101
|
van der Burg SH. Therapeutic vaccines in cancer: moving from immunomonitoring to immunoguiding. Expert Rev Vaccines 2014; 7:1-5. [DOI: 10.1586/14760584.7.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
102
|
Ooi YC, Tran P, Ung N, Thill K, Trang A, Fong BM, Nagasawa DT, Lim M, Yang I. The role of regulatory T-cells in glioma immunology. Clin Neurol Neurosurg 2014; 119:125-32. [PMID: 24582432 DOI: 10.1016/j.clineuro.2013.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 12/14/2022]
Abstract
Despite recent advances in treatment, the prognosis for glioblastoma multiforme (GBM) remains poor. The lack of response to treatment in GBM patients may be attributed to the immunosuppressed microenvironment that is characteristic of invasive glioma. Regulatory T-cells (Tregs) are immunosuppressive T-cells that normally prevent autoimmunity when the human immune response is evoked; however, there have been strong correlations between glioma-induced immunosuppression and Tregs. In fact, induction of Treg activity has been correlated with glioma development in both murine models and patients. While the exact mechanisms by which regulatory T-cells function require further elucidation, various cytokines such as interleukin-10 (IL-10) and transforming growth factor-β (TFG-β) have been implicated in these processes and are currently under investigation. In addition, hypoxia is characteristic of tumor development and is also correlated with downstream induction of Tregs. Due to the poor prognosis associated with immunosuppression in glioma patients, Tregs remain a promising area for immunotherapeutic research.
Collapse
Affiliation(s)
- Yinn Cher Ooi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Patrick Tran
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Nolan Ung
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Kimberly Thill
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Andy Trang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Brendan M Fong
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Daniel T Nagasawa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, USA.
| |
Collapse
|
103
|
Kawahara M, Takaku H. Intradermal immunization with combined baculovirus and tumor cell lysate induces effective antitumor immunity in mice. Int J Oncol 2013; 43:2023-30. [PMID: 24101126 DOI: 10.3892/ijo.2013.2125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/13/2013] [Indexed: 11/06/2022] Open
Abstract
Although tumor lysate contains all the potential helper and killer epitopes capable of stimulating T cells, it is difficult to use as a cancer vaccine because it suppresses dendritic cell (DC) function. We report that wild-type baculovirus possesses an adjuvant effect to improve the immunogenicity of tumor lysate. When mice were administered CT26 tumor cell lysate combined with baculovirus intradermally, antitumor immunity was induced and rejection of CT26 tumor growth was observed in 40% of the immunized mice. In contrast, such antitumor immunity was not elicited in mice inoculated with tumor cell lysate or baculovirus alone. In tumor-bearing mice, which had previously received the combined baculovirus and tumor lysate vaccine, the established tumors were completely eradicated by administering a booster dose of the combined vaccine. This antitumor effect was attributed to tumor-specific T cell immunity mediated primarily by CD8⁺ T cells. Baculovirus also strongly activated DCs loaded with tumor lysate. Increased interleukin (IL)-6 and IL-12p70 production were also observed in DCs co-cultured with tumor cell lysate and baculovirus. Our study demonstrates that combined baculovirus and tumor lysate vaccine can effectively stimulate DCs to induce acquired antitumor immunity.
Collapse
Affiliation(s)
- Mamoru Kawahara
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo 204-0022, Japan
| | | |
Collapse
|
104
|
Perret R, Sierro SR, Botelho NK, Corgnac S, Donda A, Romero P. Adjuvants that improve the ratio of antigen-specific effector to regulatory T cells enhance tumor immunity. Cancer Res 2013; 73:6597-608. [PMID: 24048821 DOI: 10.1158/0008-5472.can-13-0875] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antitumor immunity is strongly influenced by the balance of tumor antigen-specific effector T cells (Teff) and regulatory T cells (Treg). However, the impact that vaccine adjuvants have in regulating the balance of antigen-specific T-cell populations is not well understood. We found that antigen-specific Tregs were induced following subcutaneous vaccination with either OVA or melanoma-derived peptides, with a restricted expansion of Teffs. Addition of the adjuvants CpG-ODN or Poly(I:C) preferentially amplified Teffs over Tregs, dramatically increasing the antigen-specific Teff:Treg ratios and inducing polyfunctional effector cells. In contrast, two other adjuvants, imiquimod and Quil A saponin, favored an expansion of antigen-specific Tregs and failed to increase Teff:Treg ratios. Following therapeutic vaccination of tumor-bearing mice, high ratios of tumor-specific Teffs:Tregs in draining lymph nodes were associated with enhanced CD8(+) T-cell infiltration at the tumor site and a durable rejection of tumors. Vaccine formulations of peptide+CpG-ODN or Poly(I:C) induced selective production of proinflammatory type I cytokines early after vaccination. This environment promoted CD8(+) and CD4(+) Teff expansion over that of antigen-specific Tregs, tipping the Teff to Treg balance to favor effector cells. Our findings advance understanding of the influence of different adjuvants on T-cell populations, facilitating the rational design of more effective cancer vaccines.
Collapse
Affiliation(s)
- Rachel Perret
- Authors' Affiliation: Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
105
|
Ganesan AP, Johansson M, Ruffell B, Beltran A, Lau J, Jablons DM, Coussens LM. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2009-17. [PMID: 23851682 PMCID: PMC3774528 DOI: 10.4049/jimmunol.1301317] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune cells comprise a substantial proportion of the tumor mass in human nonsmall cell lung cancers (NSCLC), but the precise composition and significance of this infiltration are unclear. In this study, we examined immune complexity of human NSCLC as well as NSCLC developing in CC10-TAg transgenic mice, and revealed that CD4(+) T lymphocytes represent the dominant population of CD45(+) immune cells, and, relative to normal lung tissue, CD4(+)Foxp3(+) regulatory T cells (Tregs) were significantly increased as a proportion of total CD4(+) cells. To assess the functional significance of increased Tregs, we evaluated CD8(+) T cell-deficient/CC10-TAg mice and revealed that CD8(+) T cells significantly controlled tumor growth with antitumor activity that was partially repressed by Tregs. However, whereas treatment with anti-CD25-depleting mAb as monotherapy preferentially depleted Tregs and improved CD8(+) T cell-mediated control of tumor progression during early tumor development, similar monotherapy was ineffective at later stages. Because mice bearing early NSCLC treated with anti-CD25 mAb exhibited increased tumor cell death associated with infiltration by CD8(+) T cells expressing elevated levels of granzyme A, granzyme B, perforin, and IFN-γ, we therefore evaluated carboplatin combination therapy resulting in a significantly extended survival beyond that observed with chemotherapy alone, indicating that Treg depletion in combination with cytotoxic therapy may be beneficial as a treatment strategy for advanced NSCLC.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Alkylating/administration & dosage
- Antineoplastic Agents, Alkylating/therapeutic use
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Carboplatin/administration & dosage
- Carboplatin/therapeutic use
- Carcinoma, Non-Small-Cell Lung/immunology
- Cisplatin/therapeutic use
- Cisplatin/toxicity
- Cytotoxicity, Immunologic
- Humans
- Interleukin-2 Receptor alpha Subunit/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lymphocyte Count
- Lymphocyte Depletion
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Random Allocation
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Anusha-Preethi Ganesan
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Cancer Sciences Division, University of Southampton, Tremona Road, Southampton SO16 6YD, UK
| | - Magnus Johansson
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian Ruffell
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adam Beltran
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan Lau
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David M. Jablons
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lisa M. Coussens
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
106
|
Kumar V. Adenosine as an endogenous immunoregulator in cancer pathogenesis: where to go? Purinergic Signal 2013; 9:145-65. [PMID: 23271562 PMCID: PMC3646124 DOI: 10.1007/s11302-012-9349-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/13/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer is a chronic disease and its pathogenesis is well correlated with infection and inflammation. Adenosine is a purine nucleoside, which is produced under metabolic stress like hypoxic conditions. Acute or chronic inflammatory conditions lead to the release of precursor adenine nucleotides (adenosine triphosphate (ATP), adenosien diphosphate (ADP) and adenosine monophosphate (AMP)) from cells, which are extracellularly catabolized into adenosine by extracellular ectonucleotidases, i.e., CD39 or nucleoside triphosphate dephosphorylase (NTPD) and CD73 or 5'-ectonucleotidase. It is now well-known that adenosine is secreted by cancer as well as immune cells during tumor pathogenesis under metabolic stress or hypoxia. Once adenosine is released into the extracellular environment, it exerts various immunomodulatory effects via adenosine receptors (A1, A2A, A2B, and A3) expressed on various immune cells (i.e., macrophages, myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, dendritic cells (DCs), T cells, regulatory T cell (Tregs), etc.), which play very important roles in the pathogenesis of cancer. This review is intended to summarize the role of inflammation and adenosine in the immunopathogenesis of tumor along with regulation of tumor-specific immune response and its modulation as an adjunct approach to tumor immunotherapy.
Collapse
Affiliation(s)
- V Kumar
- Division of Cancer Biology and Genetics, Cancer Research Institute, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
107
|
Mattiussi C. Can an engineer fix an immune system?--Rethinking theoretical biology. Acta Biotheor 2013; 61:223-58. [PMID: 23456507 DOI: 10.1007/s10441-013-9180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 02/20/2013] [Indexed: 11/30/2022]
Abstract
In an instant classic paper (Lazebnik, in Cancer Cell 2(3); 2002: 179-182) biologist Yuri Lazebnik deplores the poor effectiveness of the approach adopted by biologists to understand and "fix" biological systems. Lazebnik suggests that to remedy this state of things biologist should take inspiration from the approach used by engineers to design, understand, and troubleshoot technological systems. In the present paper I substantiate Lazebnik's analysis by concretely showing how to apply the engineering approach to biological problems. I use an actual example of electronic circuit troubleshooting to ground the thesis that, in engineering, the crucial phases of any non-trivial troubleshooting process are aimed at generating a mechanistic explanation of the functioning of the system, which makes extensive recourse to problem-driven qualitative reasoning possibly based on cognitive artifacts applied to systems that are known to have been designed for function. To show how to translate these findings into biological practice I consider a concrete example of biological model building and "troubleshooting", aimed at the identification of a "fix" for the human immune system in presence of progressing cancer, autoimmune disease, and transplant rejection. The result is a novel immune system model--the danger model with regulatory cells--and new, original hypotheses concerning the development, prophylaxis, and therapy of these unwanted biological processes. Based on the manifest efficacy of the proposed approach, I suggest a refocusing of the activity of theoretical biologists along the engineering-inspired lines illustrated in the paper.
Collapse
|
108
|
Burkart C, Arimoto KI, Tang T, Cong X, Xiao N, Liu YC, Kotenko SV, Ellies LG, Zhang DE. Usp18 deficient mammary epithelial cells create an antitumour environment driven by hypersensitivity to IFN-λ and elevated secretion of Cxcl10. EMBO Mol Med 2013; 5:1035-50. [PMID: 23681607 PMCID: PMC3721472 DOI: 10.1002/emmm.201201864] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/31/2022] Open
Abstract
The theory of cancer immunoediting refers to mechanisms by which the immune system can suppress or promote tumour progression. A major challenge for the development of novel cancer immunotherapies is to find ways to exploit the immune system's antitumour activity while concomitantly reducing its protumour activity. Using the PyVmT model of mammary tumourigenesis, we show that lack of the Usp18 gene significantly inhibits tumour growth by creating a tumour-suppressive microenvironment. Generation of this antitumour environment is driven by elevated secretion of the potent T-cell chemoattractant Cxcl10 by Usp18 deficient mammary epithelial cells (MECs), which leads to recruitment of Th1 subtype CD4+ T cells. Furthermore, we show that Cxcl10 upregulation in MECs is promoted by interferon-λ and that Usp18 is a novel inhibitor of interferon-λ signalling. Knockdown of the interferon-λ specific receptor subunit IL-28R1 in Usp18 deficient MECs dramatically enhances tumour growth. Taken together, our data suggest that targeting Usp18 may be a viable approach to boost antitumour immunity while suppressing the protumour activity of the immune system.
Collapse
Affiliation(s)
- Christoph Burkart
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Banerjee A, Vasanthakumar A, Grigoriadis G. Modulating T regulatory cells in cancer: how close are we? Immunol Cell Biol 2013; 91:340-9. [PMID: 23567897 DOI: 10.1038/icb.2013.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulatory T cells (Tregs) are a specialized subset of CD4 T cells that have an indispensable role in maintaining immune homeostasis and tolerance. Although studies in mice and humans have clearly highlighted that the absence of these cells results in severe autoimmunity and inflammation, increased Treg numbers and/or function is not always beneficial. This is best exemplified in certain cancers where increased Tregs promote cancer progression by interfering with immune surveillance. Conversely, in other types of cancers that have an inflammatory component, Tregs can inhibit cancer progression by dampening inflammation. In this review article, we provide a historical perspective of the discovery of Tregs, followed by a summary of the existing literature on the role of Tregs in malignancy.
Collapse
Affiliation(s)
- Ashish Banerjee
- Centre for Inflammatory Diseases, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
110
|
Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 2013; 138:105-15. [PMID: 23216602 DOI: 10.1111/imm.12036] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) and regulatory T (Treg) cells are major components of the immune suppressive tumour microenvironment (TME). Both cell types expand systematically in preclinical tumour models and promote T-cell dysfunction that in turn favours tumour progression. Clinical reports show a positive correlation between elevated levels of both suppressors and tumour burden. Recent studies further revealed that MDSCs can modulate the de novo development and induction of Treg cells. The overlapping target cell population of Treg cells and MDSCs is indicative for the importance and flexibility of immune suppression under pathological conditions. It also suggests the existence of common pathways that can be used for clinical interventions aiming to manipulate the TME. Elimination or reprogramming of the immune suppressive TME is one of the major current challenges in immunotherapy of cancer. Interestingly, recent findings suggest that natural killer T (NKT) cells can acquire the ability to convert immunosuppressive MDSCs into immunity-promoting antigen-presenting cells. Here we will review the cross-talk between MDSCs and other immune cells, focusing on Treg cells and NKT cells. We will consider its impact on basic and applied cancer research and discuss how targeting MDSCs may pave the way for future immunocombination therapies.
Collapse
Affiliation(s)
- Dennis Lindau
- Department of Tumour Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
111
|
Hamilton A, Sibson NR. Role of the systemic immune system in brain metastasis. Mol Cell Neurosci 2013; 53:42-51. [PMID: 23073146 DOI: 10.1016/j.mcn.2012.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/24/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022] Open
Abstract
Metastatic disease in the central nervous system (CNS) is a cause of increasing mortality amongst cancer patients. As with other types of cancer, cells of the systemic immune system play a range of important roles in the development of metastatic lesions in the CNS, both repressing and promoting tumour growth. Recent advances in immunotherapy have changed the emphasis in cancer treatment away from conventional chemotherapy and radiotherapy for certain tumour types. Despite this, our understanding of systemic immune system involvement in CNS metastases remains poor. The blood-brain barrier prevents the majority of diagnostic and therapeutic agents from crossing into the brain parenchyma until the late stages of metastatic disease. Thus, the development of immunotherapy for CNS pathologies is particularly desirable. This review draws together our current understanding in the relationships between CNS metastases and circulating systemic immune cells. We discuss the roles that circulating systemic immune cells may play in the homing of metastatic cells to the perivascular space, and the pro-metastatic and antagonistic roles that infiltrating systemic immune cells may play at sites of metastasis. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Alastair Hamilton
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
112
|
Mortenson ED, Fu YX. Adaptive Immune Responses and HER2/neu Positive Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2013; 1:37-42. [PMID: 23420038 PMCID: PMC3571707 DOI: 10.1007/s40139-012-0001-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Oncogenic signaling, such as HER2/neu signaling, has been shown to play major role for tumorigenesis in a subset of breast cancer patients. The use of anti-HER2/neu antibody has not only revealed the mechanisms for HER2/neu signaling but also shown a therapeutic advantage of its blockade. Indeed, the use of trastuzumab has greatly improved the treatment of HER2-positive breast cancer. Although this therapy has been used in the clinic for over twenty years, recent data is still uncovering new mechanisms by which this antibody exerts its anti-tumor activity. In addition to an improved understanding of the molecular mechanisms by which this therapy inhibits growth of tumor cells, the discovery that anti-HE2/neu therapy initiates and requires the adaptive immune system is one of these new mechanisms. The presence of anti-HER2/neu initiated adaptive immunity gives credence to efforts targeted at stimulating the immune system in treating HER2 positive breast cancer. This review focuses on the role of the inflammatory response in HER2 positive breast cancer with particular emphasis on trastuzumab therapy.
Collapse
Affiliation(s)
- Eric D. Mortenson
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
113
|
Kim M, Grimmig T, Grimm M, Lazariotou M, Meier E, Rosenwald A, Tsaur I, Blaheta R, Heemann U, Germer CT, Waaga-Gasser AM, Gasser M. Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer. PLoS One 2013; 8:e53630. [PMID: 23382847 PMCID: PMC3559740 DOI: 10.1371/journal.pone.0053630] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/03/2012] [Indexed: 12/15/2022] Open
Abstract
Background Regulatory T cells (Treg) expressing the transcription factor forkhead-box protein P3 (Foxp3) have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC) the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC). Methods and Findings Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival. Conclusions Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression.
Collapse
Affiliation(s)
- Mia Kim
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| | - Tanja Grimmig
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Martin Grimm
- Department of Oral and Maxillofacial Plastic Surgery, University of Tuebingen, Tuebingen, Germany
| | - Maria Lazariotou
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Eva Meier
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Igor Tsaur
- Department of Urology, University of Frankfurt, Frankfurt, Germany
| | - Roman Blaheta
- Department of Urology, University of Frankfurt, Frankfurt, Germany
| | - Uwe Heemann
- Department of Nephrology, University of Munich, Klinikum rechts der Isar, Munich, Germany
| | | | - Ana Maria Waaga-Gasser
- Department of Surgery I, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Martin Gasser
- Department of Surgery I, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
114
|
Hayata K, Iwahashi M, Ojima T, Katsuda M, Iida T, Nakamori M, Ueda K, Nakamura M, Miyazawa M, Tsuji T, Yamaue H. Inhibition of IL-17A in tumor microenvironment augments cytotoxicity of tumor-infiltrating lymphocytes in tumor-bearing mice. PLoS One 2013; 8:e53131. [PMID: 23372655 PMCID: PMC3556079 DOI: 10.1371/journal.pone.0053131] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/23/2012] [Indexed: 12/11/2022] Open
Abstract
It remains controversial whether IL-17A promotes or inhibits cancer progression. We hypothesized that IL-17A that is locally produced in the tumor microenvironment has an important role in angiogenesis and tumor immunity. We investigated the effect of inhibiting IL-17A at tumor sites on tumor growth and on local and systemic anti-tumor immunity. MC38 or B16 cells were inoculated subcutaneously into mice, and intratumoral injection of an adenovirus vector expressing siRNA against the mouse IL-17A gene (Ad-si-IL-17) significantly inhibited tumor growth in both tumor models compared with control mice. Inhibition of IL-17A at tumor sites significantly suppressed CD31, MMP9, and VEGF expression in tumor tissue. The cytotoxic activity of CD8(+) T cells from tumor-infiltrating lymphocytes in mice treated with Ad-si-IL-17 was significantly higher than in control mice; however, CD8(+) T cells from splenocytes had similar activity levels. Suppression of IL-17A at tumor sites led to a Th1-dominant environment, and moreover, eliminated myeloid-derived suppressor cells and regulatory T cells at tumor sites but not in splenocytes. In conclusion, blockade of IL-17A at tumor sites helped suppress tumor growth by inhibiting angiogenesis as well as cytotoxic T lymphocytes activation at tumor sites.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Genetic Vectors
- Injections, Intralesional
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/genetics
- Interleukin-17/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/immunology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic
- Platelet Endothelial Cell Adhesion Molecule-1/genetics
- Platelet Endothelial Cell Adhesion Molecule-1/immunology
- RNA, Small Interfering/genetics
- Skin Neoplasms/blood supply
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/genetics
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/immunology
Collapse
Affiliation(s)
- Keiji Hayata
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Makoto Iwahashi
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshiyasu Ojima
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Katsuda
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takeshi Iida
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mikihito Nakamori
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Ueda
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masaki Nakamura
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Motoki Miyazawa
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshiaki Tsuji
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
115
|
Qin A, Wen Z, Zhou Y, Li Y, Li Y, Luo J, Ren T, Xu L. MicroRNA-126 regulates the induction and function of CD4(+) Foxp3(+) regulatory T cells through PI3K/AKT pathway. J Cell Mol Med 2013; 17:252-64. [PMID: 23301798 PMCID: PMC3822588 DOI: 10.1111/jcmm.12003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/08/2012] [Indexed: 12/15/2022] Open
Abstract
Recent evidence showed that limited activation of PI3K/Akt pathway was critical for induction and function sustainment of CD4(+) Foxp3(+) regulatory T cells (Tregs). However, the underlying mechanism remains largely unknown. In this study, we reported that miR-126 was expressed in mouse and human Tregs. Further study showed that silencing of miR-126 using miR-126 antisense oligonucleotides (ASO) could significantly reduce the induction of Tregs in vitro. Furthermore, miR-126 silencing could obviously reduce the expression of Foxp3 on Tregs, which was accompanied by decreased expression of CTLA-4 and GITR, as well as IL-10 and TGF-β, and impair its suppressive function. Mechanistic evidence showed that silencing of miR-126 enhanced the expression of its target p85β and subsequently altered the activation of PI3K/Akt pathway, which was ultimately responsible for reduced induction and suppressive function of Tregs. Finally, we further revealed that miR-126 silencing could impair the suppressive function of Tregs in vivo and endow effectively antitumour effect of CD8(+) T cells in adoptive cell transfer assay using a murine breast cancer model. Therefore, our study showed that miR-126 could act as fine-tuner in regulation of PI3K-Akt pathway transduction in the induction and sustained suppressive function of Tregs and provided a novel insight into the development of therapeutic strategies for promoting T-cell immunity by regulating Tregs through targeting specific miRNAs.
Collapse
Affiliation(s)
- Andong Qin
- Department of Immunology, Zunyi Medical College, Guizhou, 563000, China
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Man YG, Stojadinovic A, Mason J, Avital I, Bilchik A, Bruecher B, Protic M, Nissan A, Izadjoo M, Zhang X, Jewett A. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J Cancer 2013; 4:84-95. [PMID: 23386907 PMCID: PMC3564249 DOI: 10.7150/jca.5482] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/20/2012] [Indexed: 12/12/2022] Open
Abstract
It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.
Collapse
Affiliation(s)
- Yan-gao Man
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Alexander Stojadinovic
- 3. Surgical Oncology, Walter Reed National Military Medical Center, and Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey Mason
- 4. Veterans Affair Medical Center, Washington, DC, USA
| | - Itzhak Avital
- 5. Bon Secours National Cancer Institute (BSNCI), Richmond VA, USA
| | - Anton Bilchik
- 6. John Wayne Cancer Institute; California Oncology Research Institute; and, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Mladjan Protic
- 8. Clinic of Abdominal, Endocrine, and Transplantation Surgery, Clinical Center of Vojvodina, University of Novi Sad - Medical Faculty, Novi Sad, Serbia
| | - Aviram Nissan
- 9. The Surgical Oncology Laboratory, Department of Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Mina Izadjoo
- 1. Diagnostic and Translational Research Center, Henry Jackson Foundation, Gaithersburg, MD, USA
| | - Xichen Zhang
- 2. College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Anahid Jewett
- 10. Division of Oral Biology and Medicine, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
117
|
Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, Cerwenka A. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. THE JOURNAL OF IMMUNOLOGY 2012; 189:5602-11. [PMID: 23152559 DOI: 10.4049/jimmunol.1201018] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells in cancer patients and tumor-bearing mice that potently inhibits T cell responses. During tumor progression, MDSCs accumulate in several organs, including the tumor tissue. So far, tumor-infiltrating MDSC subpopulations remain poorly explored. In this study, we performed global gene expression profiling of mouse tumor-infiltrating granulocytic and monocytic (MO-MDSC) subsets compared with MDSCs from peripheral blood. RMA-S lymphoma-infiltrating MO-MDSCs not only produced high levels of NO and arginase-1, but also greatly increased levels of chemokines comprising the CCR5 ligands CCL3, CCL4, and CCL5. MO-MDSCs isolated from B16 melanoma and from skin tumor-bearing ret transgenic mice also expressed high levels of CCL3, CCL4, and CCL5. Expression of CCR5 was preferentially detected on regulatory T cells (Tregs). Accordingly, tumor-infiltrating MO-MDSCs directly attracted high numbers of Tregs via CCR5 in vitro. Intratumoral injection of CCL4 or CCL5 increased tumor-infiltrating Tregs, and deficiency of CCR5 led to their profound decrease. Moreover, in CCR5-deficient mice, RMA-S and B16 tumor growth was delayed emphasizing the importance of CCR5 in the control of antitumor immune responses. Overall, our data demonstrate that chemokines secreted by tumor-infiltrating MO-MDSCs recruit high numbers of Tregs revealing a novel suppressive role of MDSCs with potential clinical implications for the development of cancer immunotherapies.
Collapse
Affiliation(s)
- Eva Schlecker
- Innate Immunity, Research Program Tumor Immunology, German Cancer Research Center, Heidelberg D-69120, Germany
| | | | | | | | | | | | | |
Collapse
|
118
|
Prime-boost vaccination with SA-4-1BBL costimulatory molecule and survivin eradicates lung carcinoma in CD8+ T and NK cell dependent manner. PLoS One 2012; 7:e48463. [PMID: 23144888 PMCID: PMC3493554 DOI: 10.1371/journal.pone.0048463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/27/2012] [Indexed: 12/22/2022] Open
Abstract
Subunit vaccines containing universal tumor associated antigens (TAAs) present an attractive treatment modality for cancer primarily due to their safety and potential to generate long-term immunological responses that can safeguard against recurrences. However, TAA-based subunit vaccines require potent adjuvants for therapeutic efficacy. Using a novel form of the 4-1BBL costimulatory molecule, SA-4-1BBL, as the adjuvant of choice, we previously demonstrated that a single vaccination with survivin (SVN) as a bona fide self TAA was effective in eradicating weakly immunogenic 3LL tumors in >70% of C57BL/6 mice. The present study was designed to i) assess the therapeutic efficacy of a prime-boost vaccination and ii) investigate the mechanistic basis of vaccine efficacy. Our data shows that a prime-boost vaccination strategy was effective in eradicating 3LL lung carcinoma in 100% of mice. The vaccine efficacy was correlated with increased percentages of CD8+ T cells expressing IFN-γ as well as potent killing responses of both CD8+ T and NK cells in the absence of detectable antibodies to ssDNA as a sign of autoimmunity. Antibody depletion of CD8+ T cells one day before vaccination completely abrogated therapeutic efficacy, whereas depletion of CD4+ T cells had no effect. Importantly, NK cell depletion had a moderate (∼50% reduction), but significant (p<0.05) effect on vaccine efficacy. Taken together, these results shed light on the mechanistic basis of the SA-4-1BBL/SVN subunit vaccine formulation in a lung carcinoma model and demonstrate the robust therapeutic efficacy of the prime-boost immunization strategy with important clinical implications.
Collapse
|
119
|
Rosalia RA, Štěpánek I, Polláková V, Šímová J, Bieblová J, Indrová M, Moravcová S, Přibylová H, Bontkes HJ, Bubeník J, Sparwasser T, Reiniš M. Administration of anti-CD25 mAb leads to impaired α-galactosylceramide-mediated induction of IFN-γ production in a murine model. Immunobiology 2012. [PMID: 23182710 DOI: 10.1016/j.imbio.2012.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) and CD1d-restricted invariant natural killer T (iNKT) cells are two cell types that are known to regulate immune reactions. Depletion or inactivation of Tregs using specific anti-CD25 antibodies in combination with immunostimulation is an attractive modality especially in anti-tumour immunotherapy. However, CD25 is not expressed exclusively on Tregs but also on subpopulations of activated lymphocytes. Therefore, the modulatory effects of the specific anti-CD25 antibodies can also be partially attributed to their interactions with the effector cells. Here, the effector functions of iNKT cells were analysed in combination with anti-CD25 mAb PC61. Upon PC61 administration, α-galactosylceramide (α-GalCer)-mediated activation of iNKT cells resulted in decreased IFN-γ but not IL-4 production. In order to determine whether mutual interactions between Tregs and iNKT cells take place, we compared IFNγ production after α-GalCer administration in anti-CD25-treated and "depletion of regulatory T cell" (DEREG) mice. Since no profound effects on IFNγ induction were observed in DEREG mice, deficient in FoxP3(+) Tregs, our results indicate that the anti-CD25 antibody acts directly on CD25(+) effector cells. In vivo experiments demonstrated that although both α-GalCer and PC61 administration inhibited TC-1 tumour growth in mice, no additive/synergic effects were observed when these substances were used in combination therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Galactosylceramides/administration & dosage
- Galactosylceramides/immunology
- Galactosylceramides/pharmacology
- Gene Expression/drug effects
- Gene Expression/immunology
- Heparin-binding EGF-like Growth Factor
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/immunology
- Intercellular Signaling Peptides and Proteins/metabolism
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-2 Receptor alpha Subunit/immunology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Interleukin-4/genetics
- Interleukin-4/immunology
- Interleukin-4/metabolism
- Kaplan-Meier Estimate
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Burden/drug effects
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Rodney A Rosalia
- Department of Tumour Immunology of the Institute of Molecular Genetics, v. v. i., Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Transient Foxp3(+) regulatory T-cell depletion enhances therapeutic anticancer vaccination targeting the immune-stimulatory properties of NKT cells. Immunol Cell Biol 2012; 91:105-14. [PMID: 23090488 DOI: 10.1038/icb.2012.58] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The natural killer T (NKT) cell ligand, alpha-galactosylceramide (α-GalCer), represents a potential adjuvant to boost immunotherapeutic vaccination strategies against poorly immunogenic cancers. The objective of this study was to assess the therapeutic potential of an α-GalCer-loaded tumor-cell vaccine against solid tumors in mice and to enhance the effectiveness of this approach by removing immune suppression associated with the activity of Foxp3(+) regulatory T cells (Tregs). In the B16F10 melanoma model, we show that single vaccination with irradiated, α-GalCer-loaded tumor cells resulted in suppression of established subcutaneous (s.c.) B16F10 tumor growth, which was mediated by NKT cell-dependent IFN-γ production and enhanced in the absence of IL-17 A. Selective depletion of Foxp3(+) Tregs in transgenic DEpletion of REGulatory T cells (DEREG) mice led to significant inhibition of B16F10 tumor growth and enhanced survival of mice receiving vaccination. Short-term elimination of Foxp3(+) Tregs (<7 days) was sufficient to boost vaccine-induced immunity. Enhanced antitumor activity with combination therapy was associated with an increase in systemic NK cell and effector CD8(+) T-cell activation and IFN-γ production, as well as infiltration of effector CD8(+) T cells into the tumor. Overall, these findings demonstrate that transient depletion of Foxp3(+) Tregs constitutes a highly effective strategy to improve the therapeutic efficacy of anticancer vaccination with NKT cell adjuvants.
Collapse
|
121
|
McGill NK, Vyas J, Shimauchi T, Tokura Y, Piguet V. HTLV-1-associated infective dermatitis: updates on the pathogenesis. Exp Dermatol 2012; 21:815-21. [DOI: 10.1111/exd.12007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Neilia-Kay McGill
- Department of Dermatology and Wound Healing; Institute of Infection and Immunity; Cardiff University; Cardiff, UK
| | - Jui Vyas
- Department of Dermatology and Wound Healing; Institute of Infection and Immunity; Cardiff University; Cardiff, UK
| | - Takatoshi Shimauchi
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu; Japan
| | - Yoshiki Tokura
- Department of Dermatology; Hamamatsu University School of Medicine; Hamamatsu; Japan
| | - Vincent Piguet
- Department of Dermatology and Wound Healing; Institute of Infection and Immunity; Cardiff University; Cardiff, UK
| |
Collapse
|
122
|
Johnson TS, Munn DH. Host Indoleamine 2,3-Dioxygenase: Contribution to Systemic Acquired Tumor Tolerance. Immunol Invest 2012; 41:765-97. [DOI: 10.3109/08820139.2012.689405] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
123
|
Chen X, Du Y, Huang Z. CD4+CD25+ Treg derived from hepatocellular carcinoma mice inhibits tumor immunity. Immunol Lett 2012; 148:83-9. [PMID: 23000301 DOI: 10.1016/j.imlet.2012.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 11/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) play an essential role in the establishment and persistence of tumor immune suppression. Tregs can prevent anti-tumor-specific T cells from clearing the tumor, making Tregs a significant barrier for effective immunotherapy. An increase in the number of Tregs has been detected in the peripheral blood and tumor infiltrating lymphocytes of patients with hepatocellular carcinoma. Dendritic cells (DCs) are antigen-presenting cells that play a pivotal role in the initiation of immune responses. The evidence for their ability to act as natural adjuvant in the stimulation of specific anti-tumor cytotoxic T lymphocytes and in the induction of protective and therapeutic anti-tumor immunity is now overwhelming. The aim of our study was to investigate the variation of Tregs in hepatocellular carcinoma mice and how Tregs derived from the tumor mice affect DCs' function. We found that Tregs derived from the tumor mice down-regulated the expression of costimulatory molecules CD80/CD86 on DCs and inhibited the production of TNF-α and IL-12 from DCs. The suppressive function of Tregs was mediated by cell-to-cell contact, CTLA-4 expression and IL-10 secretion. In conclusion, these mechanisms acting in hepatocellular carcinoma may be necessary to better understand the immunosuppression of Tregs and helpful to the tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Chen
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, Zhejiang, China
| | | | | |
Collapse
|
124
|
Role of Foxp3-positive tumor-infiltrating lymphocytes in the histologic features and clinical outcomes of hepatocellular carcinoma. Am J Surg Pathol 2012; 36:980-6. [PMID: 22446942 DOI: 10.1097/pas.0b013e31824e9b7c] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of Foxp3-positive regulatory T cells (Foxp3 Tregs) in suppression of antitumoral immune response is well documented in patients with cancer. However, it is not known whether Foxp3 Tregs are associated with specific clinicopathologic characteristics of hepatocellular carcinoma (HCC). The aims of the present study were: (1) to investigate the relationship between Foxp3 Tregs and histologic differentiation, Edmondson-Steiner (ES) nuclear grade, vascular invasion, and pathologic stage of HCC in patients undergoing surgery for their disease; and (2) to evaluate any Foxp3 Treg-defined difference in the risk for tumor recurrence or death. The study sample included 131 histologic sections of HCC. The number of tumor-infiltrating CD3, CD8, and Foxp3 lymphocytes was assessed by immunohistochemistry. An increased Foxp3:CD3 ratio was associated with more poorly differentiated HCC (P=0.0016) and higher ES nuclear grade (P=0.0407). An increased Foxp3:CD8 ratio was also associated with poorer differentiation (P=0.0044), higher ES nuclear grade (P=0.0179), recurrence (P=0.0183), decreased overall survival (hazard ratio=1.153; 95% confidence interval, 1.019-1.304; P=0.0235), and decreased disease-free survival (hazard ratio=1.138; 95% confidence interval, 1.016-1.273; P=0.0249). Tumor size and type of surgery (surgical resection) were associated with decreased disease-free survival on univariate analysis but not on multivariate analysis. In conclusion, a higher concentration of tumor-infiltrating Foxp3 Tregs in HCC is associated with higher grade and poorly differentiated tumors and signifies an unfavorable prognosis.
Collapse
|
125
|
Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 2012; 72:2162-71. [PMID: 22549946 DOI: 10.1158/0008-5472.can-11-3687] [Citation(s) in RCA: 617] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-regulatory cells (Tregs) are found infiltrating tumors in a vast array of tumor types, and tumor-infiltrating Tregs are often associated with a poor clinical outcome. Tregs are potent immunosuppressive cells of the immune system that promote progression of cancer through their ability to limit antitumor immunity and promote angiogenesis. Here, we discuss the ways in which Tregs suppress the antitumor immune response and elaborate on our recent discovery that Tregs make significant direct contributions to tumor angiogenesis. Further, we highlight several current therapies aimed at eliminating Tregs in cancer patients. Given the multifaceted role of Tregs in cancer, a greater understanding of their functions will ultimately strengthen future therapies.
Collapse
Affiliation(s)
- Andrea Facciabene
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
126
|
SA-4-1BBL costimulation inhibits conversion of conventional CD4+ T cells into CD4+ FoxP3+ T regulatory cells by production of IFN-γ. PLoS One 2012; 7:e42459. [PMID: 22870329 PMCID: PMC3411638 DOI: 10.1371/journal.pone.0042459] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Tumors convert conventional CD4+ T cells into induced CD4+CD25+FoxP3+ T regulatory (iTreg) cells that serve as an effective means of immune evasion. Therefore, the blockade of conventional CD4+ T cell conversion into iTreg cells represents an attractive target for improving the efficacy of various immunotherapeutic approaches. Using a novel form of 4-1BBL molecule, SA-4-1BBL, we previously demonstrated that costimulation via 4-1BB receptor renders both CD4+and CD8+ T effector (Teff) cells refractory to inhibition by Treg cells and increased intratumoral Teff/Treg cell ratio that correlated with therapeutic efficacy in various preclinical tumor models. Building on these studies, we herein show for the first time, to our knowledge, that signaling through 4-1BB inhibits antigen- and TGF-β-driven conversion of naïve CD4+FoxP3− T cells into iTreg cells via stimulation of IFN-γ production by CD4+FoxP3− T cells. Importantly, treatment with SA-4-1BBL blocked the conversion of CD4+FoxP3− T cells into Treg cells by EG.7 tumors. Taken together with our previous studies, these results show that 4-1BB signaling negatively modulate Treg cells by two distinct mechanisms: i) inhibiting the conversion of CD4+FoxP3− T cells into iTreg cells and ii) endowing Teff cells refractory to inhibition by Treg cells. Given the dominant role of Treg cells in tumor immune evasion mechanisms, 4-1BB signaling represents an attractive target for favorably tipping the Teff:Treg balance toward Teff cells with important implications for cancer immunotherapy.
Collapse
|
127
|
Abstract
Regulatory T cells (Tregs) are a subpopulation of CD4(+) T cells that are essential for maintaining the homeostasis of the immune system, limiting self-reactivity and excessive immune responses against foreign antigens. In cancer, infiltrated Tregs inhibit the effector lymphocytes and create a favorable environment for the growth of the tumor. Although Tregs mediate immunosuppression through multiple, non-redundant, cell-contact dependent and independent mechanisms, a growing body of evidence suggests an important role for the CD39-CD73-adenosine pathway. CD39 ectonucleotidase is the rate-limiting enzyme of a cascade leading to the generation of suppressive adenosine that alters CD4 and CD8 T cell and natural killer cell antitumor activities. Here, we review the recent literature supporting CD39 as a promising therapeutic target in oncology. In vitro and in vivo experiments involving knockout models and surrogate inhibitors of CD39 provide evidence in support of the anticancer activity of CD39 inhibition and predict a favorable safety profile for CD39 inhibitory compounds. In addition, we report the ongoing development of CD39-blocking monoclonal antibodies as potential anticancer drugs. Indeed, CD39 antagonistic antibodies could represent novel therapeutic tools for selectively inhibiting Treg function without depletion, a major limitation of current Treg-targeting strategies.
Collapse
|
128
|
The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody. Protein Cell 2012; 3:441-9. [PMID: 22717982 DOI: 10.1007/s13238-012-2044-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 01/21/2023] Open
Abstract
It has been well established that immune surveillance plays critical roles in preventing the occurrence and progression of tumor. More and more evidence in recent years showed the host anti-tumor immune responses also play important roles in the chemotherapy and radiotherapy of cancers. Our previous study found that tumor- targeting therapy of anti-HER2/neu mAb is mediated by CD8(+) T cell responses. However, we found here that enhancement of CD8(+) T cell responses by combination therapy with IL-15R/IL-15 fusion protein or anti-CD40, which are strong stimultors for T cell responses, failed to promote the tumor therapeutic effects of anti-HER2/neu mAb. Analysis of tumor microenviornment showed that tumor tissues were heavily infiltrated with the immunosuppressive macrophages and most tumor infiltrating T cells, especially CD8(+) T cells, expressed high level of inhibitory co-signaling receptor PD-1. These data suggest that tumor microenvironment is dominated by the immunosuppressive strategies, which thwart anti-tumor immune responses. Therefore, the successful tumor therapy should be the removal of inhibitory signals in the tumor microenvironment in combination with other therapeutic strategies.
Collapse
|
129
|
Claus C, Riether C, Schürch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res 2012; 72:3664-76. [PMID: 22628427 DOI: 10.1158/0008-5472.can-11-2791] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling of the TNF receptor superfamily member CD27 activates costimulatory pathways to elicit T- and B-cell responses. CD27 signaling is regulated by the expression of its ligand CD70 on subsets of dendritic cells and lymphocytes. Here, we analyzed the role of the CD27-CD70 interaction in the immunologic control of solid tumors in Cd27-deficient mice. In tumor-bearing wild-type mice, the CD27-CD70 interaction increased the frequency of regulatory T cells (Tregs), reduced tumor-specific T-cell responses, increased angiogenesis, and promoted tumor growth. CD27 signaling reduced apoptosis of Tregs in vivo and induced CD4(+) effector T cells (Teffs) to produce interleukin-2, a key survival factor for Tregs. Consequently, the frequency of Tregs and growth of solid tumors were reduced in Cd27-deficient mice or in wild-type mice treated with monoclonal antibody to block CD27 signaling. Our findings, therefore, provide a novel mechanism by which the adaptive immune system enhances tumor growth and may offer an attractive strategy to treat solid tumors.
Collapse
Affiliation(s)
- Christina Claus
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
130
|
Lee SM, Yee C. Another LAP in the race. Cancer Discov 2012; 2:107-9. [PMID: 22585852 DOI: 10.1158/2159-8290.cd-12-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The unique promise of latency-associated peptide resides in its selective presence on regulatory T cells (Treg) in the activated setting after patients are treated with immunomodulators such as anti-CTLA-4. The improved ability to track, scrutinize, and potentially target Tregs in this manipulated environment will be increasingly critical in developing immune-based therapies for patients with cancer.
Collapse
Affiliation(s)
- Sylvia M Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center and Department of Medicine, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
131
|
Ghosh AK, Basu S. Tumor macrophages as a target for Capsaicin mediated immunotherapy. Cancer Lett 2012; 324:91-7. [PMID: 22579786 DOI: 10.1016/j.canlet.2012.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 01/24/2023]
Abstract
Tumor microenvironment contributes to a large extent for failure of immunological destruction of antigenic tumors. Most solid tumors adapt to the microenvironment and escape the host immune system. The dramatic and systemic effectiveness of neuro-immune ligand Capsaicin (CP) in regression of established solid tumors led us to investigate its immunomodulatory role in tumor microenvironment. In this report we demonstrate that CP induced tumor cell apoptosis leads to increased sensitization of the surrounding stroma manifested by enhanced antigen presentation by stromal macrophages and its destruction by tumor specific T-cells. Further, CP injection alters the tumor microenvironment with regards to tumor-infiltrating Treg cells as well as the cytokine milieu at the tumor site. Our data collectively demonstrates that injection of CP sets in motion, a cascade of several independent innate and adaptive immunological events initiated at the tumor environment.
Collapse
Affiliation(s)
- Amiya K Ghosh
- Center for Immunotherapy of Cancer and Infectious Diseases, University of Connecticut School of Medicine, MC1601, Farmington, CT 06030-1601, United States
| | | |
Collapse
|
132
|
Hong Y, Peng Y, Xiao H, Mi M, Munn D, He Y. Immunoglobulin Fc fragment tagging allows strong activation of endogenous CD4 T cells to reshape the tumor milieu and enhance the antitumor effect of lentivector immunization. THE JOURNAL OF IMMUNOLOGY 2012; 188:4819-27. [PMID: 22504640 DOI: 10.4049/jimmunol.1103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major problem with current cancer vaccines is that the induction of CD8 immune responses is rarely associated with antitumor benefits, mainly owing to multiple immune suppressions in established tumor lesions. In this study, we investigated if and how activation of endogenous CD4 T cells could be achieved to influence the suppressive tumor milieu and antitumor effect. We engineered a lentivector (lv) to express a nominal fusion Ag composed of hepatitis B surface protein and IgG2a Fc fragment (HBS-Fc-lv) to increase the magnitude of CD8 response but, more importantly, to induce effective coactivation of CD4 T cells. We found that, remarkably, immunization with HBS-Fc-lv caused significant regression of established tumors. Immunologic analysis revealed that, compared with HBS-lv without Fc fragment, immunization with HBS-Fc-lv markedly increased the number of functional CD8 and CD4 T cells and the level of Th1/Tc1-like cytokines in the tumor while substantially decreasing the regulatory T cell ratio. The favorable immunologic changes in tumor lesions and the improvement of antitumor effects from HBS-Fc-lv immunization were dependent on the CD4 activation, which was Fc receptor mediated. Adoptive transfer of CD4 T cells from the HBS-Fc-lv-immunized mice could activate endogenous CD8 T cells in an IFN-γ-dependent manner. We conclude that endogenous CD4 T cells can be activated by lv expressing Fc-tagged Ag to provide another layer of help--that is, creating a Th1/Tc1-like proinflammatory milieu within the tumor lesion to boost the effector phase of immune responses in enhancing the antitumor effect.
Collapse
Affiliation(s)
- Yuan Hong
- Immunology/Immunotherapy Program, Cancer Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
133
|
Palanee A, Pattarawat T. Study on the expression of co-stimulatory marker CD134 on CD4+ T cells in HIV-1-infected individuals. J Immunoassay Immunochem 2012; 33:195-202. [PMID: 22471609 DOI: 10.1080/15321819.2011.618861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CD4+CD25+CD134+ T cells play an important role in suppressing T cell responses to foreign pathogens, including human immunodeficiency virus (HIV). Thus, we aimed to investigate an increase in these populations in HIV-1-infected individuals. In this study, we used a panel of monoclonal antibodies staining of CD3/CD4/CD25/CD134. Without antigen stimulation, the expression of CD4+CD25+CD134+ T cells in 14 HIV-1-infected and 24 healthy individuals were 4.01% and 3.21%, respectively. However, there was an increase in the expression of CD4 + CD25+CD134+ T cells in HIV-1-infected individuals (6.85%) when stimulated with gag peptide. The upregulation of CD4+CD25+CD134+ T cells in HIV-1-infected individuals may result from activation of naturally occurring or by disease-associated antigen stimulation.
Collapse
Affiliation(s)
- Ammaranond Palanee
- Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
134
|
Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther 2012; 20:1242-50. [PMID: 22434135 DOI: 10.1038/mt.2012.18] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interleukin-10 (IL-10) is a key suppressor of inflammation in chronic infections and in cancer. In mice, the inability of the immune system to clear viral infections or inhibit tumor growth can be reversed by antibody-mediated blockade of IL-10 action. We used a modified selection protocol to isolate RNA-based, nuclease-resistant, aptamers that bind to the murine IL-10 receptor. After 5 rounds of selection high-throughput sequencing (HTS) was used to analyze the library. Using distribution statistics on about 11 million sequences, aptamers were identified which bound to IL-10 receptor in solution with low K(d). After 12 rounds of selection the predominant IL-10 receptor-binding aptamer identified in the earlier rounds remained, whereas other high-affinity aptamers were not detected. Prevalence of certain nucleotide (nt) substitutions in the sequence of a high-affinity aptamer present in round 5 was used to deduce its secondary structure and guide the truncation of the aptamer resulting in a shortened 48-nt long aptamer with increased affinity. The aptamer also bound to IL-10 receptor on the cell surface and blocked IL-10 function in vitro. Systemic administration of the truncated aptamer was capable of inhibiting tumor growth in mice to an extent comparable to that of an anti- IL-10 receptor antibody.
Collapse
|
135
|
Menicali E, Moretti S, Voce P, Romagnoli S, Avenia N, Puxeddu E. Intracellular signal transduction and modification of the tumor microenvironment induced by RET/PTCs in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2012; 3:67. [PMID: 22661970 PMCID: PMC3357465 DOI: 10.3389/fendo.2012.00067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/30/2012] [Indexed: 01/06/2023] Open
Abstract
RET gene rearrangements (RET/PTCs) represent together with BRAF point mutations the two major groups of mutations involved in papillary thyroid carcinoma (PTC) initiation and progression. In this review, we will examine the mechanisms involved in RET/PTC-induced thyroid cell transformation. In detail, we will summarize the data on the molecular mechanisms involved in RET/PTC formation and in its function as a dominant oncogene, on the activated signal transduction pathways and on the induced gene expression modifications. Moreover, we will report on the effects of RET/PTCs on the tumor microenvironment. Finally, a short review of the literature on RET/PTC prognostic significance will be presented.
Collapse
Affiliation(s)
- Elisa Menicali
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | - Sonia Moretti
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | - Pasquale Voce
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
| | | | - Nicola Avenia
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
- Dipartimento di Chirurgia, University of PerugiaPerugia, Italy
| | - Efisio Puxeddu
- Dipartimento di Medicina, University of PerugiaPerugia, Italy
- Centro di Proteomica e Genomica della Tiroide, University of PerugiaPerugia and Terni, Italy
- *Correspondence: Efisio Puxeddu, Dipartimento di Medicina, Sezione MIENDO, Via Enrico dal Pozzo – Padiglione X, 06126 Perugia, Italy. e-mail:
| |
Collapse
|
136
|
Fu YX. New immune therapy targets tumor-associated environment: from bone marrow to tumor site. Cell Mol Immunol 2011; 9:1-2. [PMID: 22157624 DOI: 10.1038/cmi.2011.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
137
|
Huijts CM, Santegoets SJ, van den Eertwegh AJ, Pijpers LS, Haanen JB, de Gruijl TD, Verheul HM, van der Vliet HJ. Phase I-II study of everolimus and low-dose oral cyclophosphamide in patients with metastatic renal cell cancer. BMC Cancer 2011; 11:505. [PMID: 22129044 PMCID: PMC3305518 DOI: 10.1186/1471-2407-11-505] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 11/30/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND For patients with metastatic renal cell cancer (mRCC) who progressed on vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor therapy, the orally administered mammalian target of rapamycin (mTOR) inhibitor everolimus has been shown to prolong progression free survival. Intriguingly, inhibition of mTOR also promotes expansion of immunosuppressive regulatory T cells (Tregs) that can inhibit anti-tumor immune responses in a clinically relevant way in various tumor types including RCC. This study intends to investigate whether the antitumor efficacy of everolimus can be increased by preventing the detrimental everolimus induced expansion of Tregs using a metronomic schedule of cyclophosphamide. METHODS/DESIGN This phase I-II trial is a national multi-center study of different doses and schedules of low-dose oral cyclophosphamide in combination with a fixed dose of everolimus in patients with mRCC not amenable to or progressive after a VEGF-receptor tyrosine kinase inhibitor containing treatment regimen. In the phase I part of the study the optimal Treg-depleting dose and schedule of metronomic oral cyclophosphamide when given in combination with everolimus will be determined. In the phase II part of the study we will evaluate whether the percentage of patients progression free at 4 months of everolimus treatment can be increased from 50% to 70% by adding metronomic cyclophosphamide (in the dose and schedule determined in the phase I part). In addition to efficacy, we will perform extensive immune monitoring with a focus on the number, phenotype and function of Tregs, evaluate the safety and feasibility of the combination of everolimus and cyclophosphamide, perform monitoring of selected angiogenesis parameters and analyze everolimus and cyclophosphamide drug levels. DISCUSSION This phase I-II study is designed to determine whether metronomic cyclophosphamide can be used to counter the mTOR inhibitor everolimus induced Treg expansion in patients with metastatic renal cell carcinoma and increase the antitumor efficacy of everolimus. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT01462214, EudraCT number 2010-024515-13, Netherlands Trial Register number NTR3085.
Collapse
Affiliation(s)
- Charlotte M Huijts
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
138
|
The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol 2011; 2011:430394. [PMID: 22110524 PMCID: PMC3216392 DOI: 10.1155/2011/430394] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/05/2023]
Abstract
Tumor cells commonly escape from elimination by innate and adaptive immune responses using multiple strategies among which is the active suppression of effector immune cells. Regulatory T lymphocytes (Treg) and tolerogenic dendritic cells play essential roles in the establishment and persistence of cancer-induced immunosuppression. Differentiating dendritic cells (DCs) exposed to tumor-derived factors may be arrested at an immature stage becoming inept at initiating immune responses and may induce effector T-cell anergy or deletion. These tolerogenic DCs, which accumulate in patients with different types of cancers, are also involved in the generation of Treg. In turn, Treg that expand during tumor progression contribute to the immune tolerance of cancer by impeding DCs' ability to orchestrate immune responses and by directly inhibiting antitumoral T lymphocytes. Herein we review these bidirectional communications between DCs and Treg as they relate to the promotion of cancer-induced tolerance.
Collapse
|
139
|
Côté AL, Byrne KT, Steinberg SM, Zhang P, Turk MJ. Protective CD8 memory T cell responses to mouse melanoma are generated in the absence of CD4 T cell help. PLoS One 2011; 6:e26491. [PMID: 22046294 PMCID: PMC3202545 DOI: 10.1371/journal.pone.0026491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma. METHODOLOGY AND PRINCIPAL FINDINGS To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (T(reg)) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete T(reg) cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision. CONCLUSIONS AND SIGNIFICANCE This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer.
Collapse
Affiliation(s)
- Anik L. Côté
- Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Katelyn T. Byrne
- Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Shannon M. Steinberg
- Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Peisheng Zhang
- Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
| | - Mary Jo Turk
- Dartmouth Medical School and the Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
140
|
Woller N, Knocke S, Mundt B, Gürlevik E, Strüver N, Kloos A, Boozari B, Schache P, Manns MP, Malek NP, Sparwasser T, Zender L, Wirth TC, Kubicka S, Kühnel F. Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. J Clin Invest 2011; 121:2570-82. [PMID: 21646722 DOI: 10.1172/jci45585] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 04/13/2011] [Indexed: 12/15/2022] Open
Abstract
Vaccination using DCs pulsed with tumor lysates or specific tumor-associated peptides has so far yielded limited clinical success for cancer treatment, due mainly to the low immunogenicity of tumor-associated antigens. In this study, we have identified intratumoral virus-induced inflammation as a precondition for effective antitumor DC vaccination in mice. Administration of a tumor-targeted DC vaccine during ongoing virus-induced tumor inflammation, a regimen referred to as oncolysis-assisted DC vaccination (ODC), elicited potent antitumoral CD8+ T cell responses. This potent effect was not replicated by TLR activation outside the context of viral infection. ODC-elicited immune responses mediated marked tumor regression and successful eradication of preestablished lung colonies, an essential prerequisite for potentially treating metastatic cancers. Unexpectedly, depletion of Tregs during ODC did not enhance therapeutic efficacy; rather, it abrogated antitumor cytotoxicity. This phenomenon could be attributed to a compensatory induction of myeloid-derived suppressor cells in Treg-depleted and thus vigorously inflamed tumors, which prevented ODC-mediated immune responses. Consequently, Tregs are not only general suppressors of immune responses, but are essential for the therapeutic success of multimodal and temporally fine-adjusted vaccination strategies. Our results highlight tumor-targeting, replication-competent viruses as attractive tools for eliciting effective antitumor responses upon DC vaccination.
Collapse
Affiliation(s)
- Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Wang YY, He XY, Cai YY, Wang ZJ, Lu SH. The variation of CD4+CD25+ regulatory T cells in the periphery blood and tumor microenvironment of non-small cell lung cancer patients and the downregulation effects induced by CpG ODN. Target Oncol 2011; 6:147-54. [PMID: 21611754 DOI: 10.1007/s11523-011-0182-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
The aim of the study was to observe the variation of CD4(+)CD25(+) regulatory T cells in periphery blood and tumor microenvironment of non-small cell lung cancer (NSCLC) patients and the effects of CpG ODN. The proportion of CD4(+)CD25(+) regulatory T cells, Foxp3 gene expression, levels of tumor growth factor-β (TGF-β) and immunoreactive fibronectin-γ (IFN-γ) in the periphery blood of 30 NSCLC patients and 30 healthy volunteers were compared. These indicators were compared before and after CpG ODN treatment. Foxp3 gene expression in the tumor microenvironment of NSCLC patients was also observed. The results showed CD4(+)CD25(+) regulatory T cell proportion, Foxp3 expression and TGF-β levels in the periphery blood of NSCLC patients were higher than those of healthy volunteers (p < 0.05), and these indicators of patients were significantly decreased after CpG ODN 2006 treatment (p < 0.05). Foxp3 expression in the metastatic lymph nodes was higher than that in the non-metastatic ones of NSCLC patients (p = 0.000). In conclusion, a rise in the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T cells was demonstrated in the periphery blood and tumor microenvironments of NSCLC patients. CpG ODN 2006 downregulated the CD4(+)CD25(+)Foxp3(+) regulatory T cells proportion and TGF-β levels in the periphery blood of these patients.
Collapse
Affiliation(s)
- Yan-Ying Wang
- Department of Geriatrics, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | | | | | | | | |
Collapse
|
142
|
Bhatia A, Kumar Y. Cancer-immune equilibrium: questions unanswered. CANCER MICROENVIRONMENT 2011; 4:209-17. [PMID: 21607751 DOI: 10.1007/s12307-011-0065-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 04/26/2011] [Indexed: 02/06/2023]
Abstract
Cancer-immune (CI) equilibrium constitutes an important component of the cancer immunoediting theory. It is defined as a period during which our immune system and cancer live in harmony in the body. The immune system, though not able to completely eliminate the cancer, doesn't allow it to progress or metastasize further. Mechanisms of this phase are poorly understood because this phase is difficult to identify even by the most modern detection methods. Till now, the work done on the equilibrium phase of cancer, suggests promising improvements in cancer therapy if the disease could be withheld in this phase. However, there are many queries which remain to be addressed about this interesting yet unresolved phase of cancer immunity.
Collapse
|
143
|
Quezada SA, Peggs KS, Simpson TR, Allison JP. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev 2011; 241:104-18. [PMID: 21488893 PMCID: PMC3727276 DOI: 10.1111/j.1600-065x.2011.01007.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The continual interaction of the immune system with a developing tumor is thought to result in the establishment of a dynamic state of equilibrium. This equilibrium depends on the balance between effector and regulatory T-cell compartments. Whereas regulatory T cells can infiltrate and accumulate within tumors, effector T cells fail to efficiently do so. Furthermore, effector T cells that do infiltrate the tumor become tightly controlled by different regulatory cellular subsets and inhibitory molecules. The outcome of this balance is critical to survival, and whereas in some cases the equilibrium can rapidly result in the elimination of the transformed cells by the immune system, in many other cases the tumor manages to escape immune control. In this review, we discuss relevant work focusing on the establishment of the intratumor balance, the dynamic changes in the populations of effector and regulatory T cells within the tumor, and the role of the tumor vasculature and its activation state in the recruitment of different T-cell subsets. Finally, we also discuss work associated to the manipulation of the immune response to tumors and its impact on the infiltration, accumulation, and function of tumor-reactive lymphocytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Sergio A. Quezada
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| | - Karl S. Peggs
- Department of Haematology, UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Tyler R. Simpson
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| | - James P. Allison
- Ludwig Center for Cancer Immunotherapy, Howard Hughes Medical Institute, and Department of Immunology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10021, USA
| |
Collapse
|
144
|
Depletion of CD25⁺ T cells from hematopoietic stem cell grafts increases posttransplantation vaccine-induced immunity to neuroblastoma. Blood 2011; 117:6952-62. [PMID: 21521781 DOI: 10.1182/blood-2010-12-326108] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A multifaceted immunotherapeutic strategy that includes hematopoietic stem cell (HSC) transplantation, T-cell adoptive transfer, and tumor vaccination can effectively eliminate established neuroblastoma tumors in mice. In vivo depletion of CD4⁺ T cells in HSC transplantation recipients results in increased antitumor immunity when adoptively transferred T cells are presensitized, but development of T-cell memory is severely compromised. Because increased percentages of regulatory T (Treg) cells are seen in HSC transplantation recipients, here we hypothesized that the inhibitory effect of CD4⁺ T cells is primarily because of the presence of expanded Treg cells. Remarkably, adoptive transfer of presensitized CD25-depleted T cells increased tumor vaccine efficacy. The enhanced antitumor effect achieved by ex vivo depletion of CD25⁺ Treg cells was similar to that achieved by in vivo depletion of all CD4⁺ T cells. Depletion of CD25⁺ Treg cells resulted in elevated frequencies of tumor-reactive CD8 and CD4⁺ T cells and increased CD8-to-Treg cell ratios inside tumor masses. All mice given presensitized CD25-depleted T cells survived a tumor rechallenge, indicating the development of long-term CD8⁺ T-cell memory to tumor antigens. These observations should aid in the future design of immunotherapeutic approaches that promote the generation of both acute and long-term antitumor immunity.
Collapse
|
145
|
Anz D, Mueller W, Golic M, Kunz WG, Rapp M, Koelzer VH, Ellermeier J, Ellwart JW, Schnurr M, Bourquin C, Endres S. CD103 is a hallmark of tumor-infiltrating regulatory T cells. Int J Cancer 2011; 129:2417-26. [PMID: 21207371 DOI: 10.1002/ijc.25902] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 11/29/2010] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Treg) mediate tolerance towards self-antigens by suppression of innate and adaptive immunity. In cancer patients, tumor-infiltrating FoxP3+ Treg suppress local anti-tumor immune responses and are often associated with poor prognosis. Markers that are selectively expressed on tumor-infiltrating Treg may serve as targets for immunotherapy of cancer. Here we show that CD103, an integrin mediating lymphocyte retention in epithelial tissues, is expressed at high levels on tumor-infiltrating FoxP3+ Treg in several types of murine cancer. In the CT26 model of colon cancer up to 90% of the intratumoral FoxP3+ cells expressed CD103 compared to less than 20% in lymphoid organs. CD103+ Treg suppressed T effector cell activation more strongly than CD103(neg) Treg. Expression of CD103 on Treg closely correlated with intratumoral levels of transforming growth factor β (TGF-β) and could be induced in a TGF-β-dependent manner by tumor cell lines. In vivo, gene silencing of TGF-β reduced the frequency of CD103+ Treg, demonstrating that CD103 expression on tumor-infiltrating Treg is driven by intratumoral TGF-β. Functional blockade of CD103 using a monoclonal antibody did however not reduce the number of intratumoral Treg, indicating that CD103 is not involved in homing or retention of FoxP3+ cells in the tumor tissue. In conclusion, expression of CD103 is a hallmark of Treg that infiltrate TGF-β-secreting tumors. CD103 thus represents an interesting target for selective depletion of tumor-infiltrating Treg, a strategy that may help to improve anti-cancer therapy.
Collapse
Affiliation(s)
- David Anz
- Center of Integrated Protein Science Munich, Division of Clinical Pharmacology, Ziemssenstrasse 1, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Hindley JP, Ferreira C, Jones E, Lauder SN, Ladell K, Wynn KK, Betts GJ, Singh Y, Price DA, Godkin AJ, Dyson J, Gallimore A. Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res 2011; 71:736-46. [PMID: 21156649 PMCID: PMC3128990 DOI: 10.1158/0008-5472.can-10-1797] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A significant enrichment of CD4(+)Foxp3(+) T cells (regulatory T cells, Treg) is frequently observed in murine and human carcinomas. As Tregs can limit effective antitumor immune responses, thereby promoting tumor progression, it is important that the mechanisms underpinning intratumoral accumulation of Tregs are identified. Because of evidence gathered mostly in vitro, the conversion of conventional T cells (Tconv) into Tregs has been proposed as one such mechanism. We assessed the contribution of conversion in vivo by analyzing the TCR (T-cell receptor) repertoires of Tconvs and Tregs in carcinogen-induced tumors in mice. Our results indicate that the TCR repertoires of Tregs and Tconvs within tumor-infiltrating lymphocytes (TIL) are largely distinct. Indeed, the cell population with the greatest degree of repertoire similarity with tumor-infiltrating Tregs was the Treg population from the tumor-draining lymph node. These findings demonstrate that conversion of Tconvs does not contribute significantly to the accumulation of tumor-infiltrating Tregs; rather, Tconvs and Tregs arise from different populations with unique TCR repertoires. Enrichment of Tregs within TILs most likely, therefore, reflects differences in the way that Tregs and Tconvs are influenced by the tumor microenvironment. Elucidating the nature of these influences may indicate how the balance between tumor-infiltrating Tregs and Tconvs can be manipulated for therapeutic purposes.
Collapse
Affiliation(s)
- James P Hindley
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Schlude C, Beckhove P. Immunology and immunotherapeutic approaches in multiple myeloma. Recent Results Cancer Res 2011; 183:97-109. [PMID: 21509682 DOI: 10.1007/978-3-540-85772-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immunotherapy for patients suffering from multiple myeloma is a lively and emerging field in cancer research. Immunotherapeutic approaches offer unique treatment opportunities for this, to date, mostly incurable disease. Respective basic findings and recent clinical approaches are introduced and discussed. Although several obstacles still need to be overcome, it appears that clinically efficient immunotherapies will become available for multiple myeloma patients in the future.
Collapse
|
148
|
Ottobrini L, Martelli C, Trabattoni DL, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging 2010; 38:949-68. [PMID: 21170525 DOI: 10.1007/s00259-010-1687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022]
Abstract
Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.
Collapse
Affiliation(s)
- Luisa Ottobrini
- Department of Biomedical Sciences and Technologies, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
149
|
Allogeneic effector/memory Th-1 cells impair FoxP3+ regulatory T lymphocytes and synergize with chaperone-rich cell lysate vaccine to treat leukemia. Blood 2010; 117:1555-64. [PMID: 21123824 DOI: 10.1182/blood-2010-06-288621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Therapeutic strategies combining the induction of effective antitumor immunity with the inhibition of the mechanisms of tumor-induced immunosuppression represent a key objective in cancer immunotherapy. Herein we demonstrate that effector/memory CD4(+) T helper-1 (Th-1) lymphocytes, in addition to polarizing type-1 antitumor immune responses, impair tumor-induced CD4(+)CD25(+)FoxP3(+) regulatory T lymphocyte (Treg) immunosuppressive function in vitro and in vivo. Th-1 cells also inhibit the generation of FoxP3(+) Tregs from naive CD4(+)CD25(-)FoxP3(-) T cells by an interferon-γ-dependent mechanism. In addition, in an aggressive mouse leukemia model (12B1), Th-1 lymphocytes act synergistically with a chaperone-rich cell lysate (CRCL) vaccine, leading to improved survival and long-lasting protection against leukemia. The combination of CRCL as a source of tumor-specific antigens and Th-1 lymphocytes as an adjuvant has the potential to stimulate efficient specific antitumor immunity while restraining Treg-induced suppression.
Collapse
|
150
|
Prato S, Mintern JD, Lahoud MH, Huang DC, Villadangos JA. Induction of antigen-specific effector-phase tolerance following vaccination against a previously ignored B-cell lymphoma. Immunol Cell Biol 2010; 89:595-603. [PMID: 21079642 DOI: 10.1038/icb.2010.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mechanisms of immune evasion during haematological malignancies are poorly understood. As lymphomas grow in lymphoid organs, it would be expected that if these lymphomas express neo-antigens they should be readily detected by the immune system. To test this assumption, we generated a new non-Hodgkin B-cell lymphoma model expressing the model tumour neo-antigen Ovalbumin (OVA), and analysed the endogenous antigen-specific CD8(+) T-cell response that it elicited in recipient mice. The OVA+ lymphoma cells were eliminated by cytotoxic T lymphocytes (CTL) in mice that had been previously vaccinated against OVA. In contrast, the immune system of naïve mice ignored the malignant cells even though these continuously expressed and presented OVA on their MHC class I molecules. This state of ignorance could be overcome by therapeutic vaccination, which led to the expansion of endogenous anti-OVA-specific CD8(+) T cells. However, the cytotoxic and interferon-γ secretion capacity of these T cells were impaired. The tumour model that we describe thus reproduces several key aspects of human lymphoma; tumor ignorance can be broken by vaccination but the ensuing immune response remains ineffective. This model can be exploited to further understand the mechanisms of lymphoma immunoevasion and devise effective immunotherapy.
Collapse
Affiliation(s)
- Sandro Prato
- Department of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|