101
|
He C, Hobert M, Friend L, Carlin C. The epidermal growth factor receptor juxtamembrane domain has multiple basolateral plasma membrane localization determinants, including a dominant signal with a polyproline core. J Biol Chem 2002; 277:38284-93. [PMID: 12161422 DOI: 10.1074/jbc.m104646200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epidermal growth factor (EGF) receptor is located predominantly in the basolateral membrane of polarized epithelia, where it plays a pivotal role during organogenesis and tissue homeostasis. We have shown previously that a 22-amino acid sequence in the EGF receptor juxtamembrane domain contains autonomous sorting information necessary for basolateral localization using the Madin-Darby canine kidney epithelial cell model. The goal of this study was to determine the molecular basis of EGF receptor basolateral membrane expression using site-directed mutagenesis to modify specific residues in this region. We now show that this sequence has two different, functionally redundant basolateral sorting signals with distinct amino acid requirements: one dependent on residues (658)LL(659) conforming to well-characterized leucine-based sorting signals, and a second containing a polyproline core comprising residues Pro(667) and Pro(670) ((667)PXXP(670)). Our data also suggest that Arg(662) contributes to the function of the proline-based signal. (667)PXXP(670) was the dominant signal when both motifs were present and was more effective than (658)LL(659) at overriding strong apical sorting signals located in the same molecule. Site-directed mutations at Arg(662), Pro(667), and Pro(670) were also associated with increased apical expression of full-length EGF receptors, demonstrating for the first time that the juxtamembrane region is necessary for accurate polarized expression of the native molecule.
Collapse
Affiliation(s)
- Cheng He
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
102
|
Abstract
Sphingolipids represent a minor, but highly dynamic subclass of lipids in all eukaryotic cells. They are involved in functions that range from structural protection to signal transduction and protein sorting, and participate in lipid raft assembly. In polarized epithelial cells, which display an asymmetric apical and basolateral membrane surface, rafts have been proposed as a sorting principle for apical resident proteins, following their biosynthesis. However, raft-mediated trafficking is ubiquitous in cells. Also, sphingolipids per se, which are strongly enriched in the apical domain, are subject to sorting in polarity development. Next to the trans Golgi network, a subapical compartment called SAC or common endosome appears instrumental in regulating these sorting events.
Collapse
Affiliation(s)
- Tounsia Aït Slimane
- University of Groningen, Department of Membrane Cell Biology, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | |
Collapse
|
103
|
Crottet P, Meyer DM, Rohrer J, Spiess M. ARF1.GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes. Mol Biol Cell 2002; 13:3672-82. [PMID: 12388765 PMCID: PMC129974 DOI: 10.1091/mbc.e02-05-0309] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Revised: 07/09/2002] [Accepted: 07/16/2002] [Indexed: 11/11/2022] Open
Abstract
At the trans-Golgi network, clathrin coats containing AP-1 adaptor complexes are formed in an ARF1-dependent manner, generating vesicles transporting cargo proteins to endosomes. The mechanism of site-specific targeting of AP-1 and the role of cargo are poorly understood. We have developed an in vitro assay to study the recruitment of purified AP-1 adaptors to chemically defined liposomes presenting peptides corresponding to tyrosine-based sorting motifs. AP-1 recruitment was found to be dependent on myristoylated ARF1, GTP or nonhydrolyzable GTP-analogs, tyrosine signals, and small amounts of phosphoinositides, most prominently phosphatidylinositol 4,5-bisphosphate, in the absence of any additional cytosolic or membrane bound proteins. AP-1 from cytosol could be recruited to a tyrosine signal independently of the lipid composition, but the rate of recruitment was increased by phosphatidylinositol 4,5-bisphosphate. The results thus indicate that cargo proteins are involved in coat recruitment and that the local lipid composition contributes to specifying the site of vesicle formation.
Collapse
Affiliation(s)
- Pascal Crottet
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
104
|
Abstract
Since the first description of the Golgi in 1898, key issues regarding this organelle have remained contentious among cell biologists. Resolving these complex debates, which revolve around Golgi structure-function relationships, is prerequisite to understanding how the Golgi fulfils its role as the central organelle and sorting station of the mammalian secretory pathway.
Collapse
Affiliation(s)
- Brad J Marsh
- Boulder Laboratory for 3D EM, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
105
|
Mohrmann K, Gerez L, Oorschot V, Klumperman J, van der Sluijs P. Rab4 function in membrane recycling from early endosomes depends on a membrane to cytoplasm cycle. J Biol Chem 2002; 277:32029-35. [PMID: 12036958 DOI: 10.1074/jbc.m203064200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The monomeric GTPase rab4 is associated with early endosomes and regulates recycling vesicle formation. Because the function of rab proteins in the biosynthetic pathway does not appear to depend on cycling between membranes and cytosol, we were interested to investigate whether or not this holds true for rab function in the endocytic pathway. We created a chimeric rab4 protein (NHrab4cbvn) in which the carboxyl-terminal prenylation motif was replaced by the transmembrane domain of cellubrevin. The chimeric protein was permanently attached to membranes, properly targeted to early endosomes, and bound guanine nucleotide to the same extent as wild type rab4. However, in transport assays we found that basolaterally endocytosed transferrin was less efficiently transported to the apical cell surface in Madin-Darby canine kidney cells transfected with NHrab4cbvn than in cells expressing wild type rab4. Hence, rab4 function requires ongoing cycles of association and dissociation from early endosomes. This cycle is altered during mitosis when rab4 accumulates in the cytoplasm through phosphorylation by a mitotic kinase. We show here, using a rab4 construct that is permanently hooked onto membranes, that the membrane-bound pool of rab4 is targeted by a mitotic kinase.
Collapse
Affiliation(s)
- Karin Mohrmann
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, Utrecht 3584 CX, The Netherlands
| | | | | | | | | |
Collapse
|
106
|
Gan Y, McGraw TE, Rodriguez-Boulan E. The epithelial-specific adaptor AP1B mediates post-endocytic recycling to the basolateral membrane. Nat Cell Biol 2002; 4:605-9. [PMID: 12105417 DOI: 10.1038/ncb827] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To perform vectorial secretory and transport functions that are critical for the survival of the organism, epithelial cells sort plasma membrane proteins into polarized apical and basolateral domains. Sorting occurs post-synthetically, in the trans Golgi network (TGN) or after internalization from the cell surface in recycling endosomes, and is mediated by apical and basolateral sorting signals embedded in the protein structure. Basolateral sorting signals include tyrosine motifs in the cytoplasmic domain that are structurally similar to signals involved in receptor internalization by clathrin-coated pits. Recently, an epithelial-specific adaptor protein complex, AP1B, was identified. AP-1B recognizes a subset of basolateral tyrosine motifs through its mu 1B subunit. Here, we characterized the post-synthetic and post-endocytic sorting of the fast recycling low density lipoprotein receptor (LDLR) and transferrin receptor (TfR) in LLC-PK1 cells, which lack mu 1B and mis-sort both receptors to the apical surface. Targeting and recycling assays in LLC-PK1 cells, before and after transfection with mu 1B, and in MDCK cells, which express mu 1B constitutively, suggest that AP1B sorts basolateral proteins post-endocytically.
Collapse
Affiliation(s)
- Yunbo Gan
- Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Ave., New York, NY 10021, USA
| | | | | |
Collapse
|
107
|
Kent HM, McMahon HT, Evans PR, Benmerah A, Owen DJ. Gamma-adaptin appendage domain: structure and binding site for Eps15 and gamma-synergin. Structure 2002; 10:1139-48. [PMID: 12176391 DOI: 10.1016/s0969-2126(02)00801-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The AP1 complex is one of a family of heterotetrameric clathrin-adaptor complexes involved in vesicular trafficking between the Golgi and endosomes. The complex has two large subunits, gamma and beta1, which can be divided into trunk, hinge, and appendage domains. The 1.8 A resolution structure of the gamma appendage is presented. The binding site for the known gamma appendage ligand gamma-synergin is mapped through creation of point mutations designed on the basis of the structure. We also show that Eps15, a protein believed to be involved in vesicle formation at the plasma membrane, is also a ligand of gamma appendage and binds to the same site as gamma-synergin. This observation explains the demonstrated brefeldinA (BFA)-sensitive colocalization of Eps15 and AP1 at the Golgi complex.
Collapse
Affiliation(s)
- Helen M Kent
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
108
|
Eiraku M, Hirata Y, Takeshima H, Hirano T, Kengaku M. Delta/notch-like epidermal growth factor (EGF)-related receptor, a novel EGF-like repeat-containing protein targeted to dendrites of developing and adult central nervous system neurons. J Biol Chem 2002; 277:25400-7. [PMID: 11950833 DOI: 10.1074/jbc.m110793200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel epidermal growth factor (EGF)-like repeat-containing single-pass transmembrane protein that is specifically expressed in the developing and mature central nervous system. Sequence analysis revealed that the 10 EGF-like repeats in the extracellular domain are closely related to those of the developmentally important receptor Notch and its ligand Delta. We thus named the molecule Delta/Notch-like EGF-related receptor (DNER). DNER protein is strongly expressed in several types of post-mitotic neurons, including cortical and hippocampal pyramidal neurons, cerebellar granule cells, and Purkinje cells. DNER protein is localized to the dendritic plasma membrane and endosomes and is excluded from the axons, even when overexpressed. The tyrosine-based sorting motif in the cytoplasmic domain is required for dendritic targeting of DNER. Direct in vivo binding of DNER to the coat-associated protein complex AP-1 strongly suggests that DNER undergoes AP-1-dependent sorting to the somatodendritic compartments from the trans-Golgi network and subsequent passage through the endosomal system.
Collapse
Affiliation(s)
- Mototsugu Eiraku
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Japan
| | | | | | | | | |
Collapse
|
109
|
Sugimoto H, Sugahara M, Fölsch H, Koide Y, Nakatsu F, Tanaka N, Nishimura T, Furukawa M, Mullins C, Nakamura N, Mellman I, Ohno H. Differential recognition of tyrosine-based basolateral signals by AP-1B subunit mu1B in polarized epithelial cells. Mol Biol Cell 2002; 13:2374-82. [PMID: 12134076 PMCID: PMC117320 DOI: 10.1091/mbc.e01-10-0096] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To investigate the importance of tyrosine recognition by the AP-1B clathrin adaptor subunit mu1B for basolateral sorting of integral membrane proteins in polarized epithelial cells, we have produced and characterized a mutant form of mu1B. The mutant (M-mu1B) contains alanine substitutions of each of the four conserved residues, which in the AP-2 adaptor subunit micro2 are critical for interacting with tyrosine-based endocytosis signals. We show M-mu1B is defective for tyrosine binding in vitro, but is nevertheless incorporated into AP-1 complexes in transfected cells. Using LLC-PK1 cells expressing either wild type or M-mu1B, we find that there is inefficient basolateral expression of membrane proteins whose basolateral targeting signals share critical tyrosines with signals for endocytosis. In contrast, membrane proteins whose basolateral targeting signals are distinct from their endocytosis signals (transferrin and low-density lipoprotein receptors) accumulate at the basolateral domain normally, although in a manner that is strictly dependent on mu1B or M-mu1B expression. Our results suggest that mu1B interacts with different classes of basolateral targeting signals in distinct ways.
Collapse
Affiliation(s)
- Hisashi Sugimoto
- Division of Molecular Membrane Biology, Cancer Research Institute, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa 920-0934, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Safieddine S, Ly CD, Wang YX, Wang CY, Kachar B, Petralia RS, Wenthold RJ. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Mol Cell Neurosci 2002; 20:343-53. [PMID: 12093165 DOI: 10.1006/mcne.2002.1120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory (hair) cells of the inner ear contain two specialized areas of membrane delivery. The first, located at the cell base, is the afferent synapse where rapid delivery of synaptic vesicles is required to convey information about auditory signals with exceedingly high temporal precision. The second area is at the apex. To accommodate the continuous movement of stereocilia and facilitate their repair, recycling of membrane components is required. Intense vesicular traffic is restricted to a narrow band of cytoplasm around the cuticular plate, which anchors stereocilia. Our previous analyses showed that SNARE proteins (syntaxin 1A/SNAP25/VAMP1) are concentrated at both poles of hair cells, consistent with their involvement in membrane delivery at both locations. To investigate further the molecules involved in membrane delivery at these two sites, we constructed a two-hybrid library of the organ of Corti and probed it with syntaxin 1A. Here we report the cloning of a novel syntaxin-binding protein that is concentrated in a previously uncharacterized organelle at the apex of inner hair cells.
Collapse
Affiliation(s)
- S Safieddine
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Eskelinen EL, Meyer C, Ohno H, von Figura K, Schu P. The polarized epithelia-specific mu 1B-adaptin complements mu 1A-deficiency in fibroblasts. EMBO Rep 2002; 3:471-7. [PMID: 11964383 PMCID: PMC1084105 DOI: 10.1093/embo-reports/kvf092] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterotetrameric AP-1A adaptor complex of clathrin-coated vesicles is ubiquitously expressed. The mu 1-adaptin subunit of the complex exists as the ubiquitous mu 1A and the polarized epithelia-specific mu 1B, which are 80% identical. In polarized epithelia, mu 1B is incorporated into the AP-1B complex, which is required for basolateral plasma membrane sorting of the low-density lipoprotein receptor. Binding of AP-1B to subdomains of the trans-Golgi network (TGN) appears to be part of the mechanism by which protein sorting is mediated. We expressed mu 1B in mu 1A-deficient fibroblasts to test for mu 1B function in non-polarized cells. AP-1B complexes were formed and bound to the TGN and to endosomes. Moreover, AP-1B restored the AP-1A-dependent sorting of mannose 6-phosphate receptors between endosomes and the TGN. This demonstrates that mu 1A and mu 1B do have overlapping sorting functions and indicates that AP-1A and AP-1B mediate protein sorting along parallel pathways between the TGN and endosomes in polarized epithelia.
Collapse
Affiliation(s)
- Eeva-Liisa Eskelinen
- School of Life Sciences, Center for High Resolution Imaging and Processing, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
112
|
Abstract
Protein transport and sorting in the secretory and endocytic pathways via vesicles is required for organelle biogenesis, constitutive and regulated secretion and constitutive and regulated endocytosis. It is essential for a multicellular organism and the function of its specialised cell types that the multiple transport and sorting events are highly accurate. They determine the protein and lipid composition of specialised compartments, receptor protein function and membrane homeostasis. This review describes the individual events involved in the process of vesicle mediated protein transport and sorting and summarizes the knowledge about the function of proteins and lipids orchestrating the process.
Collapse
Affiliation(s)
- P Schu
- Georg-August-Universität Göttingen, Zentrum Biochemie und Molekulare Zellbiologie, Germany.
| |
Collapse
|
113
|
Lipardi C, Ruggiano G, Perrone L, Paladino S, Monlauzeur L, Nitsch L, Le Bivic A, Zurzolo C. Differential recognition of a tyrosine-dependent signal in the basolateral and endocytic pathways of thyroid epithelial cells. Endocrinology 2002; 143:1291-301. [PMID: 11897685 DOI: 10.1210/endo.143.4.8734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Trafficking of receptors is of crucial importance for the physiology of most exocrine and endocrine organs. It is not known yet if the same mechanisms are used for sorting in the exocytic and endocytic pathways in the different epithelial tissues. In this work, we have used a deletion mutant of the human neurotrophin receptor p75(hNTR) that is normally localized on the apical membrane when expressed in Madin-Darby canine kidney cells. This internal 57-amino acid deletion of the cytoplasmic tail leads to a relocation of the protein from the apical to the basolateral membrane and to rapid and efficient endocytosis. These events are mediated by a signal localized within 9 amino acids of the mutated cytoplasmic tail that is strictly dependent on a tyrosine residue (Tyr-308). We have analyzed the basolateral sorting efficiency and endocytic capacity of this signal in Fischer rat thyroid (FRT) cells, in which basolateral and endocytic determinants have not yet been identified. We found that this targeting signal can mediate efficient transport to the basolateral membrane also in FRT cells with similar tyrosine dependence as in MDCK cells. In contrast to MDCK cells, this Tyr-based signal was not able to mediate coated pits localization and endocytosis in FRT cells. These data represent the first characterization of basolateral/endocytic signals in thyroid epithelial cells. Furthermore, our results indicate that requirements for tyrosine-dependent basolateral sorting signals are conserved among cell lines from different tissues but that the recognition of the colinear endocytic signal is tissue specific.
Collapse
Affiliation(s)
- Concetta Lipardi
- Centro di Endocrinologia ed Oncologia Sperimentale del Centro Nazionale delle Ricerche-Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell 2002; 13:1313-28. [PMID: 11950941 PMCID: PMC102271 DOI: 10.1091/mbc.01-10-0525] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In many cells endosomal vacuoles show clathrin coats of which the function is unknown. Herein, we show that this coat is predominantly present on early endosomes and has a characteristic bilayered appearance in the electron microscope. By immunoelectron microscopy we show that the coat contains clathrin heavy as well as light chain, but lacks the adaptor complexes AP1, AP2, and AP3, by which it differs from clathrin coats on endocytic vesicles and recycling endosomes. The coat is insensitive to short incubations with brefeldin A, but disappears in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin. No association of endosomal coated areas with tracks of tubulin or actin was found. By quantitative immunoelectron microscopy, we found that the lysosomal-targeted receptors for growth hormone (GHR) and epidermal growth factor are concentrated in the coated membrane areas, whereas the recycling transferrin receptor is not. In addition, we found that the proteasomal inhibitor MG 132 induces a redistribution of a truncated GHR (GHR-369) toward recycling vesicles, which coincided with a redistribution of endosomal vacuole-associated GHR-369 to the noncoated areas of the limiting membrane. Together, these data suggest a role for the bilayered clathrin coat on vacuolar endosomes in targeting of proteins to lysosomes.
Collapse
Affiliation(s)
- Martin Sachse
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
115
|
Mohrmann K, Leijendekker R, Gerez L, van Der Sluijs P. rab4 regulates transport to the apical plasma membrane in Madin-Darby canine kidney cells. J Biol Chem 2002; 277:10474-81. [PMID: 11790789 DOI: 10.1074/jbc.m111237200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The small GTPase rab4 is associated with early endosomes and regulates membrane recycling in fibroblasts. rab4 is present in epithelial cells; however, neither its localization nor function has been established in this cell type. We transfected Madin-Darby canine kidney cells with rab4, the GTPase-deficient mutant rab4Q67L, and the dominant negative mutant rab4S22N that poorly binds guanine nucleotides. Confocal immunofluorescence microscopy showed that rab4 was concentrated on internal structures at the lateral side of the cell around the nucleus. Quantitative immunoelectron microscopy revealed that the majority of rab4 was localized in the upper third of the cytoplasm. In cell surface binding experiments with (125)I-transferrin, we found a redistribution of transferrin receptor from the basolateral to the apical plasma membrane in cells expressing rab4 and rab4Q67L. After accumulation of transferrin at 16 degrees C in basolateral early endosomes, rab4 and rab4Q67L increased the amount of apically targeted transferrin receptor. A qualitatively similar effect was obtained in control cells treated with brefeldin A. The effects of brefeldin A and rab4 on apical targeting of transferrin receptor were not additive, suggesting that brefeldin A and rab4 may act in the same transport pathway from common endosomes.
Collapse
Affiliation(s)
- Karin Mohrmann
- Department of Cell Biology, University Medical Center Utrecht and Institute of Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | | | | |
Collapse
|
116
|
Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M. Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 2002; 3:218-32. [PMID: 11886592 DOI: 10.1034/j.1600-0854.2002.030307.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human cytomegalovirus genome encodes four putative seven transmembrane domain chemokine receptor-like proteins. Although important in viral pathogenesis, little is known about the properties or functions of these proteins. We previously reported that US28 is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Here we studied the cellular distributions and trafficking of two other human cytomegalovirus chemokine receptor-like proteins, UL33 and US27, in transfected and human cytomegalovirus-infected cells. Immunofluorescence staining indicated that UL33 and US27 are located at the cell surface, although the majority of both proteins was seen in intracellular organelles located in the perinuclear region of the cell. The intracellular pools of UL33 and US27 showed overlap with markers for endocytic organelles. Antibody-feeding experiments indicated that cell surface US27 undergoes endocytosis. By immunogold labeling of cryosections and electron microscopy, UL33 was seen to localize to multivesicular bodies (MVBs or multivesicular endosomes). Electron microscopy analysis of human cytomegalovirus-infected cells showed that most virus particles wrapped individually into short membrane cisternae, although virus particles were also occasionally seen within and budding into MVBs. Electron microscopy immunolocalization of viral UL33 and US27 on ultrathin cryosections of human cytomegalovirus-infected cells showed gold particles over the membranes into which virions were wrapping, in small membrane tubules and vesicles and in MVBs. Labeling of the human cytomegalovirus glycoproteins gB and gH indicated that these proteins were also present in the same membrane structures. This first electron microscopy analysis of human cytomegalovirus assembly using immunolabeling suggests that the localization of UL33, US27 and US28 to endosomes may allow these proteins to be incorporated into the viral membrane during the final stages of human cytomegalovirus assembly.
Collapse
Affiliation(s)
- Alberto Fraile-Ramos
- Department of Biochemistry and Molecular Biology, Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
117
|
van IJzendoorn SCD, Tuvim MJ, Weimbs T, Dickey BF, Mostov KE. Direct interaction between Rab3b and the polymeric immunoglobulin receptor controls ligand-stimulated transcytosis in epithelial cells. Dev Cell 2002; 2:219-28. [PMID: 11832247 DOI: 10.1016/s1534-5807(02)00115-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the role of rab3b in epithelial cells. In MDCK cells, rab3b localizes to vesicular structures containing the polymeric immunoglobulin receptor (pIgR) and located subjacent to the apical surface. We found that GTP-bound rab3b directly interacts with the cytoplasmic domain of pIgR. Binding of dIgA to pIgR causes a dissociation of the interaction with rab3b, a process that requires dIgA-mediated signaling, Arg657 in the cytoplasmic domain of pIgR, and possibly GTP hydrolysis by rab3b. Binding of dIgA to pIgR at the basolateral surface stimulates subsequent transcytosis to the apical surface. Overexpression of GTP-locked rab3b inhibits dIgA-stimulated transcytosis. Together, our data demonstrate that a rab protein can bind directly to a specific cargo protein and thereby control its trafficking.
Collapse
Affiliation(s)
- Sven C D van IJzendoorn
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
118
|
Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2002; 17:517-68. [PMID: 11687498 DOI: 10.1146/annurev.cellbio.17.1.517] [Citation(s) in RCA: 485] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There has recently been considerable progress in understanding the regulation of clathrin-coated vesicle (CCV) formation and function. These advances are due to the determination of the structure of a number of CCV coat components at molecular resolution and the identification of novel regulatory proteins that control CCV formation in the cell. In addition, pathways of (a) phosphorylation, (b) receptor signaling, and (c) lipid modification that influence CCV formation, as well as the interaction between the cytoskeleton and CCV transport pathways are becoming better defined. It is evident that although clathrin coat assembly drives CCV formation, this fundamental reaction is modified by different regulatory proteins, depending on where CCVs are forming in the cell. This regulatory difference likely reflects the distinct biological roles of CCVs at the plasma membrane and trans-Golgi network, as well as the distinct properties of these membranes themselves. Tissue-specific functions of CCVs require even more-specialized regulation and defects in these pathways can now be correlated with human diseases.
Collapse
Affiliation(s)
- F M Brodsky
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
119
|
van Dam EM, Stoorvogel W. Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol Biol Cell 2002; 13:169-82. [PMID: 11809831 PMCID: PMC65080 DOI: 10.1091/mbc.01-07-0380] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously we described clathrin-coated buds on tubular early endosomes that are distinct from those at the plasma membrane and the trans-Golgi network. Here we show that these clathrin-coated buds, like plasma membrane clathrin-coated pits, contain endogenous dynamin-2. To study the itinerary that is served by endosome-derived clathrin-coated vesicles, we used cells that overexpressed a temperature-sensitive mutant of dynamin-1 (dynamin-1(G273D)) or, as a control, dynamin-1 wild type. In dynamin-1(G273D)-expressing cells, 29-36% of endocytosed transferrin failed to recycle at the nonpermissive temperature and remained associated with tubular recycling endosomes. Sorting of endocytosed transferrin from fluid-phase endocytosed markers in early endosome antigen 1-labeled sorting endosomes was not inhibited. Dynamin-1(G273D) associated with accumulated clathrin-coated buds on extended tubular recycling endosomes. Brefeldin A interfered with the assembly of clathrin coats on endosomes and reduced the extent of transferrin recycling in control cells but did not further affect recycling by dynamin-1(G273D)-expressing cells. Together, these data indicate that the pathway from recycling endosomes to the plasma membrane is mediated, at least in part, by endosome-derived clathrin-coated vesicles in a dynamin-dependent manner.
Collapse
Affiliation(s)
- Ellen M van Dam
- Department of Cell Biology, University Medical Center and Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
120
|
Futter CE, Collinson LM, Backer JM, Hopkins CR. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol 2001; 155:1251-64. [PMID: 11756475 PMCID: PMC2199316 DOI: 10.1083/jcb.200108152] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
After internalization from the plasma membrane, activated EGF receptors (EGFRs) are delivered to multivesicular bodies (MVBs). Within MVBs, EGFRs are removed from the perimeter membrane to internal vesicles, thereby being sorted from transferrin receptors, which recycle back to the plasma membrane. The phosphatidylinositol (PI) 3'-kinase inhibitor, wortmannin, inhibits internal vesicle formation within MVBs and causes EGFRs to remain in clusters on the perimeter membrane. Microinjection of isotype-specific inhibitory antibodies demonstrates that the PI 3'-kinase required for internal vesicle formation is hVPS34. In the presence of wortmannin, EGFRs continue to be delivered to lysosomes, showing that their removal from the recycling pathway and their delivery to lysosomes does not depend on inward vesiculation. We showed previously that tyrosine kinase-negative EGFRs fail to accumulate on internal vesicles of MVBs but are recycled rather than delivered to lysosomes. Therefore, we conclude that selection of EGFRs for inclusion on internal vesicles requires tyrosine kinase but not PI 3'-kinase activity, whereas vesicle formation requires PI 3'-kinase activity. Finally, in wortmannin-treated cells there is increased EGF-stimulated tyrosine phosphorylation when EGFRs are retained on the perimeter membrane of MVBs. Therefore, we suggest that inward vesiculation is involved directly with attenuating signal transduction.
Collapse
Affiliation(s)
- C E Futter
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | | | | | | |
Collapse
|
121
|
de Figueiredo P, Doody A, Polizotto RS, Drecktrah D, Wood S, Banta M, Strang MS, Brown WJ. Inhibition of transferrin recycling and endosome tubulation by phospholipase A2 antagonists. J Biol Chem 2001; 276:47361-70. [PMID: 11585839 DOI: 10.1074/jbc.m108508200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that a broad spectrum of phospholipase A(2) (PLA(2)) antagonists produce a concentration-dependent, differential block in the endocytic recycling pathway of transferrin (Tf) and Tf receptors (TfRs) but have no acute affect on Tf uptake from the cell surface. At low concentrations of antagonists (approximately 1 microm), Tf and TfR accumulated in centrally located recycling endosomes, whereas at higher concentrations (approximately 10 microm), Tf-TfR accumulated in peripheral sorting endosomes. Several independent lines of evidence suggest that this inhibition of recycling may result from the inhibition of tubule formation. First, BFA-stimulated endosome tubule formation was similarly inhibited by PLA(2) antagonists. Second, endocytosed tracers were found in larger spherical endosomes in the presence of PLA(2) antagonists. And third, endosome tubule formation in a cell-free, cytosol-dependent reconstitution system was equally sensitive PLA(2) antagonists. These results are consistent with the conclusion that endosome membrane tubules are formed by the action of a cytoplasmic PLA(2) and that PLA(2)-dependent tubules are involved in intracellular recycling of Tf and TfR. When taken together with previous studies on the Golgi complex, these results also indicate that an intracellular PLA(2) activity provides a novel molecular mechanism for inducing tubule formation from multiple organelles.
Collapse
Affiliation(s)
- P de Figueiredo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Cordonnier MN, Dauzonne D, Louvard D, Coudrier E. Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol Biol Cell 2001; 12:4013-29. [PMID: 11739797 PMCID: PMC60772 DOI: 10.1091/mbc.12.12.4013] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An earlier report suggested that actin and myosin I alpha (MMIalpha), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIalpha were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIalpha. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIalpha impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIalpha contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors.
Collapse
Affiliation(s)
- M N Cordonnier
- Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Institut Curie, France
| | | | | | | |
Collapse
|
123
|
de Wit H, Lichtenstein Y, Kelly RB, Geuze HJ, Klumperman J, van der Sluijs P. Rab4 regulates formation of synaptic-like microvesicles from early endosomes in PC12 cells. Mol Biol Cell 2001; 12:3703-15. [PMID: 11694600 PMCID: PMC60287 DOI: 10.1091/mbc.12.11.3703] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Early endosomes in PC12 cells are an important site for the formation of synaptic-like microvesicles and constitutive recycling vesicles. By immunogold electron microscopy, the small GTPase rab4 was localized to early endosomes and numerous small vesicles in the cell periphery and Golgi area of PC12 cells. Overexpression of GTPase-deficient Q67Lrab4 increased the number of early endosome-associated and cytoplasmic vesicles, whereas expression of GDP-bound S22Nrab4 significantly increased the length of early endosomal tubules. In parallel, Q67Lrab4 induced a shift in rab4, VAMP2, and TfR label from early endosomes to peripheral vesicles, whereas S22Nrab4 increased early endosome labeling of all three proteins. These observations were corroborated by early endosome budding assays. Together, our data document a thus far unrecognized role for rab4 in the formation of synaptic-like microvesicles and add to our understanding of the formation of constitutive recycling vesicles from early endosomes.
Collapse
Affiliation(s)
- H de Wit
- Department of Biochemistry and Biophysics, Hormone Research Institute, University of California, San Francisco, California 94143-0534
| | | | | | | | | | | |
Collapse
|
124
|
Lampson MA, Schmoranzer J, Zeigerer A, Simon SM, McGraw TE. Insulin-regulated release from the endosomal recycling compartment is regulated by budding of specialized vesicles. Mol Biol Cell 2001; 12:3489-501. [PMID: 11694583 PMCID: PMC60270 DOI: 10.1091/mbc.12.11.3489] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In several cell types, specific membrane proteins are retained intracellularly and rapidly redistributed to the surface in response to stimulation. In fat and muscle, the GLUT4 glucose transporter is dynamically retained because it is rapidly internalized and slowly recycled to the plasma membrane. Insulin increases the recycling of GLUT4, resulting in a net translocation to the surface. We have shown that fibroblasts also have an insulin-regulated recycling mechanism. Here we show that GLUT4 is retained within the transferrin receptor-containing general endosomal recycling compartment in Chinese hamster ovary (CHO) cells rather than being segregated to a specialized, GLUT4-recycling compartment. With the use of total internal reflection microscopy, we demonstrate that the TR and GLUT4 are transported from the pericentriolar recycling compartment in separate vesicles. These data provide the first functional evidence for the formation of distinct classes of vesicles from the recycling compartment. We propose that GLUT4 is dynamically retained within the endosomal recycling compartment in CHO cells because it is concentrated in vesicles that form more slowly than those that transport TR. In 3T3-L1 adipocytes, cells that naturally express GLUT4, we find that GLUT4 is partially segregated to a separate compartment that is inaccessible to the TR. We present a model for the formation of this specialized compartment in fat cells, based on the general mechanism described in CHO cells, which may explain the increased retention of GLUT4 and its insulin-induced translocation in fat cells.
Collapse
Affiliation(s)
- M A Lampson
- Program in Physiology, Biophysics, and Molecular Medicine, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
125
|
Wang E, Pennington JG, Goldenring JR, Hunziker W, Dunn KW. Brefeldin A rapidly disrupts plasma membrane polarity by blocking polar sorting in common endosomes of MDCK cells. J Cell Sci 2001; 114:3309-21. [PMID: 11591819 DOI: 10.1242/jcs.114.18.3309] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies showing thorough intermixing of apical and basolateral endosomes have demonstrated that endocytic sorting is critical to maintaining the plasma membrane polarity of epithelial cells. Our studies of living, polarized cells show that disrupting endocytosis with brefeldin-A rapidly destroys the polarity of transferrin receptors in MDCK cells while having no effect on tight junctions. Brefeldin-A treatment induces tubulation of endosomes, but the sequential compartments and transport steps of the transcytotic pathway remain intact. Transferrin is sorted from LDL, but is then missorted from common endosomes to the apical recycling endosome, as identified by its nearly neutral pH, and association with GFP chimeras of Rabs 11a and 25. From the apical recycling endosome, transferrin is then directed to the apical plasma membrane. These data are consistent with a model in which polarized sorting of basolateral membrane proteins occurs via a brefeldin-A-sensitive process of segregation into basolateral recycling vesicles. Although disruption of polar sorting correlates with dissociation of γ-adaptin from endosomes, γ-adaptin does not appear to be specifically involved in sorting into recycling vesicles, as we find it associated with the transcytotic pathway, and particularly to the post-sorting transcytotic apical recycling endosome.
Movies available on-line
Collapse
Affiliation(s)
- E Wang
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
126
|
Abstract
The hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, has been implicated in intracellular trafficking and signal transduction. Hrs contains a phosphatidylinositol 3-phosphate-binding FYVE domain that contributes to its endosomal targeting. Here we show that Hrs and EEA1, a FYVE domain protein involved in endocytic membrane fusion, are localized to different regions of early endosomes. We demonstrate that Hrs co-localizes with clathrin, and that the C-terminus of Hrs contains a functional clathrin box motif that interacts directly with the terminal beta-propeller domain of clathrin heavy chain. A massive recruitment of clathrin to early endosomes was observed in cells transfected with Hrs, but not with Hrs lacking the C-terminus. Furthermore, the phosphatidylinositol 3-kinase inhibitor wortmannin caused the dissociation of both Hrs and clathrin from endosomes. While overexpression of Hrs did not affect endocytosis and recycling of transferrin, endocytosed epidermal growth factor and dextran were retained in early endosomes. These results provide a molecular mechanism for the recruitment of clathrin onto early endosomes and suggest a function for Hrs in trafficking from early to late endosomes.
Collapse
Affiliation(s)
| | | | | | - Espen Stang
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo and
Institute of Pathology, The National Hospital, N-0027 Oslo, Norway Corresponding author e-mail:
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo and
Institute of Pathology, The National Hospital, N-0027 Oslo, Norway Corresponding author e-mail:
| |
Collapse
|
127
|
Bennett EM, Lin SX, Towler MC, Maxfield FR, Brodsky FM. Clathrin hub expression affects early endosome distribution with minimal impact on receptor sorting and recycling. Mol Biol Cell 2001; 12:2790-9. [PMID: 11553717 PMCID: PMC59713 DOI: 10.1091/mbc.12.9.2790] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin-coated vesicles execute receptor-mediated endocytosis at the plasma membrane. However, a role for clathrin in later endocytic trafficking processes, such as receptor sorting and recycling or maintaining the organization of the endocytic pathway, has not been thoroughly characterized. The existence of clathrin-coated buds on endosomes suggests that clathrin might mediate later endocytic trafficking events. To investigate the function of clathrin-coated buds on endosomal membranes, endosome function and distribution were analyzed in a HeLa cell line that expresses the dominant-negative clathrin inhibitor Hub in an inducible manner. As expected, Hub expression reduced receptor-mediated endocytosis at the plasma membrane. Hub expression also induced a perinuclear aggregation of early endosome antigen 1-positive early endosomes, such that sorting and recycling endosomes were found tightly concentrated in the perinuclear region. Despite the dramatic redistribution of endosomes, Hub expression did not affect the overall kinetics of receptor sorting or recycling. These data show that clathrin function is necessary to maintain proper cellular distribution of early endosomes but does not play a prominent role in sorting and recycling events. Thus, clathrin's role on endosomal membranes is to influence organelle localization and is distinct from its role in trafficking pathways at the plasma membrane and trans-Golgi network.
Collapse
Affiliation(s)
- E M Bennett
- Department of Microbiology and Immunology, The G. W. Hooper Foundation, University of California, San Francisco, CA 94143-0552, USA
| | | | | | | | | |
Collapse
|
128
|
Huang F, Nesterov A, Carter RE, Sorkin A. Trafficking of yellow-fluorescent-protein-tagged mu1 subunit of clathrin adaptor AP-1 complex in living cells. Traffic 2001; 2:345-57. [PMID: 11350630 DOI: 10.1034/j.1600-0854.2001.25020506.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Clathrin adaptor protein AP-1 complex is thought to function in forming clathrin-coated vesicles at the trans-Golgi network (TGN) and mediating transport of cargo between the TGN and endosomes. To study trafficking of AP-1 in living cells, yellow fluorescent protein (YFP) was inserted in the middle of mu1 A subunit of AP-1. When expressed in a tetracycline-dependent manner in HeLa cells, YFP-mu1 was efficiently incorporated into the AP-1 complex, replacing endogenous mu1 in most of cellular AP-1. Time-lapse imaging revealed that YFP-mu1/AP-1 departs from TGN as isolated vesicles and spherical structures, or varicosities, associated with fine tubular processes. Typically, several vesicles or varicosities were seen moving sequentially along the same 'tracks' from TGN to cell periphery. These data suggest that AP-1 may function after formation of Golgi transport intermediates in facilitating their intracellular movement. Mutagenesis of YFP-mu1 determined that the structural requirements for its binding to tyrosine-containing sequence motifs are similar to those previously defined in mu2 subunit of AP-2. Moreover, the carboxyl-terminal half of mu2 could replace the corresponding fragment of mu1 without loss of the ability of the resulting mu1-YFP-mu2 chimeric protein to incorporate into AP-1 and bind tyrosine-containing motifs. Mutations that abolish binding capacity for tyrosine motifs did not mistarget AP-1 in the cell, suggesting that AP-1 interactions with this type of sorting signals are not essential for membrane docking of AP-1 at the TGN. Altogether, this study demonstrates that YFP-tagged mu1 protein can serve as a useful tool for visualizing the dynamics of AP-1 in living cells and for the structure-function analysis of mu1-cargo interactions.
Collapse
Affiliation(s)
- F Huang
- Department of Pharmacology, University of Colorado Health Science Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
129
|
Dwyer ND, Adler CE, Crump JG, L'Etoile ND, Bargmann CI. Polarized dendritic transport and the AP-1 mu1 clathrin adaptor UNC-101 localize odorant receptors to olfactory cilia. Neuron 2001; 31:277-87. [PMID: 11502258 DOI: 10.1016/s0896-6273(01)00361-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Odorant receptors and signaling proteins are localized to sensory cilia on olfactory dendrites. Using a GFP-tagged odorant receptor protein, Caenorhabditis elegans ODR-10, we characterized protein sorting and transport in olfactory neurons in vivo. ODR-10 is transported in rapidly moving dendritic vesicles that shuttle between the cell body and the cilia. Anterograde and retrograde vesicles move at different speeds, suggesting that dendrites have polarized transport mechanisms. Residues immediately after the seventh membrane-spanning domain of ODR-10 are required for localization; these residues are conserved in many G protein-coupled receptors. UNC-101 encodes a mu1 subunit of the AP-1 clathrin adaptor complex. In unc-101 mutants, dendritic vesicles are absent, ODR-10 receptor is evenly distributed over the plasma membrane, and other cilia membrane proteins are also mislocalized, implicating AP-1 in protein sorting to olfactory cilia.
Collapse
Affiliation(s)
- N D Dwyer
- Howard Hughes Medical Institute, Programs in Developmental Biology, Neuroscience, and Genetics, Department of Anatomy, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
130
|
Zeuschner D, Stoorvogel W, Gerke V. Association of annexin 2 with recycling endosomes requires either calcium- or cholesterol-stabilized membrane domains. Eur J Cell Biol 2001; 80:499-507. [PMID: 11561901 DOI: 10.1078/0171-9335-00184] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Annexin 2 is a Ca2+- and phospholipid-binding protein previously identified on endosomal membranes and the plasma membrane. Inferred from this location and its stimulatory effect on membrane transport annexin 2 has been proposed to play a role in the structural organization and dynamics of endosomal membranes. Validation of this view requires a detailed analysis of the distribution of annexin 2 over the endosomal compartment and a characterization of the parameters governing this distribution. Towards this end we have devised an immunoisolation protocol to purify annexin 2-positive membrane vesicles from subcellular fractions of BHK cells containing early endosomes. We show that this approach leads to the isolation of intact endosomal vesicles containing internalized fluid-phase marker and that the immunoisolated membranes are positive for the transferrin receptor and Rab4 but not for the early endosomal antigen EEA1. A distinct and non-uniform distribution of annexin 2 over the early endosomal compartment is also observed in immunoelectron microscopy analyses of whole-mount specimens of BHK cells. Annexin 2 antibodies labeled transferrin receptor-containing tubular early endosomal structures, but not EEAl-positive endosomal vacuoles. We also observed that the Ca2+-independent association of annexin 2 with endosomal membranes was disrupted by the cholesterol-binding glycerid saponin, while Ca2+ could trigger annexin 2 binding to saponin-treated endosomal membranes. Thus, either Ca2+- or cholesterol-stabilized membrane domains are required for the binding of annexin 2 to endosomes suggesting that both factors may regulate this interaction.
Collapse
Affiliation(s)
- D Zeuschner
- Institute for Medical Biochemistry, ZMBE, University of Münster, Germany
| | | | | |
Collapse
|
131
|
Morgan GW, Allen CL, Jeffries TR, Hollinshead M, Field MC. Developmental and morphological regulation of clathrin-mediated endocytosis inTrypanosoma brucei. J Cell Sci 2001; 114:2605-15. [PMID: 11683388 DOI: 10.1242/jcs.114.14.2605] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Essentially all macromolecular communication between Trypanosoma brucei and its host is confined to vesicular trafficking events occurring at or around the flagellar pocket. The vertebrate stage bloodstream form trypomastigote exhibits an extremely high rate of endocytosis required for nutrient uptake and probably also evasion of the host immune system. However, the rate of endocytosis is very low in the procyclic vector parasite, indicating that endocytosis is subject to a marked level of developmental regulation. Previous ultrastructural studies and crude biochemical fractionations have indicated the presence of coated pits and vesicles that are analogous to clathrin coats in the bloodstream form, but not in the procyclic. However, a definitive description of the components of this coat and its molecular function in T. brucei has remained elusive. We describe the molecular cloning and initial characterisation of components of the T. brucei endocytic coats: clathrin heavy chain (TbCLH) and a β-adaptin (TbAPβ1). TbCLH is markedly upregulated in the bloodstream form compared with the procyclic, whereas TbAPβ1 is subject to more limited developmental regulation. We generated antisera against both proteins and show that the clathrin coat is tightly associated with the flagellar pocket in both major life stages. However, in bloodstream parasites TbCLH is also extensively distributed throughout the posterior end of the cell on numerous large vesicular and tubular structures. By cryoimmuno EM, clathrin is localised to collecting tubules at the flagellar pocket and is also associated with the trans-Golgi network. These EM data confirm that the electron dense coats reported on trypanosome vesicles and tubules contain clathrin. The TbAPβ1 exhibits an atypical distribution relative to previously characterised adaptins, associating not only with the trans-Golgi but also with other tubular-vesicular elements. Localisation of TbAPβ1 is also subject to developmental regulation. These data describe major endocytic coat proteins in T. brucei for the first time, and indicate stage-specific expression of the clathrin heavy chain. Modulation of clathrin expression is likely to be an important factor in the developmental regulation of endocytosis and recycling in the African trypanosome.
Collapse
Affiliation(s)
- G W Morgan
- Imperial College of Science, Technology and Medicine, Department of Biochemistry, London, UK
| | | | | | | | | |
Collapse
|
132
|
Gokay KE, Young RS, Wilson JM. Cytoplasmic signals mediate apical early endosomal targeting of endotubin in MDCK cells. Traffic 2001; 2:487-500. [PMID: 11422942 DOI: 10.1034/j.1600-0854.2001.20706.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endotubin is an integral membrane protein that targets into apical endosomes in polarized epithelial cells. Although the role of cytoplasmic targeting signals as mediators of basolateral targeting and endocytosis is well established, it has been suggested that apical targeting requires either N-glycosylation of the ectoplasmic domains or partitioning of macromolecules into glycolipid-rich rafts. However, we have previously shown that the cytoplasmic portion of endotubin possesses signals that are necessary for its proper sorting into the apical early endosomes. To further define the targeting signals involved in this apically directed event, as well as to determine if the cytoplasmic domain was sufficient to mediate apical endosomal targeting, we generated a panel of endotubin and Tac-antigen chimeras and expressed them in Madin-Darby canine kidney cells. We show that both the apically targeting wild-type endotubin and a basolaterally targeted cytoplasmic domain mutant do not associate with rafts and are TX-100 soluble. The cytoplasmic tail of endotubin is sufficient for apical endosomal targeting, as chimeras with the endotubin cytoplasmic domain and Tac transmembrane and extracellular domains are efficiently targeted to the apical endosomal compartment. Furthermore, we show that overexpression of these chimeras results in their missorting to the basolateral membrane, indicating that the apical sorting process is a saturable event. These results show that cells contain machinery in both the biosynthetic and endosomal compartments that recognize cytoplasmic apical sorting signals.
Collapse
Affiliation(s)
- K E Gokay
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
133
|
Abstract
The trans-Golgi network (TGN) is a major secretory pathway sorting station that directs newly synthesized proteins to different subcellular destinations. The TGN also receives extracellular materials and recycled molecules from endocytic compartments. In this review, we summarize recent progress on understanding TGN structure and the dynamics of trafficking to and from this compartment. Protein sorting into different transport vesicles requires specific interactions between sorting motifs on the cargo molecules and vesicle coat components that recognize these motifs. Current understanding of the various targeting signals and vesicle coat components that are involved in TGN sorting are discussed, as well as the molecules that participate in retrieval to this compartment in both yeast and mammalian cells. Besides proteins, lipids and lipid-modifying enzymes also participate actively in the formation of secretory vesicles. The possible mechanisms of action of these lipid hydrolases and lipid kinases are discussed. Finally, we summarize the fundamentally different apical and basolateral cell surface delivery mechanisms and the current facts and hypotheses on protein sorting from the TGN into the regulated secretory pathway in neuroendocrine cells.
Collapse
Affiliation(s)
- F. Gu
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - C.M. Crump
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| | - G. Thomas
- Vollum Institute, L-474, Oregon Health Science University, 3181 SW Sam Jackson Park Road, Portland (Oregon 97201, USA), Fax: +1 503 494 4534, e-mail: , , , , US
| |
Collapse
|
134
|
Puertollano R, Martínez-Menárguez JA, Batista A, Ballesta J, Alonso MA. An intact dilysine-like motif in the carboxyl terminus of MAL is required for normal apical transport of the influenza virus hemagglutinin cargo protein in epithelial Madin-Darby canine kidney cells. Mol Biol Cell 2001; 12:1869-83. [PMID: 11408592 PMCID: PMC37348 DOI: 10.1091/mbc.12.6.1869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2000] [Revised: 02/27/2001] [Accepted: 04/02/2001] [Indexed: 01/12/2023] Open
Abstract
The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine -3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.
Collapse
Affiliation(s)
- R Puertollano
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
135
|
Fraile-Ramos A, Kledal TN, Pelchen-Matthews A, Bowers K, Schwartz TW, Marsh M. The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 2001; 12:1737-49. [PMID: 11408581 PMCID: PMC37337 DOI: 10.1091/mbc.12.6.1737] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Genes encoding chemokine receptor-like proteins have been found in herpes and poxviruses and implicated in viral pathogenesis. Here we describe the cellular distribution and trafficking of a human cytomegalovirus (HCMV) chemokine receptor encoded by the US28 gene, after transient and stable expression in transfected HeLa and Cos cells. Immunofluorescence staining indicated that this viral protein accumulated intracellularly in vesicular structures in the perinuclear region of the cell and showed overlap with markers for endocytic organelles. By immunogold electron microscopy US28 was seen mostly to localize to multivesicular endosomes. A minor portion of the protein (at most 20%) was also expressed at the cell surface. Antibody-feeding experiments indicated that cell surface US28 undergoes constitutive ligand-independent endocytosis. Biochemical analysis with the use of iodinated ligands showed that US28 was rapidly internalized. The high-affinity ligand of US28, the CX(3)C-chemokine fractalkine, reduced the steady-state levels of US28 at the cell surface, apparently by inhibiting the recycling of internalized receptor. Endocytosis and cycling of HCMV US28 could play a role in the sequestration of host chemokines, thereby modulating antiviral immune responses. In addition, the distribution of US28 mainly on endosomal membranes may allow it to be incorporated into the viral envelope during HCMV assembly.
Collapse
Affiliation(s)
- A Fraile-Ramos
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
136
|
Wüstner D, Mukherjee S, Maxfield FR, Müller P, Herrmann A. Vesicular and nonvesicular transport of phosphatidylcholine in polarized HepG2 cells. Traffic 2001; 2:277-96. [PMID: 11285138 DOI: 10.1034/j.1600-0854.2001.9o135.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the transport and canalicular enrichment of fluorescent phosphatidylcholine (PC) in HepG2 cells using the fluorescent analogs of PC C6-NBD-PC and beta-BODIPY-PC. Fluorescent PC was efficiently transported to the biliary canaliculus (BC) and became enriched on the lumenal side of the canalicular membrane as shown for C6-NBD-PC. Some fluorescent PC was transported in vesicles to a subapical compartment (SAC) or apical recycling compartment (ARC) in polarized HepG2 cells as shown by colocalization with fluorescent sphingomyelin (C6-NBD-SM) and fluorescent transferrin, respectively. Extensive trafficking of vesicles containing fluorescent PC between the basolateral domain, the SAC/ARC and the BC as well as endocytosis of PC analogs from the canalicular membrane were found. Evidence for nonvesicular transport included enrichment of the PC-analog beta-BODIPY-PC in the BC (t1/2 = 3.54 min) prior to its accumulation in the SAC/ARC (t1/2 = 18.5 min) at 37 degrees C. Transport of fluorescent PC to the canalicular membrane also continued after disruption of the actin or microtubule cytoskeleton and at 2 degrees C. These results indicate that: (i) a nonvesicular transport pathway significantly contributes to the canalicular enrichment of PC in hepatocytic cells, and (ii) vesicular transport of fluorescent PC occurs from both membrane domains via the SAC/ARC.
Collapse
Affiliation(s)
- D Wüstner
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie/Biophysik, Invalidenstr. 43, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
137
|
Lim SN, Bonzelius F, Low SH, Wille H, Weimbs T, Herman GA. Identification of discrete classes of endosome-derived small vesicles as a major cellular pool for recycling membrane proteins. Mol Biol Cell 2001; 12:981-95. [PMID: 11294901 PMCID: PMC32281 DOI: 10.1091/mbc.12.4.981] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vesicles carrying recycling plasma membrane proteins from early endosomes have not yet been characterized. Using Chinese hamster ovary cells transfected with the facilitative glucose transporter, GLUT4, we identified two classes of discrete, yet similarly sized, small vesicles that are derived from early endosomes. We refer to these postendosomal vesicles as endocytic small vesicles or ESVs. One class of ESVs contains a sizable fraction of the pool of the transferrin receptor, and the other contains 40% of the total cellular pool of GLUT4 and is enriched in the insulin-responsive aminopeptidase (IRAP). The ESVs contain cellubrevin and Rab4 but are lacking other early endosomal markers, such as EEA1 or syntaxin13. The ATP-, temperature-, and cytosol-dependent formation of ESVs has been reconstituted in vitro from endosomal membranes. Guanosine 5'-[gamma-thio]triphosphate and neomycin, but not brefeldin A, inhibit budding of the ESVs in vitro. A monoclonal antibody recognizing the GLUT4 cytoplasmic tail perturbs the in vitro targeting of GLUT4 to the ESVs without interfering with the incorporation of IRAP or TfR. We suggest that cytosolic proteins mediate the incorporation of recycling membrane proteins into discrete populations of ESVs that serve as carrier vesicles to store and then transport the cargo from early endosomes, either directly or indirectly, to the cell surface.
Collapse
Affiliation(s)
- S N Lim
- Department of Pediatrics, Division of Gastroenterology and Nutrition, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
138
|
Maier O, Aït Slimane T, Hoekstra D. Membrane domains and polarized trafficking of sphingolipids. Semin Cell Dev Biol 2001; 12:149-61. [PMID: 11292381 DOI: 10.1006/scdb.2000.0232] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane, that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid--cholesterol enriched membrane microdomains, so called rafts. In addition changes in the direction of polarized sphingolipid transport appear instrumental in cell polarity development. Knowledge is therefore required of the mechanisms that mediate sphingolipid sorting and the complexity of the trafficking pathways that are involved in polarized transport of both sphingolipids and proteins. Here we summarize specific biophysical properties that underly mechanisms relevant to sphingolipid sorting, cargo recruitment and polarized trafficking, and discuss the central role of a subapical compartment, SAC or common endosome (CE), as a major intracellular site involved in polarized sorting of sphingolipids, and in development and maintenance of membrane polarity.
Collapse
Affiliation(s)
- O Maier
- Department of Membrane Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
139
|
Wyss S, Berlioz-Torrent C, Boge M, Blot G, Höning S, Benarous R, Thali M. The highly conserved C-terminal dileucine motif in the cytosolic domain of the human immunodeficiency virus type 1 envelope glycoprotein is critical for its association with the AP-1 clathrin adaptor [correction of adapter]. J Virol 2001; 75:2982-92. [PMID: 11222723 PMCID: PMC115924 DOI: 10.1128/jvi.75.6.2982-2992.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Short amino acid sequences in the cytosolic domains of transmembrane proteins are recognized by specialized adaptor [corrected] proteins which are part of coated vesicles utilized to transport membrane proteins between the trans-Golgi network (TGN) and the plasma membrane (forward and backward). Previously, we and others reported that the membrane-proximal tyrosine residues Y712 (human immunodeficiency virus [HIV]) and Y721 (simian immunodeficiency virus [SIV]) in the envelope glycoprotein (Env) of the primate lentiviruses are crucial for the association of Env with clathrin-associated adaptor [corrected] complex AP-2. The same tyrosine-based endocytosis motifs in the cytosolic domains (EnvCD) of transmembrane gp41 of HIV type 1 (HIV-1) and SIV, respectively, were also shown to modulate the interaction with TGN- and endosome-based clathrin-associated complex AP-1. Our findings suggested that EnvCD binding to AP-1, unlike the association of EnvCD with AP-2, is dependent largely on residues other than Y712 and Y721. Here, we tested if motifs downstream of Y712 affect HIV-1 EnvCD-AP-1 binding and Env trafficking. Mutational analysis revealed that the C-terminal leucine-based motif in Env was crucial for the recruitment of AP-1 in vitro and in Env-expressing cells. In addition to affecting Env-AP-1 association, mutations at the C terminus of Env also altered the subcellular localization of Env, suggesting that proper post-Golgi routing of Env depends on its recruitment of AP-1. Finally, the C-terminal dileucine was shown to assist the membrane-proximal Y712 motif in restricting the cell surface expression of Env.
Collapse
Affiliation(s)
- S Wyss
- Institute of Microbiology, University of Lausanne, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
140
|
Newmyer SL, Schmid SL. Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 2001; 152:607-20. [PMID: 11157986 PMCID: PMC2196005 DOI: 10.1083/jcb.152.3.607] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2000] [Accepted: 01/03/2001] [Indexed: 11/23/2022] Open
Abstract
Within the clathrin-coated vesicle (CCV) cycle, coat assembly drives the internalization of receptors from the cell surface and disassembly allows for the processing of internalized ligands. The heat shock cognate protein, hsc70, has been implicated in regulating coat disassembly. We find that in cells overexpressing ATPase-deficient hsc70 mutants, uncoating of CCVs is inhibited in vivo, and the majority of unassembled cytosolic clathrin shifts to an assembled pool that cofractionates with AP1 and AP2. Surprisingly, this assembled pool of coat proteins accumulates in the absence of cargo receptors, suggesting that disruption of hsc70 activity may cause misassembly of empty clathrin cages. The strongest effect of overexpression of hsc70 mutants is a block in transferrin receptor (TfnR) recycling, which cannot be accounted for by the degree of inhibition of uncoating of endocytic CCVs. These results suggest that hsc70 participates in multiple transport and/or sorting events between endosomal compartments. Additionally, the mutant-expressing cells are defective at internalizing transferrin. In the most potent case, the initial rate of uptake is inhibited 10-fold, and TfnR levels double at the cell surface. Our findings demonstrate that hsc70 indeed regulates coat disassembly and also suggest that this chaperone broadly modulates clathrin dynamics throughout the CCV cycle.
Collapse
Affiliation(s)
- Sherri L. Newmyer
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Sandra L. Schmid
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
141
|
Fölsch H, Pypaert M, Schu P, Mellman I. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol 2001; 152:595-606. [PMID: 11157985 PMCID: PMC2195989 DOI: 10.1083/jcb.152.3.595] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2000] [Accepted: 12/22/2000] [Indexed: 12/30/2022] Open
Abstract
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Marc Pypaert
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Peter Schu
- Center for Biochemistry and Molecular Cell Biology, Biochemistry Department II, University of Göttingen, D-37073 Göttingen, Germany
| | - Ira Mellman
- Department of Cell Biology and Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
142
|
de Chassey B, Dubois A, Lefkir Y, Letourneur F. Identification of clathrin-adaptor medium chains in Dictyostelium discoideum: differential expression during development. Gene 2001; 262:115-22. [PMID: 11179674 DOI: 10.1016/s0378-1119(00)00545-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clathrin-adaptor complexes (APs) are vesicle coat components that participate in cargo selectivity and transport vesicle formation. Here we cloned and characterized apm1, apm3 and apm4 cDNAs encoding AP medium chains (mu) in D. discoideum. Amino acid comparison suggested that predicted proteins were homologous to known mu1, mu3 and mu4 subunits of mammalian APs as they shared 69, 51, and 26% identity with mouse mu1A, human mu3A and human mu4, respectively. In all chains, amino acid residues predicted to interact with tyrosine based sorting signals were conserved. Southern blot analysis indicated only one copy of each gene in D. discoideum genome. Expression of apm1 and apm3 mRNAs stayed relatively constant during vegetative growth and throughout development. In contrast, apm4 was poorly expressed in amoebae but became well detectable by RT-PCR upon cell differentiation. This regulated expression of coat proteins enlightens the importance of intracellular membrane transport vesicles during development in D. discoideum and strengthens this attractive model organism for studying the function of coat complexes in vivo.
Collapse
Affiliation(s)
- B de Chassey
- Institut de Biologie et Chimie des Protéines, UMR5086, CNRS / Université Lyon I, 7, Passage du Vercors 69367, cedex 07, Lyon, France
| | | | | | | |
Collapse
|
143
|
Chapter 6 Trafficking of native and mutant mammalian MIP proteins. CURRENT TOPICS IN MEMBRANES 2001. [DOI: 10.1016/s1063-5823(01)51008-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
144
|
Erdtmann L, Janvier K, Raposo G, Craig HM, Benaroch P, Berlioz-Torrent C, Guatelli JC, Benarous R, Benichou S. Two independent regions of HIV-1 Nef are required for connection with the endocytic pathway through binding to the mu 1 chain of AP1 complex. Traffic 2000; 1:871-83. [PMID: 11208076 DOI: 10.1034/j.1600-0854.2000.011106.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Nef protein from the human immunodeficiency virus (HIV) induces down-regulation of the CD4 and major histocompatibility complex class I molecules from the cell surface by interfering with the endocytic machinery. This work focuses on the interaction of HIV-1 Nef with the mu 1 chain of adaptor protein type 1 (AP1) complex and its contribution to the Nef-induced alterations of membrane trafficking. Two independent regions surrounding a disordered loop located in the C-terminal part of Nef are involved in mu 1 binding. Each region can separately interact with mu 1, and simultaneous point mutations within both regions are needed to abolish binding. We used CD8 chimeras in which the cytoplasmic tail was replaced by Nef mutants to show that these mu 1-binding sites contain determinants required to induce CD4 down-regulation and to target the chimera to the endocytic pathway by promoting AP1 complex recruitment. Ultrastructural analysis revealed that the CD8-Nef chimera provokes morphological alterations of the endosomal compartments and co-localizes with AP1 complexes. These data indicate that the recruitment by Nef of AP1 via binding to mu 1 participates in the connection of Nef with the endocytic pathway.
Collapse
Affiliation(s)
- L Erdtmann
- INSERM U529, Institut Cochin de Génétique Moléculaire, Université Paris V, 24 Rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Laird V, Spiess M. A novel assay to demonstrate an intersection of the exocytic and endocytic pathways at early endosomes. Exp Cell Res 2000; 260:340-5. [PMID: 11035929 DOI: 10.1006/excr.2000.5006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mechanism of transport of membrane proteins from the trans-Golgi to the cell surface is still poorly understood. Previous studies suggested that basolateral membrane proteins, such as the transferrin receptor and the asialoglycoprotein receptor H1, take an indirect route to the plasma membrane via an intracellular, most likely endosomal intermediate. To define this compartment we developed a biochemical assay based on the very definition of endosomes. The assay is based on internalizing anti-H1 antibodies via the endocytic cycle of the receptor itself. Internalized antibody formed immune complexes with newly synthesized H1, which had been pulse-labeled with [(35)S]sulfate and chased out of the trans-Golgi for a period of time that was insufficient for H1 to reach the surface. Hence, antibody capture occurred intracellularly. Double-immunofluorescence labeling demonstrated that antibody-containing compartments also contained transferrin and thus corresponded to early and recycling endosomes. The results therefore demonstrate an intracellular intersection of the exocytic and endocytic pathways with implications for basolateral sorting.
Collapse
Affiliation(s)
- V Laird
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland
| | | |
Collapse
|
146
|
Abstract
Geometry-based mechanisms have been proposed to account for the sorting of membranes and fluid phase in the endocytic pathway, yet little is known about the involvement of the actin-myosin cytoskeleton. Here, we demonstrate that Dictyostelium discoideum myosin IB functions in the recycling of plasma membrane components from endosomes back to the cell surface. Cells lacking MyoB (myoA(-)/B(-), and myoB(-) cells) and wild-type cells treated with the myosin inhibitor butanedione monoxime accumulated a plasma membrane marker and biotinylated surface proteins on intracellular endocytic vacuoles. An assay based on reversible biotinylation of plasma membrane proteins demonstrated that recycling of membrane components is severely impaired in myoA/B null cells. In addition, MyoB was specifically found on magnetically purified early pinosomes. Using a rapid-freezing cryoelectron microscopy method, we observed an increased number of small vesicles tethered to relatively early endocytic vacuoles in myoA(-)/B(-) cells, but not to later endosomes and lysosomes. This accumulation of vesicles suggests that the defects in membrane recycling result from a disordered morphology of the sorting compartment.
Collapse
Affiliation(s)
- Eva M. Neuhaus
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| | - Thierry Soldati
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| |
Collapse
|
147
|
Okamoto CT, Duman JG, Tyagarajan K, McDonald KL, Jeng YY, McKinney J, Forte TM, Forte JG. Clathrin in gastric acid secretory (parietal) cells: biochemical characterization and subcellular localization. Am J Physiol Cell Physiol 2000; 279:C833-51. [PMID: 10942733 DOI: 10.1152/ajpcell.2000.279.3.c833] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Clathrin from H-K-ATPase-rich membranes derived from the tubulovesicular compartment of rabbit and hog gastric acid secretory (parietal) cells was characterized biochemically, and the subcellular localization of membrane-associated clathrin in parietal cells was characterized by immunofluorescence, electron microscopy, and immunoelectron microscopy. Clathrin from H-K- ATPase-rich membranes was determined to be comprised of conventional clathrin heavy chain and a predominance of clathrin light chain A. Clathrin and adaptors could be induced to polymerize quantitatively in vitro, forming 120-nm-diameter basketlike structures. In digitonin-permeabilized resting parietal cells, the intracellular distribution of immunofluorescently labeled clathrin was suggestive of labeling of the tubulovesicular compartment. Clathrin was also unexpectedly localized to canalicular (apical) membranes, as were alpha-adaptin and dynamin, suggesting that this membrane domain of resting parietal cells is endocytotically active. At the ultrastructural level, clathrin was immunolocalized to canalicular and tubulovesicular membranes. H-K-ATPase was immunolocalized to the same membrane domains as clathrin but did not appear to be enriched at the specific subdomains that were enriched in clathrin. Finally, in immunofluorescently labeled primary cultures of parietal cells, in contrast to the H-K-ATPase, intracellular clathrin was found not to translocate to the apical membrane on secretagogue stimulation. Taken together, these biochemical and morphological data provide a framework for characterizing the role of clathrin in the regulation of membrane trafficking from tubulovesicles and at the canalicular membrane in parietal cells.
Collapse
Affiliation(s)
- C T Okamoto
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles 90089-9121, USA. cokamoto@hsc.,usc.edu
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Wang E, Lee MD, Dunn KW. Lysosomal accumulation of drugs in drug-sensitive MES-SA but not multidrug-resistant MES-SA/Dx5 uterine sarcoma cells. J Cell Physiol 2000; 184:263-74. [PMID: 10867652 DOI: 10.1002/1097-4652(200008)184:2<263::aid-jcp15>3.0.co;2-f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sequestration of drugs in intracellular vesicles has been associated with multidrug-resistance (MDR), but it is not clear why vesicular drug accumulation, which depends upon intracellular pH gradients, should be associated with MDR. Using a human uterine sarcoma cell line (MES-SA) and a doxorubicin (DOX)-resistant variant cell line (Dx-5), which expresses p-glycoprotein (PGP), we have addressed the relationship between multidrug resistance, vesicular acidification, and vesicular drug accumulation. Consistent with a pH-dependent mechanism of vesicular drug accumulation, studies of living cells vitally labeled with multiple probes indicate that DOX and daunorubicin (DNR) predominately accumulate in lysosomes, whose lumenal pH was measured at < 4.5, but are not detected in endosomes, whose pH was measured at 5.9. However, vesicular DOX accumulation is more pronounced in the drug-sensitive MES-SA cells and minimal in Dx5 cells even when cellular levels of DOX are increased by verapamil treatment. While lysosomal accumulation of DOX correlated well with pharmacologically induced differences in lysosome pH in MES-SA cells, lysosomal accumulation was minimal in Dx5 cells regardless of lysosomal pH. We found no differences in the pH of either endosomes or lysosomes between MES-SA and Dx5 cells, suggesting that, in contrast to other MDR cell systems, the drug-resistant Dx5 cells are refractory to pH-dependent vesicular drug accumulation. These studies demonstrate that altered endomembrane pH regulation is not a necessary consequence of cell transformation, and that vesicular sequestration of drugs is not a necessary characteristic of MDR.
Collapse
Affiliation(s)
- E Wang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202-5116, USA
| | | | | |
Collapse
|
149
|
Bowers K, Pelchen-Matthews A, Höning S, Vance PJ, Creary L, Haggarty BS, Romano J, Ballensiefen W, Hoxie JA, Marsh M. The simian immunodeficiency virus envelope glycoprotein contains multiple signals that regulate its cell surface expression and endocytosis. Traffic 2000; 1:661-74. [PMID: 11208154 DOI: 10.1034/j.1600-0854.2000.010810.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cell surface expression of the envelope glycoproteins (Envs) of primate immunodeficiency viruses is, at least in part, regulated by endocytosis signal(s) located in the Env cytoplasmic domain. Here, we show that a membrane proximal signal that directs the simian immunodeficiency virus (SIV) Env to clathrin-coated pits, and is conserved in all SIV and human immunodeficiency virus Envs, conforms to a YxxØ motif (where x can be any amino acid and Ø represents a large hydrophobic residue). This motif is similar to that described for a number of cellular membrane proteins. By surface plasmon resonance we detected a high affinity interaction between peptides containing this membrane proximal signal and both AP1 and AP2 clathrin adaptor complexes. Mutation of the tyrosine in this membrane proximal motif in a SIV Env with a prematurely truncated cytoplasmic domain leads to a > or = 25-fold increase in Env expression on infected cells. By contrast, the same mutation in an Env with a full-length cytoplasmic domain increases cell surface expression only 4-fold. We show that this effect results from the presence of additional endocytosis signals in the full-length cytoplasmic domain. Chimeras containing CD4 ecto- and membrane spanning domains and a full-length SIV Env cytoplasmic domain showed rapid endocytosis even when the membrane proximal tyrosine-based signal was disrupted. Mapping experiments indicated that at least some of the additional endocytosis information is located between residues 743 and 812 of Env from the SIVmac239 molecular clone. Together, our findings indicate that the cytoplasmic domain of SIV Env contains multiple endocytosis and/or trafficking signals that modulate its surface expression on infected cells, and suggest an important role for this function in pathogenesis.
Collapse
Affiliation(s)
- K Bowers
- Medical Research Council Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Martin S, Ramm G, Lyttle CT, Meerloo T, Stoorvogel W, James DE. Biogenesis of insulin-responsive GLUT4 vesicles is independent of brefeldin A-sensitive trafficking. Traffic 2000; 1:652-60. [PMID: 11208153 DOI: 10.1034/j.1600-0854.2000.010809.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulin stimulates translocation of GLUT4 from an intracellular compartment to the plasma membrane in adipocytes. As a significant amount of GLUT4 is localised to the TGN, independently of the biosynthetic pathway, one possibility is that trafficking via the TGN is important in either intracellular sequestration or insulin-dependent movement to the cell surface. In this study we have used immuno-electron microscopy to show that GLUT4 is localised to AP-1 vesicles in the TGN region in 3T3-L1 adipocytes. To dissect the role of this trafficking pathway we used brefeldin A (BFA) to disrupt AP-1 association with membranes. Despite a reorganisation of GLUT4 compartments following BFA treatment, the intracellular sequestration of GLUT4, and its insulin-dependent movement to the cell surface, was unaffected. BFA increased the half time of reversal of insulin-stimulated glucose transport from 17 to 30 min but did not prevent complete reversal. Furthermore, following reversal restimulation of glucose transport activity by insulin was not compromised. We conclude that under basal conditions GLUT4 cycles between the TGN and endosomes via the AP-1 pathway. However, neither this pathway, nor any other BFA-sensitive pathway, appears to play a major role in insulin-dependent recruitment of GLUT4 to the cell surface.
Collapse
Affiliation(s)
- S Martin
- Centre for Molecular and Cellular Biology and Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | |
Collapse
|