101
|
Copy-number variation associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2015; 30:487-95. [PMID: 25270717 DOI: 10.1007/s00467-014-2962-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND The most common cause of end-stage renal disease in children can be attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Despite this high incidence of disease, the genetic mutations responsible for the majority of CAKUT cases remain unknown. METHODS To identify novel genomic regions associated with CAKUT, we screened 178 children presenting with the entire spectrum of structural anomalies associated with CAKUT for submicroscopic chromosomal imbalances (deletions or duplications) using single-nucleotide polymorphism (SNP) microarrays. RESULTS Copy-number variation (CNV) was detected in 10.1 % (18/178) of the patients; in 6.2 % of the total cohort, novel duplications or deletions of unknown significance were identified, and the remaining 3.9 % harboured CNV of known pathogenicity. CNVs were inherited in 90 % (9/10) of the families tested. In this cohort, patients diagnosed with multicystic dysplastic kidney (30 %) and posterior urethral valves (24 %) had a higher incidence of CNV. CONCLUSIONS The genes contained in the altered genomic regions represent novel candidates for CAKUT. This study has demonstrated that a significant proportion of patients with CAKUT harbour submicroscopic chromosomal imbalances, warranting screening in clinics for CNV.
Collapse
|
102
|
Chen H, Xu J, Zhou Y, Gao Y, Wang G, Xia J, Huen MSY, Siok WT, Jiang Y, Tan LH, Sun Y. Association study of stuttering candidate genes GNPTAB, GNPTG and NAGPA with dyslexia in Chinese population. BMC Genet 2015; 16:7. [PMID: 25643770 PMCID: PMC4342093 DOI: 10.1186/s12863-015-0172-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022] Open
Abstract
Background Dyslexia is a polygenic speech and language disorder characterized by an unexpected difficulty in reading in children and adults despite normal intelligence and schooling. Increasing evidence reveals that different speech and language disorders could share common genetic factors. As previous study reported association of GNPTAB, GNPTG and NAGPA with stuttering, we investigated these genes with dyslexia through association analysis. Results The study was carried out in an unrelated Chinese cohort with 502 dyslexic individuals and 522 healthy controls. In all, 21 Tag SNPs covering GNPTAB, GNPTG and NAGPA were subjected to genotyping. Association analysis was performed on all SNPs. Significant association of rs17031962 in GNPTAB and rs882294 in NAGPA with developmental dyslexia was identified after FDR correction for multiple comparisons. Conclusion Our results revealed that the stuttering risk genes GNPTAB and NAGPA might also associate with developmental dyslexia in the Chinese population. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0172-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.
| | - Junquan Xu
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China. .,CapitalBio Corporation, Beijing, 102206, China.
| | - Yuxi Zhou
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China. .,CapitalBio Corporation, Beijing, 102206, China.
| | - Yong Gao
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China. .,CapitalBio Corporation, Beijing, 102206, China.
| | - Guoqing Wang
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China. .,CapitalBio Corporation, Beijing, 102206, China.
| | - Jiguang Xia
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China. .,CapitalBio Corporation, Beijing, 102206, China.
| | - Michael S Y Huen
- Department of Anatomy, The University of Hong Kong, Hong Kong, China.
| | - Wai Ting Siok
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China. .,School of Humanities, The University of Hong Kong, Hong Kong, China.
| | - Yuyang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.
| | - Li Hai Tan
- Neuroimaging Laboratory, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, China. .,Guangdong Key Laboratory of Biomedical Information Detection and Ultrasound Imaging, Shenzhen, 518060, China.
| | - Yimin Sun
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China. .,CapitalBio Corporation, Beijing, 102206, China. .,The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, China. .,Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.
| |
Collapse
|
103
|
No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins. PLoS Genet 2015; 11:e1004852. [PMID: 25621974 PMCID: PMC4306541 DOI: 10.1371/journal.pgen.1004852] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/26/2014] [Indexed: 11/19/2022] Open
Abstract
Contactins and Contactin-Associated Proteins, and Contactin-Associated
Protein-Like 2 (CNTNAP2) in particular, have been widely cited
as autism risk genes based on findings from homozygosity mapping, molecular
cytogenetics, copy number variation analyses, and both common and rare single
nucleotide association studies. However, data specifically with regard to the
contribution of heterozygous single nucleotide variants (SNVs) have been
inconsistent. In an effort to clarify the role of rare point mutations in
CNTNAP2 and related gene families, we have conducted
targeted next-generation sequencing and evaluated existing sequence data in
cohorts totaling 2704 cases and 2747 controls. We find no evidence for
statistically significant association of rare heterozygous mutations in any of
the CNTN or CNTNAP genes, including
CNTNAP2, placing marked limits on the scale of their
plausible contribution to risk. Prior genetic studies of autism spectrum disorders (ASD) have demonstrated a
role for Contactin-Associated Protein-Like 2 protein
(CNTNAP2), as well as for other genes that code for
Contactin proteins and Contactin-Associated Proteins. While there is strong
evidence that the loss of two copies of the gene CNTNAP2
causes autism and epilepsy, the impact of mutations in only one copy of this
gene, or in only one copy of related genes, is less clear. We performed
large-scale DNA sequencing on a cohort of over 1000 autism patients and
nearly 1000 unaffected controls and did not find significant association at
any of 6 genes in the Contactin family and 4 genes in the
Contactin-Associated Protein family when looking for rare mutations that are
predicted to be disruptive to the protein’s function and are present
in only one copy of the respective gene. We then combined the data on
CNTNAP2 from our laboratory with
CNTNAP2 data from another research laboratory, and
found no significant association of deleterious heterozygous mutations at
this gene. Given the paucity of nonsense mutations identified across the
combined sample, an assessment of their impact was circumscribed. However,
missense heterozygous mutations in CNTNAP2 and in other
Contactins or Contactin-Associated Proteins are not elevated in affected
individuals versus controls and, consequently, do not have a marked impact,
as a group, on the risk for autism spectrum disorders.
Collapse
|
104
|
Insights into the genetic foundations of human communication. Neuropsychol Rev 2015; 25:3-26. [PMID: 25597031 DOI: 10.1007/s11065-014-9277-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
Abstract
The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.
Collapse
|
105
|
Genin EC, Caron N, Vandenbosch R, Nguyen L, Malgrange B. Concise review: forkhead pathway in the control of adult neurogenesis. Stem Cells 2015; 32:1398-407. [PMID: 24510844 DOI: 10.1002/stem.1673] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/23/2022]
Abstract
New cells are continuously generated from immature proliferating cells in the adult brain in two neurogenic niches known as the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the lateral ventricles. However, the molecular mechanisms regulating their proliferation, differentiation, migration and functional integration of newborn neurons in pre-existing neural network remain largely unknown. Forkhead box (Fox) proteins belong to a large family of transcription factors implicated in a wide variety of biological processes. Recently, there has been accumulating evidence that several members of this family of proteins play important roles in adult neurogenesis. Here, we describe recent advances in our understanding of regulation provided by Fox factors in adult neurogenesis, and evaluate the potential role of Fox proteins as targets for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Emmanuelle C Genin
- GIGA-Neurosciences, Developmental Neurobiology Unit, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
106
|
Park Y, Won S, Nam M, Chung JH, Kwack K. Interaction between MAOA and FOXP2 in association with autism and verbal communication in a Korean population. J Child Neurol 2014; 29:NP207-11. [PMID: 24356376 DOI: 10.1177/0883073813511301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Expression levels of monoamine oxidase A (MAOA), the enzyme that related to monoamine neurotransmitters metabolism such as serotonin, are related to schizophrenia and autism spectrum disorder. Forkhead box protein P2 (FOXP2), a transcription factor, is associated with abnormal language development and is expressed in several areas of the central nervous system in response to serotonin. For this reason, we undertook interaction analysis between MAOA and FOXP2 in autism spectrum disorder, including testing the verbal communication score of the childhood autism rating scale. In interaction analysis, the FOXP2-TCGC (rs12531289-rs1350135-rs10230087-rs2061183) diplotype and MAOA-TCG (rs6323-rs1801291-rs3027407) haplotype were significantly associated with autism spectrum disorder in males. However, when the interaction term was omitted, neither MAOA nor FOXP2 was associated with autism spectrum disorder or verbal communication. These results indicate that language and speech ability is affected by an interaction between FOXP2 and MAOA, but not by either gene separately.
Collapse
Affiliation(s)
- YoungJoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - SeongSik Won
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| | - Min Nam
- Seoul Metropolitan Children's Hospital, Heolleungno, Seocho-gu, Seoul, Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Korea
| |
Collapse
|
107
|
Boeckx C, Benítez-Burraco A. Globularity and language-readiness: generating new predictions by expanding the set of genes of interest. Front Psychol 2014; 5:1324. [PMID: 25505436 PMCID: PMC4243498 DOI: 10.3389/fpsyg.2014.01324] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
This study builds on the hypothesis put forth in Boeckx and Benítez-Burraco (2014), according to which the developmental changes expressed at the levels of brain morphology and neural connectivity that resulted in a more globular braincase in our species were crucial to understand the origins of our language-ready brain. Specifically, this paper explores the links between two well-known 'language-related' genes like FOXP2 and ROBO1 implicated in vocal learning and the initial set of genes of interest put forth in Boeckx and Benítez-Burraco (2014), with RUNX2 as focal point. Relying on the existing literature, we uncover potential molecular links that could be of interest to future experimental inquiries into the biological foundations of language and the testing of our initial hypothesis. Our discussion could also be relevant for clinical linguistics and for the interpretation of results from paleogenomics.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | | |
Collapse
|
108
|
Abstract
The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.
Collapse
|
109
|
Fu L, Shi Z, Luo G, Tu W, Wang X, Fang Z, Li X. Multiple microRNAs regulate human FOXP2 gene expression by targeting sequences in its 3' untranslated region. Mol Brain 2014; 7:71. [PMID: 25269856 PMCID: PMC4189591 DOI: 10.1186/s13041-014-0071-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/18/2014] [Indexed: 01/11/2023] Open
Abstract
Background Mutations in the human FOXP2 gene cause speech and language impairments. The FOXP2 protein is a transcription factor that regulates the expression of many downstream genes, which may have important roles in nervous system development and function. An adequate amount of functional FOXP2 protein is thought to be critical for the proper development of the neural circuitry underlying speech and language. However, how FOXP2 gene expression is regulated is not clearly understood. The FOXP2 mRNA has an approximately 4-kb-long 3′ untranslated region (3′ UTR), twice as long as its protein coding region, indicating that FOXP2 can be regulated by microRNAs (miRNAs). Findings We identified multiple miRNAs that regulate the expression of the human FOXP2 gene using sequence analysis and in vitro cell systems. Focusing on let-7a, miR-9, and miR-129-5p, three brain-enriched miRNAs, we show that these miRNAs regulate human FOXP2 expression in a dosage-dependent manner and target specific sequences in the FOXP2 3′ UTR. We further show that these three miRNAs are expressed in the cerebellum of the human fetal brain, where FOXP2 is known to be expressed. Conclusions Our results reveal novel regulatory functions of the human FOXP2 3′ UTR sequence and regulatory interactions between multiple miRNAs and the human FOXP2 gene. The expression of let-7a, miR-9, and miR-129-5p in the human fetal cerebellum is consistent with their roles in regulating FOXP2 expression during early cerebellum development. These results suggest that various genetic and environmental factors may contribute to speech and language development and related neural developmental disorders via the miRNA-FOXP2 regulatory network. Electronic supplementary material The online version of this article (doi:10.1186/s13041-014-0071-0) contains supplementary material, which is available to authorized users.
Collapse
|
110
|
Bohland JW, Myers EM, Kim E. An informatics approach to integrating genetic and neurological data in speech and language neuroscience. Neuroinformatics 2014; 12:39-62. [PMID: 23949335 DOI: 10.1007/s12021-013-9201-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A number of heritable disorders impair the normal development of speech and language processes and occur in large numbers within the general population. While candidate genes and loci have been identified, the gap between genotype and phenotype is vast, limiting current understanding of the biology of normal and disordered processes. This gap exists not only in our scientific knowledge, but also in our research communities, where genetics researchers and speech, language, and cognitive scientists tend to operate independently. Here we describe a web-based, domain-specific, curated database that represents information about genotype-phenotype relations specific to speech and language disorders, as well as neuroimaging results demonstrating focal brain differences in relevant patients versus controls. Bringing these two distinct data types into a common database ( http://neurospeech.org/sldb ) is a first step toward bringing molecular level information into cognitive and computational theories of speech and language function. One bridge between these data types is provided by densely sampled profiles of gene expression in the brain, such as those provided by the Allen Brain Atlases. Here we present results from exploratory analyses of human brain gene expression profiles for genes implicated in speech and language disorders, which are annotated in our database. We then discuss how such datasets can be useful in the development of computational models that bridge levels of analysis, necessary to provide a mechanistic understanding of heritable language disorders. We further describe our general approach to information integration, discuss important caveats and considerations, and offer a specific but speculative example based on genes implicated in stuttering and basal ganglia function in speech motor control.
Collapse
Affiliation(s)
- Jason W Bohland
- Departments of Health Sciences and Speech, Language, and Hearing Sciences, Boston University, 635 Commonwealth Ave, Room 403, Boston, MA, 02215, USA,
| | | | | |
Collapse
|
111
|
Devanna P, Middelbeek J, Vernes SC. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways. Front Cell Neurosci 2014; 8:305. [PMID: 25309332 PMCID: PMC4176457 DOI: 10.3389/fncel.2014.00305] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/10/2014] [Indexed: 11/14/2022] Open
Abstract
FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.
Collapse
Affiliation(s)
- Paolo Devanna
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Jeroen Middelbeek
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Netherlands
| | - Sonja C Vernes
- Language and Genetics Department, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| |
Collapse
|
112
|
Abstract
Specific language impairment (SLI) is a multifactorial neurodevelopmental disorder which occurs unexpectedly and without an obvious cause. Over a decade of research suggests that SLI is highly heritable. Several genes and loci have already been implicated in SLI through linkage and targeted association methods. Recently, genome-wide association studies (GWAS) of SLI and language traits in the general population have been reported and, consequently, new candidate genes have been identified. This review aims to summarise the literature concerning genome-wide studies of SLI. In addition, this review highlights the methodologies that have been used to research the genetics of SLI to date, and also considers the current, and future, contributions that GWAS can offer.
Collapse
Affiliation(s)
- Rose H Reader
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Laura E Covill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Ron Nudel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN UK ; St John's College, University of Oxford, Oxford, OX1 3JP UK
| |
Collapse
|
113
|
De novo TBR1 mutations in sporadic autism disrupt protein functions. Nat Commun 2014; 5:4954. [PMID: 25232744 DOI: 10.1038/ncomms5954] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/11/2014] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing recently revealed that recurrent disruptive mutations in a few genes may account for 1% of sporadic autism cases. Coupling these novel genetic data to empirical assays of protein function can illuminate crucial molecular networks. Here we demonstrate the power of the approach, performing the first functional analyses of TBR1 variants identified in sporadic autism. De novo truncating and missense mutations disrupt multiple aspects of TBR1 function, including subcellular localization, interactions with co-regulators and transcriptional repression. Missense mutations inherited from unaffected parents did not disturb function in our assays. We show that TBR1 homodimerizes, that it interacts with FOXP2, a transcription factor implicated in speech/language disorders, and that this interaction is disrupted by pathogenic mutations affecting either protein. These findings support the hypothesis that de novo mutations in sporadic autism have severe functional consequences. Moreover, they uncover neurogenetic mechanisms that bridge different neurodevelopmental disorders involving language deficits.
Collapse
|
114
|
Stuttering candidate genes DRD2 but not SLC6A3 is associated with developmental dyslexia in Chinese population. Behav Brain Funct 2014; 10:29. [PMID: 25178928 PMCID: PMC4236612 DOI: 10.1186/1744-9081-10-29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 12/31/2022] Open
Abstract
Background Dyslexia is a polygenic developmental disorder characterized by difficulties in reading and spelling despite normal intelligence, educational backgrounds and perception. Increasing evidences indicated that dyslexia may share similar genetic mechanisms with other speech and language disorders. We proposed that stuttering candidate genes, DRD2 and SLC6A3, might be associated with dyslexia. Methods and results The study was conducted in an unrelated Chinese cohort with 502 dyslexic cases and 522 healthy controls. In total, 23 Tag SNPs covering the two genes were selected for genotyping through Tagger program. Association analysis was performed on each SNP alone and in haplotypes. One SNP markers in DRD2 showed significant association with developmental dyslexia. Conclusion These findings indicate that polymorphism of DRD2 gene may be a risk factor of developmental dyslexia in the Chinese population.
Collapse
|
115
|
Transcriptional Regulation by FOXP1, FOXP2, and FOXP4 Dimerization. J Mol Neurosci 2014; 55:437-48. [DOI: 10.1007/s12031-014-0359-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
116
|
Hoogman M, Guadalupe T, Zwiers MP, Klarenbeek P, Francks C, Fisher SE. Assessing the effects of common variation in the FOXP2 gene on human brain structure. Front Hum Neurosci 2014; 8:473. [PMID: 25013396 PMCID: PMC4076884 DOI: 10.3389/fnhum.2014.00473] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/09/2014] [Indexed: 02/05/2023] Open
Abstract
The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques.
Collapse
Affiliation(s)
- Martine Hoogman
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Tulio Guadalupe
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands
| | - Marcel P Zwiers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Patricia Klarenbeek
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Clyde Francks
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Simon E Fisher
- Department of Language and Genetics, Max Planck Institute for Psycholinguistics Nijmegen, Netherlands ; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
117
|
Deriziotis P, Graham SA, Estruch SB, Fisher SE. Investigating protein-protein interactions in live cells using bioluminescence resonance energy transfer. J Vis Exp 2014. [PMID: 24893771 DOI: 10.3791/51438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Collapse
Affiliation(s)
- Pelagia Deriziotis
- Language and Genetics Department, Max Planck Institute for Psycholinguistics
| | - Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics
| | - Sara B Estruch
- Language and Genetics Department, Max Planck Institute for Psycholinguistics
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour;
| |
Collapse
|
118
|
Brain mechanisms of acoustic communication in humans and nonhuman primates: An evolutionary perspective. Behav Brain Sci 2014; 37:529-46. [DOI: 10.1017/s0140525x13003099] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractAny account of “what is special about the human brain” (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a “phylogenetic trend” associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specificFOXP2mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a “nonverbal matrix” (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the “first word” (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the “renaissance” of an ancient organizational principle and, hence, may represent an example of “evolutionary tinkering” (Jacob 1977).
Collapse
|
119
|
Peter B, Matsushita M, Oda K, Raskind W. De novo microdeletion of BCL11A is associated with severe speech sound disorder. Am J Med Genet A 2014; 164A:2091-6. [PMID: 24810580 DOI: 10.1002/ajmg.a.36599] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
In 10 cases of 2p15p16.1 microdeletions reported worldwide to date, shared phenotypes included growth retardation, craniofacial and skeletal dysmorphic traits, internal organ defects, intellectual disability, nonverbal or low verbal status, abnormal muscle tone, and gross motor delays. The size of the deletions ranged from 0.3 to 5.7 Mb, where the smallest deletion involved the BCL11A, PAPOLG, and REL genes. Here we report on an 11-year-old male with a heterozygous de novo 0.2 Mb deletion containing a single gene, BCL11A, and a phenotype characterized by childhood apraxia of speech and dysarthria in the presence of general oral and gross motor dyspraxia and hypotonia as well as expressive language and mild intellectual delays. BCL11A is situated within the dyslexia susceptibility candidate region 3 (DYX3) candidate region on chromosome 2. The present case is the first to involve a single gene within the microdeletion region and a phenotype restricted to a subset of the traits observed in other cases with more extensive deletions.
Collapse
Affiliation(s)
- Beate Peter
- Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
120
|
Han TU, Park J, Domingues CF, Moretti-Ferreira D, Paris E, Sainz E, Gutierrez J, Drayna D. A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering. Neurobiol Dis 2014; 69:23-31. [PMID: 24807205 DOI: 10.1016/j.nbd.2014.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 04/09/2014] [Accepted: 04/27/2014] [Indexed: 11/24/2022] Open
Abstract
A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls. This was compared to the distribution of variants in the GNPTAB, GNPTG, and NAGPA genes which have previously been associated with persistent stuttering. Using an expanded subject data set, we again found that NAGPA showed significantly different mutation frequencies in North Americans of European descent (p=0.0091) and a significant difference existed in the mutation frequency of GNPTAB in Brazilians (p=0.00050). No significant differences in mutation frequency in the FOXP2 and CNTNAP2 genes were observed between cases and controls. To examine the pattern of expression of these five genes in the human brain, real time quantitative reverse transcription PCR was performed on RNA purified from 27 different human brain regions. The expression patterns of FOXP2 and CNTNAP2 were generally different from those of GNPTAB, GNPTG and NAPGA in terms of relatively lower expression in the cerebellum. This study provides an improved estimate of the contribution of mutations in GNPTAB, GNPTG and NAGPA to persistent stuttering, and suggests that variants in FOXP2 and CNTNAP2 are not involved in the genesis of familial persistent stuttering. This, together with the different brain expression patterns of GNPTAB, GNPTG, and NAGPA compared to that of FOXP2 and CNTNAP2, suggests that the genetic neuropathological origins of stuttering differ from those of verbal dyspraxia and SLI.
Collapse
Affiliation(s)
- Tae-Un Han
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - John Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Carlos F Domingues
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; Department of Genetics, Institute of Bioscience, São Paulo State University (UNESP), Botucatu, São Paulo 18618-000, Brazil
| | - Danilo Moretti-Ferreira
- Department of Genetics, Institute of Bioscience, São Paulo State University (UNESP), Botucatu, São Paulo 18618-000, Brazil
| | - Emily Paris
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Eduardo Sainz
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Joanne Gutierrez
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Dennis Drayna
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
121
|
Lawton KJ, Wassmer TL, Deitcher DL. Conserved role of Drosophila melanogaster FoxP in motor coordination and courtship song. Behav Brain Res 2014; 268:213-21. [PMID: 24747661 DOI: 10.1016/j.bbr.2014.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 01/03/2023]
Abstract
FoxP2 is a highly conserved vertebrate transcription factor known for its importance in human speech and language production. Disruption of FoxP2 in several vertebrate models indicates a conserved functional role for this gene in both sound production and motor coordination. Although FoxP2 is known to be strongly expressed in brain regions important for motor coordination, little is known about FoxP2's role in the nervous system. The recent discovery of the well-conserved Drosophila melanogaster homolog, FoxP, provides an opportunity to study the role of this crucial gene in an invertebrate model. We hypothesized that, like FoxP2, Drosophila FoxP is important for behaviors requiring fine motor coordination. We used targeted RNA interference to reduce expression of FoxP and assayed the effects on a variety of adult behaviors. Male flies with reduced FoxP expression exhibit decreased levels of courtship behavior, altered pulse-song structure, and sex-specific motor impairments in walking and flight. Acute disruption of synaptic activity in FoxP expressing neurons using a temperature-sensitive shibire allele dramatically impaired motor coordination. Utilizing a GFP reporter to visualize FoxP in the fly brain reveals expression in relatively few neurons in distributed clusters within the larval and adult CNS, including distinct labeling of the adult protocerebral bridge - a section of the insect central complex known to be important for motor coordination and thought to be homologous to areas of the vertebrate basal ganglia. Our results establish the necessity of this gene in motor coordination in an invertebrate model and suggest a functional homology with vertebrate FoxP2.
Collapse
Affiliation(s)
- Kristy J Lawton
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd., Mudd Hall, Ithaca, NY 14853, USA.
| | - Taryn L Wassmer
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd., Mudd Hall, Ithaca, NY 14853, USA
| | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd., Mudd Hall, Ithaca, NY 14853, USA
| |
Collapse
|
122
|
Huang CH, Peng SSF, Weng WC, Su YN, Lee WT. The relationship of neuroimaging findings and neuropsychiatric comorbidities in children with tuberous sclerosis complex. J Formos Med Assoc 2014; 114:849-54. [PMID: 24698169 DOI: 10.1016/j.jfma.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 02/23/2014] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND/PURPOSE To clarify the relationship between neuroimaging findings, neuropsychiatric comorbidities, and epilepsy in patients with tuberous sclerosis complex (TSC) in Taiwan. METHODS Medical records from 32 patients with TSC were retrospectively reviewed, including mutational analysis, neuroimaging findings, electroencephalogram findings, and neuropsychiatric comorbidities. RESULTS Of these patients, six (18.75%) were diagnosed to have autism spectrum disorders (ASD), and 10 (31.25%) were diagnosed to have attention-deficit-hyperactivity disorder. In the latter patients, there were no differences in the regional distribution of tuber burden. In addition to a high prevalence of cystic-like tubers, tubers in insular and temporal areas were associated with ASD. Nonsense mutations in the TSC2 gene group had a correlation with autistic behavior. In 26 (81.25%) patients with a history of epilepsy, infantile spasms and partial seizures were the predominant type of epilepsy. Most of them developed seizures prior to age 1 year. CONCLUSION ASD is a common comorbidity in TSC. Cortical tubers in the temporal lobe and insular area were associated with ASD. The presence of cystic-like tubers on magnetic resonance imaging may also offer a structural marker for ASD in TSC.
Collapse
Affiliation(s)
- Cheng-Hsien Huang
- Department of Pediatrics, Taipei City Hospital, Yang Ming Branch, Taipei, Taiwan
| | | | - Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ning Su
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
| | | |
Collapse
|
123
|
McCarthy-Jones S, Green MJ, Scott RJ, Tooney PA, Cairns MJ, Wu JQ, Oldmeadow C, Carr V. Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia. J Psychiatr Res 2014; 50:66-72. [PMID: 24360035 DOI: 10.1016/j.jpsychires.2013.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The FOXP2 gene is involved in the development of speech and language. As some single nucleotide polymorphisms (SNPs) of FOXP2 have been found to be associated with auditory verbal hallucinations (AVHs) at trend levels, this study set out to undertake the first examination into whether interactions between candidate FOXP2 SNPs and environmental factors (specifically, child abuse) predict the likelihood of AVHs. METHOD Data on parental child abuse and FOXP2 SNPs previously linked to AVHs (rs1456031, rs2396753, rs2253478) were obtained from the Australian Schizophrenia Research Bank for people with schizophrenia-spectrum disorders, both with (n = 211) and without (n = 122) a lifetime history of AVHs. RESULTS Genotypic frequencies did not differ between the two groups; however, logistic regression found that childhood parental emotional abuse (CPEA) interacted with rs1456031 to predict lifetime experience of AVH. CPEA was only associated with significantly higher levels of AVHs in people with CC genotypes (odds ratio = 4.25), yet in the absence of CPEA, people with TT genotypes had significantly higher levels of AVHs than people with CC genotypes (odds ratio = 4.90). This interaction was specific to auditory verbal hallucinations, and did not predict the likelihood of non-verbal auditory hallucinations. CONCLUSIONS Our findings offer tentative evidence that FOXP2 may be a susceptibility gene for AVHs, influencing the probability people experience AVHs in the presence and absence of CPEA. However, these findings are in need of replication in a larger study that addresses the methodological limitations of the present investigation.
Collapse
Affiliation(s)
- Simon McCarthy-Jones
- ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, NSW, Australia.
| | - Melissa J Green
- ARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia
| | - Rodney J Scott
- Schizophrenia Research Institute, Sydney, NSW, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health and Centre for Information-Based Medicine, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, NSW, Australia; Hunter Area Pathology Service, Newcastle, NSW, Australia
| | - Paul A Tooney
- Schizophrenia Research Institute, Sydney, NSW, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health and Centre for Information-Based Medicine, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, NSW, Australia
| | - Murray J Cairns
- Schizophrenia Research Institute, Sydney, NSW, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health and Centre for Information-Based Medicine, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, NSW, Australia
| | - Jing Qin Wu
- Schizophrenia Research Institute, Sydney, NSW, Australia; School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Brain and Mental Health and Centre for Information-Based Medicine, University of Newcastle, Newcastle, NSW, Australia; Hunter Medical Research Institute, NSW, Australia
| | - Christopher Oldmeadow
- Hunter Medical Research Institute, NSW, Australia; Faculty of Health, University of Newcastle, NSW, Australia
| | - Vaughan Carr
- School of Psychiatry, Faculty of Medicine, University of New South Wales, NSW, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia
| | | |
Collapse
|
124
|
Shrinkage of X cells in the lateral geniculate nucleus after monocular deprivation revealed by FoxP2 labeling. Vis Neurosci 2014; 31:253-61. [PMID: 24480423 DOI: 10.1017/s0952523813000643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The parallel processing of visual features by distinct neuron populations is a central characteristic of the mammalian visual system. In the A laminae of the cat dorsal lateral geniculate nucleus (dLGN), parallel processing streams originate from two principal neuron types, called X and Y cells. Disruption of visual experience early in life by monocular deprivation has been shown to alter the structure and function of Y cells, but the extent to which deprivation influences X cells remains less clear. A transcription factor, FoxP2, has recently been shown to selectively label X cells in the ferret dLGN and thus provides an opportunity to examine whether monocular deprivation alters the soma size of X cells. In this study, FoxP2 labeling was examined in the dLGN of normal and monocularly deprived cats. The characteristics of neurons labeled for FoxP2 were consistent with FoxP2 being a marker for X cells in the cat dLGN. Monocular deprivation for either a short (7 days) or long (7 weeks) duration did not alter the density of FoxP2-positive neurons between nondeprived and deprived dLGN layers. However, for each deprived animal examined, measurement of the cross-sectional area of FoxP2-positive neurons (X cells) revealed that within deprived layers, X cells were smaller by approximately 20% after 7 days of deprivation, and by approximately 28% after 7 weeks of deprivation. The observed alteration to the cross-sectional area of X cells indicates that perturbation of this major pathway contributes to the functional impairments that develop from monocular deprivation.
Collapse
|
125
|
Condro MC, White SA. Recent Advances in the Genetics of Vocal Learning. COMPARATIVE COGNITION & BEHAVIOR REVIEWS 2014; 9:75-98. [PMID: 26052371 DOI: 10.3819/ccbr.2014.90003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future.
Collapse
Affiliation(s)
- Michael C Condro
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles
| | - Stephanie A White
- Department of Integrative Biology and Physiology, University of California, Los Angeles
| |
Collapse
|
126
|
miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches. J Neurosci 2013; 33:16510-21. [PMID: 24133256 DOI: 10.1523/jneurosci.0838-13.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3'-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3'-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network.
Collapse
|
127
|
Eicher JD, Gruen JR. Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Mol Genet Metab 2013; 110:201-12. [PMID: 23916419 PMCID: PMC3800223 DOI: 10.1016/j.ymgme.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022]
Abstract
Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia.
Collapse
Affiliation(s)
- John D. Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Jeffrey R. Gruen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
- Departments of Pediatrics and Investigative Medicine, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
128
|
Bonora E, Rizzato C, Diquigiovanni C, Oudot-Mellakh T, Campa D, Vargiolu M, Guedj M, McKay JD, Romeo G, Canzian F, Lesueur F. TheFOXE1locus is a major genetic determinant for familial nonmedullary thyroid carcinoma. Int J Cancer 2013; 134:2098-107. [DOI: 10.1002/ijc.28543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/27/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Elena Bonora
- Unit of Medical Genetics Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | - Cosmeri Rizzato
- Genomic Epidemiology Group; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Chiara Diquigiovanni
- Unit of Medical Genetics Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | | | - Daniele Campa
- Genomic Epidemiology Group; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Manuela Vargiolu
- Health Sciences and Technologies Interdepartmental Center for Industrial Research; University of Bologna; Bologna Italy
| | | | - James D. McKay
- Genetic Cancer Susceptibility, International Agency for Research on Cancer (IARC), Lyon; France
| | - Giovanni Romeo
- Unit of Medical Genetics Department of Medical and Surgical Sciences; University of Bologna; Bologna Italy
| | - Federico Canzian
- Genomic Epidemiology Group; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Fabienne Lesueur
- Genetic Cancer Susceptibility, International Agency for Research on Cancer (IARC), Lyon; France
- INSERM, U900, Institut Curie, Mines ParisTech, 26 rue d'Ulm, 75248 Paris cedex 05; France
| | | |
Collapse
|
129
|
Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM, Jakielski KJ, Dimmock DP, Strand EA, Shriberg LD. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J Neurodev Disord 2013; 5:29. [PMID: 24083349 PMCID: PMC3851280 DOI: 10.1186/1866-1955-5-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022] Open
Abstract
Background Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. Methods As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker’s speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Results Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Conclusions Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.
Collapse
Affiliation(s)
- Elizabeth A Worthey
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Le Fevre AK, Taylor S, Malek NH, Horn D, Carr CW, Abdul-Rahman OA, O'Donnell S, Burgess T, Shaw M, Gecz J, Bain N, Fagan K, Hunter MF. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet A 2013; 161A:3166-75. [PMID: 24214399 DOI: 10.1002/ajmg.a.36174] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/15/2013] [Indexed: 12/19/2022]
Abstract
Mutations in FOXP1, located at 3p13, have been reported in patients with global developmental delay (GDD), intellectual disability (ID), and speech defects. Mutations in FOXP2, located at 7q31, are well known to cause developmental speech and language disorders, particularly developmental verbal dyspraxia (DVD). FOXP2 has been shown to work co-operatively with FOXP1 in mouse development. An overlap in FOXP1 and FOXP2 expression, both in the songbird and human fetal brain, has suggested that FOXP1 may also have a role in speech and language disorders. We report on a male child with a 0.19 MB intragenic deletion that is predicted to result in haploinsufficiency of FOXP1. Review of our patient and others reported in the literature reveals an emerging phenotype of GDD/ID with moderate to severe speech delay where expressive speech is most severely affected. DVD appears not to be a distinct feature in this group. Facial features include a broad forehead, downslanting palpebral fissures, a short nose with broad tip, relative or true macrocephaly, a frontal hair upsweep and prominent digit pads. Autistic traits and other behavioral problems are likely to be associated with haploinsufficiency of FOXP1. Congenital malformations may be associated.
Collapse
Affiliation(s)
- Anna K Le Fevre
- Hunter Genetics, Newcastle, NSW, Australia; John Hunter Children's Hospital, Newcastle, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism. DISEASE MARKERS 2013; 35:281-6. [PMID: 24167375 PMCID: PMC3787567 DOI: 10.1155/2013/536521] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/12/2013] [Indexed: 02/04/2023]
Abstract
There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids.
Collapse
|
132
|
|
133
|
Nudel R, Newbury DF. FOXP2. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:547-560. [PMID: 24765219 PMCID: PMC3992897 DOI: 10.1002/wcs.1247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/04/2013] [Accepted: 07/06/2013] [Indexed: 11/30/2022]
Abstract
The forkhead box P2 gene, designated FOXP2, is the first gene implicated in a speech and language disorder. Since its discovery, many studies have been carried out in an attempt to explain the mechanism by which it influences these characteristically human traits. This review presents the story of the discovery of the FOXP2 gene, including early studies of the phenotypic implications of a disruption in the gene. We then discuss recent investigations into the molecular function of the FOXP2 gene, including functional and gene expression studies. We conclude this review by presenting the fascinating results of recent studies of the FOXP2 ortholog in other species that are capable of vocal communication. WIREs Cogn Sci 2013, 4:547–560. doi: 10.1002/wcs.1247
Collapse
Affiliation(s)
- Ron Nudel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
134
|
Shuvarikov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, Wheeler PG, Wallace SE, Hannibal MC, Murray MF, Giovanni MA, Terespolsky D, Sodhi S, Cassina M, Viskochil D, Moghaddam B, Herman K, Brown CW, Beck CR, Gambin A, Cheung SW, Patel A, Lamb AN, Shaffer LG, Ellison JW, Ravnan JB, Stankiewicz P, Rosenfeld JA. Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 2013; 34:1415-23. [PMID: 23878096 DOI: 10.1002/humu.22384] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022]
Abstract
We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of ~5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.
Collapse
Affiliation(s)
- Andrey Shuvarikov
- Signature Genomic Laboratories, PerkinElmer, Inc, Spokane, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Turner SJ, Hildebrand MS, Block S, Damiano J, Fahey M, Reilly S, Bahlo M, Scheffer IE, Morgan AT. Small intragenic deletion in FOXP2
associated with childhood apraxia of speech and dysarthria. Am J Med Genet A 2013; 161A:2321-6. [DOI: 10.1002/ajmg.a.36055] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/25/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Samantha J Turner
- Department of Paediatrics, The Royal Children's Hospital; The University of Melbourne; Parkville Victoria Australia
| | - Michael S. Hildebrand
- Department of Medicine; The University of Melbourne, Austin Health; Heidelberg Victoria Australia
| | - Susan Block
- Department of Human Communication Sciences; La Trobe University; Bundoora Victoria Australia
| | - John Damiano
- Department of Medicine; The University of Melbourne, Austin Health; Heidelberg Victoria Australia
| | - Michael Fahey
- Department of Paediatrics; Monash University; Clayton Victoria Australia
| | - Sheena Reilly
- Department of Paediatrics, The Royal Children's Hospital; The University of Melbourne; Parkville Victoria Australia
- Population Health, Genes and Environment Theme; Murdoch Childrens Research Institute; Parkville Victoria Australia
| | - Melanie Bahlo
- Bioinformatics Division; The Walter and Eliza Hall Institute of Medical Research; Parkville Victoria Australia
- Department of Mathematics and Statistics; The University of Melbourne; Parkville Victoria Australia
| | - Ingrid E. Scheffer
- Department of Paediatrics, The Royal Children's Hospital; The University of Melbourne; Parkville Victoria Australia
- Department of Medicine; The University of Melbourne, Austin Health; Heidelberg Victoria Australia
- Florey Institute; Melbourne Victoria Australia
| | - Angela T. Morgan
- Department of Paediatrics, The Royal Children's Hospital; The University of Melbourne; Parkville Victoria Australia
- Population Health, Genes and Environment Theme; Murdoch Childrens Research Institute; Parkville Victoria Australia
| |
Collapse
|
136
|
Vicario CM. FOXP2 gene and language development: the molecular substrate of the gestural-origin theory of speech? Front Behav Neurosci 2013; 7:99. [PMID: 23935570 PMCID: PMC3733005 DOI: 10.3389/fnbeh.2013.00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Carmelo M Vicario
- School of Psychology, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
137
|
Fleskens V, van Boxtel R. Forkhead Box P family members at the crossroad between tolerance and immunity: a balancing act. Int Rev Immunol 2013; 33:94-109. [PMID: 23886296 DOI: 10.3109/08830185.2013.816698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maintaining an immune balance between a chronic inflammatory state and autoimmunity is regulated at multiple levels by complex cellular signaling mechanisms. Numerous immune stimulatory and inhibitory signals converge on a large variety of transcriptional regulators. One key transcriptional regulator of immune homeostasis is FOXP3, which is a member of the Forkhead Box P subfamily of transcription factors and was shown to be essential for the development and maintenance of regulatory T cells. However, other FOXP members have received less attention in relation to a role in immune regulation. Still, recent developments point toward a general important regulatory role for FOXP proteins in the development and function of the adaptive immune system and establishment of a balanced immune response. Here, we discuss the current knowledge on the role of FOXP proteins in establishing immune homeostasis with an emphasis on T-cell biology. Furthermore, we review and speculate about different modes of regulating general FOXP activity and the function of this in health and disease.
Collapse
Affiliation(s)
- Veerle Fleskens
- Department of Cell Biology, University Medical Center Utrecht , Utrecht , The Netherlands
| | | |
Collapse
|
138
|
Chen X, Shen YY, Zhang YP. [Review of mtDNA in molecular evolution studies]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:566-73. [PMID: 23266975 DOI: 10.3724/sp.j.1141.2012.06566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria are old organelles found in most eukaryotic cells. Due to its rapid mutation ratio, mitochondrial DNA (mtDNA) has been widely used as a DNA marker in molecular studies and has long been suggested to undergo neutral evolution or purifying selection. Mitochondria produces 95% of the adenosine triphosphate (ATP) needed for locomotion, and heat for thermoregulation. Recent studies had found that mitochondria play critical roles in energy metabolism, and proved that functional constraints acting on mitochondria, due to energy metabolism and/or thermoregulation, influence the evolution of mtDNA. This review summarizes mitochondrial genome composition, evolution, and its applications in molecular evolution studies (reconstruction of species phylogenesis, the relationship between biological energy metabolism and mtDNA evolution, and the mtDNA codon reassignment influences the adaptation in different creatures).
Collapse
Affiliation(s)
- Xing Chen
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | | | | |
Collapse
|
139
|
Genetic insights into the functional elements of language. Hum Genet 2013; 132:959-86. [PMID: 23749164 DOI: 10.1007/s00439-013-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.
Collapse
|
140
|
Morgan A. Speech-language pathology insights into genetics and neuroscience: beyond surface behaviour. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2013; 15:245-254. [PMID: 23586582 DOI: 10.3109/17549507.2013.777786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For almost a century, speech-language pathologists (SLPs) have worked at refining communication disorder phenotypes. Yet a hundred years of mastering the characterization of surface behaviours has provided only limited understanding of the neurobiological underpinnings of communication disorder. Arguably, the most momentous aetiological findings in speech-language pathology have been made relatively recently and by cross-disciplinary colleagues in the fields of molecular genetics and neuroimaging. Such findings include discovery of FOXP2, for example, the first gene found to be associated with a primary speech disorder. New gene-brain-behaviour discoveries in communication disorder are occurring on an almost weekly basis and it is challenging for clinical SLPs to engage with, interpret, and keep abreast of this literature. This paper aims to provide a brief overview of genetic and neuroimaging approaches to the study of communication disorders. Further examples of key findings in these fields are presented, with a discussion of the impacts on core SLP practice. Future research directions for further illuminating gene-brain-behaviour relationships in communication disorder are identified.
Collapse
Affiliation(s)
- Angela Morgan
- Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
141
|
Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M, Vernes SC, Fisher SE, Tyler-Smith C. FOXP2 targets show evidence of positive selection in European populations. Am J Hum Genet 2013; 92:696-706. [PMID: 23602712 DOI: 10.1016/j.ajhg.2013.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/18/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022] Open
Abstract
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction.
Collapse
Affiliation(s)
- Qasim Ayub
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Abstract
The evolution of higher cognitive functions in humans is thought to be due, at least in part, to the molecular evolution of gene expression patterns specific to the human brain. In this article, we explore recent and past findings using comparative genomics in human and non-human primate brain to identify these novel human patterns. We suggest additional directions and lines of experimentation that should be taken to improve our understanding of these changes on the human lineage. Finally, we attempt to put into context these genomic changes with biological phenotypes and diseases in humans.
Collapse
Affiliation(s)
- Guang-Zhong Wang
- Department of Neuroscience; UT Southwestern Medical Center; Dallas, TX USA
| | | |
Collapse
|
143
|
Nelson CS, Fuller CK, Fordyce PM, Greninger AL, Li H, DeRisi JL. Microfluidic affinity and ChIP-seq analyses converge on a conserved FOXP2-binding motif in chimp and human, which enables the detection of evolutionarily novel targets. Nucleic Acids Res 2013; 41:5991-6004. [PMID: 23625967 PMCID: PMC3695516 DOI: 10.1093/nar/gkt259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor forkhead box P2 (FOXP2) is believed to be important in the evolution of human speech. A mutation in its DNA-binding domain causes severe speech impairment. Humans have acquired two coding changes relative to the conserved mammalian sequence. Despite intense interest in FOXP2, it has remained an open question whether the human protein’s DNA-binding specificity and chromatin localization are conserved. Previous in vitro and ChIP-chip studies have provided conflicting consensus sequences for the FOXP2-binding site. Using MITOMI 2.0 microfluidic affinity assays, we describe the binding site of FOXP2 and its affinity profile in base-specific detail for all substitutions of the strongest binding site. We find that human and chimp FOXP2 have similar binding sites that are distinct from previously suggested consensus binding sites. Additionally, through analysis of FOXP2 ChIP-seq data from cultured neurons, we find strong overrepresentation of a motif that matches our in vitro results and identifies a set of genes with FOXP2 binding sites. The FOXP2-binding sites tend to be conserved, yet we identified 38 instances of evolutionarily novel sites in humans. Combined, these data present a comprehensive portrait of FOXP2’s-binding properties and imply that although its sequence specificity has been conserved, some of its genomic binding sites are newly evolved.
Collapse
Affiliation(s)
- Christopher S Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94131, USA.
| | | | | | | | | | | |
Collapse
|
144
|
Foxp2 mediates sex differences in ultrasonic vocalization by rat pups and directs order of maternal retrieval. J Neurosci 2013; 33:3276-83. [PMID: 23426656 DOI: 10.1523/jneurosci.0425-12.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The FOXP2 gene is central to acquisition of speech and language in humans and vocal production in birds and mammals. Rodents communicate via ultrasonic vocalizations (USVs) and newborn pups emit distress USVs when separated from their dam, thereby facilitating their retrieval. We observed that isolated male rat pups emitted substantially more USV calls and these were characterized by a significantly lower frequency and amplitude compared with female rat pups. Moreover, the dam was more likely to first retrieve male pups back to the nest, then females. The amount of Foxp2 protein was significantly higher in multiple regions of the developing male brain compared with females and a reduction of brain Foxp2 by siRNA eliminated the sex differences in USVs and altered the order of pup retrieval. Our results implicate Foxp2 as a component of the neurobiological basis of sex differences in vocal communication in mammals. We extended these observations to humans, a species reported to have gender differences in language acquisition, and found the amount of FOXP2 protein in the left hemisphere cortex of 4-year-old boys was significantly lower than in age-matched girls.
Collapse
|
145
|
Abstract
Next-generation sequencing is set to transform the discovery of genes underlying neurodevelopmental disorders, and so offer important insights into the biological bases of spoken language. Success will depend on functional assessments in neuronal cell lines, animal models and humans themselves.
Collapse
Affiliation(s)
- Pelagia Deriziotis
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
146
|
Li T, Zeng Z, Zhao Q, Wang T, Huang K, Li J, Li Y, Liu J, Wei Z, Wang Y, Feng G, He L, Shi Y. FoxP2 is significantly associated with schizophrenia and major depression in the Chinese Han population. World J Biol Psychiatry 2013; 14:146-50. [PMID: 22404659 DOI: 10.3109/15622975.2011.615860] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The FoxP2 gene, located on 7q31, encodes a transcription factor. It was first discovered through investigations of a large multigenerational family (the KE family) with a rare severe speech and language disorder (Fisher et al., Nat. Genet. 1998;18:168; Lai et al., Nature 2001;413:519). Subsequent studies gave powerful and convincing functional evidence to the connection between FoxP2 and language disorder ( Vernes et al. 2006 ; Groszer et al., Curr Biol 2008;18:354; Vernes et al., New Engl J Med 359(22):2337). Language disorder is commonly considered as a core symptom of schizophrenia and some other mental diseases; thus, we decided to investigate whether the FoxP2 gene played a significant role in schizophrenia, major depression or bipolar disorder in a sample set recruited from the Chinese Han population. METHODS In this study, we focused on 12 SNPs in the FoxP2 gene and carried out case-control studies in 1135 schizophrenia patients, 1135 unrelated major depression patients, 1135 unrelated bipolar disorder patients and 1135 unrelated normal controls recruited from the Chinese Han population. RESULTS We found rs10447760 was significantly associated with schizophrenia (allelic P = 0.00069) and major depression (allelic P = 0.0011). CONCLUSIONS Our study indicated that the rare variant rs10447760 in FoxP2 may play an important role in schizophrenia and major depression in the Chinese Han population.
Collapse
Affiliation(s)
- Tao Li
- Bio-X Center and Affiliated Changning Mental Health Center, Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Peter B, Button L, Stoel-Gammon C, Chapman K, Raskind WH. Deficits in sequential processing manifest in motor and linguistic tasks in a multigenerational family with childhood apraxia of speech. CLINICAL LINGUISTICS & PHONETICS 2013; 27:163-91. [PMID: 23339324 PMCID: PMC3875160 DOI: 10.3109/02699206.2012.736011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The purpose of this study was to evaluate a global deficit in sequential processing as candidate endophenotypein a family with familial childhood apraxia of speech (CAS). Of 10 adults and 13 children in a three-generational family with speech sound disorder (SSD) consistent with CAS, 3 adults and 6 children had past or present SSD diagnoses. Two preschoolers with unremediated CAS showed a high number of sequencing errors during single-word production. Performance on tasks with high sequential processing loads differentiated between the affected and unaffected family members, whereas there were no group differences in tasks with low processing loads. Adults with a history of SSD produced more sequencing errors during nonword and multisyllabic real word imitation, compared to those without such a history. Results are consistent with a global deficit in sequential processing that influences speech development as well as cognitive and linguistic processing.
Collapse
Affiliation(s)
- Beate Peter
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
148
|
Graham SA, Fisher SE. Decoding the genetics of speech and language. Curr Opin Neurobiol 2013; 23:43-51. [PMID: 23228431 DOI: 10.1016/j.conb.2012.11.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 12/31/2022]
|
149
|
Rodríguez-Tornos FM, San Aniceto I, Cubelos B, Nieto M. Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2, CREB and SRF. PLoS One 2013; 8:e53848. [PMID: 23382855 PMCID: PMC3561385 DOI: 10.1371/journal.pone.0053848] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 12/05/2012] [Indexed: 01/07/2023] Open
Abstract
A unique synaptic activity-responsive element (SARE) sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein). Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease.
Collapse
Affiliation(s)
| | - Iñigo San Aniceto
- Facultad de Informática, Universidad Complutense de Madrid, Profesor Garcia Santesmases s/n, Madrid, Spain
| | - Beatriz Cubelos
- Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
150
|
Raskind WH, Peter B, Richards T, Eckert MM, Berninger VW. The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol 2013; 3:601. [PMID: 23308072 PMCID: PMC3538356 DOI: 10.3389/fpsyg.2012.00601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022] Open
Abstract
This article provides an overview of (a) issues in definition and diagnosis of specific reading disabilities at the behavioral level that may occur in different constellations of developmental and phenotypic profiles (patterns); (b) rapidly expanding research on genetic heterogeneity and gene candidates for dyslexia and other reading disabilities; (c) emerging research on gene-brain relationships; and (d) current understanding of epigenetic mechanisms whereby environmental events may alter behavioral expression of genetic variations. A glossary of genetic terms (denoted by bold font) is provided for readers not familiar with the technical terms.
Collapse
Affiliation(s)
- Wendy H Raskind
- Department of Medicine, University of Washington Seattle, WA, USA ; Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|