101
|
Rajasekaran D, Zierow S, Syed M, Bucala R, Bhandari V, Lolis EJ. Targeting distinct tautomerase sites of D-DT and MIF with a single molecule for inhibition of neutrophil lung recruitment. FASEB J 2014; 28:4961-71. [PMID: 25016026 DOI: 10.1096/fj.14-256636] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report a new inflammatory activity for extracellular d-dopachrome tautomerase (D-DT), the recruitment of neutrophils to the lung on D-DT intratracheal installation of C57BL/6J mice with an EC50 of 5.6 μg. We also find that D-DT and macrophage migration inhibitory factor (MIF) have additive effects in neutrophil recruitment. Although the tautomerase site of D-DT and its homologue MIF are biophysically very different, 4-iodo-6-phenylpyrimidine (4-IPP) forms a covalent bond with Pro-1 of both proteins, resulting in a 6-phenylpyrimidine (6-PP) adduct. Recruitment of neutrophils to the lung for the 6-PP adducts of D-DT and MIF are reduced by ∼ 50% relative to the apo proteins, demonstrating that an unmodified Pro-1 is important for this activity, but there is no cooperativity in inhibition of the proteins together. The differences in the binding mode of the 6-PP adduct for D-DT was determined by crystallographic studies at 1.13 Å resolution and compared to the structure of the MIF-6-PP complex. There are major differences in the location of the 6-PP adduct to the D-DT and MIF active sites that provide insight into the lack of cooperativity by 4-IPP and into tuning the properties of the covalent inhibitors of D-DT and MIF that are necessary for the development of therapeutic small molecules against neutrophil damage from lung infections such as Pseudomonas aeruginosa in cystic fibrosis and immunocompromised patients.
Collapse
Affiliation(s)
| | | | | | - Richard Bucala
- Department of Internal Medicine, and Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| | | | - Elias J Lolis
- Department of Pharmacology, Yale Cancer Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
102
|
Das R, LaRose MI, Hergott CB, Leng L, Bucala R, Weiser JN. Macrophage migration inhibitory factor promotes clearance of pneumococcal colonization. THE JOURNAL OF IMMUNOLOGY 2014; 193:764-72. [PMID: 24928996 DOI: 10.4049/jimmunol.1400133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human genetic polymorphisms associated with decreased expression of macrophage migration inhibitory factor (MIF) have been linked to the risk of community-acquired pneumonia. Because Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and nasal carriage is a precursor to invasive disease, we explored the role of MIF in the clearance of pneumococcal colonization in a mouse model. MIF-deficient mice (Mif(-/-)) showed prolonged colonization with both avirulent (23F) and virulent (6A) pneumococcal serotypes compared with wild-type animals. Pneumococcal carriage led to both local upregulation of MIF expression and systemic increase of the cytokine. Delayed clearance in the Mif(-/-) mice was correlated with reduced numbers of macrophages in upper respiratory tract lavages as well as impaired upregulation of MCP-1/CCL2. We found that primary human monocyte-derived macrophages as well as THP-1 macrophages produced MIF upon pneumococcal infection in a pneumolysin-dependent manner. Pneumolysin-induced MIF production required its pore-forming activity and phosphorylation of p38-MAPK in macrophages, with sustained p38-MAPK phosphorylation abrogated in the setting of MIF deficiency. Challenge with pneumolysin-deficient bacteria demonstrated reduced MIF upregulation, decreased numbers of macrophages in the nasopharynx, and less effective clearance. Mif(-/-) mice also showed reduced Ab response to pneumococcal colonization and impaired ability to clear secondary carriage. Finally, local administration of MIF was able to restore bacterial clearance and macrophage accumulation in Mif(-/-) mice. Our work suggests that MIF is important for innate and adaptive immunity to pneumococcal colonization and could be a contributing factor in genetic differences in pneumococcal disease susceptibility.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Meredith I LaRose
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Christopher B Hergott
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Lin Leng
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510
| | - Jeffrey N Weiser
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| |
Collapse
|
103
|
Sauler M, Leng L, Trentalange M, Haslip M, Shan P, Piecychna M, Zhang Y, Andrews N, Mannam P, Allore H, Fried T, Bucala R, Lee PJ. Macrophage migration inhibitory factor deficiency in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2014; 306:L487-96. [PMID: 24441872 PMCID: PMC3949087 DOI: 10.1152/ajplung.00284.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/15/2014] [Indexed: 01/28/2023] Open
Abstract
The pathogenesis of chronic obstructive pulmonary disease (COPD) remains poorly understood. Cellular senescence and apoptosis contribute to the development of COPD; however, crucial regulators of these underlying mechanisms remain unknown. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that antagonizes both apoptosis and premature senescence and may be important in the pathogenesis of COPD. This study examines the role of MIF in the pathogenesis of COPD. Mice deficient in MIF (Mif(-/-)) or the MIF receptor CD74 (Cd74(-/-)) and wild-type (WT) controls were aged for 6 mo. Both Mif(-/-) and Cd74(-/-) mice developed spontaneous emphysema by 6 mo of age compared with WT mice as measured by lung volume and chord length. This was associated with activation of the senescent pathway markers p53/21 and p16. Following exposure to cigarette smoke, Mif(-/-) mice were more susceptible to the development of COPD and apoptosis compared with WT mice. MIF plasma concentrations were measured in a cohort of 224 human participants. Within a subgroup of older current and former smokers (n = 72), MIF concentrations were significantly lower in those with COPD [8.8, 95%CI (6.7-11.0)] compared with those who did not exhibit COPD [12.7 ng/ml, 95%CI (10.6-14.8)]. Our results suggest that both MIF and the MIF receptor CD74 are required for maintenance of normal alveolar structure in mice and that decreases in MIF are associated with COPD in human subjects.
Collapse
Affiliation(s)
- Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale Univ. School of Medicine, PO Box 208057, 300 Cedar St., New Haven, CT 06520-8057.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Conine SJ, Cross JV. MIF deficiency does not alter glucose homeostasis or adipose tissue inflammatory cell infiltrates during diet-induced obesity. Obesity (Silver Spring) 2014; 22:418-25. [PMID: 23804488 PMCID: PMC3809343 DOI: 10.1002/oby.20555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Circulating macrophage migration inhibitory factor (MIF) levels have been shown to positively correlate with body mass index (BMI) in humans. Our objective in this study was to determine the effects of MIF deficiency in a model of high-fat diet-induced obesity. DESIGN AND METHODS MIF wild type (MIF WT) and MIF deficient (MIF(-/-)) C57Bl/6J mice were fed a high-fat diet (HFD) for up to 15 weeks. Weight and metabolic responses were measured over the course of the disease. Immune cell infiltrates in visceral and subcutaneous adipose tissue were examined by flow cytometry. RESULTS There was no difference in weight gain or adipose tissue mass in MIF(-/-) mice compared to MIF WT mice. Both groups fed HFD developed glucose intolerance at the same rate and had similar elevations in fasted blood insulin. MDSC abundance was evaluated and showed no MIF-dependent differences. Macrophages were elevated in the visceral adipose tissue of obese mice, but there was no difference between the two groups. CONCLUSIONS While HFD feeding induced obesity with the expected perturbations in glucose homeostasis and adipose tissue inflammation, the presence or absence of MIF had no effect on any parameter examined.
Collapse
|
105
|
Sánchez-Zamora YI, Rodriguez-Sosa M. The role of MIF in type 1 and type 2 diabetes mellitus. J Diabetes Res 2014; 2014:804519. [PMID: 24527464 PMCID: PMC3910331 DOI: 10.1155/2014/804519] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/11/2013] [Indexed: 11/17/2022] Open
Abstract
Autoimmunity and chronic low-grade inflammation are hallmarks of diabetes mellitus type one (T1DM) and type two (T2DM), respectively. Both processes are orchestrated by inflammatory cytokines, including the macrophage migration inhibitory factor (MIF). To date, MIF has been implicated in both types of diabetes; therefore, understanding the role of MIF could affect our understanding of the autoimmune or inflammatory responses that influence diabetic pathology. This review highlights our current knowledge about the involvement of MIF in both types of diabetes in the clinical environment and in experimental disease models.
Collapse
Affiliation(s)
- Yuriko I. Sánchez-Zamora
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios No. 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios No. 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
- *Miriam Rodriguez-Sosa:
| |
Collapse
|
106
|
Farahtaj F, Zandi F, Khalaj V, Biglari P, Fayaz A, Vaziri B. Proteomics analysis of human brain tissue infected by street rabies virus. Mol Biol Rep 2013; 40:6443-50. [PMID: 24057270 DOI: 10.1007/s11033-013-2759-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 09/14/2013] [Indexed: 12/30/2022]
Abstract
In order to extend the knowledge of rabies pathogenesis, a two-dimensional electrophoresis/mass spectrometry based postmortem comparative proteomics analysis was carried out on human brain samples. Alteration in expression profile of several proteins was detected. Proteins related to cytoskeleton, metabolism, proteasome and immune regulatory systems showed the most changes in expression levels. Among these groups, the cytoskeleton related proteins (dynein light chain, β-centractin, tubulin alpha-1C chain and destrin) and metabolism associated proteins (fatty acid-binding protein, macrophage migration inhibitory factor, glutamine synthetase and alpha enolase) were the main altered proteins. These alterations may be considered as an evidence of disturbances in neuronal key processes including axonal transport, synaptic activity, signaling and metabolic pathways in rabies virus infected human brain.
Collapse
Affiliation(s)
- Firouzeh Farahtaj
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
107
|
Oh M, Kasthuri SR, Wan Q, Bathige SDNK, Whang I, Lim BS, Jung HB, Oh MJ, Jung SJ, Kim SY, Lee J. Characterization of MIF family proteins: MIF and DDT from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:458-468. [PMID: 23688964 DOI: 10.1016/j.fsi.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/05/2013] [Accepted: 05/05/2013] [Indexed: 06/02/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic molecule playing vital roles in various signaling cascades, including cell proliferation, and activation of immune responses against infections. It is well known as a pivotal regulator of innate immunity. In this study, we have rescued and characterized two members of the MIF family, macrophage migration inhibitory factor (OfMIF) and D-Dopachrome tautomerase (OfDDT) from rock bream, Oplegnathus fasciatus. The deduced OfMIF and OfDDT protein sequences revealed the presence of the catalytic oxidoreductase (CXXC), motif. They also possessed highly conserved proline (P(2)) and lysine residues (K(33)), responsible for their isomerase and tautomerase functions. Rock bream MIF and DDT homologues shared higher identity with fish homologues and also with mammals and occupied a distinct position in the phylogenetic tree, depicting their evolutionary conservation. The spatial expression analysis revealed the highest expression of both OfMIF and OfDDT in liver, while portraying constitutive expression in other tissues. The recombinant proteins purified using the Escherichia coli system revealed potent oxidoreductase activity against insulin with both dithiothreitol and glutathione as reducing agents. Stimulation of rock bream head kidney cells with recombinant OfMIF and OfDDT proteins induced the expression of proinflammatory cytokines like tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8) and interleukin-1β (IL-1β). These results together suggest their involvement in rock bream immune defense and this study on the novel MIF family member DDT from rock bream will pave the way for further studies of this homologue in other teleosts and delineate its multiple functions.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013; 110:E2997-3006. [PMID: 23882081 DOI: 10.1073/pnas.1301128110] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF), an innate cytokine encoded in a functionally polymorphic genetic locus, contributes to detrimental inflammation but may be crucial for controlling infection. We explored the role of variant MIF alleles in tuberculosis. In a Ugandan cohort, genetic low expressers of MIF were 2.4-times more frequently identified among patients with Mycobacterium tuberculosis (TB) bacteremia than those without. We also found mycobacteria-stimulated transcription of MIF and serum MIF levels to be correlated with MIF genotype in human macrophages and in a separate cohort of US TB patients, respectively. To determine mechanisms for MIF's protective role, we studied both aerosolized and i.v. models of mycobacterial infection and observed MIF-deficient mice to succumb more quickly with higher organism burden, increased lung pathology, and decreased innate cytokine production (TNF-α, IL-12, IL-10). MIF-deficient animals showed increased pulmonary neutrophil accumulation but preserved adaptive immune response. MIF-deficient macrophages demonstrated decreased cytokine and reactive oxygen production and impaired mycobacterial killing. Transcriptional investigation of MIF-deficient macrophages revealed reduced expression of the pattern recognition receptor dectin-1; restoration of dectin-1 expression recovered innate cytokine production and mycobacterial killing. Our data place MIF in a crucial upstream position in the innate immune response to mycobacteria and suggest that commonly occurring low expression MIF alleles confer an increased risk of TB disease in some populations.
Collapse
|
109
|
Kumar V, Sharma A. Innate Immunity in Sepsis Pathogenesis and Its Modulation: New Immunomodulatory Targets Revealed. J Chemother 2013; 20:672-83. [DOI: 10.1179/joc.2008.20.6.672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
110
|
Cox GM, Kithcart AP, Pitt D, Guan Z, Alexander J, Williams JL, Shawler T, Dagia NM, Popovich PG, Satoskar AR, Whitacre CC. Macrophage Migration Inhibitory Factor Potentiates Autoimmune-Mediated Neuroinflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1043-54. [DOI: 10.4049/jimmunol.1200485] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
111
|
Help for the miffed heart. Crit Care Med 2013; 41:1829-30. [PMID: 23774356 DOI: 10.1097/ccm.0b013e31828c252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
112
|
Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm 2013; 2013:165974. [PMID: 23853427 PMCID: PMC3703895 DOI: 10.1155/2013/165974] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Sepsis and septic shock are among the leading causes of death in intensive care units worldwide. Numerous studies on their pathophysiology have revealed an imbalance in the inflammatory network leading to tissue damage, organ failure, and ultimately, death. Cytokines are important pleiotropic regulators of the immune response, which have a crucial role in the complex pathophysiology underlying sepsis. They have both pro- and anti-inflammatory functions and are capable of coordinating effective defense mechanisms against invading pathogens. On the other hand, cytokines may dysregulate the immune response and promote tissue-damaging inflammation. In this review, we address the current knowledge of the actions of pro- and anti-inflammatory cytokines in sepsis pathophysiology as well as how these cytokines and other important immunomodulating agents may be therapeutically targeted to improve the clinical outcome of sepsis.
Collapse
Affiliation(s)
- Wibke Schulte
- Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center, S525, P.O. Box 208031, 300 Cedar Street, New Haven, CT 06520-8031, USA
- Institute of Biochemistry and Molecular Cell Biology, University Hospital of RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, University Hospital of RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center, S525, P.O. Box 208031, 300 Cedar Street, New Haven, CT 06520-8031, USA
| |
Collapse
|
113
|
Wendt M, Börjesson O, Avik A, Bratt J, Anderstam B, Qureshi AR, Miller EJ, Gunnarsson I, Bruchfeld A. Macrophage migration inhibitory factor (MIF) and thyroid hormone alterations in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). Mol Med 2013; 19:109-14. [PMID: 23552723 PMCID: PMC3667215 DOI: 10.2119/molmed.2012.00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/26/2013] [Indexed: 01/21/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine known to be released from lymphocytes, macrophages and endothelial cells and also in animal models shown to be inducible with glucocorticoids (GC). In contrast, thyroxine seems to antagonize MIF activity. To investigate whether MIF is increased in active antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and possible correlations with GC dosing and thyroid hormone levels, 27 consecutive patients with active AAV were studied and followed prospectively. Disease activity was assessed using Birmingham Vasculitis Activity Score 2003 (BVAS) at baseline and at follow-up at 3 and 6 months, along with MIF, thyroid hormones free triiodothyronine (fT3) and free thyroxine (fT4), C-reactive protein (CRP) and creatinine. MIF was elevated significantly at baseline compared with follow-up at 3 and 6 months (8,618 pg/mL versus 5,696 and 6,212 respectively; P < 0.002) but did not correlate to CRP, GC dose, creatinine or organ involvement. fT3 was depressed significantly at baseline compared with follow-up (1.99 pg/mL versus 2.31 and 2.67 respectively; P = 0.01) and correlated inversely to the BVAS score at baseline. We found a significant correlation between the MIF/fT4 ratio at baseline versus MIF/fT4 ratio at 6 months (ρ = 0.52, P < 0.005) and a trend between the baseline MIF/fT3 ratio versus MIF/fT3 ratio at 6 months (ρ = 0.39, P = 0.05). These results suggest a possible role for MIF and thyroid status in AAV. Further studies could reveal whether the association between AAV and thyroid hormone levels in the context of elevated MIF may present a link as well as a target of treatment.
Collapse
Affiliation(s)
- Mårten Wendt
- Department of Renal Medicine, Karolinska University Hospital, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Hussain F, Freissmuth M, Völkel D, Thiele M, Douillard P, Antoine G, Thurner P, Ehrlich H, Schwarz HP, Scheiflinger F, Kerschbaumer RJ. Human anti-macrophage migration inhibitory factor antibodies inhibit growth of human prostate cancer cells in vitro and in vivo. Mol Cancer Ther 2013; 12:1223-34. [PMID: 23619302 DOI: 10.1158/1535-7163.mct-12-0988] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine, originally discovered for its eponymous effect and now known for pleiotropic biologic properties in immunology and oncology. Circulating MIF levels are elevated in several types of human cancer including prostate cancer. MIF is released presumably by both stromal and tumor cells and enhances malignant growth and metastasis by diverse mechanisms, such as stimulating tumor cell proliferation, suppressing apoptotic death, facilitating invasion of the extracellular matrix, and promoting angiogenesis. Recently described fully human anti-MIF antibodies were tested in vitro and in vivo for their ability to influence growth rate and invasion of the human PC3 prostate cancer cell line. In vitro, the selected candidate antibodies BaxG03, BaxB01, and BaxM159 reduced cell growth and viability by inhibiting MIF-induced phosphorylation of the central kinases p44/42 mitogen-activated protein kinase [extracellular signal-regulated kinase-1 and -2 (ERK1/2)] and protein kinase B (AKT). Incubation of cells in the presence of the antibodies also promoted activation of caspase-3/7. The antibodies furthermore inhibited MIF-promoted invasion and chemotaxis as transmigration through Matrigel along a MIF gradient was impaired. In vivo, pharmacokinetic parameters (half-life, volume of distribution, and bioavailability) of the antibodies were determined and a proof-of-concept was obtained in a PC3-xenograft mouse model. Treatment with human anti-MIF antibodies blunted xenograft tumor growth in a dose-dependent manner. We therefore conclude that the anti-MIF antibodies described neutralize some of the key tumor-promoting activities of MIF and thus limit tumor growth in vivo.
Collapse
Affiliation(s)
- Filza Hussain
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University Vienna, Währinger Str. 13a, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Benedek G, Meza-Romero R, Andrew S, Leng L, Burrows GG, Bourdette D, Offner H, Bucala R, Vandenbark AA. Partial MHC class II constructs inhibit MIF/CD74 binding and downstream effects. Eur J Immunol 2013; 43:1309-21. [PMID: 23576302 DOI: 10.1002/eji.201243162] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/14/2013] [Accepted: 02/20/2013] [Indexed: 01/13/2023]
Abstract
MIF and its receptor, CD74, are pivotal regulators of the immune system. Here, we demonstrate for the first time that partial MHC class II constructs comprised of linked β1α1 domains with covalently attached antigenic peptides (also referred to as recombinant T-cell receptor ligands - RTLs) can inhibit MIF activity by not only blocking the binding of rhMIF to immunopurified CD74, but also downregulating CD74 cell-surface expression. This bifunctional inhibition of MIF/CD74 interactions blocked downstream MIF effects, including enhanced secretion of proinflammatory cytokines, anti-apoptotic activity, and inhibition of random migration that all contribute to the reversal of clinical and histological signs of EAE. Moreover, we demonstrate that enhanced CD74 cell-surface expression on monocytes in mice with EAE and subjects with multiple sclerosis can be downregulated by humanized RTLs, resulting in reduced MIF binding to the cells. Thus, binding of partial MHC complexes to CD74 blocks both the accessibility and availability of CD74 for MIF binding and downstream inflammatory activity.
Collapse
Affiliation(s)
- Gil Benedek
- Department of Veterans Affairs Medical Center, Neuroimmunology Research, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Nahar A, Maki S, Kadokawa H. Suppressed expression of granulocyte macrophage colony-stimulating factor in oviduct ampullae of obese cows. Anim Reprod Sci 2013; 139:1-8. [PMID: 23611472 DOI: 10.1016/j.anireprosci.2013.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/21/2013] [Accepted: 03/27/2013] [Indexed: 01/05/2023]
Abstract
Obese heifers have been found to produce fewer excellent-grade embryos than lean and normal heifers due to unknown mechanisms. Oviducts synthesize granulocyte macrophage colony-stimulating factor (GMCSF) to promote embryogenesis, and GMCSF expression may be down-regulated in the oviducts of obese cows. The present study evaluated the relationship between the degree of obesity and GMCSF expression in the ampullary or isthmic section of oviducts in lean [n=5; body condition score (BCS) on a 5-point scale, 2.5], normal (n=6; BCS, 3.0), and obese (n=5; BCS, 4.0) Japanese Black cows. GMCSF mRNA and protein expression in the ampulla, measured by real-time PCR and western blotting, respectively, were less (P<0.05) in the obese group than in the normal group. mRNA and GMCSF protein did not differ significantly in the isthmus among the three groups. The obese group had less GMCSF immuno-reactivity in the tunica mucosa, the primary site of GMCSF gene expression, of the ampulla than the normal and lean groups. In conclusion, unlike normal and lean cows, obese cows had suppressed GMCSF gene expression in the ampulla.
Collapse
Affiliation(s)
- Asrafun Nahar
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | | | | |
Collapse
|
117
|
Nalbantoglu S, Tabel Y, Mir S, Berdeli A. Lack of association between macrophage migration inhibitory factor gene promoter (-173 G/C) polymorphism and childhood Henoch-Schönlein purpura in Turkish patients. Cytokine 2013; 62:160-4. [PMID: 23523092 DOI: 10.1016/j.cyto.2013.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 01/31/2013] [Accepted: 02/21/2013] [Indexed: 11/26/2022]
Abstract
Henoch-Schönlein purpura (HSP) is a small-vessel vasculitis of autoimmune hypersensitivity with rash, arthritis, abdominal pain and renal involvements. Macrophage migration inhibitory factor (MIF) is a immunoregulatory proinflammatory cytokine, and a major mediator at the inflammatory sites. The pathogenesis of HSP has not been fully elucidated. Here we aimed to assess the influence of macrophage migration inhibitory factor gene (-173 G/C) polymorphism in the susceptibility and clinical expression of patients with Henoch-Schönlein purpura (HSP). HSP patients (n:139) and ethnically matched healthy controls (n:100) were genotyped by PCR-RFLP. Genotype analysis of both polymorphisms did not reveal a significant deviation from Hardy-Weinberg equilibrium in any group (p > 0.05). No significant difference was obtained in genotype distribution (p > 0.05) and allele frequencies (p > 0.05) between patients and controls. A statistically significant genotype-phenotype correlation was not obtained when HSP patients were stratified by the presence of certain systemic complications and the macrophage migration inhibitory factor gene (-173 G/C) polymorphism (p > 0.05). A significant risk was not observed in the subjects both with the GC+CC genotype (p = 0.06, OR: 0.5538, 95% CI: 0.2985-1.0274) and C allele (odds ratio: C vs. G: 1.799, 95% CI: 1.002-3.23, p = 0.05). Our findings suggest that MIF gene -173 G/C polymorphism is not associated with HSP in the present Turkish population.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- Ege University, School of Medicine, Children's Hospital, Molecular Medicine Laboratory, Bornova, Izmir, Turkey.
| | | | | | | |
Collapse
|
118
|
Llamas-Covarrubias MA, Valle Y, Bucala R, Navarro-Hernández RE, Palafox-Sánchez CA, Padilla-Gutiérrez JR, Parra-Rojas I, Bernard-Medina AG, Reyes-Castillo Z, Muñoz-Valle JF. Macrophage migration inhibitory factor (MIF): genetic evidence for participation in early onset and early stage rheumatoid arthritis. Cytokine 2013; 61:759-65. [PMID: 23402792 DOI: 10.1016/j.cyto.2012.12.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 12/08/2012] [Accepted: 12/22/2012] [Indexed: 01/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream pro-inflammatory cytokine that is associated with the pathogenesis of autoimmune inflammatory diseases including rheumatoid arthritis (RA). Two polymorphisms in the upstream region exist in the MIF gene and are associated with RA susceptibility or severity in different populations. In this case-control study, we investigated whether MIF polymorphisms are associated with RA susceptibility or activity in a western Mexican population .The relationship of MIF levels with clinical features of disease also was assessed. Genotyping of the -794 CATT5-8 (rs5844572) and the -173 G>C (rs755622) polymorphisms was performed by PCR and PCR-RFLP respectively on 226 RA patients and 210 healthy subjects. Serum MIF levels were determined by ELISA. We found a significant association between the -794 CATT5-8 6,7 MIF genotype with RA. Moreover, we detected an association between the -794 CATT7 allele with early onset RA. The -794 CATT7 and -173(*)C alleles, which are in linkage disequilibrium, were associated with high disease activity on RA patients. A positive correlation between circulating MIF levels and C-reactive protein, erythrocyte sedimentation rate, rheumatoid factor, anti-citrullinated protein/peptides antibodies and TNFα was detected. MIF levels appear to be associated with disease progression rather than disease activity, which is distinct from the established relationship between disease activity and TNFα levels. In conclusion, the MIF gene and protein are associated with RA in a western Mexican population, with a main contribution onto early onset and early stages of disease.
Collapse
Affiliation(s)
- M A Llamas-Covarrubias
- Functional Immunogenetics Group and PhD Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Bank LM, Bianchi LM, Ebisu F, Lerman-Sinkoff D, Smiley EC, Shen YC, Ramamurthy P, Thompson DL, Roth TM, Beck CR, Flynn M, Teller RS, Feng L, Llewellyn GN, Holmes B, Sharples C, Coutinho-Budd J, Linn SA, Chervenak AP, Dolan DF, Benson J, Kanicki A, Martin CA, Altschuler R, Koch AE, Koch AE, Jewett EM, Germiller JA, Barald KF. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear. Development 2013; 139:4666-74. [PMID: 23172918 DOI: 10.1242/dev.066647] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.
Collapse
Affiliation(s)
- Lisa M Bank
- Department of Cell and Developmental Biology, University of Michigan Medical School, 3728 BSRB 109, Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Yukitake H, Kimura H, Tajima Y, Sato Y, Suzuki H, Kajino M, Tanida S, Takizawa M. BTZO-2, an antioxidant response element-activator, provides protection against lethal endotoxic shock in mice. Eur J Pharmacol 2013; 700:80-5. [PMID: 23276667 DOI: 10.1016/j.ejphar.2012.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
Abstract
We recently reported a unique antioxidant response element (ARE)-activator, BTZO-1, which induced expression of cytoprotective proteins such as heme oxygenase-1 (HO-1) and suppressed oxidative stress-induced cardiomyocyte apoptosis via binding to macrophage migration inhibitory factor (MIF). HO-1 induction and apoptosis inhibition have been reported to improve the outcomes following experimental sepsis by protecting the organs. Therefore, we investigated the potential of BTZO-2, an active BTZO-1 derivative, as a drug for sepsis. BTZO-2 significantly protected mice from the endotoxic shock induced by 5mg/kg lipopolysaccharide (LPS); survival rates increased from 42% to 100%. In contrast, BTZO-2 did not provide significant protection to mice from the shock induced by 10 μg/kg LPS together with d-galactosamine (d-GalN, hepatocyte-specific transcription inhibitor) (LPS/d-GalN). Hepatic HO-1 protein was up-regulated by BTZO-2 in mice injected with 5mg/kg LPS, but not in those injected with 10 μg/kg LPS/d-GalN. Interestingly, BTZO-2 showed little or no effect on LPS-induced up-regulation of plasma cytokine levels in mice. Thus, the organ protection mediated by HO-1 may have a pivotal role in the pharmacological effect of BTZO-2. These results suggest that BTZO-2 is a promising compound for a novel drug for sepsis.
Collapse
Affiliation(s)
- Hiroshi Yukitake
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Turtzo LC, Li J, Persky R, Benashski S, Weston G, Bucala R, Venna VR, McCullough LD. Deletion of macrophage migration inhibitory factor worsens stroke outcome in female mice. Neurobiol Dis 2013; 54:421-31. [PMID: 23376686 DOI: 10.1016/j.nbd.2013.01.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/21/2012] [Accepted: 01/22/2013] [Indexed: 12/12/2022] Open
Abstract
Sex is an important factor in the response to ischemic insults in both the laboratory and the clinic. Inflammation and cell death are points where sex-specific pathways diverge in stroke, and serum estrogen level status affect the response to inflammation. The cytokine macrophage migration inhibitory factor (MIF) is detrimental in experimental stroke models in male animals. However MIF is known to have sex-specific actions on inflammation and wound healing. The role of MIF in the ischemic female brain has not been evaluated. A transient middle cerebral artery occlusion (MCAO/90min) model was used to induce stroke in male, intact female, and ovariectomized female wildtype (WT) and MIF knockout (KO) mice. Infarct size was quantified 72h after stroke. Protein and cytokine levels were assessed post stroke. Female MIF KO mice had significantly larger strokes compared to WT females (mean hemispheric infarct±SEM: 63%±2% versus 29%±3%; n=8; p<0.05). Ovariectomized female MIF KO mice also had larger infarcts than ovariectomized WT littermates (70%±3% versus 47%±4%; n=11; p<0.05). In males, however, infarct size was equivalent between MIF KO and WT mice (63%±2% versus 67%±3%; n=9; p=0.25). There were no significant differences in cytokine levels at 6h post-infarct between mice of either genotype in brain. MIF KO females displayed more microglial activation (ionized calcium binding adaptor molecule 1 (Iba1) immunofluorescence) after stroke than did WT mice or MIF KO males. The larger infarcts in MIF KO females were associated with an early increase in mitochondrial localization of Jun activation domain-binding protein 1 (JAB1). Loss of MIF exacerbated injury in the female brain after experimental stroke, which was independent of changes in pro-inflammatory cytokine levels. This response is sex-specific, and is in part independent of physiological serum levels of estrogen.
Collapse
Affiliation(s)
- L Christine Turtzo
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Asare Y, Schmitt M, Bernhagen J. The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 2013; 109:391-8. [PMID: 23329140 DOI: 10.1160/th12-11-0831] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions. MIF is a critical mediator of the host immune and inflammatory response. Dysregulated MIF expression has been demonstrated to contribute to various acute and chronic inflammatory conditions as well as cancer development. More recently, MIF has been identified as an important pro-atherogenic factor. Its blockade could even aid plaque regression in advanced atherosclerosis. Promotion of atherogenic leukocyte recruitment processes has been recognised as a major underlying mechanism of MIF in vascular pathology. However, MIF's role in vascular biology is not limited to immune cell recruitment as recent evidence also points to a role for this mediator in neo-angiogenesis / vasculogenesis by endothelial cell activation and endothelial progenitor cell recruitment. On the basis of introducing MIF's chemokine-like functions, the current article focusses on MIF's role in vascular biology and pathology.
Collapse
Affiliation(s)
- Yaw Asare
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | |
Collapse
|
123
|
Koga K, Kenessey A, Ojamaa K. Macrophage migration inhibitory factor antagonizes pressure overload-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2012; 304:H282-93. [PMID: 23144312 DOI: 10.1152/ajpheart.00595.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) functions as a proinflammatory cytokine when secreted from the cell, but it also exhibits antioxidant properties by virtue of its intrinsic oxidoreductase activity. Since increased production of ROS is implicated in the development of left ventricular hypertrophy, we hypothesized that the redox activity of MIF protects the myocardium when exposed to hemodynamic stress. In a mouse model of myocardial hypertrophy induced by transverse aortic coarctation (TAC) for 10 days, we showed that growth of the MIF-deficient heart was significantly greater by 32% compared with wild-type (WT) TAC hearts and that fibrosis was increased by fourfold (2.62 ± 0.2% vs. 0.6 ± 0.1%). Circulating MIF was increased in TAC animals, and expression of MIF receptor, CD74, was increased in the hypertrophic myocardium. Gene expression analysis showed a 10-fold increase (P < 0.01) in ROS-generating mitochondrial NADPH oxidase and 2- to 3-fold reductions (P < 0.01) in mitochondrial SOD2 and mitochondrial aconitase activities, indicating enhanced oxidative injury in the hypertrophied MIF-deficient ventricle. Hypertrophic signaling pathways showed that phosphorylation of cytosolic glycogen synthase kinase-3α was greater (P < 0.05) at baseline in MIF-deficient hearts than in WT hearts and remained elevated after 10-day TAC. In the hemodynamically stressed MIF-deficient heart, nuclear p21(CIP1) increased sevenfold (P < 0.01), and the cytosolic increase of phospho-p21(CIP1) was significantly greater than in WT TAC hearts. We conclude that MIF antagonizes myocardial hypertrophy and fibrosis in response to hemodynamic stress by maintaining a redox homeostatic phenotype and attenuating stress-induced activation of hypertrophic signaling pathways.
Collapse
Affiliation(s)
- Kiyokazu Koga
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | |
Collapse
|
124
|
Roger T, Delaloye J, Chanson AL, Giddey M, Le Roy D, Calandra T. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis. J Infect Dis 2012; 207:331-9. [PMID: 23125447 DOI: 10.1093/infdis/jis673] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
125
|
Lizotte J, Abed E, Signor C, Malu DT, Cuevas J, Kevorkova O, Sanchez-Dardon J, Satoskar A, Scorza T, Jumarie C, Moreau R. Expression of macrophage migration inhibitory factor by osteoblastic cells: protection against cadmium toxicity. Toxicol Lett 2012; 215:167-73. [PMID: 23085580 DOI: 10.1016/j.toxlet.2012.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 12/01/2022]
Abstract
Exposition to cadmium (Cd) has been linked to bone metabolism alterations and occurrence of osteoporosis. Despite its known renal toxicity which indirectly disrupts bone metabolism through impairment of vitamin D synthesis, increasing evidence argues for the direct action of Cd on bone-forming osteoblasts. Indeed, accumulation of Cd in osteoblasts and metal-induced cell death has been documented but little is known about the intracellular mechanisms of protection against this stress. In this work, we investigated the protection afforded by thiol-containing proteins against Cd cytotoxicity in MC3T3 osteoblastic cells. Viability of MC3T3 cells was reduced by Cd in a concentration-dependent manner with a LC(50) of 7.6±1.1μM. Depletion of glutathione by l-buthionine sulphoximine (BSO) increased cell sensitivity to Cd cytotoxicity, suggesting the involvement of thiol-containing peptides as a mechanism of protection. Accordingly, Cd was shown to promote progressive depletion of reduced thiol content and to stimulate the production of reactive oxygen species (ROS). Interestingly, low non cytotoxic concentrations of Cd increased the gene expression of macrophage migration inhibitory factor (MIF), also a thiol-containing protein. Inhibition of the transcription factor NFκB prevented Cd-dependent upregulation of MIF expression and consequently, increased Cd cytotoxicity in osteoblasts. Moreover, MIF deficient mouse osteoblasts were more sensitive to Cd cytotoxicity than the corresponding control cells. By gel-filtration chromatography, we demonstrated that MIF acts as a thiol-containing protein and thereby promotes Cd complexation. In accordance with its binding ability, addition of recombinant MIF to the culture medium reduced Cd cytotoxicity. Overall, upregulation of MIF expression by Cd may protect against the cytotoxicity of this metal in the osteoblasts.
Collapse
Affiliation(s)
- Jérôme Lizotte
- Laboratoire du Métabolisme Osseux, Centre BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Characterization of molecular determinants of the conformational stability of macrophage migration inhibitory factor: leucine 46 hydrophobic pocket. PLoS One 2012; 7:e45024. [PMID: 23028743 PMCID: PMC3448610 DOI: 10.1371/journal.pone.0045024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/11/2012] [Indexed: 01/15/2023] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF’s trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G), alanine (L46A) and phenylalanine (L46F), and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.
Collapse
|
127
|
Sanchez-Niño MD, Sanz AB, Ruiz-Andres O, Poveda J, Izquierdo MC, Selgas R, Egido J, Ortiz A. MIF, CD74 and other partners in kidney disease: tales of a promiscuous couple. Cytokine Growth Factor Rev 2012; 24:23-40. [PMID: 22959722 DOI: 10.1016/j.cytogfr.2012.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.
Collapse
|
128
|
Girard E, Strathdee C, Trueblood E, Quéva C. Macrophage migration inhibitory factor produced by the tumour stroma but not by tumour cells regulates angiogenesis in the B16-F10 melanoma model. Br J Cancer 2012; 107:1498-505. [PMID: 22955855 PMCID: PMC3493755 DOI: 10.1038/bjc.2012.392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Macrophage migration inhibitory factor (MIF) has been proposed as a link between inflammation and tumorigenesis. Despite its potentially broad influence in tumour biology and prevalent expression, the value of MIF as a therapeutic target in cancer remains unclear. We sought to validate MIF in tumour models by achieving a complete inhibition of its expression in tumour cells and in the tumour stroma. Methods: We used MIF shRNA-transduced B16-F10 melanoma cells implanted in wild-type and MIF−/− C57Bl6 mice to investigate the effect of loss of MIF on tumour growth. Cytokine detection and immunohistochemistry (IHC) were used to evaluate tumours ex vivo. Results: Macrophage migration inhibitory factor shRNA inhibited expression of MIF protein by B16-F10 melanoma cells in vitro and in vivo. In vitro, the loss of MIF in this cell line resulted in a decreased response to hypoxia as indicated by reduced expression of VEGF. In vivo the growth of B16-F10 tumours was inhibited by an average of 47% in the MIF−/− mice compared with wild-type but was unaffected by loss of MIF expression by the tumour cells. Immunohistochemistry analysis revealed that microvessel density was decreased in tumours implanted in the MIF−/− mice. Profiling of serum cytokines showed a decrease in pro-angiogenic cytokines in MIF−/− mice. Conclusion: We report that the absence of MIF in the host resulted in slower tumour growth, which was associated with reduced vascularity. While the major contribution of MIF appeared to be in the regulation of angiogenesis, tumour cell-derived MIF played a negligible role in this process.
Collapse
Affiliation(s)
- E Girard
- Hematology Oncology Research Area, Amgen Inc., Seattle, WA, USA
| | | | | | | |
Collapse
|
129
|
Brain miffed by macrophage migration inhibitory factor. Int J Cell Biol 2012; 2012:139573. [PMID: 22973314 PMCID: PMC3438795 DOI: 10.1155/2012/139573] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 12/31/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine which also exhibits enzymatic properties like oxidoreductase and tautomerase. MIF plays a pivotal role in innate and acquired immunity as well as in the neuroendocrine axis. Since it is involved in the pathogenesis of acute and chronic inflammation, neoangiogenesis, and cancer, MIF and its signaling components are considered suitable targets for therapeutic intervention in several fields of medicine. In neurodegenerative and neurooncological diseases, MIF is a highly relevant, but still a hardly investigated mediator. MIF operates via intracellular protein-protein interaction as well as in CD74/CXCR2/CXCR4 receptor-mediated pathways to regulate essential cellular systems such as redox balance, HIF-1, and p53-mediated senescence and apoptosis as well as multiple signaling pathways. Acting as an endogenous glucocorticoid antagonist, MIF thus represents a relevant resistance gene in brain tumor therapies. Alongside this dual action, a functional homolog-annotated D-dopachrome tautomerase/MIF-2 has been uncovered utilizing the same cell surface receptor signaling cascade as MIF. Here we review MIF actions with respect to redox regulation in apoptosis and in tumor growth as well as its extracellular function with a focus on its potential role in brain diseases. We consider the possibility of MIF targeting in neurodegenerative processes and brain tumors by novel MIF-neutralizing approaches.
Collapse
|
130
|
Klein C, Troedsson MHT. Macrophage Migration Inhibitory Factor is Expressed by Equine Conceptuses and Endometrium. Reprod Domest Anim 2012; 48:297-304. [DOI: 10.1111/j.1439-0531.2012.02148.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
131
|
Bai F, Asojo OA, Cirillo P, Ciustea M, Ledizet M, Aristoff PA, Leng L, Koski RA, Powell TJ, Bucala R, Anthony KG. A novel allosteric inhibitor of macrophage migration inhibitory factor (MIF). J Biol Chem 2012; 287:30653-63. [PMID: 22782901 DOI: 10.1074/jbc.m112.385583] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases.
Collapse
Affiliation(s)
- Fengwei Bai
- L2 Diagnostics, LLC, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Cohen S, Shachar I. Cytokines as regulators of proliferation and survival of healthy and malignant peripheral B cells. Cytokine 2012; 60:13-22. [PMID: 22784632 DOI: 10.1016/j.cyto.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 12/31/2022]
Abstract
Adaptive immunity depends on the production and maintenance of a pool of mature peripheral lymphocytes throughout life. The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Lasting B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. Cytokines have been shown to play a critical role in maintaining lymphocyte homeostasis. This review focuses on the role of cytokines and their receptors in the regulation of peripheral B cell survival, with an emphasis on those that have received relatively less attention in the literature.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
133
|
Merk M, Mitchell RA, Endres S, Bucala R. D-dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine 2012; 59:10-7. [PMID: 22507380 PMCID: PMC3367028 DOI: 10.1016/j.cyto.2012.03.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 12/12/2022]
Abstract
D-dopachrome tautomerase (D-DT) is a newly described cytokine and a member of the macrophage migration inhibitory factor (MIF) protein superfamily. MIF is a broadly expressed pro-inflammatory cytokine that regulates both the innate and the adaptive immune response. MIF activates the MAP kinase cascade, modulates cell migration, and counter-acts the immunosuppressive effects of glucocorticoids. For many cell types, MIF also acts as an important survival or anti-apoptotic factor. Circulating MIF levels are elevated in the serum in different infectious and autoimmune diseases, and neutralization of the MIF protein via antibodies or small molecule antagonists improves the outcome in numerous animal models of human disease. Recently, a detailed investigation of the biological role of the closely homologous protein D-DT, which is encoded by a gene adjacent to MIF, revealed an overlapping functional spectrum with MIF. The D-DT protein also is present in most tissues and circulates in serum at similar concentrations as MIF. D-DT binds the MIF cell surface receptor complex, CD74/CD44, with high affinity and induces similar cell signaling and effector functions. Furthermore, an analysis of the signaling properties of the two proteins showed that they work cooperatively, and that neutralization of D-DT in vivo significantly decreases inflammation. In this review, we highlight the similarities and differences between MIF and D-DT, which we propose to designate "MIF-2", and discuss the implication of D-DT/MIF-2 expression for MIF-based therapies.
Collapse
Affiliation(s)
- Melanie Merk
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, LMU Munich, Germany
| | | | - Stefan Endres
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, LMU Munich, Germany
| | - Richard Bucala
- Internal Medicine Yale University School of Medicine, New Haven, CT, 06520
| |
Collapse
|
134
|
Adamali H, Armstrong ME, McLaughlin AM, Cooke G, McKone E, Costello CM, Gallagher CG, Leng L, Baugh JA, Fingerle-Rowson G, Bucala RJ, McLoughlin P, Donnelly SC. Macrophage migration inhibitory factor enzymatic activity, lung inflammation, and cystic fibrosis. Am J Respir Crit Care Med 2012; 186:162-9. [PMID: 22592805 DOI: 10.1164/rccm.201110-1864oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Macrophage migration inhibitory factor (MIF) is a proinflammatory mediator with unique tautomerase enzymatic activity; the precise function has not been clearly defined. We previously demonstrated that individual patients with cystic fibrosis (CF) who are genetically predisposed to be high MIF producers develop accelerated end-organ injury. OBJECTIVES To characterize the effects of the MIF-CATT polymorphism in patients with CF ex vivo. To investigate the role of MIF's tautomerase activity in a murine model of Pseudomonas aeruginosa infection. METHODS MIF and tumor necrosis factor (TNF)-α protein levels were assessed in plasma or peripheral blood mononuclear cell (PBMC) supernatants by ELISA. A murine pulmonary model of chronic Pseudomonas infection was used in MIF wild-type mice (mif(+/+)) and in tautomerase-null, MIF gene knockin mice (mif (P1G/P1G)). MEASUREMENTS AND MAIN RESULTS MIF protein was measured in plasma and PBMCs from 5- and 6-CATT patients with CF; LPS-induced TNF-α production from PBMCs was also assessed. The effect of a specific inhibitor of MIF-tautomerase activity, ISO-1, was investigated in PBMCs. In the murine infection model, total weight loss, differential cell counts, bacterial load, and intraacinar airspace/tissue volume were measured. MIF and TNF-α levels were increased in 6-CATT compared with 5-CATT patients with CF. LPS-induced TNF-α production from PBMCs was attenuated in the presence of ISO-1. In a murine model of Pseudomonas infection, significantly less pulmonary inflammation and bacterial load was observed in mif(P1G/P1G) compared with mif(+/+) mice. CONCLUSIONS MIF-tautomerase activity may provide a novel therapeutic target in patients with chronic inflammatory diseases such as CF, particularly those patients who are genetically predisposed to produce increased levels of this cytokine.
Collapse
Affiliation(s)
- Huzaifa Adamali
- School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Alexander JK, Cox GM, Tian JB, Zha AM, Wei P, Kigerl KA, Reddy MK, Dagia NM, Sielecki T, Zhu MX, Satoskar AR, McTigue DM, Whitacre CC, Popovich PG. Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp Neurol 2012; 236:351-62. [PMID: 22575600 DOI: 10.1016/j.expneurol.2012.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/19/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
Stress and glucocorticoids exacerbate pain via undefined mechanisms. Macrophage migration inhibitory factor (MIF) is a constitutively expressed protein that is secreted to maintain immune function when glucocorticoids are elevated by trauma or stress. Here we show that MIF is essential for the development of neuropathic and inflammatory pain, and for stress-induced enhancement of neuropathic pain. Mif null mutant mice fail to develop pain-like behaviors in response to inflammatory stimuli or nerve injury. Pharmacological inhibition of MIF attenuates pain-like behaviors caused by nerve injury and prevents sensitization of these behaviors by stress. Conversely, injection of recombinant MIF into naïve mice produces dose-dependent mechanical sensitivity that is exacerbated by stress. MIF elicits pro-inflammatory signaling in microglia and activates sensory neurons, mechanisms that underlie pain. These data implicate MIF as a key regulator of pain and provide a mechanism whereby stressors exacerbate pain. MIF inhibitors warrant clinical investigation for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jessica K Alexander
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Lewis D, Chan D, Pinheiro D, Armitage‐Chan E, Garden O. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med 2012; 26:457-82. [PMID: 22428780 PMCID: PMC7166777 DOI: 10.1111/j.1939-1676.2012.00905.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 11/28/2011] [Accepted: 02/07/2012] [Indexed: 02/06/2023] Open
Abstract
Sepsis, the systemic inflammatory response to infection, represents the major cause of death in critically ill veterinary patients. Whereas important advances in our understanding of the pathophysiology of this syndrome have been made, much remains to be elucidated. There is general agreement on the key interaction between pathogen-associated molecular patterns and cells of the innate immune system, and the amplification of the host response generated by pro-inflammatory cytokines. More recently, the concept of immunoparalysis in sepsis has also been advanced, together with an increasing recognition of the interplay between regulatory T cells and the innate immune response. However, the heterogeneous nature of this syndrome and the difficulty of modeling it in vitro or in vivo has both frustrated the advancement of new therapies and emphasized the continuing importance of patient-based clinical research in this area of human and veterinary medicine.
Collapse
Affiliation(s)
- D.H. Lewis
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Present address:
Langford Veterinary ServicesSmall Animal HospitalLangford HouseLangfordBristol, BS40 5DUUK
| | - D.L. Chan
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
| | - D. Pinheiro
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| | - E. Armitage‐Chan
- Davies Veterinary SpecialistsManor Farm Business ParkHertfordshireSG5 3HR, UK (Armitage‐Chan)
| | - O.A. Garden
- Department of Veterinary Clinical SciencesThe Royal Veterinary CollegeHatfield CampusHertfordshire,UK (Lewis, Chan, Garden)
- Regulatory T Cell LaboratoryThe Royal Veterinary CollegeCamden Campus, LondonNW1 OTUUK (Pinheiro, Garden)
| |
Collapse
|
137
|
Abstract
Genetic variations, in part, determine individual susceptibility to sepsis and pneumonia. Advances in genetic sequence analysis as well as high throughput platform analysis of gene expression has allowed for a better understanding of immunopathogenesis during sepsis. Differences in genes can also modulate immune and inflammatory response during sepsis thereby translating to differences in clinical outcomes. An increasing number of candidate genes have been implicated to play a role in sepsis susceptibility, most of which are controversial with few exceptions. This does not refute the significance of genetic polymorphisms in sepsis, but rather highlights the difficulties and pitfalls related to genetic association studies. These difficulties include differences in study design such as heterogeneous patient cohorts and differences in pathogenic organisms, linkage disequilibrium, and lack of power for detailed haplotype analysis or examination of gene-gene interactions. There is extensive diversity in the pathways of inflammation and immune response during sepsis making it even harder to prove the functional and clinical significance of one single genetic polymorphism which could be easily masqueraded or compensated by other upstream or downstream events of the pathway involved. The majority of studies have analysed candidate genes in isolation from other possible polymorphisms. It is likely that susceptibility to sepsis is the result of polymorphisms from multiple genes rather than one single mutation. Future studies should aim for multi-centered collaborative approach looking at genome wide association or gene profiling to provide a more complete appraisal of the key genetic players in determining genetic susceptibility to sepsis. This review paper will summarise the prominent candidate gene polymorphisms with known functional changes or those with haplotype data. In addition, a summary of the expanding research in the field of epigenetics and post-sepsis immunosuppression will be discussed.
Collapse
Affiliation(s)
- Li Ping Chung
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia
| | | |
Collapse
|
138
|
Thuy LTT, Kawada N. Antifibrotic role of macrophage migration inhibitory factor: discovery of an unexpected function. Hepatology 2012; 55:1295-7. [PMID: 22461077 DOI: 10.1002/hep.25605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Le Thi Thanh Thuy
- Department of Hepatology and Liver Research Center Graduate School of Medicine Osaka City University Osaka, Japan
| | | |
Collapse
|
139
|
Wang X, Chen T, Leng L, Fan J, Cao K, Duan Z, Zhang X, Shao C, Wu M, Tadmori I, Li T, Liang L, Sun D, Zheng S, Meinhardt A, Young W, Bucala R, Ren Y. MIF produced by bone marrow-derived macrophages contributes to teratoma progression after embryonic stem cell transplantation. Cancer Res 2012; 72:2867-78. [PMID: 22461508 DOI: 10.1158/0008-5472.can-11-3247] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although stem cell therapy holds promise as a potential treatment in a number of diseases, the tumorigenicity of embryonic stem cells (ESC) and induced pluripotent stem cells remains a major obstacle. In vitro predifferentiation of ESCs can help prevent the risk of teratoma formation, yet proliferating neural progenitors can generate tumors, especially in the presence of immunosuppressive therapy. In this study, we investigated the effects of the microenvironment on stem cell growth and teratoma development using undifferentiated ESCs. Syngeneic ESC transplantation triggered an inflammatory response that involved the recruitment of bone marrow (BM)-derived macrophages. These macrophages differentiated into an M2 or angiogenic phenotype that expressed multiple angiogenic growth factors and proteinases, such as macrophage migration inhibitory factor (MIF), VEGF, and matrix metalloproteinase 9, creating a microenvironment that supported the initiation of teratoma development. Genetic deletion of MIF from the host but not from ESCs specifically reduced angiogenesis and teratoma growth, and MIF inhibition effectively reduced teratoma development after ESC transplantation. Together, our findings show that syngeneic ESC transplantation provokes an inflammatory response that involves the rapid recruitment and activation of BM-derived macrophages, which may be a crucial driving force in the initiation and progression of teratomas.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Zhang Y, Talwar A, Tsang D, Bruchfeld A, Sadoughi A, Hu M, Omonuwa K, Cheng KF, Al-Abed Y, Miller EJ. Macrophage migration inhibitory factor mediates hypoxia-induced pulmonary hypertension. Mol Med 2012; 18:215-23. [PMID: 22113497 DOI: 10.2119/molmed.2011.00094] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 11/15/2011] [Indexed: 12/28/2022] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease leading to progressive hypoxemia, right ventricular failure, and death. Hypoxia can play a pivotal role in PH etiology, inducing pulmonary vessel constriction and remodeling. These events lead to increased pulmonary vessel wall thickness, elevated vascular resistance and right ventricular hypertrophy. The current study examined the association of the inflammatory cytokine macrophage migration inhibitory factor (MIF) with chronic lung disease and its role in the development of hypoxia-induced PH. We found that plasma MIF in patients with primary PH or PH secondary to interstitial lung disease (ILD) was significantly higher than in the control group (P = 0.004 and 0.007, respectively). MIF involvement with hypoxia-induced fibroblast proliferation was examined in both a human cell-line and primary mouse cells from wild-type (mif⁺/⁺) and MIF-knockout (mif⁻/⁻) mice. In vitro, hypoxia-increased MIF mRNA, extracellular MIF protein accumulation and cell proliferation. Inhibition of MIF inflammatory activity reduced hypoxia-induced cell proliferation. However, hypoxia only increased proliferation of mif⁻/⁻ cells when they were supplemented with media from mif⁺/⁺ cells. This growth increase was suppressed by MIF inhibition. In vivo, chronic exposure of mice to a normobaric atmosphere of 10% oxygen increased lung tissue expression of mRNA encoding MIF and accumulation of MIF in plasma. Inhibition of the MIF inflammatory active site, during hypoxic exposure, significantly reduced pulmonary vascular remodeling, cardiac hypertrophy and right ventricular systolic pressure. The data suggest that MIF plays a critical role in hypoxia-induced PH, and its inhibition may be beneficial in preventing the development and progression of the disease.
Collapse
Affiliation(s)
- Yinzhong Zhang
- Centers for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Macrophage migration inhibitory factor in protozoan infections. J Parasitol Res 2012; 2012:413052. [PMID: 22496958 PMCID: PMC3306950 DOI: 10.1155/2012/413052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine that plays a central role in immune and inflammatory responses. In the present paper, we discussed the participation of MIF in the immune response to protozoan parasite infections. As a general trend, MIF participates in the control of parasite burden at the expense of promoting tissue damage due to increased inflammation.
Collapse
|
142
|
Plasmodium yoelii macrophage migration inhibitory factor is necessary for efficient liver-stage development. Infect Immun 2012; 80:1399-407. [PMID: 22252874 DOI: 10.1128/iai.05861-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mammalian macrophage migration inhibitory factor (MIF) is a multifaceted cytokine involved in both extracellular and intracellular functions. Malaria parasites express a MIF homologue that might modulate host immune responses against blood-stage parasites, but the potential importance of MIF against other life cycle stages remains unstudied. In this study, we characterized the MIF homologue of Plasmodium yoelii throughout the life cycle, with emphasis on preerythrocytic stages. P. yoelii MIF (Py-MIF) was expressed in blood-stage parasites and detected at low levels in mosquito salivary gland sporozoites. MIF expression was strong throughout liver-stage development and localized to the cytoplasm of the parasite, with no evidence of release into the host hepatocyte. To examine the importance of Py-MIF for liver-stage development, we generated a Py-mif knockout parasite (P. yoelii Δmif). P. yoelii Δmif parasites grew normally as asexual erythrocytic-stage parasites and showed normal infection of mosquitoes. In contrast, the P. yoelii Δmif strain was attenuated during the liver stage. Mice infected with P. yoelii Δmif sporozoites either did not develop blood-stage parasitemia or exhibited a delay in the onset of blood-stage patency. Furthermore, P. yoelii Δmif parasites exhibited growth retardation in vivo. Combined, the data indicate that Plasmodium MIF is important for liver-stage development of P. yoelii, during which it is likely to play an intrinsic role in parasite development rather than modulating host immune responses to infection.
Collapse
|
143
|
Kerschbaumer RJ, Rieger M, Völkel D, Le Roy D, Roger T, Garbaraviciene J, Boehncke WH, Müllberg J, Hoet RM, Wood CR, Antoine G, Thiele M, Savidis-Dacho H, Dockal M, Ehrlich H, Calandra T, Scheiflinger F. Neutralization of macrophage migration inhibitory factor (MIF) by fully human antibodies correlates with their specificity for the β-sheet structure of MIF. J Biol Chem 2012; 287:7446-55. [PMID: 22238348 DOI: 10.1074/jbc.m111.329664] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that recently emerged as an attractive therapeutic target for a variety of diseases. A diverse panel of fully human anti-MIF antibodies was generated by selection from a phage display library and extensively analyzed in vitro. Epitope mapping studies identified antibodies specific for linear as well as structural epitopes. Experimental animal studies revealed that only those antibodies binding epitopes within amino acids 50-68 or 86-102 of the MIF molecule exerted protective effects in models of sepsis or contact hypersensitivity. Within the MIF protein, these two binding regions form a β-sheet structure that includes the MIF oxidoreductase motif. We therefore conclude that this β-sheet structure is a crucial region for MIF activity and a promising target for anti-MIF antibody therapy.
Collapse
|
144
|
Imipramine reverses depressive-like parameters in pneumococcal meningitis survivor rats. J Neural Transm (Vienna) 2011; 119:653-60. [PMID: 22160551 DOI: 10.1007/s00702-011-0749-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/01/2011] [Indexed: 12/15/2022]
Abstract
Pneumococcal meningitis is a severe infectious disease of the central nervous system, associated with acute inflammation and might cause damage to the host, such as deafness, blindness, seizure, and learning deficits. However, infectious diseases can play a significant role in the etiology of neuropsychiatric disturbances. In this context, we evaluated depressive-like parameters; corticosterone and ACTH levels in pneumococcal meningitis surviving rats. Wistar rats underwent a magna cistern tap receiving either 10 μL sterile saline or a Streptococcus pneumoniae suspension at the concentration of 5 × 10(9) cfu/mL. After 3 days of meningitis induction procedure, the animals were treated with imipramine at 10 mg/kg or saline for 14 days (3rd-17th day). The consumption of sweet food was measured for 7 days (10th-17th day). The meningitis group decreased the sucrose intake and increased the levels of corticosterone and ACTH levels in the serum and TNF-α in the cortex; however, the treatment with imipramine reverted the reduction of sweet food consumption, normalized hormonal levels and TNF-α in the cortex. Our results supported the hypothesis that the pneumococcal meningitis surviving rats showed depressive-like behavior and alterations in the hypothalamus-pituitary-adrenal axis.
Collapse
|
145
|
Liu A, Fang H, Dirsch O, Jin H, Dahmen U. Early release of macrophage migration inhibitory factor after liver ischemia and reperfusion injury in rats. Cytokine 2011; 57:150-7. [PMID: 22136975 DOI: 10.1016/j.cyto.2011.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an important mediator of ischemia/reperfusion (I/R) injury in heart, brain and intestine. We previously demonstrated that MIF was released during warm/cold ischemia in vitro. However, the role of MIF in liver I/R injury remains unclear. We aimed to test the hypothesis that MIF acts as an early proinflammatory cytokine and could mediate the inflammatory injury in liver I/R. Rats (n=6 per group) were subjected to 90 min warm ischemia followed by 0.5h, 6h and 24h reperfusion, respectively to liver transplantation (LTx) after 6h of cold ischemia followed by 24h of reperfusion. The expression of MIF, its receptor (cluster of differentiation 74 (CD74)) and the downstream inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)) were analyzed. Peritoneal macrophages were cultured for 6h alone or in the presence of effluent from cold-preserved livers or effluent depleted of MIF. Warm I/R increased hepatic MIF-mRNA and protein expression. MIF-protein was released into peripheral circulation in vivo with a maximum at 0.5h after reperfusion. Induction of MIF-expression was associated with the expression of proinflammatory cytokines and its receptor in both models. MIF released by isolated cold preserved livers, induced TNF-α and IL-1β production by cultured peritoneal macrophages. Intrahepatic upregulation of MIF, release into systemic circulation and the associated upregulation of the proinflammatory mediators suggest a role of MIF in mediating the inflammatory response to I/R injury. Blocking experiments will help to elucidate its role as potential molecular target for preventing hepatic I/R injury.
Collapse
Affiliation(s)
- Anding Liu
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Jena 07747, Germany
| | | | | | | | | |
Collapse
|
146
|
de Dios Rosado J, Rodriguez-Sosa M. Macrophage migration inhibitory factor (MIF): a key player in protozoan infections. Int J Biol Sci 2011; 7:1239-56. [PMID: 22110378 PMCID: PMC3221362 DOI: 10.7150/ijbs.7.1239] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/27/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by the pituitary gland and multiple cell types, including macrophages (Mø), dendritic cells (DC) and T-cells. Upon releases MIF modulates the expression of several inflammatory molecules, such as TNF-α, nitric oxide and cyclooxygenase 2 (COX-2). These important MIF characteristics have prompted investigators to study its role in parasite infections. Several reports have demonstrated that MIF plays either a protective or deleterious role in the immune response to different pathogens. Here, we review the role of MIF in the host defense response to some important protozoan infections.
Collapse
Affiliation(s)
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, Estado de México, México
| |
Collapse
|
147
|
Terrazas CA, Huitron E, Vazquez A, Juarez I, Camacho GM, Calleja EA, Rodriguez-Sosa M. MIF synergizes with Trypanosoma cruzi antigens to promote efficient dendritic cell maturation and IL-12 production via p38 MAPK. Int J Biol Sci 2011; 7:1298-310. [PMID: 22110382 PMCID: PMC3221366 DOI: 10.7150/ijbs.7.1298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 01/30/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been found to be involved in host resistance to several parasitic infections. To determine the mechanisms of the MIF-dependent responses to Trypanosoma cruzi, we investigated host resistance in MIF-/- mice (on the BALB/c background) during an intraperitoneal infection. We focused on the potential involvement of MIF in dendritic cell (DC) maturation and cytokine production. Following a challenge with 5 x 103T. cruzi parasites, wild type (WT) mice developed a strong IL-12 response and adequate maturation of the draining mesenteric lymph node DCs and were resistant to infection. In contrast, similarly infected MIF-/- mice mounted a weak IL-12 response, displayed immature DCs in the early phases of infection and rapidly succumbed to T. cruzi infection. The lack of maturation and IL-12 production by the DCs in response to total T. cruzi antigen (TcAg) was confirmed by in vitro studies. These effects were reversed following treatment with recombinant MIF. Interestingly, TcAg-stimulated bone marrow-derived DCs from both WT and MIF-/- mice had increased ERK1/2 MAPK phosphorylation. In contrast, p38 phosphorylation was only upregulated in WT DCs. Reconstitution of MIF to MIF-/- DCs upregulated p38 phosphorylation. The MIF-p38 pathway affected MHC-II and CD86 expression as well as IL-12 production. These findings demonstrate that the MIF-induced early DC maturation and IL-12 production mediates resistance to T. cruzi infection, probably by activating the p38 pathway.
Collapse
Affiliation(s)
- Cesar A Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México-UNAM, C. P. 54090 Estado de México, Mexico
| | | | | | | | | | | | | |
Collapse
|
148
|
Renner P, Roger T, Bochud PY, Sprong T, Sweep FCGJ, Bochud M, Faust SN, Haralambous E, Betts H, Chanson AL, Reymond MK, Mermel E, Erard V, van Deuren M, Read RC, Levin M, Calandra T. A functional microsatellite of the macrophage migration inhibitory factor gene associated with meningococcal disease. FASEB J 2011; 26:907-16. [PMID: 21990375 DOI: 10.1096/fj.11-195065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an abundantly expressed proinflammatory cytokine playing a critical role in innate immunity and sepsis and other inflammatory diseases. We examined whether functional MIF gene polymorphisms (-794 CATT(5-8) microsatellite and -173 G/C SNP) were associated with the occurrence and outcome of meningococcal disease in children. The CATT(5) allele was associated with the probability of death predicted by the Pediatric Index of Mortality 2 (P=0.001), which increased in correlation with the CATT(5) copy number (P=0.04). The CATT(5) allele, but not the -173 G/C alleles, was also associated with the actual mortality from meningoccal sepsis [OR 2.72 (1.2-6.4), P=0.02]. A family-based association test (i.e., transmission disequilibrium test) performed in 240 trios with 1 afflicted offspring indicated that CATT(5) was a protective allele (P=0.02) for the occurrence of meningococcal disease. At baseline and after stimulation with Neisseria meningitidis in THP-1 monocytic cells or in a whole-blood assay, CATT(5) was found to be a low-expression MIF allele (P=0.005 and P=0.04 for transcriptional activity; P=0.09 and P=0.09 for MIF production). Taken together, these data suggest that polymorphisms of the MIF gene affecting MIF expression are associated with the occurrence, severity, and outcome of meningococcal disease in children.
Collapse
Affiliation(s)
- Pascal Renner
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Effect of macrophage migration inhibitory factor (MIF) in human placental explants infected with Toxoplasma gondii depends on gestational age. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2792-801. [PMID: 21641401 DOI: 10.1016/j.ajpath.2011.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/22/2011] [Accepted: 02/28/2011] [Indexed: 12/13/2022]
Abstract
Because macrophage migration inhibitory factor (MIF) is a key cytokine in pregnancy and has a role in inflammatory response and pathogen defense, the objective of the present study was to investigate the effects of MIF in first- and third-trimester human placental explants infected with Toxoplasma gondii. Explants were treated with recombinant MIF, IL-12, interferon-γ, transforming growth factor-β1, or IL-10, followed by infection with T. gondii RH strain tachyzoites. Supernatants of cultured explants were assessed for MIF production. Explants were processed for morphologic analysis, immunohistochemistry, and real-time PCR analysis. Comparison of infected and stimulated explants versus noninfected control explants demonstrated a significant increase in MIF release in first-trimester but not third-trimester explants. Tissue parasitism was higher in third- than in first-trimester explants. Moreover, T. gondii DNA content was lower in first-trimester explants treated with MIF compared with untreated explants. However, in third-trimester explants, MIF stimulus decreased T. gondii DNA content only at the highest concentration of the cytokine. In addition, high expression of MIF receptor was observed in first-trimester placental explants, whereas MIF receptor expression was low in third-trimester explants. In conclusion, MIF was up-regulated and demonstrated to be important for control of T. gondii infection in first-trimester explants, whereas lack of MIF up-regulation in third-trimester placentas may be involved in higher susceptibility to infection at this gestational age.
Collapse
|
150
|
Cavalcanti MG, Mesquita JS, Madi K, Feijó DF, Assunção-Miranda I, Souza HSP, Bozza MT. MIF participates in Toxoplasma gondii-induced pathology following oral infection. PLoS One 2011; 6:e25259. [PMID: 21977228 PMCID: PMC3178626 DOI: 10.1371/journal.pone.0025259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 08/30/2011] [Indexed: 01/07/2023] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is essential for controlling parasite burden and survival in a model of systemic Toxoplasma gondii infection. Peroral T. gondii infection induces small intestine necrosis and death in susceptible hosts, and in many aspects resembles inflammatory bowel disease (IBD). Considering the critical role of MIF in the pathogenesis of IBD, we hypothesized that MIF participates in the inflammatory response induced by oral infection with T. gondii. Methodology/Principal Findings Mif deficient (Mif−/−) and wild-type mice in the C57Bl/6 background were orally infected with T. gondii strain ME49. Mif−/− mice had reduced lethality, ileal inflammation and tissue damage despite of an increased intestinal parasite load compared to wt mice. Lack of MIF caused a reduction of TNF-α, IL-12, IFN-γ and IL-23 and an increased expression of IL-22 in ileal mucosa. Moreover, suppressed pro-inflammatory responses at the ileal mucosa observed in Mif−/− mice was not due to upregulation of IL-4, IL-10 or TGF-β. MIF also affected the expression of matrix metalloproteinase-9 (MMP-9) but not MMP-2 in the intestine of infected mice. Signs of systemic inflammation including the increased concentrations of inflammatory cytokines in the plasma and liver damage were less pronounced in Mif−/− mice compared to wild-type mice. Conclusion/Significance In conclusion, our data suggested that in susceptible hosts MIF controls T. gondii infection with the cost of increasing local and systemic inflammation, tissue damage and death.
Collapse
Affiliation(s)
- Marta G. Cavalcanti
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Serviço de Doenças Infecciosas e Parasitárias, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: (MGC); (MTB)
| | - Jacilene S. Mesquita
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kalil Madi
- Departamento de Patologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Laboratório Sérgio Franco, Rio de Janeiro, Brazil
| | - Daniel F. Feijó
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Heitor S. P. Souza
- Departamento de Clínica Médica, Laboratório Multidisciplinar de Pesquisa, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Marcelo T. Bozza
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Departamento de Clínica Médica, Laboratório Multidisciplinar de Pesquisa, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: (MGC); (MTB)
| |
Collapse
|