101
|
Han JD, Li X, Jiang CK, Wong GKS, Rothfels CJ, Rao GY. Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program. FRONTIERS IN PLANT SCIENCE 2017; 8:439. [PMID: 28421087 PMCID: PMC5379062 DOI: 10.3389/fpls.2017.00439] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Seeds are one of the most significant innovations in the land plant lineage, critical to the diversification and adaptation of plants to terrestrial environments. From perspective of seed evo-devo, the most crucial developmental stage in this innovation is seed maturation, which includes accumulation of storage reserves, acquisition of desiccation tolerance, and induction of dormancy. Based on previous studies of seed development in the model plant Arabidopsis thaliana, seed maturation is mainly controlled by the LAFL regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) of the NF-YB gene family, and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2) of the B3-AFL gene family. In the present study, molecular evolution of these LAFL genes was analyzed, using representative species from across the major plant lineages. Additionally, to elucidate the molecular mechanisms of the seed maturation program, co-expression pattern analyses of LAFL genes were conducted across vascular plants. The results show that the origin of AFL gene family dates back to a common ancestor of bryophytes and vascular plants, while LEC1-type genes are only found in vascular plants. LAFL genes of vascular plants likely specify their co-expression in two different developmental phrases, spore and seed maturation, respectively, and expression patterns vary slightly across the major vascular plants lineages. All the information presented in this study will provide insights into the origin and diversification of seed plants.
Collapse
Affiliation(s)
- Jing-Dan Han
- School of Life Sciences, Peking UniversityBeijing, China
| | - Xia Li
- RDFZ XiShan SchoolBeijing, China
| | - Chen-Kun Jiang
- School of Life Sciences, Peking UniversityBeijing, China
| | - Gane K.-S. Wong
- Department of Biological Sciences, University of Alberta, EdmontonAB, Canada
- Department of Medicine, University of Alberta, EdmontonAB, Canada
- BGI-Shenzhen, Beishan Industrial ZoneShenzhen, China
| | - Carl J. Rothfels
- University Herbarium and Department of Integrative Biology, University of California, BerkeleyCA, USA
| | - Guang-Yuan Rao
- School of Life Sciences, Peking UniversityBeijing, China
| |
Collapse
|
102
|
Blaas K, Holzinger A. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum. Micron 2017; 98:34-38. [PMID: 28363156 DOI: 10.1016/j.micron.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
Filamentous actin (F-actin) is a dynamic network involved in many cellular processes like cell division and cytoplasmic streaming. While many studies have addressed the involvement of F-actin in different cellular processes in cultured cells, little is known on the reactions to environmental stress scenarios, where this system might have essential regulatory functions. We investigated here the de- and rehydration kinetics of breakdown and reassembly of F-actin in the streptophyte green alga Klebsormidium crenulatum. Measurements of the chlorophyll fluorescence (effective quantum yield of photosystem II [ΔF/Fm']) via pulse amplitude modulation were performed as a measure for dehydration induced shut down of physiological activity, which ceased after 141±15min at ∼84% RH. We hypothesized that there is a link between this physiological parameter and the status of the F-actin system. Indeed, 20min of dehydration (ΔF/Fm'=0) leads to a breakdown of the fine cortical F-actin network as visualized by Atto 488 phalloidin staining, and dot-like structures remained. Already 10min after rehydration a beginning reassembly of F-actin is observed, after 25min the F-actin network appeared similar to untreated controls, indicating a full recovery. These results demonstrate the fast kinetics of F-actin dis- and reassembly likely contributing to cellular reorganization upon rehydration.
Collapse
Affiliation(s)
- Kathrin Blaas
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Functional Plant Biology, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| |
Collapse
|
103
|
Ginn BR. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 126:1-21. [PMID: 28185903 DOI: 10.1016/j.pbiomolbio.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/24/2017] [Indexed: 01/04/2023]
Abstract
Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINs), tend to be diploid while haploidy tends to be restricted to relatively simple organisms.
Collapse
Affiliation(s)
- B R Ginn
- University of Georgia, GA 30602, United States.
| |
Collapse
|
104
|
Fang YH, Li X, Bai SN, Rao GY. Sugar Treatments Can Induce AcLEAFY COTYLEDON1 Expression and Trigger the Accumulation of Storage Products during Prothallus Development of Adiantum capillus-veneris. FRONTIERS IN PLANT SCIENCE 2017; 8:541. [PMID: 28484470 PMCID: PMC5399092 DOI: 10.3389/fpls.2017.00541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
A seed is an intricate structure. Of the two development processes involved in seed formation, seed maturation, or seed program includes accumulation of storage products, acquisition of desiccation tolerance, and induction of dormancy. Little is known about how these processes were originated and integrated into the life cycle of seed plants. While previous investigation on seed origin was almost exclusively through fossil comparison in paleobotany, a wealth of information about the key role of LEAFY COTYLEDON1 (LEC1) in seed formation of spermatophyte inspired a new approach to investigating the seed origin mystery. Here, we examined the expression pattern of AcLEC1 during the entire life cycle of Adiantum capillus-veneris, a non-seed plant, confirmed no AcLEC1 gene expression detectable in prothalli, demonstrated inductive expressed by both sucrose and glucose in prothalli. As expected, we found that sugar treatments delayed prothallus development, promoted differentiation of reproductive organs, and triggered accumulation of storage products. These findings demonstrated links between the sugar treatments and the induction of AcLEC1 expression, as well as the sugar treatments and the events such as accumulation of storage products, which is similar to those considered as seed maturation process in seed plants. These links support a modified hypothesis that inductive expression of LEC1 homologs during embryogenesis might be a key innovation for the origin of the seed program.
Collapse
Affiliation(s)
- Yu-Han Fang
- College of Life Sciences, Peking UniversityBeijing, China
| | - Xia Li
- RDFZ XiShan SchoolBeijing, China
| | - Shu-Nong Bai
- College of Life Sciences, Peking UniversityBeijing, China
- *Correspondence: Shu-Nong Bai,
| | - Guang-Yuan Rao
- College of Life Sciences, Peking UniversityBeijing, China
| |
Collapse
|
105
|
Li X, Han JD, Fang YH, Bai SN, Rao GY. Expression Analyses of Embryogenesis-Associated Genes during Somatic Embryogenesis of Adiantum capillus-veneris L. In vitro: New Insights into the Evolution of Reproductive Organs in Land Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:658. [PMID: 28496454 PMCID: PMC5406782 DOI: 10.3389/fpls.2017.00658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/11/2017] [Indexed: 05/07/2023]
Abstract
An efficient in vitro regeneration system via somatic embryogenesis (SE) was developed for a fern species Adiantum capillus-veneris. Adventitious shoots, green globular bodies (GGBs) and calli were obtained with the maximal induction rate on the Murashige and Skoog (MS) medium of low concentrations of 6-benzyladenine (BA) (0-1.0 mg/L), 2.0 mg/L BA without 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5 mg/L 2,4-D and 0.5-1.0 mg/L 6-BA, respectively. Cyto-morphological and histological changes in the shoot development via calli and GGBs were examined. For a better understanding of these developmental events, expression patterns of six genes, AcLBD16, AcAGL, AcBBM, AcWUS, AcRKD, and AcLEC1, were characterized during SE. AcBBM and AcLEC1 were ubiquitously expressed in direct SE (adventitious shoots and GGBs) the maximal expression of AcBBM in mature GGBs, and the high expression of AcLEC1 in GGB initiation and adventitious shoots. During the indirect SE, AcLBD16, AcLEC1, AcRKD, and AcWUS were highly expressed in mature calli. Additionally, phylogenetic analyses showed that AcWUS, AcBBM, AcLBD, AcAGL, AcRKD, and their homologs of other green plants formed monophyletic clades, respectively. Some of these gene families, however, diversified rapidly with the occurrence of embryophytes, suggesting that embryogenesis-associated genes could experience a rapid evolution with the colonization of plants to terrestrial environments. Expression and phylogenetic analyses of those embryogenesis-associated genes by the aid of in vitro regeneration system of A. capillus-veneris provide new insights into the evolution of reproductive organs in land plants.
Collapse
Affiliation(s)
- Xia Li
- RDFZ XiShan SchoolBeijing, China
| | - Jing-Dan Han
- School of Life Sciences, Peking UniversityBeijing, China
| | - Yu-Han Fang
- School of Life Sciences, Peking UniversityBeijing, China
| | - Shu-Nong Bai
- School of Life Sciences, Peking UniversityBeijing, China
| | - Guang-Yuan Rao
- School of Life Sciences, Peking UniversityBeijing, China
- *Correspondence: Guang-Yuan Rao
| |
Collapse
|
106
|
Abstract
The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
- Department of Plant Biology, University of California, Davis, California 95616
| | - Keiko Sakakibara
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Chihiro Furumizu
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia;
| |
Collapse
|
107
|
Buschmann H, Zachgo S. The Evolution of Cell Division: From Streptophyte Algae to Land Plants. TRENDS IN PLANT SCIENCE 2016; 21:872-883. [PMID: 27477927 DOI: 10.1016/j.tplants.2016.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 05/21/2023]
Abstract
The mechanism of cell division has undergone significant alterations during the evolution from aquatic streptophyte algae to land plants. Two new structures evolved, the cytokinetic phragmoplast and the preprophase band (PPB) of microtubules, whereas the ancestral mechanism of cleavage and the centrosomes disappeared. We map cell biological data onto the recently emerged phylogenetic tree of streptophytes. The tree suggests that, after the establishment of the phragmoplast mechanism, several groups independently lost their centrosomes. Surprisingly, the phragmoplast shows reductions in the Zygnematophyceae (the sister to land plants), many of which returned to cleavage. The PPB by contrast evolved stepwise and, most likely, originated in the algae. The phragmoplast/PPB mechanism established in this way served as a basis for the 3D development of land plants.
Collapse
Affiliation(s)
- Henrik Buschmann
- Osnabrück University, Department of Biology and Chemistry, Barbarastrasse 11, 49076 Osnabrück, Germany.
| | - Sabine Zachgo
- Osnabrück University, Department of Biology and Chemistry, Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
108
|
Yang Z, Liu L, Fang H, Li P, Xu S, Cao W, Xu C, Huang J, Zhou Y. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event. Sci Rep 2016; 6:33691. [PMID: 27647002 PMCID: PMC5028733 DOI: 10.1038/srep33691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023] Open
Abstract
The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.
Collapse
Affiliation(s)
- Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Li Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Shuhui Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Wei Cao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
109
|
Mushegian A, Shipunov A, Elena SF. Changes in the composition of the RNA virome mark evolutionary transitions in green plants. BMC Biol 2016; 14:68. [PMID: 27524491 PMCID: PMC4983792 DOI: 10.1186/s12915-016-0288-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The known plant viruses mostly infect angiosperm hosts and have RNA or small DNA genomes. The only other lineage of green plants with a relatively well-studied virome, unicellular chlorophyte algae, is mostly infected by viruses with large DNA genomes. Thus RNA viruses and small DNA viruses seem to completely displace large DNA virus genomes in late branching angiosperms. To understand better the expansion of RNA viruses in the taxonomic span between algae and angiosperms, we analyzed the transcriptomes of 66 non-angiosperm plants characterized by the 1000 Plants Genomes Project. RESULTS We found homologs of virus RNA-dependent RNA polymerases in 28 non-angiosperm plant species, including algae, mosses, liverworts (Marchantiophyta), hornworts (Anthocerotophyta), lycophytes, a horsetail Equisetum, and gymnosperms. Polymerase genes in algae were most closely related to homologs from double-stranded RNA viruses leading latent or persistent lifestyles. Land plants, in addition, contained polymerases close to the homologs from single-stranded RNA viruses of angiosperms, capable of productive infection and systemic spread. For several polymerases, a cognate capsid protein was found in the same library. Another virus hallmark gene family, encoding the 30 K movement proteins, was found in lycophytes and monilophytes but not in mosses or algae. CONCLUSIONS The broadened repertoire of RNA viruses suggests that colonization of land and growth in anatomical complexity in land plants coincided with the acquisition of novel sets of viruses with different strategies of infection and reproduction.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA, 22230, USA.
| | - Alexey Shipunov
- Department of Biology, Minot State University, 500 University Avenue West, Minot, ND, 58707, USA
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022, València, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
110
|
Herburger K, Remias D, Holzinger A. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance. FEMS Microbiol Ecol 2016; 92:fiw103. [PMID: 27178434 PMCID: PMC4909054 DOI: 10.1093/femsec/fiw103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/21/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Streptophyte green algae, ancestors of Embryophytes, occur frequently in terrestrial habitats being exposed to high light intensities, water scarcity and potentially toxic metal cations under acidic conditions. The filamentous Zygogonium ericetorum synthesizes a purple vacuolar ferrous pigment, which is lost after aplanospore formation. However, it is unknown whether this cellular reorganization also removes excessive iron from the protoplast and how Z. ericetorum copes with high concentrations of aluminium. Here we show that aplanospore formation shifts iron into the extracellular space of the algal filament. Upon germination of aplanospores, aluminium is bound in the parental cell wall. Both processes reduce iron and aluminium in unpigmented filaments. Comparison of the photosynthetic oxygen production in response to light and temperature gradients in two different Z. ericetorum strains from an Austrian alpine and a Scottish highland habitat revealed lower values in the latter strain. In contrast, the Scottish strain showed a higher optimum quantum yield of PSII during desiccation stress followed by rehydration. Furthermore, pigmented filaments of both strains exhibited a higher light and temperature dependent oxygen production when compared to the unpigmented phenotype. Our results demonstrate a high metal tolerance of Z. ericetorum, which is crucial for surviving in acidic terrestrial habitats.
Collapse
Affiliation(s)
- Klaus Herburger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria
| | - Daniel Remias
- University of Applied Sciences Upper Austria, School of Engineering, Stelzhamerstraße 23, A-4600 Wels, Austria
| | - Andreas Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria
| |
Collapse
|
111
|
Marchadier E, Oates ME, Fang H, Donoghue PCJ, Hetherington AM, Gough J. Evolution of the Calcium-Based Intracellular Signaling System. Genome Biol Evol 2016; 8:2118-32. [PMID: 27358427 PMCID: PMC4987107 DOI: 10.1093/gbe/evw139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To progress our understanding of molecular evolution from a collection of well-studied genes toward the level of the cell, we must consider whole systems. Here, we reveal the evolution of an important intracellular signaling system. The calcium-signaling toolkit is made up of different multidomain proteins that have undergone duplication, recombination, sequence divergence, and selection. The picture of evolution, considering the repertoire of proteins in the toolkit of both extant organisms and ancestors, is radically different from that of other systems. In eukaryotes, the repertoire increased in both abundance and diversity at a far greater rate than general genomic expansion. We describe how calcium-based intracellular signaling evolution differs not only in rate but in nature, and how this correlates with the disparity of plants and animals.
Collapse
Affiliation(s)
- Elodie Marchadier
- Life Sciences Building, University of Bristol, United Kingdom GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Matt E Oates
- Department of Computer Sciences, University of Bristol, United Kingdom
| | - Hai Fang
- Department of Computer Sciences, University of Bristol, United Kingdom
| | | | | | - Julian Gough
- Department of Computer Sciences, University of Bristol, United Kingdom
| |
Collapse
|
112
|
Ali A, Raddatz N, Aman R, Kim S, Park HC, Jan M, Baek D, Khan IU, Oh DH, Lee SY, Bressan RA, Lee KW, Maggio A, Pardo JM, Bohnert HJ, Yun DJ. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance. PLANT PHYSIOLOGY 2016; 171:2112-26. [PMID: 27208305 PMCID: PMC4936583 DOI: 10.1104/pp.16.00569] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 05/20/2023]
Abstract
A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.
Collapse
Affiliation(s)
- Akhtar Ali
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Natalia Raddatz
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Rashid Aman
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Songmi Kim
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Hyeong Cheol Park
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Masood Jan
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Dongwon Baek
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Irfan Ullah Khan
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Dong-Ha Oh
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Ray A Bressan
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Albino Maggio
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Jose M Pardo
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Hans J Bohnert
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 660-701, Republic of Korea (A.A., R.A., S.K., M.J., D.B., I.U.K., S.Y.L., K.W.L., H.J.B., D.-J.Y.); Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223 Pozuelo de Alarcón Madrid (N.R.);Division of Ecological Adaptation Research, National Institute of Ecology (NIE), Seocheon 325-813, Republic of Korea (H.C.P.); Department of Biology, Louisiana State University, Baton Rouge, Louisiana 70803 (D.-H.O.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2010 (R.A.B.);Department of Agriculture, University of Naples Federico II, Via Universita` 100, Portici, I-80055, Italy (A.M.);Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Sevilla, Spain (J.M.P.); College of Science, King Abdulaziz University, Jeddah 21589, KSA (H.J.B.); and Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
| |
Collapse
|
113
|
Kondo S, Hori K, Sasaki-Sekimoto Y, Kobayashi A, Kato T, Yuno-Ohta N, Nobusawa T, Ohtaka K, Shimojima M, Ohta H. Primitive Extracellular Lipid Components on the Surface of the Charophytic Alga Klebsormidium flaccidum and Their Possible Biosynthetic Pathways as Deduced from the Genome Sequence. FRONTIERS IN PLANT SCIENCE 2016; 7:952. [PMID: 27446179 PMCID: PMC4927632 DOI: 10.3389/fpls.2016.00952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/15/2016] [Indexed: 05/20/2023]
Abstract
Klebsormidium flaccidum is a charophytic alga living in terrestrial and semiaquatic environments. K. flaccidum grows in various habitats, such as low-temperature areas and under desiccated conditions, because of its ability to tolerate harsh environments. Wax and cuticle polymers that contribute to the cuticle layer of plants are important for the survival of land plants, as they protect against those harsh environmental conditions and were probably critical for the transition from aquatic microorganism to land plants. Bryophytes, non-vascular land plants, have similar, but simpler, extracellular waxes and polyester backbones than those of vascular plants. The presence of waxes in terrestrial algae, especially in charophytes, which are the closest algae to land plants, could provide clues in elucidating the mechanism of land colonization by plants. Here, we compared genes involved in the lipid biosynthetic pathways of Arabidopsis thaliana to the K. flaccidum and the Chlamydomonas reinhardtii genomes, and identified wax-related genes in both algae. A simple and easy extraction method was developed for the recovery of the surface lipids from K. flaccidum and C. reinhardtii. Although these algae have wax components, their surface lipids were largely different from those of land plants. We also investigated aliphatic substances in the cell wall fraction of K. flaccidum and C. reinhardtii. Many of the fatty acids were determined to be lipophilic monomers in K. flaccidum, and a Fourier transform infrared spectroscopic analysis revealed that their possible binding mode was distinct from that of A. thaliana. Thus, we propose that K. flaccidum has a cuticle-like hydrophobic layer composed of lipids and glycoproteins, with a different composition from the cutin polymer typically found in land plant cuticles.
Collapse
Affiliation(s)
- Satoshi Kondo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Atsuko Kobayashi
- The Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
| | - Tsubasa Kato
- Advanced Course of Food and Nutrition, Nihon University Junior CollegeShizuoka, Japan
| | - Naoko Yuno-Ohta
- Advanced Course of Food and Nutrition, Nihon University Junior CollegeShizuoka, Japan
| | - Takashi Nobusawa
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Kinuka Ohtaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
| | - Mie Shimojima
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
| | - Hiroyuki Ohta
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyKanagawa, Japan
- School of Life Science and Technology, Tokyo Institute of TechnologyKanagawa, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
- The Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
| |
Collapse
|
114
|
Kunugi M, Satoh S, Ihara K, Shibata K, Yamagishi Y, Kogame K, Obokata J, Takabayashi A, Tanaka A. Evolution of Green Plants Accompanied Changes in Light-Harvesting Systems. PLANT & CELL PHYSIOLOGY 2016; 57:1231-43. [PMID: 27057002 DOI: 10.1093/pcp/pcw071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 03/31/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.
Collapse
Affiliation(s)
- Motoshi Kunugi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Kensuke Shibata
- AIMEN Co., Ltd, 81-1 Takaoka-cho, Matsuyama, Ehime, 791-8036 Japan
| | - Yukimasa Yamagishi
- Faculty of Life Science and Biotechnology, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama, Hiroshima, 729-0292 Japan
| | - Kazuhiro Kogame
- Faculty of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo, 060-0810 Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences, Kyoto Prefecture University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo, 060-0819 Japan CREST, JST, N19 W8 Kita-ku, Sapporo, 060-0819 Japan
| |
Collapse
|
115
|
de Vries J, Stanton A, Archibald JM, Gould SB. Streptophyte Terrestrialization in Light of Plastid Evolution. TRENDS IN PLANT SCIENCE 2016; 21:467-476. [PMID: 26895731 DOI: 10.1016/j.tplants.2016.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 05/21/2023]
Abstract
Key steps in evolution are often singularities. The emergence of land plants is one such case and it is not immediately apparent why. A recent analysis found that the zygnematophycean algae represent the closest relative to embryophytes. Intriguingly, many exaptations thought essential to conquer land are common among various streptophytes, but zygnematophycean algae share with land plants the transfer of a few plastid genes to the nucleus. Considering the contribution of the chloroplast to terrestrialization highlights potentially novel exaptations that currently remain unexplored. We discuss how the streptophyte chloroplast evolved into what we refer to as the embryoplast, and argue this was as important for terrestrialization by freshwater algae as the host cell-associated exaptations that are usually focused upon.
Collapse
Affiliation(s)
- Jan de Vries
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany
| | - Amanda Stanton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University (HHU) Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
116
|
Lemieux C, Otis C, Turmel M. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. FRONTIERS IN PLANT SCIENCE 2016; 7:697. [PMID: 27252715 PMCID: PMC4877394 DOI: 10.3389/fpls.2016.00697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/06/2016] [Indexed: 05/18/2023]
Abstract
The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus far; it lacks eight genes relative to its Chaetosphaeridium globosum homolog, four of which represent unique events in the evolutionary scenario of gene losses we reconstructed for streptophyte algae. The 10 compared zygnematophycean cpDNAs display tremendous variations at all levels, except gene content. During zygnematophycean evolution, the IR disappeared a minimum of five times, the rDNA operon was broken at four distinct sites, group II introns were lost on at least 43 occasions, and putative foreign genes, mainly of phage/viral origin, were gained.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QuébecQC, Canada
| | | | | |
Collapse
|
117
|
Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Sci Rep 2016; 6:25367. [PMID: 27157793 PMCID: PMC4860620 DOI: 10.1038/srep25367] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/15/2016] [Indexed: 01/25/2023] Open
Abstract
The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov.
Collapse
|
118
|
|
119
|
Kusch S, Pesch L, Panstruga R. Comprehensive Phylogenetic Analysis Sheds Light on the Diversity and Origin of the MLO Family of Integral Membrane Proteins. Genome Biol Evol 2016; 8:878-95. [PMID: 26893454 PMCID: PMC4824068 DOI: 10.1093/gbe/evw036] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2016] [Indexed: 12/11/2022] Open
Abstract
Mildew resistanceLocusO(MLO) proteins are polytopic integral membrane proteins that have long been considered as plant-specific and being primarily involved in plant-powdery mildew interactions. However, research in the past decade has revealed that MLO proteins diverged into a family with several clades whose members are associated with different physiological processes. We provide a largely increased dataset of MLO amino acid sequences, comprising nearly all major land plant lineages. Based on this comprehensive dataset, we defined seven phylogenetic clades and reconstructed the likely evolution of the MLO family in embryophytes. We further identified several MLO peptide motifs that are either conserved in all MLO proteins or confined to one or several clades, supporting the notion that clade-specific diversification of MLO functions is associated with particular sequence motifs. In baker's yeast, some of these motifs are functionally linked to transmembrane (TM) transport of organic molecules and ions. In addition, we attempted to define the evolutionary origin of the MLO family and found that MLO-like proteins with highly diverse membrane topologies are present in green algae, but also in the distinctly related red algae (Rhodophyta), Amoebozoa, and Chromalveolata. Finally, we discovered several instances of putative fusion events between MLO proteins and different kinds of proteins. Such Rosetta stone-type hybrid proteins might be instructive for future analysis of potential MLO functions. Our findings suggest that MLO is an ancient protein that possibly evolved in unicellular photosynthetic eukaryotes, and consolidated in land plants with a conserved topology, comprising seven TM domains and an intrinsically unstructured C-terminus.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Lina Pesch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
120
|
Hadi SIIA, Santana H, Brunale PPM, Gomes TG, Oliveira MD, Matthiensen A, Oliveira MEC, Silva FCP, Brasil BSAF. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters. PLoS One 2016; 11:e0149284. [PMID: 26900844 PMCID: PMC4767179 DOI: 10.1371/journal.pone.0149284] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences' using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker.
Collapse
Affiliation(s)
- Sámed I. I. A. Hadi
- Embrapa Agroenergy, Brasília, DF, Brazil
- Universidade Federal do Tocantins, Gurupi, TO, Brazil
- Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hugo Santana
- Embrapa Agroenergy, Brasília, DF, Brazil
- Universidade Federal da Bahia, Vitória da Conquista, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Buschmann H, Holtmannspötter M, Borchers A, O'Donoghue MT, Zachgo S. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha. THE NEW PHYTOLOGIST 2016; 209:999-1013. [PMID: 26467050 DOI: 10.1111/nph.13691] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/26/2015] [Indexed: 05/29/2023]
Abstract
The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Michael Holtmannspötter
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Agnes Borchers
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Martin-Timothy O'Donoghue
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Sabine Zachgo
- Botany Department, School of Biology and Chemistry, Osnabrück University, Barbarastraße 11, 49076, Osnabrück, Germany
| |
Collapse
|
122
|
Wang H, Liu C, Cheng J, Liu J, Zhang L, He C, Shen WH, Jin H, Xu L, Zhang Y. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements. PLoS Genet 2016; 12:e1005771. [PMID: 26760036 PMCID: PMC4711971 DOI: 10.1371/journal.pgen.1005771] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs. Polycomb group proteins (PcGs) are essential for development in both animals and plants. Studies in plants are advantageous for elucidation of specific effects of PcGs during development, since most PcG mutants are viable in plants but not in animals. Previous efforts in genetic study of plant PcGs revealed that different PcGs have both common and unique effects on plant development, but the mechanisms underlying the specific regulation of different developmental programs by PcGs are still far from clear. In this study, we quantitatively compared the change in H3K27me3 and gene expression profiles between mutants of key PcG members on a genome-wide scale in Arabidopsis seedlings, and successfully unraveled different developmental programs that are specifically regulated by different combinations of PcGs. This context specific effect of PcGs is closely associated with different sets of transcription factor binding motifs. Together, we revealed on a genome-wide scale that different combinations of PcGs, as well as their association with the binding sites of different TFs, serve to explain the specific regulation of different developmental programs by PcGs.
Collapse
Affiliation(s)
- Hua Wang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunmei Liu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingfei Cheng
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Liu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Chongsheng He
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, Strasbourg, France
| | - Hong Jin
- Department of Chemistry, Fudan University, Shanghai, China
- Institute of Biomedical Science, Fudan University, Shanghai, China
- * E-mail: (HJ); (LX); (YZ)
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HJ); (LX); (YZ)
| | - Yijing Zhang
- National Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (HJ); (LX); (YZ)
| |
Collapse
|
123
|
Doron L, Segal N, Shapira M. Transgene Expression in Microalgae-From Tools to Applications. FRONTIERS IN PLANT SCIENCE 2016; 7:505. [PMID: 27148328 PMCID: PMC4840263 DOI: 10.3389/fpls.2016.00505] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/29/2016] [Indexed: 05/17/2023]
Abstract
Microalgae comprise a biodiverse group of photosynthetic organisms that reside in water sources and sediments. The green microalgae Chlamydomonas reinhardtii was adopted as a useful model organism for studying various physiological systems. Its ability to grow under both photosynthetic and heterotrophic conditions allows efficient growth of non-photosynthetic mutants, making Chlamydomonas a useful genetic tool to study photosynthesis. In addition, this green alga can grow as haploid or diploid cells, similar to yeast, providing a powerful genetic system. As a result, easy and efficient transformation systems have been developed for Chlamydomonas, targeting both the chloroplast and nuclear genomes. Since microalgae comprise a rich repertoire of species that offer variable advantages for biotech and biomed industries, gene transfer technologies were further developed for many microalgae to allow for the expression of foreign proteins of interest. Expressing foreign genes in the chloroplast enables the targeting of foreign DNA to specific sites by homologous recombination. Chloroplast transformation also allows for the introduction of genes encoding several enzymes from a complex pathway, possibly as an operon. Expressing foreign proteins in the chloroplast can also be achieved by introducing the target gene into the nuclear genome, with the protein product bearing a targeting signal that directs import of the transgene-product into the chloroplast, like other endogenous chloroplast proteins. Integration of foreign genes into the nuclear genome is mostly random, resulting in large variability between different clones, such that extensive screening is required. The use of different selection modalities is also described, with special emphasis on the use of herbicides and metabolic markers which are considered to be friendly to the environment, as compared to drug-resistance genes that are commonly used. Finally, despite the development of a wide range of transformation tools and approaches, expression of foreign genes in microalgae suffers from low efficiency. Thus, novel tools have appeared in recent years to deal with this problem. Finally, while C. reinhardtii was traditionally used as a model organism for the development of transformation systems and their subsequent improvement, similar technologies can be adapted for other microalgae that may have higher biotechnological value.
Collapse
|
124
|
Wang YM, Yang Q, Liu YJ, Yang HL. Molecular Evolution and Expression Divergence of the Aconitase (ACO) Gene Family in Land Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1879. [PMID: 28018410 PMCID: PMC5149538 DOI: 10.3389/fpls.2016.01879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/28/2016] [Indexed: 05/07/2023]
Abstract
Aconitase (ACO) is a key enzyme that catalyzes the isomerization of citrate to isocitrate in the tricarboxylic acid (TCA) and glyoxylate cycles. The function of ACOs has been well studied in model plants, such as Arabidopsis. In contrast, the evolutionary patterns of the ACO family in land plants are poorly understood. In this study, we systematically examined the molecular evolution and expression divergence of the ACO gene family in 12 land plant species. Thirty-six ACO genes were identified from the 12 land plant species representing the four major land plant lineages: Bryophytes, lycophytes, gymnosperms, and angiosperms. All of these ACOs belong to the cytosolic isoform. Three gene duplication events contributed to the expansion of the ACO family in angiosperms. The ancestor of angiosperms may have contained only one ACO gene. One gene duplication event split angiosperm ACOs into two distinct clades. Two clades showed a divergence in selective pressure and gene expression patterns. The cis-acting elements that function in light responsiveness were most abundant in the promoter region of the ACO genes, indicating that plant ACO genes might participate in light regulatory pathways. Our findings provide comprehensive insights into the ACO gene family in land plants.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Department of Biochemistry and Molecular Biology, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
| | - Qi Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yan-Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Hai-Ling Yang
- Department of Biochemistry and Molecular Biology, College of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing, China
- *Correspondence: Hai-Ling Yang
| |
Collapse
|
125
|
Domozych DS, Popper ZA, Sørensen I. Charophytes: Evolutionary Giants and Emerging Model Organisms. FRONTIERS IN PLANT SCIENCE 2016; 7:1470. [PMID: 27777578 PMCID: PMC5056234 DOI: 10.3389/fpls.2016.01470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/15/2016] [Indexed: 05/20/2023]
Abstract
Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, will dramatically enhance our understanding of the evolution of plants and the adaptations that allowed for survival on land. The Frontiers in Plant Science series on "Charophytes" provides an assortment of new research reports and reviews on charophytes and their emerging significance as model plants.
Collapse
Affiliation(s)
- David S. Domozych
- Department of Biology, Skidmore College, Saratoga SpringsNY, USA
- *Correspondence: David S. Domozych,
| | - Zoë A. Popper
- Botany and Plant Science, School of Natural Science, National University of IrelandGalway, Ireland
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, IthacaNY, USA
| |
Collapse
|
126
|
Holzinger A, Pichrtová M. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques. FRONTIERS IN PLANT SCIENCE 2016; 7:678. [PMID: 27242877 PMCID: PMC4873514 DOI: 10.3389/fpls.2016.00678] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth's history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an unbiased non-targeted view in an evolutionary context.
Collapse
Affiliation(s)
- Andreas Holzinger
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
- *Correspondence: Andreas Holzinger,
| | - Martina Pichrtová
- Unit of Functional Plant Biology, Institute of Botany, University of Innsbruck, InnsbruckAustria
| |
Collapse
|
127
|
Kobayashi Y, Takusagawa M, Harada N, Fukao Y, Yamaoka S, Kohchi T, Hori K, Ohta H, Shikanai T, Nishimura Y. Eukaryotic Components Remodeled Chloroplast Nucleoid Organization during the Green Plant Evolution. Genome Biol Evol 2015; 8:1-16. [PMID: 26608058 PMCID: PMC4758235 DOI: 10.1093/gbe/evv233] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chloroplast (cp) DNA is thought to originate from the ancestral endosymbiont genome and is compacted to form nucleoprotein complexes, cp nucleoids. The structure of cp nucleoids is ubiquitously observed in diverse plants from unicellular algae to flowering plants and is believed to be a multifunctional platform for various processes, including cpDNA replication, repair/recombination, transcription, and inheritance. Despite its fundamental functions, the protein composition for cp nucleoids in flowering plants was suggested to be divergent from those of bacteria and algae, but the evolutionary process remains elusive. In this research, we aimed to reveal the evolutionary history of cp nucleoid organization by analyzing the key organisms representing the three evolutionary stages of eukaryotic phototrophs: the chlorophyte alga Chlamydomonas reinhardtii, the charophyte alga Klebsormidium flaccidum, and the most basal land plant Marchantia polymorpha. To clarify the core cp nucleoid proteins in C. reinhardtii, we performed an LC-MS/MS analysis using highly purified cp nucleoid fractions and identified a novel SAP domain-containing protein with a eukaryotic origin as a constitutive core component. Then, homologous genes for cp nucleoid proteins were searched for in C. reinhardtii, K. flaccidum, and M. polymorpha using the genome databases, and their intracellular localizations and DNA binding activities were investigated by cell biological/biochemical analyses. Based on these results, we propose a model that recurrent modification of cp nucleoid organization by eukaryotic factors originally related to chromatin organization might have been the driving force for the diversification of cp nucleoids since the early stage of green plant evolution.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| | - Mari Takusagawa
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Naomi Harada
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project, and Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Hori
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa, Japan
| | - Hiroyuki Ohta
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa, Japan Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Toshiharu Shikanai
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-Cho, Kita-Shirakawa, Kyoto, Japan
| |
Collapse
|
128
|
Morozov SY, Milyutina IA, Bobrova VK, Ryazantsev DY, Erokhina TN, Zavriev SK, Agranovsky AA, Solovyev AG, Troitsky AV. Structural evolution of the 4/1 genes and proteins in non-vascular and lower vascular plants. Biochimie 2015; 119:125-36. [PMID: 26542289 DOI: 10.1016/j.biochi.2015.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022]
Abstract
The 4/1 protein of unknown function is encoded by a single-copy gene in most higher plants. The 4/1 protein of Nicotiana tabacum (Nt-4/1 protein) has been shown to be alpha-helical and predominantly expressed in conductive tissues. Here, we report the analysis of 4/1 genes and the encoded proteins of lower land plants. Sequences of a number of 4/1 genes from liverworts, lycophytes, ferns and gymnosperms were determined and analyzed together with sequences available in databases. Most of the vascular plants were found to encode Magnoliophyta-like 4/1 proteins exhibiting previously described gene structure and protein properties. Identification of the 4/1-like proteins in hornworts, liverworts and charophyte algae (sister lineage to all land plants) but not in mosses suggests that 4/1 proteins are likely important for plant development but not required for a primary metabolic function of plant cell.
Collapse
Affiliation(s)
- Sergey Y Morozov
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia; A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Irina A Milyutina
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vera K Bobrova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Dmitry Y Ryazantsev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Tatiana N Erokhina
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Sergey K Zavriev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., Moscow 117997, Russia
| | - Alexey A Agranovsky
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alexey V Troitsky
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
129
|
|
130
|
Kumpf RP, Nowack MK. The root cap: a short story of life and death. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5651-62. [PMID: 26068468 DOI: 10.1093/jxb/erv295] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over 130 years ago, Charles Darwin recognized that sensory functions in the root tip influence directional root growth. Modern plant biology has unravelled that many of the functions that Darwin attributed to the root tip are actually accomplished by a particular organ-the root cap. The root cap surrounds and protects the meristematic stem cells at the growing root tip. Due to this vanguard position, the root cap is predisposed to receive and transmit environmental information to the root proper. In contrast to other plant organs, the root cap shows a rapid turnover of short-lived cells regulated by an intricate balance of cell generation, differentiation, and degeneration. Thanks to these particular features, the root cap is an excellent developmental model system, in which generation, differentiation, and degeneration of cells can be investigated in a conveniently compact spatial and temporal frame. In this review, we give an overview of the current knowledge and concepts of root cap biology, focusing on the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Robert P Kumpf
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
131
|
Giovagnetti V, Ware MA, Ruban AV. Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2015; 125:179-89. [PMID: 25613087 DOI: 10.1007/s11120-015-0087-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 05/03/2023]
Abstract
In their natural environment, plants are exposed to varying light conditions, which can lead to a build-up of excitation energy in photosystem (PS) II. Non-photochemical quenching (NPQ) is the primary defence mechanism employed to dissipate this excess energy. Recently, we developed a fluorescence-quenching analysis procedure that enables the protective effectiveness of NPQ in intact Arabidopsis leaves to be determined. However, pulse-amplitude modulation measurements do not currently allow distinguishing between PSII and PSI fluorescence levels. Failure to account for PSI contribution is suggested to lead to inaccurate measurements of NPQ and, particularly, maximum PSII yield (F v/F m). Recently, Pfündel et al. (Photosynth Res 114:189-206, 2013) proposed a method that takes into account PSI contribution in the measurements of F o fluorescence level. However, when PSI contribution was assumed to be constant throughout the induction of NPQ, we observed lower values of the measured minimum fluorescence level ([Formula: see text]) than those calculated according to the formula of Oxborough and Baker (Photosynth Res 54:135-142 1997) ([Formula: see text]), regardless of the light intensity. Therefore, in this work, we propose a refined model to correct for the presence of PSI fluorescence, which takes into account the previously observed NPQ in PSI. This method efficiently resolves the discrepancies between measured and calculated F o' produced by assuming a constant PSI fluorescence contribution, whilst allowing for the correction of the maximum PSII yield.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | | | | |
Collapse
|
132
|
The role of symbiosis in the transition of some eukaryotes from aquatic to terrestrial environments. Symbiosis 2015. [DOI: 10.1007/s13199-015-0321-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
133
|
Lagunas B, Schäfer P, Gifford ML. Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2177-86. [PMID: 25743160 PMCID: PMC4986721 DOI: 10.1093/jxb/erv038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/10/2015] [Accepted: 01/16/2015] [Indexed: 05/24/2023]
Abstract
Plant root rhizosphere interactions with mutualistic microbes are diverse and numerous, having evolved over time in response to selective pressures on plants to attain anchorage and nutrients. These relationships can be considered to be formed through a combination of architectural connections: molecular architecture interactions that control root-microbe perception and regulate the balance between host and symbiont and developmental architecture interactions that enable the microbes to be 'housed' in the root and enable the exchange of compounds. Recent findings that help to understand the common architecture that exists between nodulation and mycorrhizal interactions, and how this architecture could be re-tuned to develop new symbioses, are discussed here.
Collapse
Affiliation(s)
- B Lagunas
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - P Schäfer
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - M L Gifford
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
134
|
Herburger K, Lewis LA, Holzinger A. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. PROTOPLASMA 2015; 252:571-89. [PMID: 25269628 PMCID: PMC4335129 DOI: 10.1007/s00709-014-0703-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/12/2014] [Indexed: 05/20/2023]
Abstract
Two newly isolated strains of green algae from alpine regions were compared physiologically at different culture ages (1, 6, 9 and 15 months). The strains of Zygnema sp. were from different altitudes ('Saalach' (S), 440 m above sea level (a.s.l.), SAG 2419 and 'Elmau-Alm' (E-A), 1,500 m a.s.l., SAG 2418). Phylogenetic analysis of rbcL sequences grouped the strains into different major subclades of the genus. The mean diameters of the cells were 23.2 μm (Zygnema S) and 18.7 μm (Zygnema E-A) but were reduced significantly with culture age. The photophysiological response between the strains differed significantly; Zygnema S had a maximal relative electron transport rate (rETR max) of 103.4 μmol electrons m(-2) s(-1), Zygnema E-A only 61.7 μmol electrons m(-2) s(-1), and decreased significantly with culture age. Both strains showed a low-light adaption and the absence of strong photoinhibition up to 2,000 μmol photons m(-2) s(-1). Photosynthetic oxygen production showed similar results (P max Zygnema S, 527.2 μmol O2 h(-1) mg(-1) chlorophyll (chl.) a, Zygnema E-A, 390.7 μmol O2 h(-1) mg(-1) chl. a); the temperature optimum was at 35 °C for Zygnema S and 30 °C for Zygnema E-A. Increasing culture age moreover leads to the formation of pre-akinetes, which accumulate storage products as revealed by light and transmission electron microscopy. Desiccation at 84 % relative air humidity (RH) lead to a reduction of the effective quantum yield of photosystem II (PSII) (ΔFv/Fm') to zero between 90 to 120 min (Zygnema S) and between 30 to 60 min (Zygnema E-A), depending on the culture age. A partial recovery of ΔFv/Fm' was only observed in older cultures. We conclude that pre-akinetes are crucial for the aeroterrestrial lifestyle of Zygnema.
Collapse
Affiliation(s)
- K. Herburger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - L. A. Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043 USA
| | - A. Holzinger
- Institute of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
135
|
Wichard T, Charrier B, Mineur F, Bothwell JH, Clerck OD, Coates JC. The green seaweed Ulva: a model system to study morphogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:72. [PMID: 25745427 PMCID: PMC4333771 DOI: 10.3389/fpls.2015.00072] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/26/2015] [Indexed: 05/23/2023]
Abstract
Green macroalgae, mostly represented by the Ulvophyceae, the main multicellular branch of the Chlorophyceae, constitute important primary producers of marine and brackish coastal ecosystems. Ulva or sea lettuce species are some of the most abundant representatives, being ubiquitous in coastal benthic communities around the world. Nonetheless the genus also remains largely understudied. This review highlights Ulva as an exciting novel model organism for studies of algal growth, development and morphogenesis as well as mutualistic interactions. The key reasons that Ulva is potentially such a good model system are: (i) patterns of Ulva development can drive ecologically important events, such as the increasing number of green tides observed worldwide as a result of eutrophication of coastal waters, (ii) Ulva growth is symbiotic, with proper development requiring close association with bacterial epiphytes, (iii) Ulva is extremely developmentally plastic, which can shed light on the transition from simple to complex multicellularity and (iv) Ulva will provide additional information about the evolution of the green lineage.
Collapse
Affiliation(s)
- Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Bénédicte Charrier
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Centre National de la Recherche Scientifique, Roscoff, France
- UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC University of Paris 06, Roscoff, France
| | - Frédéric Mineur
- School of Biological Sciences, Queen’s University of Belfast, Belfast, UK
| | - John H. Bothwell
- School of Biological and Biomedical Sciences and Durham Energy Institute, Durham University, Durham, UK
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | | |
Collapse
|
136
|
Pierella Karlusich JJ, Ceccoli RD, Graña M, Romero H, Carrillo N. Environmental selection pressures related to iron utilization are involved in the loss of the flavodoxin gene from the plant genome. Genome Biol Evol 2015; 7:750-67. [PMID: 25688107 PMCID: PMC5322553 DOI: 10.1093/gbe/evv031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and iron limitation represent the grim side of life in an oxygen-rich atmosphere. The versatile electron transfer shuttle ferredoxin, an iron-sulfur protein, is particularly sensitive to these hardships, and its downregulation under adverse conditions severely compromises survival of phototrophs. Replacement of ferredoxin by a stress-resistant isofunctional carrier, flavin-containing flavodoxin, is a widespread strategy employed by photosynthetic microorganisms to overcome environmental adversities. The flavodoxin gene was lost in the course of plant evolution, but its reintroduction in transgenic plants confers increased tolerance to environmental stress and iron starvation, raising the question as to why a genetic asset with obvious adaptive value was not kept by natural selection. Phylogenetic analyses reveal that the evolutionary history of flavodoxin is intricate, with several horizontal gene transfer events between distant organisms, including Eukarya, Bacteria, and Archaea. The flavodoxin gene is unevenly distributed in most algal lineages, with flavodoxin-containing species being overrepresented in iron-limited regions and scarce or absent in iron-rich environments. Evaluation of cyanobacterial genomic and metagenomic data yielded essentially the same results, indicating that there was little selection pressure to retain flavodoxin in iron-rich coastal/freshwater phototrophs. Our results show a highly dynamic evolution pattern of flavodoxin tightly connected to the bioavailability of iron. Evidence presented here also indicates that the high concentration of iron in coastal and freshwater habitats may have facilitated the loss of flavodoxin in the freshwater ancestor of modern plants during the transition of photosynthetic organisms from the open oceans to the firm land.
Collapse
Affiliation(s)
- Juan J Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Romina D Ceccoli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina Present address: Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario; CONICET, Rosario, Argentina
| | - Martín Graña
- Unidad de Bioinformática, Institut Pasteur Montevideo, Uruguay
| | - Héctor Romero
- Departamento de Ecología y Evolución, Facultad de Ciencias/CURE, Universidad de la República, Montevideo, Uruguay
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
137
|
Jiao Y, Paterson AH. Polyploidy-associated genome modifications during land plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0355. [PMID: 24958928 DOI: 10.1098/rstb.2013.0355] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more 'particulate' understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.
Collapse
Affiliation(s)
- Yuannian Jiao
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30606, USA
| |
Collapse
|
138
|
|
139
|
Rydahl MG, Fangel JU, Mikkelsen MD, Johansen IE, Andreas A, Harholt J, Ulvskov P, Jørgensen B, Domozych DS, Willats WGT. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells. Methods Mol Biol 2015; 1242:1-21. [PMID: 25408439 DOI: 10.1007/978-1-4939-1902-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.
Collapse
Affiliation(s)
- Maja G Rydahl
- Department of Plant and Environmental Sciences, Faculty ofScience, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Fossil and Transcriptomic Perspectives on the Origins and Success of Metazoan Multicellularity. EVOLUTIONARY TRANSITIONS TO MULTICELLULAR LIFE 2015. [DOI: 10.1007/978-94-017-9642-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
141
|
Edel KH, Kudla J. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium 2014; 57:231-46. [PMID: 25477139 DOI: 10.1016/j.ceca.2014.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany.
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany; College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
142
|
Holzinger A, Kaplan F, Blaas K, Zechmann B, Komsic-Buchmann K, Becker B. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 2014; 9:e110630. [PMID: 25340847 PMCID: PMC4207709 DOI: 10.1371/journal.pone.0110630] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. PRINCIPAL FINDINGS For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. SIGNIFICANCE This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors.
Collapse
Affiliation(s)
- Andreas Holzinger
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Franziska Kaplan
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Kathrin Blaas
- University of Innsbruck, Functional Plant Biology, Innsbruck, Austria
| | - Bernd Zechmann
- Baylor University, Center for Microscopy and Imaging, Waco, Texas, United States of America
| | | | - Burkhard Becker
- University of Cologne, Botanical Institute, Biocenter, Cologne, Germany
| |
Collapse
|
143
|
Abstract
The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
144
|
Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU, Doblin MS, Bacic A, Willats WGT. Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. ANNALS OF BOTANY 2014; 114:1217-36. [PMID: 25204387 PMCID: PMC4195564 DOI: 10.1093/aob/mcu171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 07/08/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS The charophyte green algae (CGA) are thought to be the closest living relatives to the land plants, and ancestral CGA were unique in giving rise to the land plant lineage. The cell wall has been suggested to be a defining structure that enabled the green algal ancestor to colonize land. These cell walls provide support and protection, are a source of signalling molecules, and provide developmental cues for cell differentiation and elongation. The cell wall of land plants is a highly complex fibre composite, characterized by cellulose cross-linked by non-cellulosic polysaccharides, such as xyloglucan, embedded in a matrix of pectic polysaccharides. How the land plant cell wall evolved is currently unknown: early-divergent chlorophyte and prasinophyte algae genomes contain a low number of glycosyl transferases (GTs), while land plants contain hundreds. The number of GTs in CGA is currently unknown, as no genomes are available, so this study sought to give insight into the evolution of the biosynthetic machinery of CGA through an analysis of available transcriptomes. METHODS Available CGA transcriptomes were mined for cell wall biosynthesis GTs and compared with GTs characterized in land plants. In addition, gene cloning was employed in two cases to answer important evolutionary questions. KEY RESULTS Genetic evidence was obtained indicating that many of the most important core cell wall polysaccharides have their evolutionary origins in the CGA, including cellulose, mannan, xyloglucan, xylan and pectin, as well as arabino-galactan protein. Moreover, two putative cellulose synthase-like D family genes (CSLDs) from the CGA species Coleochaete orbicularis and a fragment of a putative CSLA/K-like sequence from a CGA Spirogyra species were cloned, providing the first evidence that all the cellulose synthase/-like genes present in early-divergent land plants were already present in CGA. CONCLUSIONS The results provide new insights into the evolution of cell walls and support the notion that the CGA were pre-adapted to life on land by virtue of the their cell wall biosynthetic capacity. These findings are highly significant for understanding plant cell wall evolution as they imply that some features of land plant cell walls evolved prior to the transition to land, rather than having evolved as a result of selection pressures inherent in this transition.
Collapse
Affiliation(s)
- Maria D Mikkelsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ida E Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jonatan U Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| |
Collapse
|
145
|
Doty KF, Betzelberger AM, Kocot KM, Cook ME. Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales (Streptophyta). JOURNAL OF PHYCOLOGY 2014; 50:624-39. [PMID: 26988447 DOI: 10.1111/jpy.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/09/2014] [Indexed: 05/24/2023]
Abstract
Study of charophycean green algae, including the Coleochaetales, may shed light on the evolutionary history of characters they share with their land plant relatives. We examined the tubulin cytoskeleton during mitosis, cytokinesis, and growth in members of the Coleochaetales with diverse morphologies to determine if phragmoplasts occurred throughout this order and to identify microtubular patterns associated with cell growth. Species representing three subgroups of Coleochaete and its sister genus Chaetosphaeridium were studied. Cytokinesis involving a phragmoplast was found in the four taxa examined. Differential interference contrast microscopy of living cells confirmed that polar cytokinesis like that described in the model flowering plant Arabidopsis occurred in all species when the forming cell plate traversed a vacuole. Calcofluor labeling of cell walls demonstrated directed growth from particular cell regions of all taxa. Electron microscopy confirmed directed growth in the unusual growth pattern of Chaetosphaeridium. All four species exhibited unordered microtubule patterns associated with diffuse growth in early cell expansion. In subsequent elongating cells, Coleochaete irregularis Pringsheim and Chaetosphaeridium globosum (Nordstedt) Klebahn exhibited tubulin cytoskeleton arrays corresponding to growth patterns associated with tip growth in plants, fungi, and other charophycean algae. Hoop-shaped microtubules frequently associated with diffuse growth of elongating cells in plants were not observed in any of these species. Presence of phragmoplasts in the diverse species studied supports the hypothesis that cytokinesis involving a phragmoplast originated in a common ancestor of the Coleochaetales, and possibly in a common ancestor of Charales, Coleochaetales, Zygnematales, and plants.
Collapse
Affiliation(s)
- Karen F Doty
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Amy M Betzelberger
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Kevin M Kocot
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| | - Martha E Cook
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois, 61790-4120, USA
| |
Collapse
|
146
|
Zhou X, Graumann K, Wirthmueller L, Jones JDG, Meier I. Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. J Cell Biol 2014; 205:677-92. [PMID: 24891605 PMCID: PMC4050730 DOI: 10.1083/jcb.201401138] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022] Open
Abstract
Although a plethora of nuclear envelope (NE) transmembrane proteins (NETs) have been identified in opisthokonts, plant NETs are largely unknown. The only known NET homologues in plants are Sad1/UNC-84 (SUN) proteins, which bind Klarsicht/ANC-1/Syne-1 homology (KASH) proteins. Therefore, de novo identification of plant NETs is necessary. Based on similarities between opisthokont KASH proteins and the only known plant KASH proteins, WPP domain-interacting proteins, we used a computational method to identify the KASH subset of plant NETs. Ten potential plant KASH protein families were identified, and five candidates from four of these families were verified for their NE localization, depending on SUN domain interaction. Of those, Arabidopsis thaliana SINE1 is involved in actin-dependent nuclear positioning in guard cells, whereas its paralogue SINE2 contributes to innate immunity against an oomycete pathogen. This study dramatically expands our knowledge of plant KASH proteins and suggests that plants and opisthokonts have recruited different KASH proteins to perform NE regulatory functions.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 OBP, England, UK
| | | | | | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
147
|
Petraglia A, De Benedictis M, Degola F, Pastore G, Calcagno M, Ruotolo R, Mengoni A, Sanità di Toppi L. The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral (plesiomorphic) characters for basal land plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1153-63. [PMID: 24449382 DOI: 10.1093/jxb/ert472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bryophytes, a paraphyletic group which includes liverworts, mosses, and hornworts, have been stated as land plants that under metal stress (particularly cadmium) do not synthesize metal-binding peptides such as phytochelatins. Moreover, very little information is available to date regarding phytochelatin synthesis in charophytes, postulated to be the direct ancestors of land plants, or in lycophytes, namely very basal tracheophytes. In this study, it was hypothesized that basal land plants and charophytes have the capability to produce phytochelatins and possess constitutive and functional phytochelatin synthases. To verify this hypothesis, twelve bryophyte species (six liverworts, four mosses, and two hornworts), three charophytes, and two lycophyte species were exposed to 0-36 μM cadmium for 72 h, and then assayed for: (i) glutathione and phytochelatin quali-quantitative content by HPLC and mass spectrometry; (ii) the presence of putative phytochelatin synthases by western blotting; and (iii) in vitro activity of phytochelatin synthases. Of all the species tested, ten produced phytochelatins in vivo, while the other seven did not. The presence of a constitutively expressed and functional phytochelatin synthase was demonstrated in all the bryophyte lineages and in the lycophyte Selaginella denticulata, but not in the charophytes. Hence, current knowledge according to phytochelatins have been stated as being absent in bryophytes was therefore confuted by this work. It is argued that the capability to synthesize phytochelatins, as well as the presence of active phytochelatin synthases, are ancestral (plesiomorphic) characters for basal land plants.
Collapse
Affiliation(s)
- Alessandro Petraglia
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Pichrtová M, Hájek T, Elster J. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol Ecol 2014; 89:270-80. [PMID: 24476153 DOI: 10.1111/1574-6941.12288] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/06/2014] [Accepted: 01/16/2014] [Indexed: 12/01/2022] Open
Abstract
Zygnema is a genus of filamentous green algae belonging to the class of Zygnematophyceae (Streptophyta). In the Arctic, it typically forms extensive mats in habitats that regularly dry out during summer, and therefore, mechanisms of stress resistance are expected. We investigated its natural populations with respect to production of specialized desiccation-resistant cells and osmotic acclimation. Six populations in various stages of natural desiccation were selected, from wet biomass floating in water to dried paper-like crusts. After rewetting, plasmolysis and osmotic stress effects were studied using hypertonic sorbitol solutions, and the physiological state was estimated using chlorophyll a fluorescence parameters. All populations of Zygnema sp. formed stationary-phase cells filled with storage products. In green algal research, such cells are traditionally called akinetes. However, the populations differed in their reaction to osmotic stress. Whereas the wet-collected samples were strongly impaired, the osmotic stress resistance of the naturally dried samples was comparable to that of true aeroterrestrial algae. We showed that arctic populations of Zygnema acclimate well to natural desiccation via hardening that is mediated by slow desiccation. As no other types of specialized cells were observed, we assume that the naturally hardened akinetes also play a key role in winter survival.
Collapse
Affiliation(s)
- Martina Pichrtová
- Institute of Botany, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic; Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
149
|
Sørensen I, Fei Z, Andreas A, Willats WGT, Domozych DS, Rose JKC. Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:339-51. [PMID: 24308430 DOI: 10.1111/tpj.12375] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/20/2013] [Accepted: 10/25/2013] [Indexed: 05/25/2023]
Abstract
The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well-studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high-throughput Agrobacterium tumefaciens-mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non-invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter-polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats.
Collapse
Affiliation(s)
- Iben Sørensen
- Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | | | | | |
Collapse
|
150
|
Hamel LP, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs. TRENDS IN PLANT SCIENCE 2014; 19:79-89. [PMID: 24342084 PMCID: PMC3932502 DOI: 10.1016/j.tplants.2013.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 05/18/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are multifunctional proteins that combine calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, QC G1V 4C7, Canada.
| |
Collapse
|