β-thromboglobulin and platelet factor 4 in the supernatants, platelets bound to apoptotic HUVEC became slightly activated. However, significant expression of platelet P-selectin (CD62P) was not found. These data provide further evidence that endothelial cells undergoing apoptosis may contribute to thrombotic events.
Collapse
|
143
|
Abstract
AbstractUnder normal conditions, platelets do not adhere to endothelium. However, when platelets or endothelial cells are stimulated by thrombin or cytokines, respectively, platelets bind avidly to endothelium. Because there is accumulating evidence that endothelial cells may become apoptotic under certain proinflammatory or prothrombotic conditions, we investigated whether endothelial cells undergoing apoptosis may become proadhesive for nonactivated platelets. Human umbilical vein endothelial cells (HUVEC) were induced to undergo apoptosis by staurosporine, a nonspecific protein kinase inhibitor, or by culture in suspension with serum-deprivation. After treatment of HUVEC or platelets with different receptor antagonists, nonactivated, washed human platelets were allowed to adhere to HUVEC for 20 minutes. To exclude matrix involvement, platelet binding was measured in suspension by using flow cytometry. Independent of the method of apoptosis induction, there was a marked increase in platelet binding to apoptotic HUVEC. Although HUVEC exhibited maximal adhesiveness for platelets after 2 to 4 hours, complete DNA fragmentation of HUVEC occurred only several hours later. Adhesion assays after blockade of different platelet receptors showed only involvement of β1-integrins. Platelet binding to apoptotic HUVEC was inhibited by more than 70% when platelets were treated with blocking anti-β1 antibodies. Treatment of apoptotic HUVEC with blocking antibodies to different potential platelet receptors, including known ligands for β1-integrins, did not affect platelet binding. As assessed by determination of β-thromboglobulin and platelet factor 4 in the supernatants, platelets bound to apoptotic HUVEC became slightly activated. However, significant expression of platelet P-selectin (CD62P) was not found. These data provide further evidence that endothelial cells undergoing apoptosis may contribute to thrombotic events.
Collapse
|
144
|
Blystone SD, Slater SE, Williams MP, Crow MT, Brown EJ. A molecular mechanism of integrin crosstalk: alphavbeta3 suppression of calcium/calmodulin-dependent protein kinase II regulates alpha5beta1 function. J Biophys Biochem Cytol 1999; 145:889-97. [PMID: 10330414 PMCID: PMC2133176 DOI: 10.1083/jcb.145.4.889] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many cells express more than one integrin receptor for extracellular matrix, and in vivo these receptors may be simultaneously engaged. Ligation of one integrin may influence the behavior of others on the cell, a phenomenon we have called integrin crosstalk. Ligation of the integrin alphavbeta3 inhibits both phagocytosis and migration mediated by alpha5beta1 on the same cell, and the beta3 cytoplasmic tail is necessary and sufficient for this regulation of alpha5beta1. Ligation of alpha5beta1 activates the calcium- and calmodulin-dependent protein kinase II (CamKII). This activation is required for alpha5beta1-mediated phagocytosis and migration. Simultaneous ligation of alphavbeta3 or expression of a chimeric molecule with a free beta3 cytoplasmic tail prevents alpha5beta1-mediated activation of CamKII. Expression of a constitutively active CamKII restores alpha5beta1 functions blocked by alphavbeta3-initiated integrin crosstalk. Thus, alphavbeta3 inhibition of alpha5beta1 activation of CamKII is required for its role in integrin crosstalk. Structure-function analysis of the beta3 cytoplasmic tail demonstrates a requirement for Ser752 in beta3-mediated suppression of CamKII activation, while crosstalk is independent of Tyr747 and Tyr759, implicating Ser752, but not beta3 tyrosine phosphorylation in initiation of the alphavbeta3 signal for integrin crosstalk.
Collapse
Affiliation(s)
- S D Blystone
- Department of Anatomy and Cell Biology, State University of New York, Health Science Center at Syracuse, Syracuse, New York 13210, USA.
| | | | | | | | | |
Collapse
|
145
|
Abstract
Phagocytosis is an uptake of large particles governed by the actin-based cytoskeleton. Binding of particles to specific cell surface receptors is the first step of phagocytosis. In higher Eucaryota, the receptors able to mediate phagocytosis are expressed almost exclusively in macrophages, neutrophils, and monocytes, conferring immunodefence properties to these cells. Receptor clustering is thought to occur upon particle binding, that in turn generates a phagocytic signal. Several pathways of phagocytic signal transduction have been identified, including the activation of tyrosine kinases and (or) serine/threonine kinase C in pivotal roles. Kinase activation leads to phosphorylation of the receptors and other proteins, recruited at the sites of phagocytosis. Monomeric GTPases of the Rho and ARF families are likely to be engaged downstream of activated receptors. The GTPases, in cooperation with phosphatidylinositol 4-phosphate 5-kinase and phosphatidylinositol 3-kinase lipid modifying enzymes, can modulate locally the assembly of the submembranous actin filament system leading to particle internalization.
Collapse
Affiliation(s)
- K Kwiatkowska
- Nencki Institute of Experimental Biology, Department of Cell Biology, Warsaw, Poland
| | | |
Collapse
|
146
|
Rainger GE, Buckley CD, Simmons DL, Nash GB. Neutrophils sense flow-generated stress and direct their migration through alphaVbeta3-integrin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H858-64. [PMID: 10070068 DOI: 10.1152/ajpheart.1999.276.3.h858] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During inflammation neutrophils are recruited from the blood onto the surface of microvascular endothelial cells. In this milieu the presence of soluble chemotactic gradients is disallowed by blood flow. However, directional cues are still required for neutrophils to migrate to the junctions of endothelial cells where extravasation occurs. Shear forces generated by flowing blood provide a potential alternative guide. In our flow-based adhesion assay neutrophils preferentially migrated in the direction of flow when activated after attachment to platelet monolayers. Neutralizing alphaVbeta3-integrin with monoclonal antibodies or turning the flow off randomized the direction of migration without affecting migration velocity. Purified, immobilized alphaVbeta3-integrin ligands, CD31 and fibronectin, could both support flow-directed neutrophil migration in a concentration-dependent manner. Migration could be randomized by neutralizing alphaVbeta3-integrin interactions with the substrate using antibodies or Arg-Gly-Asp-containing peptide. These results exemplify mechanical signal transduction through integrin-ligand interactions and reveal a guidance system that was hitherto unknown in neutrophils. In more general terms, it demonstrates that cells can use integrin molecules to "sample" their physical microenvironment through adhesion and use this information to modulate their behavior.
Collapse
Affiliation(s)
- G E Rainger
- Department of Physiology, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
147
|
Previous Uptake of Apoptotic Neutrophils or Ligation of Integrin Receptors Downmodulates the Ability of Macrophages to Ingest Apoptotic Neutrophils. Blood 1999. [DOI: 10.1182/blood.v93.4.1406.404k10_1406_1412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clearance of apoptotic neutrophils (polymorphonuclear leukocyte [PMN]) by macrophages is thought to play a crucial role in resolution of acute inflammation. There is increasing evidence that ingestion of apoptotic cells modulates macrophage behavior. We therefore performed experiments to determine whether ingestion of apoptotic PMN modulated the uptake process itself. Rat bone marrow-derived macrophages (BMDM) ingested apoptotic PMN by a process that was enhanced by tumor necrosis factor (TNF) and attenuated by interferon (IFN)-γ, interleukin (IL)-4, and IL-10. It was inhibitable by the tetrapeptide arg-gly-gln-ser (RGDS), therefore implicating the vβ3/CD36/thrombospondin pathway. Interaction of apoptotic PMN with BMDM for 30 minutes, 48 hours before rechallenge reduced uptake of apoptotic PMN by 50% compared with previously unchallenged BMDM. Blocking initial uptake with RGDS abrogated the effect of preexposure. Comparable and sustained attenuation of uptake was obtained by ligating vβ3 with the monoclonal antibody (MoAb), F11, after a delay of more than 90 minutes, whereas MoAbs to CD25 and CD45 had no effect. Ligation of 6β1 and 1β2, integrins not previously implicated in the engulfment of apoptotic cells also decreased uptake with similar kinetics to F11. Therefore, apoptotic PMN regulate their own uptake through an integrin-dependent process, which can be reproduced by ligation of other integrins expressed by macrophages.
Collapse
|
148
|
Previous Uptake of Apoptotic Neutrophils or Ligation of Integrin Receptors Downmodulates the Ability of Macrophages to Ingest Apoptotic Neutrophils. Blood 1999. [DOI: 10.1182/blood.v93.4.1406] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractClearance of apoptotic neutrophils (polymorphonuclear leukocyte [PMN]) by macrophages is thought to play a crucial role in resolution of acute inflammation. There is increasing evidence that ingestion of apoptotic cells modulates macrophage behavior. We therefore performed experiments to determine whether ingestion of apoptotic PMN modulated the uptake process itself. Rat bone marrow-derived macrophages (BMDM) ingested apoptotic PMN by a process that was enhanced by tumor necrosis factor (TNF) and attenuated by interferon (IFN)-γ, interleukin (IL)-4, and IL-10. It was inhibitable by the tetrapeptide arg-gly-gln-ser (RGDS), therefore implicating the vβ3/CD36/thrombospondin pathway. Interaction of apoptotic PMN with BMDM for 30 minutes, 48 hours before rechallenge reduced uptake of apoptotic PMN by 50% compared with previously unchallenged BMDM. Blocking initial uptake with RGDS abrogated the effect of preexposure. Comparable and sustained attenuation of uptake was obtained by ligating vβ3 with the monoclonal antibody (MoAb), F11, after a delay of more than 90 minutes, whereas MoAbs to CD25 and CD45 had no effect. Ligation of 6β1 and 1β2, integrins not previously implicated in the engulfment of apoptotic cells also decreased uptake with similar kinetics to F11. Therefore, apoptotic PMN regulate their own uptake through an integrin-dependent process, which can be reproduced by ligation of other integrins expressed by macrophages.
Collapse
|
149
|
Tomatis D, Echtermayer F, Schöber S, Balzac F, Retta SF, Silengo L, Tarone G. The muscle-specific laminin receptor alpha7 beta1 integrin negatively regulates alpha5 beta1 fibronectin receptor function. Exp Cell Res 1999; 246:421-32. [PMID: 9925758 DOI: 10.1006/excr.1998.4315] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha7 beta1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the alpha7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with alpha7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the alpha7 beta1. alpha7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of alpha7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the alpha5 beta1 fibronectin receptor. Although cell surface expression of alpha5 beta1 was reduced by a factor of 20-25% in alpha7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of 125I-fibronectin for its surface receptor was decreased by 50% in alpha7 transfectants, indicating that the alpha5 beta1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+ restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in alpha7 transfectants. These data indicate that alpha7 expression leads to the functional down regulation of alpha5beta1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of a negative cooperativity between alpha7 and alpha5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.
Collapse
Affiliation(s)
- D Tomatis
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Turin, 10126, Italy
| | | | | | | | | | | | | |
Collapse
|
150
|
Mastrangelo AM, Homan SM, Humphries MJ, LaFlamme SE. Amino acid motifs required for isolated beta cytoplasmic domains to regulate ‘in trans’ beta1 integrin conformation and function in cell attachment. J Cell Sci 1999; 112 ( Pt 2):217-29. [PMID: 9858475 DOI: 10.1242/jcs.112.2.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of beta cytoplasmic domains in regulating beta1 integrin conformation and function in cell attachment is not fully understood. In this study, we tested the ability of transiently expressed beta cytoplasmic domains connected to an extracellular reporter domain to regulate ‘in trans’ the conformation of endogenous beta1 integrins, and compared these effects on cell attachment. We found that chimeric receptors containing either the beta1, beta3 or beta5 cytoplasmic domains inhibited the expression of the conformationally dependent 9EG7 and 12G10 epitopes on endogenous beta1 integrins. In contrast, chimeric receptors containing the beta4 or alpha5 cytoplasmic domain, or a control receptor lacking a cytoplasmic domain, had no effect. This inhibition occurred in a dose-dependent manner that required high levels of expression of the chimeric receptor. These results suggest that beta1 integrin conformation can be regulated by conserved cytosolic interactions involving beta cytoplasmic domains. This is further supported by our findings that mutations within amino acid motifs conserved among these beta cytoplasmic domains, specifically the NXXY, NPXY and TST-like motifs, reduced the ability of these chimeric receptors to regulate beta1 integrin conformation. Interestingly, the chimeric receptors inhibited cell attachment in a similar dose-dependent manner and required intact NXXY, NPXY, and TST-like motifs. The beta1 chimera also inhibited the binding of soluble fibronectin to endogenous beta1 integrins. Thus, the concomitant inhibition in the expression of conformation-dependent integrin epitopes, cell attachment and ligand binding by the chimeras, suggests that the expression of the 9EG7 and 12G10 epitopes correlates with integrin function. However, Mn2+, which is an extracellular activator of integrin function, increased 9EG7 expression to basal levels in the presence of the beta1 chimera, but did not rescue cell attachment to the same extent. Thus, although the beta1 integrin conformation recognized by mAb 9EG7 may be required for cell attachment, it is not sufficient, suggesting that the beta chimeras may be inhibiting both ligand binding and post-ligand binding events required for cell attachment. In addition, the inhibitory effects of the chimeric receptors on cell attachment were not reversed by the addition of the pharmacological agents that inhibit intracellular signals previously shown to inhibit integrin function. This finding, together with the requirement for high levels of the chimeric receptors and the fact that mutations in the same conserved motifs in heterodimeric beta1 integrins have been reported to regulate beta1 integrin conformation and function in cell attachment, suggest that beta cytoplasmic domains regulate these processes by interacting with cytosolic factors and that the regulatory effect of the chimeras may be due to their ability to titrate proteins from endogenous integrins.
Collapse
Affiliation(s)
- A M Mastrangelo
- Department of Physiology and Cell Biology Albany Medical College, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|