101
|
KÜPLEMEZ H, YILDIRIM MU. Effects of Cytokinin and Auxin on Plant Development and Vascular Tissues in Lens culinaris. COMMAGENE JOURNAL OF BIOLOGY 2020. [DOI: 10.31594/commagene.704271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
102
|
Burgel L, Hartung J, Schibano D, Graeff-Hönninger S. Impact of Different Phytohormones on Morphology, Yield and Cannabinoid Content of Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E725. [PMID: 32521804 PMCID: PMC7355821 DOI: 10.3390/plants9060725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022]
Abstract
The impact of exogenously applied plant growth regulators (PGR), 1-naphthalenaecetic acid (NAA), 6-benzylaminopurine (BAP), and a mixture of both (NAA/BAP-mix), was investigated in regard to plant height, length of axillary branches, number of internodes, biomass yield and cannabinoid content of three different phytocannabinoid-rich (PCR) Cannabis genotypes. The results showed that total plant height was significantly reduced under the application of NAA (28%), BAP (18%), and NAA/BAP-mix treated plants (15%). Axillary branch length was also significantly reduced by 58% (NAA) and 30% (NAA/BAP-mix). BAP did not significantly reduce the length of axillary branches. The number of internodes was reduced by NAA (19%), BAP (10%), and the NAA/BAP-mix (14%) compared to the untreated control. NAA application influenced the plant architecture of the tested cv. KANADA beneficially, resulting in a more compact growth habitus, while inflorescence yield (23.51 g plant-1) remained similar compared to the control (24.31 g plant-1). Inflorescence yield of v. 0.2x and cv. FED was reduced due to PGR application while cannabinoid content remained stable. Overall, the application of PGR could be used on a genotype-specific level to beneficially influence plant architecture and optimize inflorescence yield per unit area and thus cannabinoid yield, especially in the presence of space limitations under indoor cultivation.
Collapse
Affiliation(s)
- Lisa Burgel
- Department of Agronomy, Institute of Crop Science, Cropping Systems and Modelling, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Jens Hartung
- Department of Agronomy, Institute of Crop Science, Biostatistics, University of Hohenheim, 70599 Stuttgart, Germany;
| | | | - Simone Graeff-Hönninger
- Department of Agronomy, Institute of Crop Science, Cropping Systems and Modelling, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
103
|
Yuan C, Shi J, Zhao L. The CmbZIP1 transcription factor of chrysanthemum negatively regulates shoot branching. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:69-76. [PMID: 32200192 DOI: 10.1016/j.plaphy.2020.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The basic region/leucine zipper (bZIP) transcription factors play key roles in regulating diverse biological processes in plants. However, their participation in shoot branching has been rarely reported. Here, we isolated a CmbZIP1 transcription factor gene, a member of the bZIP family, from chrysanthemum. Subcellular localization analysis indicated that CmbZIP1 is a nuclear protein. Tissue-specific expression analysis indicated that CmbZIP1 was principally expressed in apical bud and axillary bud. Expression patterns analysis results showed that CmbZIP1 expression was suppressed in axillary buds in response to decapitation but increased in response to shade. Overexpression of CmbZIP1 in Arabidopsis inhibits its shoot branching. In addition, expression of auxin efflux protein PIN-FORMED 1 (PIN1) and auxin signaling components AUXIN RESISTANT 1/3 (AXR1, AXR3) were significantly up-regulated in overexpressing plants in comparison with wild type plants. Moreover, the transcript expression of BRANCHED 2 (AtBRC2) was also significantly up-regulated in overexpressing plants compared with the wild type. Altogether, these results suggest important and negative roles of CmbZIP1 in shoot branching. Our study extends the understanding of the function of bZIP transcription factors in plants and provides valuable gene resources for improving the architectural traits of ornamental plants.
Collapse
Affiliation(s)
- Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Jingtian Shi
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Liangjun Zhao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
104
|
Li Y, Xia T, Gao F, Li Y. Control of Plant Branching by the CUC2/CUC3-DA1-UBP15 Regulatory Module. THE PLANT CELL 2020; 32:1919-1932. [PMID: 32245753 PMCID: PMC7268791 DOI: 10.1105/tpc.20.00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 05/22/2023]
Abstract
Lateral branches are important for plant architecture and production, but how plants determine their lateral branches remains to be further understood. Here, we report that the CUP-SHAPED COTYLEDON2 (CUC2)/CUC3-DA1-UBIQUITIN-SPECIFIC PROTEASE15 (UBP15) regulatory module controls the initiation of axillary meristems, thereby determining the number of lateral branches in Arabidopsis (Arabidopsis thaliana). Mutation in the ubiquitin-dependent peptidase DA1 causes fewer lateral branches due to defects in the initiation of axillary meristems. The transcription factors CUC2 and CUC3, which regulate the axillary meristem initiation, directly bind to the DA1 promoter and activate its expression. Further results show that UBP15, which is a direct substrate of DA1 peptidase, represses the initiation of axillary meristems. Genetic analyses support that CUC2/CUC3, DA1, and UBP15 function, at least in part, in a common pathway to regulate the initiation of axillary meristems. Therefore, our findings establish a genetic and molecular framework by which the CUC2/CUC3-DA1-UBP15 regulatory module controls the initiation of axillary meristems, thereby determining plant architecture.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tian Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fan Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Science, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
105
|
Giri R, Sharma RK. Fungal pretreatment of lignocellulosic biomass for the production of plant hormone by Pichia fermentans under submerged conditions. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00319-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AbstractThe study was designed to evaluate the production of auxin by eukaryotic unicellular organism Pichia fermentans. Different media formulations were used for the production of indole-3-acetic acid (IAA) under broth and submerged conditions. Wheat straw-based production medium was formulated and optimized using statistical approach. The IAA production was significantly enhanced by nine folds, when the wheat straw was pretreated with Phanerochaete chrysosporium (150 µg/ml) as compared to untreated wheat straw (16.44 µg/ml). Partial purification of IAA was carried out by silica gel column chromatography and further confirmed by high-performance liquid chromatography. Exogenous application of crude and partially purified IAA positively influenced the Vigna radiata seedling growth. The number of lateral roots in the growing seedlings was significantly higher as compared to the control seeds. Thus, the present findings point towards an efficient production of plant hormone by yeast and white rot fungus using abundantly available wheat straw, which may lead to the development of cost-effective production of such metabolites and their further use in agricultural field to reduce the negative impact of chemical fertilizers.
Collapse
|
106
|
Shi J, Wang N, Zhou H, Xu Q, Yan G. Transcriptome analyses provide insights into the homeostatic regulation of axillary buds in upland cotton (G. hirsutum L.). BMC PLANT BIOLOGY 2020; 20:228. [PMID: 32448205 PMCID: PMC7245931 DOI: 10.1186/s12870-020-02436-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/10/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND The axillary bud is an important index of cotton plant-type traits, and the molecular mechanism of axillary bud development in upland cotton has not yet been reported. We obtained a mutant (designated mZ571) with a high-budding phenotype in axillary bud development from the low-budding phenotype variety G. hirsutum Z571 (CCRI 9A02), which provided ideal materials for the study of complex regulatory networks of axillary bud development. In this study, RNA sequencing was carried out to detect gene expression levels during three stages of axillary buds in Z571 (LB, low budding) and mZ571 mutant (HB, high budding). RESULTS A total of 7162 DEGs were identified in the three groups (HB-E vs. LB-E, HB-G1 vs. LB-G1, HB-G2 vs. LB-G2), including 4014 downregulated and 3184 upregulated DEGs. Additionally, 221 DEGs were commonly identified in all three groups, accounting for approximately 3.09% of the total DEGs. These DEGs were identified, annotated and classified. A significant number of DEGs were related to hormone metabolism, hormone signal transduction, and starch and sucrose metabolism. In addition, 45, 22 and 9 DEGs involved in hormone metabolic pathways and 67, 22 and 19 DEGs involved in hormone signal transduction pathwayspathway were identified in HB-E vs. LB-E, HB-G1 vs. LB-G1, and HB-G2 vs. LB-G2, respectively, suggesting that endogenous hormones are the primary factors influencing cotton axillary bud growth. Hormone and soluble sugar content measurements revealed that mZ571 exhibited higher concentrations of zeatin, gibberellins and soluble sugar in all three stages, which confirmed that these hormone metabolism-, hormone signal transduction- and starch metabolism-related genes showed interaction effects contributing to the divergence of axillary bud growth between mZ571 and Z571. CONCLUSIONS Our results confirmed the importance of endogenous hormones and sugars in the development of axillary buds, and we found that mZ571 plants, with a high-budding phenotype of axillary buds, exhibited higher endogenous hormone and sugar concentrations. Overall, we present a model for the emergence and development of cotton axillary buds that provides insights into the complexity and dynamic nature of the regulatory network during axillary bud emergence and development.
Collapse
Affiliation(s)
- Jianbin Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, NO. 38, Huanghe Road, Anyang City, 455000 Henan Province China
| | - Ning Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, NO. 38, Huanghe Road, Anyang City, 455000 Henan Province China
| | - Hong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, NO. 38, Huanghe Road, Anyang City, 455000 Henan Province China
| | - Qinghua Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, NO. 38, Huanghe Road, Anyang City, 455000 Henan Province China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, NO. 38, Huanghe Road, Anyang City, 455000 Henan Province China
| |
Collapse
|
107
|
Xu J, Li Q, Yang L, Li X, Wang Z, Zhang Y. Changes in carbohydrate metabolism and endogenous hormone regulation during bulblet initiation and development in Lycoris radiata. BMC PLANT BIOLOGY 2020; 20:180. [PMID: 32334530 PMCID: PMC7183599 DOI: 10.1186/s12870-020-02394-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lycoris species have great ornamental and medicinal values; however, their low regeneration efficiency seriously restricts their commercial production. Understanding the mechanism of bulblet propagation in this genus, which has remained underexplored to date, could provide a theoretical basis for improving the reproductive efficiency. Therefore, we studied the bulblet initiation and developmental processes in Lycoris radiata. RESULTS We found that bulblets are formed on the junctions of the innermost layers of scales and the basal plate, and initially present as an axillary bud and gradually develop into a bulblet. We also determined the changes in carbohydrate and endogenous hormone contents during bulblet initiation and development, as well as the expression patterns of genes involved in carbohydrate metabolism and hormone biosynthesis and signaling through transcriptome analysis. Soluble sugars derived from starch degradation in the outer scales are transported to and promote bulblet initiation and development through starch synthesis in the inner scales. This process is mediated by several genes involved in carbohydrate metabolism, especially genes encoding ADP glucose pyrophosphorylase, a crucial starch synthesis enzyme. As for hormones, endogenous IAA, GA, and ABA content showed an increase and decrease during bulblet initiation and development, respectively, which were consistent with the expression patterns of genes involved in IAA, GA, and ABA synthesis and signal transduction. In addition, a decrease in ZR content may be down- and up-regulated by CK biosynthesis and degradation related genes, respectively, with increasing auxin content. Furthermore, expression levels of genes related to BR, JA, and SA biosynthesis were increased, while that of ethylene biosynthesis genes was decreased, which was also consistent with the expression patterns of their signal transduction genes. CONCLUSIONS The present study provides insights into the effect of carbohydrate metabolism and endogenous hormone regulation on control of L. radiata bulblet initiation and development. Based on the results, we propose several suggestions to improve L. radiata propagation efficiency in production, which will provide directions for future research.
Collapse
Affiliation(s)
- Junxu Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qingzhu Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Liuyan Yang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xin Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhen Wang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yongchun Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
108
|
Moradtalab N, Ahmed A, Geistlinger J, Walker F, Höglinger B, Ludewig U, Neumann G. Synergisms of Microbial Consortia, N Forms, and Micronutrients Alleviate Oxidative Damage and Stimulate Hormonal Cold Stress Adaptations in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:396. [PMID: 32391028 PMCID: PMC7193188 DOI: 10.3389/fpls.2020.00396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/19/2020] [Indexed: 05/04/2023]
Abstract
AIMS Low soil temperature in spring is a major constraint for the cultivation of tropical crops in temperate climates. This study aims at the exploitation of synergistic interactions of micronutrients, consortia of plant growth-promoting microorganisms and N forms as cold-stress protectants. METHODS Maize seedlings were exposed for two weeks to low root zone temperatures at 8-14°C under controlled conditions on a silty clay-loam soil (pH 6.9) collected from a maize field cultivation site. A pre-selection trial with fungal and bacterial PGPM strains revealed superior cold-protective performance for a microbial consortium of Trichoderma harzianum OMG16 and Bacillus spp. with Zn/Mn supplementation (CombiA+), particularly in combination with N-ammonium as a starting point for the characterization of the underlying physiological and molecular mechanisms. RESULTS In nitrate-treated plants, the cold stress treatment increased oxidative leaf damage by 133% and reduced the shoot biomass by 25%, related with reduced acquisition of phosphate (P), zinc (Zn) and manganese (Mn). The supplying of N as ammonium improved the Zn and Mn nutritional status and increased the ABA shoot concentration by 33%, as well as moderately increased detoxification of reactive oxygen species (ROS). Moreover, use of N as ammonium also increased the root auxin (IAA) concentration (+76%), with increased expression of auxin-responsive genes, involved in IAA synthesis (ZmTSA), transport (ZmPIN1a), and perception (ZmARF12). Additional inoculation with the microbial consortium promoted root colonization with the inoculant strain T. harzianum OMG16 in combination with ammonium fertilization (+140%). An increased ABA/cytokinin ratio and increased concentrations of jasmonic (JA) and salicylic acids (SA) were related to a further increase in enzymatic and non-enzymatic ROS detoxification. Additional supplementation with Zn and Mn further increased shoot IAA, root length and total antioxidants, resulting in the highest shoot biomass production and the lowest leaf damage by oxidative chemical species. CONCLUSION Our results suggest the mitigation of cold stress and reduction of stress priming effects on maize plants due to improved ROS detoxification and induction of hormonal stress adaptations relying on the strategic combination of stress-protective nutrients with selected microbial inoculants.
Collapse
Affiliation(s)
- Narges Moradtalab
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Aneesh Ahmed
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Joerg Geistlinger
- Institute of Bioanalytical Sciences, Anhalt University of Applied Sciences, Bernburg, Germany
| | - Frank Walker
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Birgit Höglinger
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
109
|
Regulation of Shoot Apical Meristem and Axillary Meristem Development in Plants. Int J Mol Sci 2020; 21:ijms21082917. [PMID: 32326368 PMCID: PMC7216077 DOI: 10.3390/ijms21082917] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 01/13/2023] Open
Abstract
Plants retain the ability to produce new organs throughout their life cycles. Continuous aboveground organogenesis is achieved by meristems, which are mainly organized, established, and maintained in the shoot apex and leaf axils. This paper will focus on reviewing the recent progress in understanding the regulation of shoot apical meristem and axillary meristem development. We discuss the genetics of plant meristems, the role of plant hormones and environmental factors in meristem development, and the impact of epigenetic factors on meristem organization and function.
Collapse
|
110
|
Micropropagation and Production of Somatic Seeds for Short-Term Storage of the Endangered Species Eryngium alpinum L. PLANTS 2020; 9:plants9040498. [PMID: 32295044 PMCID: PMC7238032 DOI: 10.3390/plants9040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/28/2020] [Accepted: 04/09/2020] [Indexed: 11/30/2022]
Abstract
Eryngium alpinum L. is a high-value herb and a source of important compounds that include phenolics, triterpenoid saponins, and essential oils. The present report indicates successful micropropagation of this species. In our study, medium supplemented with BAP 2.0 mg/L, IAA 1.0 mg/L, and GA3 1.0 mg/L was found to be the most suitable for long-term culture and for effective proliferation, irrespective of the passage number. Roots induction, without basal callus formation, was observed when individual microshoots were placed on Murashige & Skoog medium augmented with auxin, and formation was the most advantageous in the presence of NAA alone or when combined with IAA or IBA. The encapsulated propagules were tested for their capability to endure different storage periods under low temperature. Therefore, we developed an efficient method for synseeds production by encapsulation of axillary buds in the sodium alginate matrix, storage for 2, 4, and 6 months, as well as the regeneration process. The maximum regeneration rate of 74% ± 2.72% was observed for axillary buds encapsulated in 4% sodium–alginate complexed with 300 mM calcium chloride after 2 months of storage at low temperature. This is the first report on E. alpinum micropropagation and somatic seeds production.
Collapse
|
111
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
112
|
Zhang QQ, Wang JG, Wang LY, Wang JF, Wang Q, Yu P, Bai MY, Fan M. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:421-432. [PMID: 31001922 DOI: 10.1111/jipb.12818] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 05/25/2023]
Abstract
The formation of lateral branches has an important and fundamental contribution to the remarkable developmental plasticity of plants, which allows plants to alter their architecture to adapt to the challenging environment conditions. The Gibberellin (GA) phytohormones have been known to regulate the outgrowth of axillary meristems (AMs), but the specific molecular mechanisms remain unclear. Here we show that DELLA proteins regulate axillary bud formation by interacting and regulating the DNA-binding ability of SQUAMOSA-PROMOTER BINDING PROTEIN LIKE 9 (SPL9), a microRNA156-targeted squamosa promoter binding protein-like transcription factor. SPL9 participates in the initial regulation of axillary buds by repressing the expression of LATERAL SUPPRESSOR (LAS), a key regulator in the initiation of AMs, and LAS contributes to the specific expression pattern of the GA deactivation enzyme GA2ox4, which is specifically expressed in the axils of leaves to form a low-GA cell niche in this anatomical region. Nevertheless, increasing GA levels in leaf axils by ectopically expressing the GA-biosynthesis enzyme GA20ox2 significantly impaired axillary meristem initiation. Our study demonstrates that DELLA-SPL9-LAS-GA2ox4 defines a core feedback regulatory module that spatially pattern GA content in the leaf axil and precisely control the axillary bud formation in different spatial and temporal.
Collapse
Affiliation(s)
- Qi-Qi Zhang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jia-Gang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ling-Yan Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jun-Fang Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qun Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ping Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Fan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
113
|
Killiny N, Nehela Y. Citrus Polyamines: Structure, Biosynthesis, and Physiological Functions. PLANTS 2020; 9:plants9040426. [PMID: 32244406 PMCID: PMC7238152 DOI: 10.3390/plants9040426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 01/10/2023]
Abstract
Polyamines (PAs) are ubiquitous biogenic amines found in all living organisms from bacteria to Archaea, and Eukaryotes including plants and animals. Since the first description of putrescine conjugate, feruloyl-putrescine (originally called subaphylline), from grapefruit leaves and juice, many research studies have highlighted the importance of PAs in growth, development, and other physiological processes in citrus plants. PAs appear to be involved in a wide range of physiological processes in citrus plants; however, their exact roles are not fully understood. Accordingly, in the present review, we discuss the biosynthesis of PAs in citrus plants, with an emphasis on the recent advances in identifying and characterizing PAs-biosynthetic genes and other upstream regulatory genes involved in transcriptional regulation of PAs metabolism. In addition, we will discuss the recent metabolic, genetic, and molecular evidence illustrating the roles of PAs metabolism in citrus physiology including somatic embryogenesis; root system formation, morphology, and architecture; plant growth and shoot system architecture; inflorescence, flowering, and flowering-associated events; fruit set, development, and quality; stomatal closure and gas-exchange; and chlorophyll fluorescence and photosynthesis. We believe that the molecular and biochemical understanding of PAs metabolism and their physiological roles in citrus plants will help citrus breeding programs to enhance tolerance to biotic and abiotic stresses and provide bases for further research into potential applications.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Correspondence: ; Tel.: +1-863-956-8833
| | - Yasser Nehela
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
114
|
Kviklys D, Samuolienė G. Relationships Among the Rootstock, Crop Load, and Sugar Hormone Signaling of Apple Tree, and Their Effects on Biennial Bearing. FRONTIERS IN PLANT SCIENCE 2020; 11:1213. [PMID: 32849752 PMCID: PMC7427310 DOI: 10.3389/fpls.2020.01213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 05/09/2023]
Abstract
Adjustable crop load primarily involves bud manipulation, and usually switches from vegetative to reproductive buds. While this switch is not fully understood, it is still controlled by the ratio of hormones, which promote or inhibit bud formation. To determine the reasons for biennial bearing, the effect of apple rootstock, scion cultivar, crop load, as well as metabolic changes of endogenous phytohormones [zeatin, jasmonic acid, indole-3 acetic acid (IAA), abscisic acid (ABA), and gibberellins 1, 3, and 7 (GAs)], and soluble sugars (glucose, fructose, and sorbitol) were evaluated, and their connections with return bloom and yield of apple tree buds were analyzed. Cultivars "Ligol" and "Auksis" were tested on five rootstocks contrasting in induced vigor: semi-dwarfing M.26; dwarfing M.9, B.396, and P 67; and super-dwarfing P 22. Crop load levels were adjusted before flowering, leaving 75, 113, and 150 fruits per tree. Principal component analysis (PCA) scatter plot of the metabolic response of phytohormones and sugars indicated that the effect of the semi-dwarfing M.26 rootstock was significantly different from that of the dwarfing M.9 and P 67, as well as the super-dwarfing P 22 rootstocks in both varieties. The most intensive crop load (150 fruits per tree) produced a significantly different response compared to less intensive crop loads (113 and 75) in both varieties. In contrast to soluble sugar accumulation, increased crop load resulted in an increased accumulation of phytohormones, except for ABA. Dwarfing rootstocks M.9, B.396, and P 67, as well as super-dwarf P 22 produced an altered accumulation of promoter phytohormones, while the more vigorous semi-dwarfing M.26 rootstock induced a higher content of glucose and inhibitory phytohormones, by increasing content of IAA, ABA, and GAs. The most significant decrease in return bloom resulted from the highest crop load in "Auksis" grafted on M.9 and P 22 rootstocks. Average difference in flower number between crop loads of 75 and 150 fruits per tree in "Ligol" was 68%, while this difference reached ~ 90% for P 22, and ~ 75% for M.9 and M.26 rootstocks. Return bloom was dependent on the previous year's crop load, cultivar, and rootstock.
Collapse
Affiliation(s)
- Darius Kviklys
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
- Department of Horticulture, Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Lofthus, Norway
- *Correspondence: Darius Kviklys,
| | - Giedrė Samuolienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| |
Collapse
|
115
|
Katyayini NU, Rinne PLH, Tarkowská D, Strnad M, van der Schoot C. Dual Role of Gibberellin in Perennial Shoot Branching: Inhibition and Activation. FRONTIERS IN PLANT SCIENCE 2020; 11:736. [PMID: 32582259 PMCID: PMC7289990 DOI: 10.3389/fpls.2020.00736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 05/05/2023]
Abstract
Shoot branching from axillary buds (AXBs) is regulated by a network of inhibitory and promotive forces, which includes hormones. In perennials, the dwarfed stature of the embryonic shoot inside AXBs is indicative of gibberellin (GA) deficiency, suggesting that AXB activation and outgrowth require GA. Nonetheless, the role of GA in branching has remained obscure. We here carried out comprehensive GA transcript and metabolite analyses in hybrid aspen, a perennial branching model. The results indicate that GA has an inhibitory as well as promotive role in branching. The latter is executed in two phases. While the expression level of GA2ox is high in quiescent AXBs, decapitation rapidly downregulated it, implying increased GA signaling. In the second phase, GA3ox2-mediated de novo GA-biosynthesis is initiated between 12 and 24 h, prior to AXB elongation. Metabolite analyzes showed that GA1/4 levels were typically high in proliferating apices and low in the developmentally inactive, quiescent AXBs, whereas the reverse was true for GA3/6. To investigate if AXBs are differently affected by GA3, GA4, and GR24, an analog of the branch-inhibitor hormone strigolactone, they were fed into AXBs of single-node cuttings. GA3 and GA4 had similar effects on GA and SL pathway genes, but crucially GA3 induced AXB abscission whereas GA4 promoted outgrowth. Both GA3 and GA4 strongly upregulated GA2ox genes, which deactivate GA1/4 but not GA3/6. Thus, the observed production of GA3/6 in quiescent AXBs targets GA1/4 for GA2ox-mediated deactivation. AXB quiescence can therefore be maintained by GA3/6, in combination with strigolactone. Our discovery of the distinct tasks of GA3 and GA4 in AXB activation might explain why the role of GA in branching has been difficult to decipher. Together, the results support a novel paradigm in which GA3/6 maintains high levels of GA2ox expression and low levels of GA4 in quiescent AXBs, whereas activation and outgrowth require increased GA1/4 signaling through the rapid reduction of GA deactivation and subsequent GA biosynthesis.
Collapse
Affiliation(s)
| | - Päivi L. H. Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Christiaan van der Schoot
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot,
| |
Collapse
|
116
|
Nie N, Ding X, Chen L, Wu X, An Y, Li C, Song Y, Zhang D, Liu Z, Wang T, Li Y, Li YX, Shi Y. Characterization and fine mapping of qkrnw4, a major QTL controlling kernel row number in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3321-3331. [PMID: 31555888 DOI: 10.1007/s00122-019-03427-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
A major QTL controlling kernel row number, qkrnw4, was identified by combining linkage analysis and association mapping. Within qkrnw4, on the basis of its expression and bioinformatics analysis, Zm00001d052910 was supposed to be the candidate gene for kernel row number. Kernel row number (KRN) is an important yield-related trait that affects kernel number in maize. Understanding the genetic basis of KRN is important for increasing maize yields. In the present study, by the use of a near-isogenic line (NIL) that has a B73 background and that consistently displays a low KRN across environments, qkrnw4, a major quantitative trait locus (QTL) associated with KRN within a yield trait-related QTL hotspot in bin 4.08, was finely mapped to an ~ 33-kb interval. Regional association analysis of a nested association mapping population comprising 5000 recombinant inbred lines revealed Zm00001d052910, which encodes a protein with an unknown function, as the important candidate gene responsible for qkrnw4. Different expression levels of this candidate gene in immature ears were detected between the NIL and its recurrent parent. Moreover, the expression of several auxin-related genes was consistent with that of the candidate gene. Furthermore, the potential associations of this candidate gene with well-known inflorescence-related genes were discussed. The results of this study provide important information for the genetic elucidation of KRN variation in maize.
Collapse
Affiliation(s)
- Ningning Nie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoyu Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xun Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yixin An
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanchun Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dengfeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhizhai Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Tianyu Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Xiang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yunsu Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
117
|
Vega A, O'Brien JA, Gutiérrez RA. Nitrate and hormonal signaling crosstalk for plant growth and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:155-163. [PMID: 31726384 DOI: 10.1016/j.pbi.2019.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 05/22/2023]
Abstract
Nitrate is an essential macronutrient for plants, a primary nitrogen source in natural and human-made ecosystems. Nitrate can also act as a signaling molecule that directs genome-wide gene expression changes with an impact on plant metabolism, physiology, growth and development. Nitrate and phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a multifactorial manner. Nitrate-signaling controls plant growth and development using molecular mechanisms that involve phytohormone-signaling pathways. In contrast, many phytohormones modulate or impact nitrate signaling in interconnected pathways. In this review, we explore recent progress in our understanding of well-documented connections between nitrate and phytohormones such as auxin, cytokinin and abscisic acid. We also discuss recent studies connecting nitrate to other phytohormones such as ethylene, salicylic acid, gibberellins and brassinosteroids. While many molecular details remain to be elucidated, a number of core signaling components at the intersection between nitrate and the major hormonal pathways have been described. We focus on established interactions of nitrate and different hormonal pathways to bring about cellular, growth and developmental processes in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Andrea Vega
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile
| | - José Antonio O'Brien
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile; Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Millennium Institute for Integrative Biology (iBio), Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avda. Libertador Bernardo O'Higgins 340, Santiago, 8331150, Chile.
| |
Collapse
|
118
|
Katyayini NU, Rinne PLH, van der Schoot C. Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen. PLANT & CELL PHYSIOLOGY 2019; 60:2797-2811. [PMID: 31504881 PMCID: PMC6896703 DOI: 10.1093/pcp/pcz170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/17/2019] [Indexed: 05/04/2023]
Abstract
The biosynthesis and roles of strigolactones (SLs) have been investigated in herbaceous plants, but so far, their role in trees has received little attention. In this study, we analyzed the presence, spatial/temporal expression and role of SL pathway genes in Populus tremula � Populus tremuloides. In this proleptic species, axillary buds (AXBs) become para-dormant at the bud maturation point, providing an unambiguous starting point to study AXB activation. We identified previously undescribed Populus homologs of DWARF27 (D27), LATERAL BRANCHING OXIDOREDUCTASE (LBO) and DWARF53-like (D53-like) and analyzed the relative expression of all SL pathway genes in root tips and shoot tissues. We found that, although AXBs expressed MORE AXILLARY GROWTH1 (MAX1) and LBO, they did not express MAX3 and MAX4, whereas nodal bark expressed high levels of all SL biosynthesis genes. By contrast, expression of the SL perception and signaling genes MAX2, D14 and D53 was high in AXBs relative to nodal bark and roots. This suggests that AXBs are reliant on the associated nodes for the import of SLs and SL precursors. Activation of AXBs was initiated by decapitation and single-node isolation. This rapidly downregulated SL pathway genes downstream of MAX4, although later these genes were upregulated coincidently with primordia formation. GR24-feeding counteracted all activation-related changes in SL gene expression but did not prevent AXB outgrowth showing that SL is ineffective once AXBs are activated. The results indicate that nodes rather than roots supply SLs and its precursors to AXBs, and that SLs may restrain embryonic shoot elongation during AXB formation and para-dormancy in intact plants.
Collapse
Affiliation(s)
| | - P�ivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway
| | - Christiaan van der Schoot
- Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway
- Corresponding author: E-mail,
| |
Collapse
|
119
|
Grall E, Tschopp P. A sense of place, many times over ‐ pattern formation and evolution of repetitive morphological structures. Dev Dyn 2019; 249:313-327. [DOI: 10.1002/dvdy.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
|
120
|
Identification of Quantitative Trait Loci for Component Traits of Flowering Capacity Across Temperature in Petunia. G3-GENES GENOMES GENETICS 2019; 9:3601-3610. [PMID: 31527047 PMCID: PMC6829123 DOI: 10.1534/g3.119.400653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For ornamental annual bedding plants, flowering performance is critical. Flowering performance includes the length of the flowering period, the longevity of individual flowers, and the number of flowers produced during the flowering period, or flowering capacity. Flowering capacity is a function of several component traits, including the number of branches producing flowers, the number of inflorescences per flowering branch, and the number of flower buds per inflorescence. We employed an F7Petunia axillaris × P. exserta recombinant inbred line population to identify QTL for flowering capacity component traits. The population was phenotyped at 14, 17, and 20° over two years. Fifteen robust QTL (rQTL; QTL detected in two or more temperatures/years) were identified across six of the seven Petunia chromosomes (Chr) for total flower bud number (FlBud), branch number (Branch), flowering branch number (FlBranch), and primary shoot flower bud number (FlBudPS). The largest effect QTL explained up to 28.8, 34.9, 36, and 23.1% of the phenotypic variation for FlBub, FlBudPS, Branch, and FlBranch, respectively. rQTL for FlBud and FlBranch co-localized on Chr 1, and rQTL for FlBud, FlBudPS, and FlBranch co-localized on Chr 4. These regions in particular should be useful for identifying genes controlling flowering capacity of this important ornamental plant.
Collapse
|
121
|
Larue F, Fumey D, Rouan L, Soulié JC, Roques S, Beurier G, Luquet D. Modelling tiller growth and mortality as a sink-driven process using Ecomeristem: implications for biomass sorghum ideotyping. ANNALS OF BOTANY 2019; 124:675-690. [PMID: 30953443 PMCID: PMC6821234 DOI: 10.1093/aob/mcz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/28/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Plant modelling can efficiently support ideotype conception, particularly in multi-criteria selection contexts. This is the case for biomass sorghum, implying the need to consider traits related to biomass production and quality. This study evaluated three modelling approaches for their ability to predict tiller growth, mortality and their impact, together with other morphological and physiological traits, on biomass sorghum ideotype prediction. METHODS Three Ecomeristem model versions were compared to evaluate whether tillering cessation and mortality were source (access to light) or sink (age-based hierarchical access to C supply) driven. They were tested using a field data set considering two biomass sorghum genotypes at two planting densities. An additional data set comparing eight genotypes was used to validate the best approach for its ability to predict the genotypic and environmental control of biomass production. A sensitivity analysis was performed to explore the impact of key genotypic parameters and define optimal parameter combinations depending on planting density and targeted production (sugar and fibre). KEY RESULTS The sink-driven control of tillering cessation and mortality was the most accurate, and represented the phenotypic variability of studied sorghum genotypes in terms of biomass production and partitioning between structural and non-structural carbohydrates. Model sensitivity analysis revealed that light conversion efficiency and stem diameter are key traits to target for improving sorghum biomass within existing genetic diversity. Tillering contribution to biomass production appeared highly genotype and environment dependent, making it a challenging trait for designing ideotypes. CONCLUSIONS By modelling tiller growth and mortality as sink-driven processes, Ecomeristem could predict and explore the genotypic and environmental variability of biomass sorghum production. Its application to larger sorghum genetic diversity considering water deficit regulations and its coupling to a genetic model will make it a powerful tool to assist ideotyping for current and future climatic scenario.
Collapse
Affiliation(s)
- Florian Larue
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Lauriane Rouan
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Christophe Soulié
- CIRAD, UR Recycling & Risk, Montpellier, France
- Recycling & Risk Unit, University of Montpellier, CIRAD, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Grégory Beurier
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Delphine Luquet
- CIRAD, UMR AGAP, PAM, Montpellier, France
- UMR AGAP, Université Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
122
|
Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J. Light Regulation of Axillary Bud Outgrowth Along Plant Axes: An Overview of the Roles of Sugars and Hormones. FRONTIERS IN PLANT SCIENCE 2019; 10:1296. [PMID: 31681386 PMCID: PMC6813921 DOI: 10.3389/fpls.2019.01296] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 05/06/2023]
Abstract
Apical dominance, the process by which the growing apical zone of the shoot inhibits bud outgrowth, involves an intricate network of several signals in the shoot. Auxin originating from plant apical region inhibits bud outgrowth indirectly. This inhibition is in particular mediated by cytokinins and strigolactones, which move from the stem to the bud and that respectively stimulate and repress bud outgrowth. The action of this hormonal network is itself modulated by sugar levels as competition for sugars, caused by the growing apical sugar sink, may deprive buds from sugars and prevents bud outgrowth partly by their signaling role. In this review, we analyze recent findings on the interaction between light, in terms of quantity and quality, and apical dominance regulation. Depending on growth conditions, light may trigger different pathways of the apical dominance regulatory network. Studies pinpoint to the key role of shoot-located cytokinin synthesis for light intensity and abscisic acid synthesis in the bud for R:FR in the regulation of bud outgrowth by light. Our analysis provides three major research lines to get a more comprehensive understanding of light effects on bud outgrowth. This would undoubtedly benefit from the use of computer modeling associated with experimental observations to deal with a regulatory system that involves several interacting signals, feedbacks, and quantitative effects.
Collapse
Affiliation(s)
- Anne Schneider
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon, France
| | | | | | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
123
|
SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun 2019; 10:2738. [PMID: 31227696 PMCID: PMC6588547 DOI: 10.1038/s41467-019-10667-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/14/2019] [Indexed: 11/15/2022] Open
Abstract
The breeding of cereals with altered gibberellin (GA) signaling propelled the ‘Green Revolution’ by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1. Due to reduced gibberellin sensitivity, modern rice cultivars are shorter than traditional varieties but produce more tillers and have higher yields. Here Liao et al. show that gibberellin contributes to decreased tiller number by degrading the MOC1 protein that suppresses bud outgrowth.
Collapse
|
124
|
Liu F, Xie L, Yao Z, Zhou Y, Zhou W, Wang J, Sun Y, Gong C. Caragana korshinskii phenylalanine ammonialyase is up-regulated in the phenylpropanoid biosynthesis pathway in response to drought stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1623718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Furong Liu
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Lifang Xie
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Zhenye Yao
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Yulu Zhou
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Wenfei Zhou
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Junhui Wang
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Yingying Sun
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| | - Chunmei Gong
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| |
Collapse
|
125
|
Panigrahi R, Kariali E, Panda BB, Lafarge T, Mohapatra PK. Controlling the trade-off between spikelet number and grain filling: the hierarchy of starch synthesis in spikelets of rice panicle in relation to hormone dynamics. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:507-523. [PMID: 30961785 DOI: 10.1071/fp18153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The advent of dwarf statured rice varieties enabled a major breakthrough in yield and production, but raising the ceiling of genetically determined yield potential even further has been the breeding priority. Grain filling is asynchronous in the rice panicle; the inferior spikelets particularly on secondary branches of the basal part do not produce grains of a quality suitable for human consumption. Of the various strategies being considered, the control of ethylene production at anthesis has been a valuable route to potentially enhance genetic yield level of rice. The physiology underlying spikelet development has revealed spikelet position-specific ethylene levels determine the extent of grain filling, with higher levels resulting in ill-developed spikelet embodying poor endosperm starch content. To break the yield barrier, breeders have increased spikelet number per panicle in new large-panicle rice plants. However, the advantage of panicles with numerous spikelets has not resulted in enhanced yield because of poor filling of inferior spikelets. High spikelet number stimulates ethylene production and downgrading of starch synthesis, suggesting a trade-off between spikelet number and grain filling. High ethylene production in inferior spikelets suppresses expression of genes encoding endosperm starch synthesising enzymes. Hence, ethylene could be a retrograde signal that dictates the transcriptome dynamics for the cross talk between spikelet number and grain filling in the rice panicle, so attenuation of its activity may provide a solution to the problem of poor grain filling in large-panicle rice. This physiological linkage that reduces starch biosynthesis of inferior kernels is not genetically constitutive and amenable for modification through chemical, biotechnological, surgical and allelic manipulations. Studies on plant genotypes with different panicle architecture have opened up possibilities of selectively improving starch biosynthesis of inferior spikelets and thereby increasing grain yield through a physiological route.
Collapse
Affiliation(s)
- Rashmi Panigrahi
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | - Ekamber Kariali
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India
| | - Binay Bhusan Panda
- Environmental Biotechnology Laboratory, Institute of Life Science, Bhubaneswar, 751023, India
| | - Tanguy Lafarge
- CIRAD, UMR AGAP, F-34398 Montpellier, France; and AGAP, University of Montpellier, CIRAD, INRA, INRIA, Montpellier SupAgro, Montpellier, France
| | - Pravat Kumar Mohapatra
- School of Life Sciences, Sambalpur University, Jyoti vihar, Sambalpur, 768019, India; and Corresponding author. Emails:
| |
Collapse
|
126
|
Liu J, Feng K, Hou X, Li H, Wang G, Xu Z, Xiong A. Transcriptome profiling reveals the association of multiple genes and pathways contributing to hormonal control in celery leaves. Acta Biochim Biophys Sin (Shanghai) 2019; 51:524-534. [PMID: 30939194 DOI: 10.1093/abbs/gmz034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 12/25/2022] Open
Abstract
Celery is a vital vegetable belonging to the Apiaceae family. The leaves of celery are its main edible part with high nutritional value. Hormone signaling plays diverse and critical roles in controlling plant growth and development. However, the molecular mechanism of hormone regulating growth and development in celery leaves has not been investigated. Here, we aimed to understand the molecular functions of genes related to hormone metabolism in celery leaf growth and development. A total of 77 hormone-related differentially expressed genes (DEGs) were identified from the transcriptome of celery leaves at three development stages. The roles and interactions of DEGs in the growth and development of celery leaves were discussed. The contents of multiple hormones (IAA, ZR, ABA, BR, GA3, and MeJA) in celery leaf development were also detected. The changes of endogenous hormone level during the development of celery leaves could be regulated by the expressions of hormone-related genes. Our results indicated that the plant hormones had a complex regulatory mechanism for the growth of celery leaves. Our current findings will provide potential valuable references for the future research on celery leaf development.
Collapse
Affiliation(s)
- Jiexia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guanglong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhisheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
127
|
Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N. Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. FRONTIERS IN PLANT SCIENCE 2019; 10:616. [PMID: 31156679 PMCID: PMC6530649 DOI: 10.3389/fpls.2019.00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Shoot branching is regulated by phytohormones, including cytokinin (CK), strigolactone (SL), and auxin in axillary buds. The correlative importance of these phytohormones in the outgrowth of apple axillary buds remains unclear. In this study, the outgrowth dynamics of axillary buds of a more-branching mutant (MB) and its wild-type (WT) of Malus spectabilis were assessed using exogenous chemical treatments, transcriptome analysis, paraffin section, and reverse transcription-quantitative PCR analysis (RT-qPCR). High contents of CK and abscisic acid coincided in MB axillary buds. Exogenous CK promoted axillary bud outgrowth in the WT but not in MB, whereas exogenous gibberellic had no significant effect on bud outgrowth in the WT. Functional analysis of transcriptome data and RT-qPCR analysis of gene transcripts revealed that MB branching were associated with CK signaling, auxin transport, and SL signaling. Transcription of the SL-related genes MsMAX1, MsD14, and MsMAX2 in the axillary buds of MB was generally upregulated during bud outgrowth, whereas MsBRC1/2 were generally downregulated both in WT and MB. Exogenous SL inhibited outgrowth of axillary buds in the WT and the apple varieties T337, M26, and Nagafu 2, whereas axillary buds of the MB were insensitive to SL treatment. Treatment with N-1-naphthylphalamic acid (NPA; an auxin transport inhibitor) inhibited bud outgrowth in plants of the WT and MB. The transcript abundance of MsPIN1 was generally decreased in response to NPA and SL treatments, and increased in CK and decapitation treatments, whereas no consistent pattern was observed for MsD14 and MsMAX2. Collectively, the present results suggest that in apple auxin transport from the axillary bud to the stem may be essential for the outgrowth of axillary buds, and at least, is involved in the process of bud outgrowth.
Collapse
Affiliation(s)
- Ming Tan
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guofang Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xilong Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - HongJuan Ge
- Institute of Agricultural Science, Qingdao, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Guangli Sha
- Institute of Agricultural Science, Qingdao, China
| | - Na An
- College of Life Science, Northwest A&F University, Yangling, China
| |
Collapse
|
128
|
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1719-1736. [PMID: 30753578 DOI: 10.1093/jxb/erz046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.
Collapse
Affiliation(s)
- Grace L Chongloi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhan Prakash
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
129
|
Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. An Update on the Signals Controlling Shoot Branching. TRENDS IN PLANT SCIENCE 2019; 24:220-236. [PMID: 30797425 DOI: 10.1016/j.tplants.2018.12.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
Many new questions on the regulation of shoot branching have been raised in recent years, prompting a review and reassessment of the role of each signal involved. Sugars and their signaling networks have been attributed a major role in the early events of axillary bud outgrowth, whereas cytokinin appears to play a critical role in the modulation of this process in response to the environment. Perception of the recently discovered hormone strigolactone is now quite well understood, while the downstream targets remain largely unknown. Recent literature has highlighted that auxin export from a bud is important for its subsequent growth.
Collapse
Affiliation(s)
- Francois F Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Elizabeth A Dun
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Stephanie C Kerr
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Tinashe G Chabikwa
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
130
|
Chai P, Dong S, Chai L, Chen S, Flaishman M, Ma H. Cytokinin-induced parthenocarpy of San Pedro type fig (Ficus carica L.) main crop: explained by phytohormone assay and transcriptomic network comparison. PLANT MOLECULAR BIOLOGY 2019; 99:329-346. [PMID: 30656555 DOI: 10.1007/s11103-019-00820-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/02/2019] [Indexed: 05/15/2023]
Abstract
CPPU-induced San Pedro type fig main crop parthenocarpy exhibited constantly increasing IAA content and more significantly enriched KEGG pathways in the receptacle than in female flowers. N-(2-chloro-4-pyridyl)-N-phenylurea (CPPU) was applied to San Pedro fig (Ficus carica L.) main crop to induce parthenocarpy; the optimal effect was obtained with 25 mg L-1 application to syconia when female flowers were at anthesis. To elucidate the key expression changes in parthenocarpy conversion, significant changes in phytohormone level and transcriptome of fig female flowers and receptacles were monitored. HPLC-MS revealed increased IAA content in female flowers and receptacle 2, 4 and 10 days after treatment (DAT), decreased zeatin level in the receptacle 2, 4 and 10 DAT, decreased GA3 content 2 and 4 DAT, and increased GA3 content 10 DAT. ABA level increased 2 and 4 DAT, and decreased 10 DAT. CPPU-treated syconia released more ethylene than the control except 2 DAT. RNA-Seq and bioinformatics analysis revealed notably more differentially expressed KEGG pathways in the receptacle than in female flowers. In the phytohormone gene network, GA-biosynthesis genes GA20ox and GA3ox were upregulated, along with GA signal-transduction genes GID1 and GID2, and IAA-signaling genes AUX/IAA and GH3. ABA-biosynthesis gene NCED and signaling genes PP2C and ABF were downregulated 10 DAT. One ACO gene showed consistent upregulation in both female flowers and receptacle after CPPU treatment, and more than a dozen of ERFs demonstrated opposing changes in expression. Our results revealed early-stage spatiotemporal phytohormone and transcriptomic responses in CPPU-induced San Pedro fig main crop parthenocarpy, which could be valuable for further understanding the nature of the parthenocarpy of different fig types.
Collapse
Affiliation(s)
- Peng Chai
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China
| | - Sujuan Dong
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China
| | - Lijuan Chai
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Moshe Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
131
|
Zha M, Imran M, Wang Y, Xu J, Ding Y, Wang S. Transcriptome analysis revealed the interaction among strigolactones, auxin, and cytokinin in controlling the shoot branching of rice. PLANT CELL REPORTS 2019; 38:279-293. [PMID: 30689021 DOI: 10.1007/s00299-018-2361-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Strigolactones inhibit bud growth by negatively regulating the auxin transport without changing the auxin biosynthesis and suppressing the expression of A-ARR in buds. Strigolactones (SLs) are important phytohormones associated with regulation of shoot branching in rice. Rice shoot branching is persuasively mediated by plant hormones like auxin, cytokinins (CKs) and SLs. The interactions among these hormones were diversely investigated by many researchers but remained a subject of debate. In the present study, the removal of panicle and application of subsequent synthetic SLs were used to regulate rice bud growth on node 2 (the second node from panicle) at full heading stage. The bud growth was significantly induced after panicle removal but GR24 (synthetic SLs) application inhibited it, along with variations in endogenous hormone contents in bud. RNA samples from buds were subjected to RNA sequencing through Illumina HiSeq 2000 (RNA-seq). Comparison of transcript expression levels among three treatments, viz. (1) intact (Co), (2) removed panicle (RP) and (3) RP combined with synthetic SL GR24 (GR) revealed the involvement of numerous genes associated with hormone signal transduction. GR24 supply minimized the RP-induced enhancement of auxin early response genes, independent of ARF. CK signal transduction was also induced by RP, but type-A ARR were the only genes responding to GR without any other CK signal associated genes. Additionally, RP and GR can also modulate auxin transport and CK degradation by regulating the genes' expression involved in the biosynthesis of flavonoid, phenylpropanoid and benzoxazinoid. Contemplating the results obtained so far, it is possible to open new vistas of research to reveal the interactions among SLs, auxin and CK in controlling the shoot branching of rice.
Collapse
Affiliation(s)
- M Zha
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - M Imran
- Department of Soil and Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Y Wang
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, People's Republic of China
| | - J Xu
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- Forest and Fruit Tree Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Y Ding
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, People's Republic of China
| | - Shaohua Wang
- Agronomy College, Nanjing Agricultural University, Nanjing, People's Republic of China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
132
|
Kumari S, Panigrahi KCS. Light and auxin signaling cross-talk programme root development in plants. J Biosci 2019; 44:26. [PMID: 30837377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Root development in plants is affected by light and phytohormones. Different ranges of light wavelength influence root patterning in a particular manner. Red and white light promote overall root development, whereas blue light has both positive as well as negative role in these processes. Light-mediated root development primarily occurs through modulation of synthesis, signaling and transport of the phytohormone auxin. Auxin has been shown to play a critical role in root development. It is being well-understood that components of light and auxin signaling cross-talk with each other. However, the signaling network that can modulate the root development is an intense area of research. Currently, limited information is available about the interaction of these two signaling pathways. This review not only summarizes the current findings on how different quality and quantity of light affect various aspects of root development but also present the role of auxin in these developmental aspects starting from lower to higher plants.
Collapse
Affiliation(s)
- Sony Kumari
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, P.O. Bhimpur-Padanpur, Via Jatni, Dist. Khurda, Odisha 752 050, India
| | | |
Collapse
|
133
|
Wang M, Le Moigne MA, Bertheloot J, Crespel L, Perez-Garcia MD, Ogé L, Demotes-Mainard S, Hamama L, Davière JM, Sakr S. BRANCHED1: A Key Hub of Shoot Branching. FRONTIERS IN PLANT SCIENCE 2019; 10:76. [PMID: 30809235 PMCID: PMC6379311 DOI: 10.3389/fpls.2019.00076] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/17/2019] [Indexed: 05/20/2023]
Abstract
Shoot branching is a key process for plant growth and fitness. Newly produced axes result from axillary bud outgrowth, which is at least partly mediated through the regulation of BRANCHED1 gene expression (BRC1/TB1/FC1). BRC1 encodes a pivotal bud-outgrowth-inhibiting transcription factor belonging to the TCP family. As the regulation of BRC1 expression is a hub for many shoot-branching-related mechanisms, it is influenced by endogenous (phytohormones and nutrients) and exogenous (light) inputs, which involve so-far only partly identified molecular networks. This review highlights the central role of BRC1 in shoot branching and its responsiveness to different stimuli, and emphasizes the different knowledge gaps that should be addressed in the near future.
Collapse
Affiliation(s)
- Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Marie-Anne Le Moigne
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jessica Bertheloot
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Crespel
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Sabine Demotes-Mainard
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Jean-Michel Davière
- Institut de Biologie Moléculaire des Plantes, UPR2357, Université de Strasbourg, Strasbourg, France
| | - Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, SFR 4207 QUASAV, Université d’Angers, Beaucouzé, France
| |
Collapse
|
134
|
Kumari S, Panigrahi KCS. Light and auxin signaling cross-talk programme root development in plants. J Biosci 2019. [DOI: 10.1007/s12038-018-9838-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
135
|
Wang Y, Liu X, Su H, Yin S, Han C, Hao D, Dong X. The regulatory mechanism of chilling-induced dormancy transition from endo-dormancy to non-dormancy in Polygonatum kingianum Coll.et Hemsl rhizome bud. PLANT MOLECULAR BIOLOGY 2019; 99:205-217. [PMID: 30627860 DOI: 10.1007/s11103-018-0812-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/11/2018] [Indexed: 05/27/2023]
Abstract
We identified three dormant stages of Polygonatum kingianum and changes that occurred during dormancy transition in the following aspects including cell wall and hormones, as well as interaction among them. Polygonatum kingianum Coll.et Hemsl (P. kingianum) is an important traditional Chinese medicine, but the mechanism of its rhizome bud dormancy has not yet been studied systematically. In this study, three dormancy phases were induced under controlled conditions, and changes occurring during the transition were examined, focusing on phytohormones and the cell wall. As revealed by HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) analysis, the endo- to non-dormancy transition was association with a reduced abscisic acid (ABA)/gibberellin (GA3) ratio, a decreased level of auxin (IAA) and an increased level of trans-zeatin (tZR). Transmission electron microscopy showed that plasmodesmata (PDs) and the cell wall of the bud underwent significant changes between endo- and eco-dormancy. A total of 95,462 differentially expressed genes (DEGs) were identified based on transcriptomics, and clustering and principal component analysis confirmed the different physiological statuses of the three types of bud samples. Changes in the abundance of transcripts associated with IAA, cytokinins (CTKs), GA, ABA, brassinolide (BR), jasmonic acid (JA), ethylene, salicylic acid (SA), PDs and cell wall-loosening factors were analysed during the bud dormancy transition in P. kingianum. Furthermore, nitrilase 4 (NIT4) and tryptophan synthase alpha chain (TSA1), which are related to IAA synthesis, were identified as hub genes of the co-expression network, and strong interactions between hormones and cell wall-related factors were observed. This research will provide a good model for chilling-treated rhizome bud dormancy in P. kingianum and cultivation of this plant.
Collapse
Affiliation(s)
- Yue Wang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | - Xiaoqing Liu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | - He Su
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | - Shikai Yin
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | - Caixia Han
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | - Dandan Hao
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China.
| |
Collapse
|
136
|
Chabikwa TG, Brewer PB, Beveridge CA. Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds. PLANT PHYSIOLOGY 2019; 179:55-65. [PMID: 30404820 PMCID: PMC6324225 DOI: 10.1104/pp.18.00519] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/19/2018] [Indexed: 05/06/2023]
Abstract
Apical dominance is the process whereby the shoot tip inhibits the growth of axillary buds along the stem. It has been proposed that the shoot tip, which is the predominant source of the plant hormone auxin, prevents bud outgrowth by suppressing auxin canalization and export from axillary buds into the main stem. In this theory, auxin flow out of axillary buds is a prerequisite for bud outgrowth, and buds are triggered to grow by an enhanced proportional flow of auxin from the buds. A major challenge of directly testing this model is in being able to create a bud- or stem-specific change in auxin transport. Here we evaluate the relationship between specific changes in auxin efflux from axillary buds and bud outgrowth after shoot tip removal (decapitation) in the pea (Pisum sativum). The auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA) and to a lesser extent, the auxin perception inhibitor p-chlorophenoxyisobutyric acid (PCIB), effectively blocked auxin efflux from axillary buds of intact and decapitated plants without affecting auxin flow in the main stem. Gene expression analyses indicate that NPA and PCIB regulate auxin-inducible, and biosynthesis and transport genes, in axillary buds within 3 h after application. These inhibitors had no effect on initial bud outgrowth after decapitation or cytokinin (benzyladenine; BA) treatment. Inhibitory effects of PCIB and NPA on axillary bud outgrowth only became apparent from 48 h after treatment. These findings demonstrate that the initiation of decapitation- and cytokinin-induced axillary bud outgrowth is independent of auxin canalization and export from the bud.
Collapse
Affiliation(s)
- Tinashe G Chabikwa
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip B Brewer
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Christine A Beveridge
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
137
|
Liu J, Sherif SM. Hormonal Orchestration of Bud Dormancy Cycle in Deciduous Woody Perennials. FRONTIERS IN PLANT SCIENCE 2019; 10:1136. [PMID: 31620159 PMCID: PMC6759871 DOI: 10.3389/fpls.2019.01136] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 05/03/2023]
Abstract
Woody perennials enter seasonal dormancy to avoid unfavorable environmental conditions. Plant hormones are the critical mediators regulating this complex process, which is subject to the influence of many internal and external factors. Over the last two decades, our knowledge of hormone-mediated dormancy has increased considerably, primarily due to advancements in molecular biology, omics, and bioinformatics. These advancements have enabled the elucidation of several aspects of hormonal regulation associated with bud dormancy in various deciduous tree species. Plant hormones interact with each other extensively in a context-dependent manner. The dormancy-associated MADS (DAM) transcription factors appear to enable hormones and other internal signals associated with the transition between different phases of bud dormancy. These proteins likely hold a great potential in deciphering the underlying mechanisms of dormancy initiation, maintenance, and release. In this review, a recent understanding of the roles of plant hormones, their cross talks, and their potential interactions with DAM proteins during dormancy is discussed.
Collapse
|
138
|
Zou X, Shao J, Wang Q, Chen P, Zhu Y, Yin C. Supraoptimal Cytokinin Content Inhibits Rice Seminal Root Growth by Reducing Root Meristem Size and Cell Length via Increased Ethylene Content. Int J Mol Sci 2018; 19:ijms19124051. [PMID: 30558185 PMCID: PMC6321243 DOI: 10.3390/ijms19124051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
Cytokinins (CKs), a class of phytohormone, regulate root growth in a dose-dependent manner. A certain threshold content of CK is required for rapid root growth, but supraoptimal CK content inhibits root growth, and the mechanism of this inhibition remains unclear in rice. In this study, treatments of lovastatin (an inhibitor of CK biosynthesis) and kinetin (KT; a synthetic CK) were found to inhibit rice seminal root growth in a dose-dependent manner, suggesting that endogenous CK content is optimal for rapid growth of the seminal root in rice. KT treatment strongly increased ethylene level by upregulating the transcription of ethylene biosynthesis genes. Ethylene produced in response to exogenous KT inhibited rice seminal root growth by reducing meristem size via upregulation of OsIAA3 transcription and reduced cell length by downregulating transcription of cell elongation-related genes. Moreover, the effects of KT treatment on rice seminal root growth, root meristem size and cell length were rescued by treatment with aminoethoxyvinylglycine (an inhibitor of ethylene biosynthesis), which restored ethylene level and transcription levels of OsIAA3 and cell elongation-related genes. Supraoptimal CK content increases ethylene level by promoting ethylene biosynthesis, which in turn inhibits rice seminal root growth by reducing root meristem size and cell length.
Collapse
Affiliation(s)
- Xiao Zou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Junwei Shao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Qi Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Peisai Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Yanchun Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| | - Changxi Yin
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430062, China.
| |
Collapse
|
139
|
Li M, Wei Q, Xiao Y, Peng F. The effect of auxin and strigolactone on ATP/ADP isopentenyltransferase expression and the regulation of apical dominance in peach. PLANT CELL REPORTS 2018; 37:1693-1705. [PMID: 30182298 DOI: 10.1007/s00299-018-2343-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/30/2018] [Indexed: 05/06/2023]
Abstract
We confirmed the roles of auxin, CK, and strigolactones in apical dominance in peach and established a model of plant hormonal control of apical dominance in peach. Auxin, cytokinin, and strigolactone play important roles in apical dominance. In this study, we analyzed the effect of auxin and strigolactone on the expression of ATP/ADP isopentenyltransferase (IPT) genes (key cytokinin biosynthesis genes) and the regulation of apical dominance in peach. After decapitation, the expression levels of PpIPT1, PpIPT3, and PpIPT5a in nodal stems sharply increased. This observation is consistent with the changes in tZ-type and iP-type cytokinin levels in nodal stems and axillary buds observed after treatment; these changes are required to promote the outgrowth of axillary buds in peach. These results suggest that ATP/ADP PpIPT genes in nodal stems are key genes for cytokinin biosynthesis, as they promote the outgrowth of axillary buds. We also found that auxin and strigolactone inhibited the outgrowth of axillary buds. After decapitation, IAA treatment inhibited the expression of ATP/ADP PpIPTs in nodal stems to impede the increase in cytokinin levels. By contrast, after GR24 (GR24 strigolactone) treatment, the expression of ATP/ADP IPT genes and cytokinin levels still increased markedly, but the rate of increase in gene expression was markedly lower than that observed after decapitation in the absence of IAA (indole-3-acetic acid) treatment. In addition, GR24 inhibited basipetal auxin transport at the nodes (by limiting the expression of PpPIN1a in nodal stems), thereby inhibiting ATP/ADP PpIPT expression in nodal stems. Therefore, strigolactone inhibits the outgrowth of axillary buds in peach only when terminal buds are present.
Collapse
Affiliation(s)
- MinJi Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Qinping Wei
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, Beijing, 100093, People's Republic of China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - FuTian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
140
|
Cia MC, de Carvalho G, Azevedo RA, Monteiro-Vitorello CB, Souza GM, Nishiyama-Junior MY, Lembke CG, Antunes de Faria RSDC, Marques JPR, Melotto M, Camargo LEA. Novel Insights Into the Early Stages of Ratoon Stunting Disease of Sugarcane Inferred from Transcript and Protein Analysis. PHYTOPATHOLOGY 2018; 108:1455-1466. [PMID: 29969065 DOI: 10.1094/phyto-04-18-0120-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite of the importance of ratoon stunting disease, little is known on the responses of sugarcane to its causal agent, the vascular bacterial endophyte Leifsonia xyli subsp. xyli. The transcriptome and proteome of young plants of a susceptible cultivar with no symptoms of stunting but with relative low and high bacterial titers were compared at 30 and 60 days after inoculation. Increased bacterial titers were associated with alterations in the expression of 267 cDNAs and in the abundance of 150 proteins involved in plant growth, hormone metabolism, signal transduction and defense responses. Some alterations are predicted to benefit the pathogen, such as the up-regulation of genes involved in the synthesis of methionine. Also, genes and proteins of the cell division cycle were all down-regulated in plants with higher titers at both times. It is hypothesized that the negative effects on cell division related to increased bacterial titers is cumulative over time and its modulation by other host and environmental factors results in the stunting symptom.
Collapse
Affiliation(s)
- Mariana Cicarelli Cia
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Giselle de Carvalho
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Ricardo Antunes Azevedo
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Claudia Barros Monteiro-Vitorello
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Glaucia Mendes Souza
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Milton Yutaka Nishiyama-Junior
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Carolina Gimiliani Lembke
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Raphael Severo da Cunha Antunes de Faria
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - João Paulo Rodrigues Marques
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Maeli Melotto
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| | - Luis Eduardo Aranha Camargo
- First, second, third, fourth, eighth, ninth, and eleventh authors: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, 13418-900, Piracicaba, SP, Brazil; fifth and seventh authors: Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil; sixth author: Instituto Butantan, Laboratório Especial de Toxinologia Aplicada, Av. Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil; and tenth author: Department of Plant Sciences, University of California, Davis 95616
| |
Collapse
|
141
|
Li G, Tan M, Cheng F, Liu X, Qi S, Chen H, Zhang D, Zhao C, Han M, Ma J. Molecular role of cytokinin in bud activation and outgrowth in apple branching based on transcriptomic analysis. PLANT MOLECULAR BIOLOGY 2018; 98:261-274. [PMID: 30311175 DOI: 10.1007/s11103-018-0781-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/16/2018] [Indexed: 05/20/2023]
Abstract
Axillary bud activation and outgrowth were dependent on local cytokinin, and that bud activation preceded the activation of cell cycle and cell growth genes in apple branching. Cytokinin is often applied to apple trees to produce more shoot branches in apple seedlings. The molecular response of apple to the application of cytokinin, and the relationship between bud activation and cell cycle in apple branching, however, are poorly understood. In this study, RNA sequencing was used to characterize differential expression genes in axillary buds of 1-year grafted "Fuji" apple at 4 and 96 h after cytokinin application. And comparative gene expression analyses were performed in buds of decapitated shoots and buds of the treatment of biosynthetic inhibitor of cytokinin (Lovastatin) on decapitated shoots. Results indicated that decapitation and cytokinin increased ZR content in buds and internodes at 4-8 h, and induced bud elongation at 96 h after treatment, relative to buds in shoots receiving the Lovastatin treatment. RNA-seq analysis indicated that differential expression genes in auxin and cytokinin signal transduction were significantly enriched at 4 h, and DNA replication was enriched at 96 h. Cytokinin-responsive type-A response regulator, auxin polar transport, and axillary meristem-related genes were up-regulated at 4 h in the cytokinin and decapitation treatments, while qRT-PCR analysis showed that cell cycle and cell growth genes were up-regulated after 8 h. Collectively, the data indicated that bud activation and outgrowth might be dependent on local cytokinin synthesis in axillary buds or stems, and that bud activation preceded the activation of cell cycle genes during the outgrowth of ABs in apple shoots.
Collapse
Affiliation(s)
- Guofang Li
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Ming Tan
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Fang Cheng
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Liu
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Siyan Qi
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Hongfei Chen
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- Department of Horticulture College, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
142
|
Ligaba-Osena A, DiMarco K, Richard TL, Hankoua B. The Maize Corngrass1 miRNA-Regulated Developmental Alterations Are Restored by a Bacterial ADP-Glucose Pyrophosphorylase in Transgenic Tobacco. Int J Genomics 2018; 2018:8581258. [PMID: 30356416 PMCID: PMC6178181 DOI: 10.1155/2018/8581258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
Crop-based bioethanol has raised concerns about competition with food and feed supplies, and technologies for second- and third-generation biofuels are still under development. Alternative feedstocks could fill this gap if they can be converted to biofuels using current sugar- or starch-to-ethanol technologies. The aim of this study was to enhance carbohydrate accumulation in transgenic Nicotiana benthamiana by simultaneously expressing the maize Corngrass1 miRNA (Cg1) and E. coli ADP-glucose pyrophosphorylase (glgC), both of which have been reported to enhance carbohydrate accumulation in planta. Our findings revealed that expression of Cg1 alone increased shoot branching, delayed flowering, reduced flower organ size, and induced loss of fertility. These changes were fully restored by coexpressing Escherichia coli glgC. The transcript level of miRNA156 target SQUAMOSA promoter binding-like (SPL) transcription factors was suppressed severely in Cg1-expressing lines as compared to the wild type. Expression of glgC alone or in combination with Cg1 enhanced biomass yield and total sugar content per plant, suggesting the potential of these genes in improving economically important biofuel feedstocks. A possible mechanism of the Cg1 phenotype is discussed. However, a more detailed study including genome-wide transcriptome and metabolic analysis is needed to determine the underlying genetic elements and pathways regulating the observed developmental and metabolic changes.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE 19901, USA
| | - Kay DiMarco
- 2217 Earth and Engineering Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Tom L. Richard
- Agricultural and Biological Engineering, Pennsylvania State University, 132 Land and Water Research Building, PA 16802, USA
| | - Bertrand Hankoua
- College of Agriculture and Related Sciences, Delaware State University, 1200 N DuPont Highway, Dover, DE 19901, USA
| |
Collapse
|
143
|
Tan M, Li G, Liu X, Cheng F, Ma J, Zhao C, Zhang D, Han M. Exogenous application of GA 3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica Borkh.). Mol Genet Genomics 2018; 293:1547-1563. [PMID: 30116947 DOI: 10.1007/s00438-018-1481-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/12/2018] [Indexed: 11/24/2022]
Abstract
Although gibberellin (GA) has been reported to control branching, little is known about how GA mediates signals regulating the outgrowth of axillary buds (ABs). In the current study, the effect of the exogenous application of 5.0 mM GA3 on ABs outgrowth on 1-year-old 'Nagafu No. 2'/T337/M. robusta Rehd. apple trees was investigated and compared to the bud-activating treatments, 5 mM BA or decapitation. Additionally, the expression of genes related to bud-regulating signals and sucrose levels in ABs was examined. Results indicated that GA3 did not promote ABs' outgrowth, nor down-regulate the expression of branching repressors [MdTCP40, MdTCP33, and MdTCP16 (homologs of BRANCHED1 and BRC2)], which were significantly inhibited by the BA and decapitation treatments. MdSBP12 and MdSBP18, the putative transcriptional activators of these genes, which are expressed at lower levels in BA-treated and decapitated buds, were up-regulated in the GA3 treatment in comparison to the BA treatment. Additionally, GA3 did not up-regulate the expression of CK response- and auxin transport-related genes, which were immediately induced by the BA treatment. In addition, GA3 also up-regulated the expression of several Tre6P biosynthesis genes and reduced sucrose levels in ABs. Sucrose levels, however, were still higher than what was observed in BA-treated buds, indicating that sucrose may not be limiting in GA3-controlled AB outgrowth. Although GA3 promoted cell division, it was not sufficient to induce AB outgrowth. Conclusively, some branching-inhibiting genes and bud-regulating hormones are associated with the inability of GA3 to activate AB outgrowth.
Collapse
Affiliation(s)
- Ming Tan
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Guofang Li
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xiaojie Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fang Cheng
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
144
|
Nguyen TN, Tuan PA, Mukherjee S, Son S, Ayele BT. Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4065-4082. [PMID: 29788353 PMCID: PMC6054230 DOI: 10.1093/jxb/ery190] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/14/2018] [Indexed: 05/21/2023]
Abstract
To gain insights into the molecular mechanisms underlying hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat, the present study investigated transcriptional regulation of genes related to hormone metabolism and transport in the root and stem node tissues. Waterlogging-induced inhibition of axile root elongation and lateral root formation, and promotion of surface adventitious and axile root emergence and aerenchyma formation are associated with enhanced expression levels of ethylene biosynthesis genes, ACS7 and ACO2, in both tissues. Inhibition of axile root elongation is also related to increased root indole acetic acid (IAA) and jasmonate (JA) levels that are associated with up-regulation of specific IAA biosynthesis/transport (TDC, YUC1, and PIN9) and JA metabolism (LOX8, AOS1, AOC1, and JAR1) genes, and transcriptional alteration of gibberellin (GA) metabolism genes (GA3ox2 and GA2ox8). Adventitious root emergence from waterlogged stem nodes is associated with increased levels of IAA and GA but decreased levels of cytokinin and abscisic acid (ABA), which are regulated through the expression of specific IAA biosynthesis/transport (TDC, YUC1, and PIN9), cytokinin metabolism (IPT5-2, LOG1, CKX5, and ZOG2), ABA biosynthesis (NCED1 and NCED2), and GA metabolism (GA3ox2 and GA2ox8) genes. These results enhance our understanding of the molecular mechanisms underlying the adaptive response of wheat to waterlogging.
Collapse
Affiliation(s)
- Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pham Anh Tuan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shalini Mukherjee
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - SeungHyun Son
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Correspondence:
| |
Collapse
|
145
|
Bernacki MJ, Czarnocka W, Witoń D, Rusaczonek A, Szechyńska-Hebda M, Ślesak I, Dąbrowska-Bronk J, Karpiński S. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides). JOURNAL OF PLANT PHYSIOLOGY 2018; 226:91-102. [PMID: 29730441 DOI: 10.1016/j.jplph.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 05/23/2023]
Abstract
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) was first described as a protein involved in salicylic acid (SA)-, ethylene-, and reactive oxygen species (ROS)-dependent defense and acclimation responses. It is a molecular regulator of biotic and abiotic stress-induced programmed cell death. Its role is relatively well known in annual plants, such as Arabidopsis thaliana or Nicotiana benthamiana. However, little is known about its functions in woody plants. Therefore, in this study, we aimed to characterize the function of EDS1 in the Populus tremula L. × P. tremuloides hybrid grown for several seasons in the natural environment. We used two transgenic lines, eds1-7 and eds1-12, with decreased EDS1 expression levels in this study. The observed changes in physiological and biochemical parameters corresponded with the EDS1 silencing level. Both transgenic lines produced more lateral shoots in comparison to the wild-type (WT) plants, which resulted in the modification of tree morphology. Photosynthetic parameters, such as quantum yield of photosystem II (ϕPSII), photochemical and non-photochemical quenching (qP and NPQ, respectively), as well as chlorophyll content were found to be increased in both transgenic lines, which resulted in changes in photosynthetic efficiency. Our data also revealed lower foliar concentrations of SA and ROS, the latter resulting most probably from more efficient antioxidant system in both transgenic lines. In addition, our data indicated significantly decreased rate of leaf senescence during several autumn seasons. Transcriptomic analysis revealed deregulation of 2215 and 376 genes in eds1-12 and eds1-7, respectively, and also revealed 207 genes that were commonly deregulated in both transgenic lines. The deregulation was primarily observed in the genes involved in photosynthesis, signaling, hormonal metabolism, and development, which was found to agree with the results of biochemical and physiological tests. In general, our data proved that poplar EDS1 affects tree morphology, photosynthetic efficiency, ROS and SA metabolism, as well as leaf senescence.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland; Plant Breeding and Acclimatization Institute, 05-870 Błonie, Radzików, Poland
| | - Ireneusz Ślesak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek Street 21, 30-001 Cracow, Poland
| | - Joanna Dąbrowska-Bronk
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warszawa, Poland.
| |
Collapse
|
146
|
Cheng T, Wang D, Wang Y, Zhang S, Zhang C, Liu S, Xi Y, Sun F. Identification and functional characterization of a MAX2 ortholog from switchgrass (Panicum virgatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:106-114. [PMID: 29775862 DOI: 10.1016/j.plaphy.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a sustainable cellulosic energy crop with high biomass yield on marginal soils. Tillering, an important agronomic characteristic related to biomass production in gramineous plants, is regulated by complex interacting factors, such as plant hormones. Strigolactones (SLs) comprise a novel class of plant hormones that inhibit shoot branching. The MORE AXILLARY GROWTH2 (MAX2)/DWARF 3 (D3)/RAMOSUS (RMS4) genes encode proteins involved in the SL signaling pathway in various plants. The switchgrass tetraploid genome likely contains two high-similarity MAX2 homologs, one of which is 6 bp longer than the other. The longest is named PvMAX2 and is the ortholog of MAX2 in Arabidopsis, D3 in rice, and RMS4 in petunia. PvMAX2 is expressed ubiquitously in switchgrass tissues, with higher expression levels observed in the stem and shoot. PvMAX2 gene expression is upregulated by GR24, a synthetic SL analog. Ectopic expression of PvMAX2 in the Arabidopsis max2 mutant rescued the dwarf and bushy phenotypes and small leaf size in the mutant, suggesting that functions of AtMAX2 in Arabidopsis are conserved in PvMAX2. Ectopic PvMAX2 expression also restored the wild-type primary root and hypocotyl length phenotypes and restored the response to GR24. These results indicate that PvMAX2 may play an important role in switchgrass tillering through the SL pathway.
Collapse
Affiliation(s)
- Tingting Cheng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Donghua Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Yongfeng Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Shumeng Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Shudong Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi 712100, China.
| |
Collapse
|
147
|
Chee MJY, Lycett GW, Chin CF. Development of a direct transformation method by GFP screening and in vitro whole plant regeneration of Capsicum frutescens L. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
148
|
Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. PLANT CELL REPORTS 2018; 37:1049-1060. [PMID: 29687169 DOI: 10.1007/s00299-018-2290-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 05/21/2023]
Abstract
We find that the DREB subfamily transcription factor, CmERF053, has a novel function to regulate the development of shoot branching and lateral root in addition to affecting abiotic stress. Dehydration-responsive element binding proteins (DREBs) are important plant transcription factors that regulate various abiotic stresses. Here, we isolated an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor from chrysanthemum (Chrysanthemum morifolium 'Jinba'), CmERF053, the expression of which was rapidly up-regulated by main stem decapitation. Phylogenetic analysis indicated that it belongs to the A-6 group of the DREB subfamily, and the subcellular localization assay confirmed that CmERF053 was a nuclear protein. Overexpression of CmERF053 in Arabidopsis exhibited positive effects of plant lateral organs, which had more shoot branching and lateral roots than did the wild type. We also found that the expression of CmERF053 in axillary buds was induced by exogenous cytokinins. These results suggested that CmERF053 may be involved in cytokinins-related shoot branching pathway. In this study, an altered auxin distribution was observed during root elongation in the seedlings of the overexpression plants. Furthermore, overexpress CmERF053 gene could enhance drought tolerance. Together, these findings indicated that CmERF053 plays crucial roles in regulating shoot branching, lateral root, and drought stress in plant. Moreover, our study provides potential application value for improving plant productivity, ornamental traits, and drought tolerance.
Collapse
Affiliation(s)
- Jing Nie
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Wen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Xi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Suhui Lv
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qingcui Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yaping Kou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liangjun Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
149
|
Ferreira DA, Martins MCM, Cheavegatti-Gianotto A, Carneiro MS, Amadeu RR, Aricetti JA, Wolf LD, Hoffmann HP, de Abreu LGF, Caldana C. Metabolite Profiles of Sugarcane Culm Reveal the Relationship Among Metabolism and Axillary Bud Outgrowth in Genetically Related Sugarcane Commercial Cultivars. FRONTIERS IN PLANT SCIENCE 2018; 9:857. [PMID: 29988592 PMCID: PMC6027322 DOI: 10.3389/fpls.2018.00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/01/2018] [Indexed: 05/04/2023]
Abstract
Metabolic composition is known to exert influence on several important agronomic traits, and metabolomics, which represents the chemical composition in a cell, has long been recognized as a powerful tool for bridging phenotype-genotype interactions. In this work, sixteen truly representative sugarcane Brazilian varieties were selected to explore the metabolic networks in buds and culms, the tissues involved in the vegetative propagation of this species. Due to the fact that bud sprouting is a key trait determining crop establishment in the field, the sprouting potential among the genotypes was evaluated. The use of partial least square discriminant analysis indicated only mild differences on bud outgrowth potential under controlled environmental conditions. However, primary metabolite profiling provided information on the variability of metabolic features even under a narrow genetic background, typical for modern sugarcane cultivars. Metabolite-metabolite correlations within and between tissues revealed more complex patterns for culms in relation to buds, and enabled the recognition of key metabolites (e.g., sucrose, putrescine, glutamate, serine, and myo-inositol) affecting sprouting ability. Finally, those results were associated with the genetic background of each cultivar, showing that metabolites can be potentially used as indicators for the genetic background.
Collapse
Affiliation(s)
- Danilo A. Ferreira
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Genetics and Molecular Biology Graduate Program, University of Campinas, Campinas, Brazil
| | - Marina C. M. Martins
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Adriana Cheavegatti-Gianotto
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Monalisa S. Carneiro
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Rodrigo R. Amadeu
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Juliana A. Aricetti
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Lucia D. Wolf
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Hermann P. Hoffmann
- Department of Biotechnology and Plant and Animal Production, Center for Agricultural Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Luis G. F. de Abreu
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
- Max-Planck Partner Group, Brazilian Bioethanol Science and Technology Laboratory, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brazil
| |
Collapse
|
150
|
Foster TM, Ledger SE, Janssen BJ, Luo Z, Drummond RSM, Tomes S, Karunairetnam S, Waite CN, Funnell KA, van Hooijdonk BM, Saei A, Seleznyova AN, Snowden KC. Expression of MdCCD7 in the scion determines the extent of sylleptic branching and the primary shoot growth rate of apple trees. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2379-2390. [PMID: 29190381 PMCID: PMC5913623 DOI: 10.1093/jxb/erx404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 05/05/2023]
Abstract
Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple.
Collapse
Affiliation(s)
- Toshi M Foster
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Susan E Ledger
- Faculty of Health Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Bart J Janssen
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Revel S M Drummond
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Sumathi Tomes
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | | - Chethi N Waite
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Keith A Funnell
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Ben M van Hooijdonk
- The New Zealand Institute for Plant & Food Research Limited, Havelock North Havelock North, New Zealand
| | - Ali Saei
- The New Zealand Institute for Plant & Food Research Limited, Kerikeri, New Zealand
| | - Alla N Seleznyova
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|