101
|
Plant-frugivore network simplification under habitat fragmentation leaves a small core of interacting generalists. Commun Biol 2022; 5:1214. [PMID: 36357489 PMCID: PMC9649668 DOI: 10.1038/s42003-022-04198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Habitat fragmentation impacts seed dispersal processes that are important in maintaining biodiversity and ecosystem functioning. However, it is still unclear how habitat fragmentation affects frugivorous interactions due to the lack of high-quality data on plant-frugivore networks. Here we recorded 10,117 plant-frugivore interactions from 22 reservoir islands and six nearby mainland sites using the technology of arboreal camera trapping to assess the effects of island area and isolation on the diversity, structure, and stability of plant-frugivore networks. We found that network simplification under habitat fragmentation reduces the number of interactions involving specialized species and large-bodied frugivores. Small islands had more connected, less modular, and more nested networks that consisted mainly of small-bodied birds and abundant plants, as well as showed evidence of interaction release (i.e., dietary expansion of frugivores). Our results reveal the importance of preserving large forest remnants to support plant-frugivore interaction diversity and forest functionality. Smaller communities, such as those on islands, under ecological network simplification reduce interactions between specialist organisms.
Collapse
|
102
|
Feeney WE, Cowan ZL, Bertucci F, Brooker RM, Siu G, Jossinet F, Bambridge T, Galzin R, Lecchini D. COVID-19 lockdown highlights impact of recreational activities on the behaviour of coral reef fishes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220047. [PMID: 36405638 PMCID: PMC9653235 DOI: 10.1098/rsos.220047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/19/2022] [Indexed: 05/24/2023]
Abstract
In 2020, the COVID-19 pandemic led to a reduction in human activities and restriction of all but essential movement for much of the world's population. A large, but temporary, increase in air and water quality followed, and there have been several reports of animal populations moving into new areas. Extending on long-term monitoring efforts, we examined how coral reef fish populations were affected by the government-mandated lockdown across a series of Marine Protected Area (MPA) and non-Marine Protected Area (nMPA) sites around Moorea, French Polynesia. During the first six-week lockdown that Moorea experienced between March and May 2020, increases (approx. two-fold) in both harvested and non-harvested fishes were observed across the MPA and nMPA inner barrier reef sites, while no differences were observed across the outer barrier sites. Interviews with local amateur and professional fishers indicated that while rules regarding MPA boundaries were generally followed, some subsistence fishing continued in spite of the lockdown, including within MPAs. As most recreational activities occur along the inner reef, our data suggest that the lockdown-induced reduction in recreational activities resulted in the recolonization of these areas by fishes, highlighting how fish behaviour and space use can rapidly change in our absence.
Collapse
Affiliation(s)
- William E. Feeney
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute of Ornithology, Seewiesen, Germany
- Centre for Planetary Health and Food Security, Griffith University, Nathan 4111, Australia
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Zara-Louise Cowan
- Department of Zoology, The David Attenborough Building, University of Cambridge, Cambridge CB2 3QZ, UK
| | - Frédéric Bertucci
- PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia
- Functional and Evolutionary Morphology Lab, University of Liège, 4000 Liège, Belgium
| | - Rohan M. Brooker
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Queenscliff 3225, Australia
| | - Gilles Siu
- PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia
- Laboratoire d'Excellence ‘CORAIL’, 66100 Perpignan, France
| | - Frédérique Jossinet
- PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia
- Laboratoire d'Excellence ‘CORAIL’, 66100 Perpignan, France
| | - Tamatoa Bambridge
- PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia
- Laboratoire d'Excellence ‘CORAIL’, 66100 Perpignan, France
| | - René Galzin
- PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia
- Laboratoire d'Excellence ‘CORAIL’, 66100 Perpignan, France
| | - David Lecchini
- PSL Université Paris, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Moorea, French Polynesia
- Laboratoire d'Excellence ‘CORAIL’, 66100 Perpignan, France
| |
Collapse
|
103
|
Villegas‐Ríos D, Freitas C, Moland E, Olsen EM. Eco-evolutionary dynamics of Atlantic cod spatial behavior maintained after the implementation of a marine reserve. Evol Appl 2022; 15:1846-1858. [PMID: 36426127 PMCID: PMC9679232 DOI: 10.1111/eva.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
The effects of marine reserves on the life history and demography of the protected populations are well-established, typically increasing population density and body size. However, little is known about how marine reserves may alter the behavior of the populations that are the target of protection. In theory, marine reserves can relax selection on spatial behavioral phenotypes that were previously targeted by the fishery and also drive selection in favor of less mobile individuals. In this study, we used acoustic telemetry to monitor the individual spatial behavior of 566 Atlantic cod (Gadus morhua Linnaeus, 1758) moving within a marine reserve and a control site in southern Norway, starting 1 year before the implementation of the marine reserve and lasting up to 9 years after. Following a before-after-control-impact approach, we investigated changes in (1) survival, (2) selection acting on behavioral traits, and (3) mean behavioral phenotypes, after the implementation of the marine reserve. We focused on three behavioral traits commonly used to describe the mobility of aquatic animals: home range size, depth position, and diel vertical migration range. Survival increased after reserve implementation, but contrary to our expectations, it subsequently decreased to preprotection levels after just 3 years. Further, we found no significance in selection patterns acting on any of the three behavioral traits after reserve implementation. Although some changes related to water column use (the tendency to occupy deeper waters) were observed in the marine reserve after 9 years, they cannot unequivocally be attributed to protection. Our results show that survival and behavioral responses to marine reserves in some cases may be more complex than previously anticipated and highlight the need for appropriately scaled management experiments and more integrated approaches to understand the effects of marine protected areas on harvested aquatic species.
Collapse
Affiliation(s)
- David Villegas‐Ríos
- Instituto Mediterráneo de Estudios Avanzados (CSIC‐UiB)EsporlesSpain
- Instituto de Investigaciones Marinas (IIM‐CSIC)VigoSpain
| | - Carla Freitas
- Institute of Marine ResearchHisNorway
- MARE, Marine and Environmental Sciences CenterMadeira TecnopoloFunchalPortugal
| | - Even Moland
- Institute of Marine ResearchHisNorway
- Department of Natural Sciences, Centre for Coastal Research (CCR)University of AgderKristiansandNorway
| | - Esben M. Olsen
- Institute of Marine ResearchHisNorway
- Department of Natural Sciences, Centre for Coastal Research (CCR)University of AgderKristiansandNorway
| |
Collapse
|
104
|
State and physiology behind personality in arthropods: a review. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the endeavour to understand the causes and consequences of the variation in animal personality, a wide range of studies were carried out, utilising various aspects to make sense of this biological phenomenon. One such aspect integrated the study of physiological traits, investigating hypothesised physiological correlates of personality. Although many of such studies were carried out on vertebrates (predominantly on birds and mammals), studies using arthropods (mainly insects) as model organisms were also at the forefront of this area of research. In order to review the current state of knowledge on the relationship between personality and the most frequently studied physiological parameters in arthropods, we searched for scientific articles that investigated this relationship. In our review, we only included papers utilising a repeated-measures methodology to be conceptually and formally concordant with the study of animal personality. Based on our literature survey, metabolic rate, thermal physiology, immunophysiology, and endocrine regulation, as well as exogenous agents (such as toxins) were often identified as significant affectors shaping animal personality in arthropods. We found only weak support for state-dependence of personality when the state is approximated by singular elements (or effectors) of condition. We conclude that a more comprehensive integration of physiological parameters with condition may be required for a better understanding of state’s importance in animal personality. Also, a notable knowledge gap persists in arthropods regarding the association between metabolic rate and hormonal regulation, and their combined effects on personality. We discuss the findings published on the physiological correlates of animal personality in arthropods with the aim to summarise current knowledge, putting it into the context of current theory on the origin of animal personality.
Collapse
|
105
|
Morten JM, Burrell RA, Frayling TD, Hoodless AN, Thurston W, Hawkes LA. Variety in responses of wintering oystercatchers Haematopus ostralegus to near-collapse of their prey in the Exe Estuary, UK. Ecol Evol 2022; 12:e9526. [PMID: 36440309 PMCID: PMC9682212 DOI: 10.1002/ece3.9526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 11/25/2022] Open
Abstract
Globally, habitat loss or degradation is a major threat to many species, and those with specific habitat requirements are particularly vulnerable. Many species of wading birds (Charadrii) are dependent upon intertidal sites to feed, but, as a result of anthropogenic pressures, the prey landscape has changed at many estuaries. Behavioral adaptations may be able to buffer these changes. In this study over multiple seasons, we aimed to investigate the foraging behaviors of wintering Eurasian oystercatchers in the Exe Estuary where mussel beds, the preferred prey at this site, have almost disappeared in the last decade. From 2018 to 2021, GPS tracking devices were deployed on 24 oystercatchers, and the foraging locations of adults, sub-adults, and juveniles were determined. Of the 12 birds tracked over multiple winter periods, 10 used the same foraging home ranges but a juvenile and sub-adult changed locations interannually. The dominant prey species at key foraging sites were assessed, and we found that younger birds were more likely to visit sites with lower quality prey, likely due to being at a competitive disadvantage, and also to explore sites further away. Individuals were generally consistent in the areas of the estuary used in early and late winter, and over 90% of locations were recorded in the protected area boundary, which covers the sand and mudflats of the Exe. These findings suggest high specificity of the current protected area for oystercatchers in the Exe Estuary, although, if the prey landscape continues to decline, younger individuals may provide the potential for adaptation by finding and foraging at additional sites. Continued monitoring of individual behavior within populations that are facing dramatic changes to their prey is essential to understand how they may adapt and to develop suitable management plans to conserve threatened species.
Collapse
Affiliation(s)
- Joanne M. Morten
- College of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| | - Ryan A. Burrell
- Game and Wildlife Conservation TrustHampshireUK
- Devon & Cornwall Wader Ringing GroupIlfracombeUK
| | - Tim D. Frayling
- Devon & Cornwall Wader Ringing GroupIlfracombeUK
- Natural England, Sterling House, Dix's FieldExeterUK
| | | | | | - Lucy A. Hawkes
- College of Life and Environmental SciencesUniversity of Exeter, Hatherly LaboratoriesExeterUK
| |
Collapse
|
106
|
Factors influencing terrestriality in primates of the Americas and Madagascar. Proc Natl Acad Sci U S A 2022; 119:e2121105119. [PMID: 36215474 PMCID: PMC9586308 DOI: 10.1073/pnas.2121105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among mammals, the order Primates is exceptional in having a high taxonomic richness in which the taxa are arboreal, semiterrestrial, or terrestrial. Although habitual terrestriality is pervasive among the apes and African and Asian monkeys (catarrhines), it is largely absent among monkeys of the Americas (platyrrhines), as well as galagos, lemurs, and lorises (strepsirrhines), which are mostly arboreal. Numerous ecological drivers and species-specific factors are suggested to set the conditions for an evolutionary shift from arboreality to terrestriality, and current environmental conditions may provide analogous scenarios to those transitional periods. Therefore, we investigated predominantly arboreal, diurnal primate genera from the Americas and Madagascar that lack fully terrestrial taxa, to determine whether ecological drivers (habitat canopy cover, predation risk, maximum temperature, precipitation, primate species richness, human population density, and distance to roads) or species-specific traits (body mass, group size, and degree of frugivory) associate with increased terrestriality. We collated 150,961 observation hours across 2,227 months from 47 species at 20 sites in Madagascar and 48 sites in the Americas. Multiple factors were associated with ground use in these otherwise arboreal species, including increased temperature, a decrease in canopy cover, a dietary shift away from frugivory, and larger group size. These factors mostly explain intraspecific differences in terrestriality. As humanity modifies habitats and causes climate change, our results suggest that species already inhabiting hot, sparsely canopied sites, and exhibiting more generalized diets, are more likely to shift toward greater ground use.
Collapse
|
107
|
Júnior ECB, Rios VP, Dodonov P, Vilela B, Japyassú HF. Effect of behavioural plasticity and environmental properties on the resilience of communities under habitat loss and fragmentation. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
108
|
Turner WC, Périquet S, Goelst CE, Vera KB, Cameron EZ, Alexander KA, Belant JL, Cloete CC, du Preez P, Getz WM, Hetem RS, Kamath PL, Kasaona MK, Mackenzie M, Mendelsohn J, Mfune JK, Muntifering JR, Portas R, Scott HA, Strauss WM, Versfeld W, Wachter B, Wittemyer G, Kilian JW. Africa’s drylands in a changing world: Challenges for wildlife conservation under climate and land-use changes in the Greater Etosha Landscape. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
109
|
Effects of early-life experience on innovation and problem-solving in captive coyotes. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
110
|
Taugbøl A, Solbakken MH, Jakobsen KS, Vøllestad LA. Salinity-induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt 6-hour exposure. Ecol Evol 2022; 12:e9395. [PMID: 36311407 PMCID: PMC9596333 DOI: 10.1002/ece3.9395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Saltwater and freshwater environments have opposing physiological challenges, yet, there are fish species that are able to enter both habitats during short time spans, and as individuals they must therefore adjust quickly to osmoregulatory contrasts. In this study, we conducted an experiment to test for plastic responses to abrupt salinity changes in two populations of threespine stickleback, Gasterosteus aculeatus, representing two ecotypes (freshwater and ancestral saltwater). We exposed both ecotypes to abrupt native (control treatment) and non-native salinities (0‰ and 30‰) and sampled gill tissue for transcriptomic analyses after 6 h of exposure. To investigate genomic responses to salinity, we analyzed four different comparisons; one for each ecotype (in their control and exposure salinity; (1) and (2), one between ecotypes in their control salinity (3), and the fourth comparison included all transcripts identified in (3) that did not show any expressional changes within ecotype in either the control or the exposed salinity (4)). Abrupt salinity transfer affected the expression of 10 and 1530 transcripts for the saltwater and freshwater ecotype, respectively, and 1314 were differentially expressed between the controls, including 502 that were not affected by salinity within ecotype (fixed expression). In total, these results indicate that factors other than genomic expressional plasticity are important for osmoregulation in stickleback, due to the need for opposite physiological pathways to survive the abrupt change in salinity.
Collapse
Affiliation(s)
- Annette Taugbøl
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
- Norwegian Institute for Nature Research (NINA)LillehammerNorway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Kjetill S. Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Leif Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| |
Collapse
|
111
|
Orford JT, Ozeki S, Brand JA, Henry J, Wlodkowic D, Alton LA, Martin JM, Wong BBM. Effects of the agricultural pollutant 17β-trenbolone on morphology and behaviour of tadpoles (Limnodynastes tasmaniensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106289. [PMID: 36087492 DOI: 10.1016/j.aquatox.2022.106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, such as endocrine disrupting chemicals (EDCs), are increasingly being detected in organisms and ecosystems globally. Agricultural activities, including the use of hormonal growth promotants (HGPs), are a major source of EDC contamination. One potent EDC that enters into the environment through the use of HGPs is 17β-trenbolone. Despite EDCs being repeatedly shown to affect reproduction and development, comparatively little is known regarding their effects on behaviour. Amphibians, one of the most imperilled vertebrate taxa globally, are at particular risk of exposure to such pollutants as they often live and breed near agricultural operations. Yet, no previous research on amphibians has explored the effects of 17β-trenbolone exposure on foraging or antipredator behaviour, both of which are key fitness-related behavioural traits. Accordingly, we investigated the impacts of 28-day exposure to two environmentally realistic concentrations of 17β-trenbolone (average measured concentrations: 10 and 66 ng/L) on the behaviour and growth of spotted marsh frog tadpoles (Limnodynastes tasmaniensis). Contrary to our predictions, there was no significant effect of 17β-trenbolone exposure on tadpole growth, antipredator response, anxiety-like behaviour, or foraging. We hypothesise that the differences in effects found between this study and those conducted on fish may be due to taxonomic differences and/or the life stage of the animals used, and suggest further research is needed to investigate the potential for delayed manifestation of the effects of 17β-trenbolone exposure.
Collapse
Affiliation(s)
- Jack T Orford
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
| | - Shiho Ozeki
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jason Henry
- The Neurotoxicology Laboratory, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Donald Wlodkowic
- The Neurotoxicology Laboratory, School of Science, RMIT University, Bundoora, VIC, 3083, Australia
| | - Lesley A Alton
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
112
|
Warrington MH, Schrimpf MB, Des Brisay P, Taylor ME, Koper N. Avian behaviour changes in response to human activity during the COVID-19 lockdown in the United Kingdom. Proc Biol Sci 2022; 289:20212740. [PMID: 36126685 PMCID: PMC9489286 DOI: 10.1098/rspb.2021.2740] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/25/2022] [Indexed: 12/18/2022] Open
Abstract
Human activities may impact animal habitat and resource use, potentially influencing contemporary evolution in animals. In the United Kingdom, COVID-19 lockdown restrictions resulted in sudden, drastic alterations to human activity. We hypothesized that short-term daily and long-term seasonal changes in human mobility might result in changes in bird habitat use, depending on the mobility type (home, parks and grocery) and extent of change. Using Google human mobility data and 872 850 bird observations, we determined that during lockdown, human mobility changes resulted in altered habitat use in 80% (20/25) of our focal bird species. When humans spent more time at home, over half of affected species had lower counts, perhaps resulting from the disturbance of birds in garden habitats. Bird counts of some species (e.g. rooks and gulls) increased over the short term as humans spent more time at parks, possibly due to human-sourced food resources (e.g. picnic refuse), while counts of other species (e.g. tits and sparrows) decreased. All affected species increased counts when humans spent less time at grocery services. Avian species rapidly adjusted to the novel environmental conditions and demonstrated behavioural plasticity, but with diverse responses, reflecting the different interactions and pressures caused by human activity.
Collapse
Affiliation(s)
- Miyako H. Warrington
- Natural Resources Institute, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | - Michelle E. Taylor
- School of Biological Sciences, University of Aberdeen, AB24 3FX Scotland, UK
| | - Nicola Koper
- Natural Resources Institute, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
113
|
Rodrigues TH, Chapelsky AJ, Hrenchuk LE, Mushet GR, Chapman LJ, Blanchfield PJ. Behavioural responses of a cold-water benthivore to loss of oxythermal habitat. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 105:1489-1507. [PMID: 36313614 PMCID: PMC9592630 DOI: 10.1007/s10641-022-01335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/27/2022] [Indexed: 06/16/2023]
Abstract
Climate-driven declines in oxythermal habitat in freshwater lakes can impose prolonged constraints on cold-water fishes sensitive to hypoxia. How fish cope with severe habitat limitations is not well understood, yet has implications for their persistence. Here, we use acoustic-positioning telemetry to assess seasonal habitat occupancy and activity patterns of lake whitefish (Coregonus clupeaformis), a cold-water benthivore, in a small boreal lake that regularly faces severe oxythermal constraints during summer stratification. During this stratified period, they rarely (< 15% of detections) occupied depths with water temperatures > 10 °C (interquartile range = 5.3-7.9 °C), which resulted in extensive use (> 90% of detections) of water with < 4 mg L-1 dissolved oxygen (DO; interquartile range = 0.3-5.3 mg L-1). Lake whitefish were least active in winter and spring, but much more active in summer, when only a small portion of the lake (1-10%) contained optimal oxythermal habitat (< 10 °C and > 4 mg L-1 DO), showing frequent vertical forays into low DO environments concurrent with extensive lateral movement (7649 m d-1). High rates of lateral movement (8392 m d-1) persisted in the complete absence of optimal oxythermal habitat, but without high rates of vertical forays. We found evidence that lake whitefish are more tolerant of hypoxia (< 2 mg L-1) than previously understood, with some individuals routinely occupying hypoxic habitat in winter (up to 93% of detections) despite the availability of higher DO habitat. The changes in movement patterns across the gradient of habitat availability indicate that the behavioural responses of lake whitefish to unfavourable conditions may lead to changes in foraging efficiency and exposure to physiological stress, with detrimental effects on their persistence. Supplementary Information The online version contains supplementary material available at 10.1007/s10641-022-01335-4.
Collapse
Affiliation(s)
- Tazi H. Rodrigues
- IISD Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, MB R3B 0T4 Canada
- Department of Biology, McGill University, 1205 Dr Penfield Ave, Montreal, QC H3A 1B1 Canada
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6 Canada
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6 Canada
| | - Andrew J. Chapelsky
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6 Canada
| | - Lee E. Hrenchuk
- IISD Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, MB R3B 0T4 Canada
| | - Graham R. Mushet
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6 Canada
| | - Lauren J. Chapman
- Department of Biology, McGill University, 1205 Dr Penfield Ave, Montreal, QC H3A 1B1 Canada
| | - Paul J. Blanchfield
- IISD Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, MB R3B 0T4 Canada
- Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, MB R3T 2N6 Canada
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6 Canada
| |
Collapse
|
114
|
Environmental and Social Influences on the Behaviour of Free-Living Mandarin Ducks in Richmond Park. Animals (Basel) 2022; 12:ani12192554. [PMID: 36230295 PMCID: PMC9559490 DOI: 10.3390/ani12192554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Collecting information on how wild animals behave in the free-living environment can be useful for improving how such species are managed when under human care (e.g., in the zoo). Mandarin Ducks are an example of a species with a large captive population where research into the behaviour of wild birds can help with explaining and evaluating how this species is coping in captivity. This research collected data on free-living Mandarins in a large public park and compared such data to published research on captive Mandarins to evaluate any differences in time budgets. The overall aim of this research was to provide information on what behaviours are commonest amongst free-living Mandarin Ducks to help others with the assessment of behavioural normality of captive birds. Abstract Many species of birds are housed in zoos globally and are some of the most popular of animals kept under human care. Careful observations of how species live and behave in their natural habitats can provide us with important knowledge about their needs, adaptations, and internal states, allowing identification of those behaviours that are most important to the individual’s physical health and wellbeing. For this study, Mandarin Ducks (Aix galericulata) were chosen as a study species because, like many species of waterfowl, they are widely kept in both private institutions and zoos, yet little research has been conducted on their core needs in captivity. A free-living population of naturalised Mandarin Ducks living in Richmond Park was used for this research. Data on state behaviours (resting, swimming, foraging, perching, preening, and vigilance) were collected five days a week (08:00–18:00) from the 26 March to 26 May 2021. Secondly, temporal, seasonal, environmental, and animal-centric factors (e.g., Sex) were recorded to assess any impact on the Mandarin’s time-activity budget. Lastly, a comparison between free-living anmd captive activity was conducted (via the literature) to evaluate whether captive behaviours differ to how they are expressed in the wild. Results showed that free-living Mandarins predominantly rested (19.88% ± 28.97), swam (19.57% ± 19.43) and foraged (19.47% ± 25.82), with variations in activity related to factors such as vegetation cover and pond size. Results also showed differences between the time-budgets of free-living and captive Mandarins, suggesting that captive birds may not always have the opportunity to express species-typical behaviours. This research indicated that study of natural behaviours performed in the wild may help to evaluate “normal” behaviour patterns of zoo-housed individuals and provide evidence for environmental and husbandry alterations that can promote good welfare. However, any potential impact on the activity patterns of free-living species due to human interactions should be considered when assessing deviations between the behaviour of wild and captive individuals.
Collapse
|
115
|
Cockrem JF. Individual variation, personality, and the ability of animals to cope with climate change. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.897314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Sixth Assessment of the Intergovernmental Panel on Climate Change describes negative effects of climate change on animals occurring on a larger scale than previously appreciated. Animal species are increasingly experiencing more frequent and extreme weather in comparison with conditions in which the species evolved. Individual variation in behavioural and physiological responses of animals to stimuli from the environment is ubiquitous across all species. Populations with relatively high levels of individual variation are more likely to be able to survive in a range of environmental conditions and cope with climate change than populations with low levels of variation. Behavioural and physiological responses are linked in animals, and personality can be defined as consistent individual behavioural and physiological responses of animals to changes in their immediate environment. Glucocorticoids (cortisol and corticosterone) are hormones that, in addition to metabolic roles, are released when the neuroendocrine stress system is activated in response to stimuli from the environment perceived to be threatening. The size of a glucocorticoid response of an animal is an indication of the animal’s personality. Animals with reactive personalities have relatively high glucocorticoid responses, are relatively slow and thorough to explore new situations, and are more flexible and able to cope with changing or unpredictable conditions than animals with proactive personalities. Animals with reactive personalities are likely to be better able to cope with environmental changes due to climate change than animals with proactive personalities. A reaction norm shows the relationship between phenotype and environmental conditions, with the slope of a reaction norm for an individual animal a measure of phenotypic plasticity. If reaction norm slopes are not parallel, there is individual variation in plasticity. Populations with relatively high individual variation in plasticity of reaction norms will have more animals that can adjust to a new situation than populations with little variation in plasticity, so are more likely to persist as environments change due to climate change. Future studies of individual variation in plasticity of responses to changing environments will help understanding of how populations of animals may be able to cope with climate change.
Collapse
|
116
|
Ke A, Sollmann R, Frishkoff LO, Karp DS. A hierarchical N-mixture model to estimate behavioral variation and a case study of Neotropical birds. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2632. [PMID: 35403280 DOI: 10.1002/eap.2632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/06/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Understanding how and why animals use the environments where they occur is both foundational to behavioral ecology and essential to identify critical habitats for species conservation. However, some behaviors are more difficult to observe than others, which can bias analyses of raw observational data. To our knowledge, no method currently exists to model how animals use different environments while accounting for imperfect behavior-specific detection probability. We developed an extension of a binomial N-mixture model (hereafter the behavior N-mixture model) to estimate the probability of a given behavior occurring in a particular environment while accounting for imperfect detection. We then conducted a simulation to validate the model's ability to estimate the effects of environmental covariates on the probabilities of individuals performing different behaviors. We compared our model to a naïve model that does not account for imperfect detection, as well as a traditional N-mixture model. Finally, we applied the model to a bird observation data set in northwest Costa Rica to quantify how three species behave in forests and farms. Simulations and sensitivity analyses demonstrated that the behavior N-mixture model produced unbiased estimates of behaviors and their relationships with predictor variables (e.g., forest cover, habitat type). Importantly, the behavior N-mixture model accurately characterized uncertainty, unlike the naïve model, which often suggested erroneous effects of covariates on behaviors. When applied to field data, the behavior N-mixture model suggested that Hoffmann's woodpecker (Melanerpes hoffmanii) and Inca dove (Columbina inca) behaved differently in forested versus agricultural habitats, while turquoise-browed motmot (Eumomota superciliosa) did not. Thus, the behavior N-mixture model can help identify habitats that are essential to a species' life cycle (e.g., where individuals nest, forage) that nonbehavioral models would miss. Our model can greatly improve the appropriate use of behavioral survey data and conclusions drawn from them. In doing so, it provides a valuable path forward for assessing the conservation value of alternative habitat types.
Collapse
Affiliation(s)
- Alison Ke
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, USA
| | - Rahel Sollmann
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, USA
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Luke O Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, USA
| |
Collapse
|
117
|
Eastern Spotted Skunks Alter Nightly Activity and Movement in Response to Environmental Conditions. AMERICAN MIDLAND NATURALIST 2022. [DOI: 10.1674/0003-0031-188.1.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
118
|
Transgenerational plasticity alters parasite fitness in changing environments. Parasitology 2022; 149:1515-1520. [PMID: 36043359 PMCID: PMC10090760 DOI: 10.1017/s0031182022001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transgenerational plasticity can help organisms respond rapidly to changing environments. Most prior studies of transgenerational plasticity in host–parasite interactions have focused on the host, leaving us with a limited understanding of transgenerational plasticity of parasites. We tested whether exposure to elevated temperatures while spores are developing can modify the ability of those spores to infect new hosts, as well as the growth and virulence of the next generation of parasites in the new host. We exposed Daphnia dentifera to its naturally co-occurring fungal parasite Metschnikowia bicuspidata, rearing the parasite at cooler (20°C) or warmer (24°C) temperatures and then, factorially, using those spores to infect at 20 and 24°C. Infections by parasites reared at warmer past temperatures produced more mature spores, but only when the current infections were at cooler temperatures. Moreover, the percentage of mature spores was impacted by both rearing and current temperatures, and was highest for infections with spores reared in a warmer environment that infected hosts in a cooler environment. In contrast, virulence was influenced only by current temperatures. These results demonstrate transgenerational plasticity of parasites in response to temperature changes, with fitness impacts that are dependent on both past and current environments.
Collapse
|
119
|
Schlippe Justicia L, Fouilloux CA, Rojas B. Poison frog social behaviour under global change: potential impacts and future challenges. Acta Ethol 2022. [DOI: 10.1007/s10211-022-00400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe current and cascading effects of global change challenges the interactions both between animal individuals (i.e. social and sexual behaviour) and the environment they inhabit. Amphibians are an ecologically diverse class with a wide range of social and sexual behaviours, making them a compelling model to understand the potential adaptations of animals faced with the effects of human-induced rapid environmental changes (HIREC). Poison frogs (Dendrobatoidea) are a particularly interesting system, as they display diverse social behaviours that are shaped by conspecific and environmental interactions, thus offering a tractable system to investigate how closely related species may respond to the impacts of HIREC. Here, we discuss the potential impacts of global change on poison frog behaviour, and the future challenges this group may face in response to such change. We pay special attention to parental care and territoriality, which are emblematic of this clade, and consider how different species may flexibly respond and adapt to increasingly frequent and diverse anthropogenic stress. More specifically, we hypothesise that some parents may increase care (i.e. clutch attendance and distance travelled for tadpole transport) in HIREC scenarios and that species with more generalist oviposition and tadpole deposition behaviours may fare more positively than their less flexible counterparts; we predict that the latter may either face increased competition for resources limited by HIREC or will be forced to adapt and expand their natural preferences. Likewise, we hypothesise that human-driven habitat alteration will disrupt the acoustic and visual communication systems due to increased noise pollution and/or changes in the surrounding light environment. We highlight the need for more empirical research combining behavioural ecology and conservation to better predict species’ vulnerability to global change and efficiently focus conservation efforts.
Collapse
|
120
|
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michelangeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BB, Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol Rev Camb Philos Soc 2022; 97:1346-1364. [PMID: 35233915 PMCID: PMC9543409 DOI: 10.1111/brv.12844] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Jake M. Martin
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Lesley A. Alton
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Jack A. Brand
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear PlaceWacoTexas76798‐7266U.S.A.
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceZátiší 728/IIVodnany389 25Czech Republic
| | - Jerker Fick
- Department of ChemistryUmeå UniversityLinnaeus väg 10UmeåVästerbottenSE‐907 36Sweden
| | - Alex T. Ford
- Institute of Marine SciencesUniversity of PortsmouthWinston Churchill Avenue, PortsmouthHampshirePO1 2UPU.K.
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences West (D26)SydneyNSW2052Australia
| | - Giovanni Polverino
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia35 Stirling HighwayPerthWA6009Australia
- Department of Ecological and Biological SciencesTuscia UniversityVia S.M. in Gradi n.4ViterboLazio01100Italy
| | - Minna Saaristo
- Environment Protection Authority VictoriaEPA Science2 Terrace WayMacleodVictoria3085Australia
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Hung Tan
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterDevonEX4 4QDU.K.
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| |
Collapse
|
121
|
Scarlett KR, Lovin LM, Steele WB, Kim S, Brooks BW. Identifying Behavioral Response Profiles of Two Common Larval Fish Models to a Salinity Gradient. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:180-192. [PMID: 35976388 DOI: 10.1007/s00244-022-00951-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Salinization of aquatic systems is an emerging global issue projected to increase in magnitude, frequency, and duration with climate change and landscape modifications. To consider influences of salinity on locomotor activity of common fish models, we examined behavioral response profiles of two species, zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), across a gradient of sodium chloride. Following each experiment, behavior was recorded with automated tracking software and then behavioral response variables, including locomotor (e.g., distance traveled, number of movements, duration of movements) and photolocomotor changes, were examined at several speed thresholds (bursting, cruising, freezing) to identify potential salinity responses. Zebrafish responses were significantly (p < 0.05) reduced at the highest treatment level (5.78 g/L) for multiple behavioral endpoints during both dark and light phases; however, fathead minnow responses were more variable and not consistently concentration dependent. Future efforts are needed to understand behavioral response profiles in combination with anthropogenic contaminants and natural toxins across the freshwater to marine continuum, considering salinization of inland waters, sea level rise, and transport of anthropogenic contaminants and algal toxins from inland waters to coastal systems.
Collapse
Affiliation(s)
- Kendall R Scarlett
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - W Baylor Steele
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA.
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
122
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
123
|
Desjonquères C, Villén‐Pérez S, De Marco P, Márquez R, Beltrán JF, Llusia D. Acoustic species distribution models (
aSDMs
): A framework to forecast shifts in calling behaviour under climate change. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Desjonquères
- Terrestrial Ecology Group (TEG), Departamento de Ecología Universidad Autónoma de Madrid Madrid Spain
| | - Sara Villén‐Pérez
- Universidad de Alcalá GloCEE – Global Change Ecology and Evolution Research Group Departamento de Ciencias de la Vida 28805, Alcalá de Henares Madrid Spain
| | - Paulo De Marco
- Theory, Metacommunities and Landscape Ecology lab, ICB‐V Universidade Federal de Goiás Goiânia Brazil
| | - Rafael Márquez
- Fonoteca Zoológica & Departamento de Biodiversidad y Biología Evolutiva Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Juan F. Beltrán
- Departamento de Zoología Universidad de Sevilla Sevilla Spain
| | - Diego Llusia
- Terrestrial Ecology Group (TEG), Departamento de Ecología Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global Universidad Autónoma de Madrid Madrid Spain
- Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas Universidade Federal de Goiás Goiás Brazil
| |
Collapse
|
124
|
Bar-Ziv E, Picardi S, Kaplan A, Avgar T, Berger-Tal O. Sex Differences Dictate the Movement Patterns of Striped Hyenas, Hyaena hyaena, in a Human-Dominated Landscape. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.897132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large-carnivore populations have experienced significant declines in the past centuries in extended parts of the world. Habitat loss, fragmentation, and depletion of natural resources are some of the main causes of this decline. Consequently, behavioral flexibility, enabling the exploitation of anthropogenic food resources in highly disturbed human-dominated landscapes, is becoming critical for the survival of large carnivores. These behavioral changes increase the potential for human-large carnivore conflict and can further intensify carnivore persecution. Here, we examine how land cover types (representing a gradient of anthropogenic disturbance) alter the behavior of striped hyenas (Hyaena hyaena) in a human-dominated landscape in Israel, and whether differences in life history between males and females affect their reaction to such disturbances and consequently their level of exposure to humans. We used a Hidden Markov Model on GPS-tracking data for seven striped hyenas to segment individual-night trajectories into behavioral states (resting, searching, and traveling). We then used multinomial logistic regression to model hyenas’ behavioral state as a function of the interaction between land cover and sex. Females traveled less than males both in terms of average distance traveled per hour, per night, and nightly net displacement. Most steps were classified as “searching” for females and as “traveling” for males. Female hyenas spent a higher proportion of time in human-dominated areas and a lower proportion in natural areas compared to males, and they were also more likely to be found close to settlements than males. Females changed their time allocation between natural and human-dominated areas, spending more time resting than traveling in natural areas but not in human-dominated ones; males spent more time searching than resting in human-dominated areas but were equally likely to rest or search in natural ones. The differences in life history between male and female hyenas may reflect different motivations for space use as a means to optimize fitness, which affects their exposure to humans and therefore their potential involvement in human-hyenas conflict. Understanding the mechanisms that lead to behavioral change in response to human disturbance is important for adaptive management and promoting human large-carnivores co-existence in general.
Collapse
|
125
|
Schmidt KA, Massol F, Szymkowiak J. Resurrecting Shannon's surprise: landscape heterogeneity complements information use and population growth. OIKOS 2022. [DOI: 10.1111/oik.09305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Francois Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille Lille France
| | - Jakub Szymkowiak
- Population Ecology Research Unit, Adam Mickiewicz Univ. Poznań Poland
| |
Collapse
|
126
|
Gómez-Catasús J, Barrero A, Llusia D, Iglesias-Merchan C, Traba J. Wind farm noise shifts vocalizations of a threatened shrub-steppe passerine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119144. [PMID: 35301031 DOI: 10.1016/j.envpol.2022.119144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Wind energy has experienced a notable development during the last decades, driving new challenges for animal communities. Although bird collisions with wind turbines and spatial displacement due to disturbance have been widely described in the literature, other potential impacts remain unclear. In this study, we addressed the effect of turbine noise on the vocal behaviour of a threatened shrub-steppe passerine highly dependent on acoustic communication, the Dupont's lark Chersophilus duponti. Based on directional recordings of 49 calling and singing males exposed to a gradient of turbine noise level (from 15 up to 51 dBA), we tested for differences in signal diversity, redundancy, and complexity, as well as temporal and spectral characteristics of their vocalizations (particularly the characteristic whistle). Our results unveiled that Dupont's lark males varied the vocal structure when subject to turbine noise, by increasing the probability of emitting more complex whistles (with increased number of notes) and shifting the dominant note (emphasizing the longest and higher-pitched note). In addition, males increased duration and minimum frequency of specific notes of the whistle, while repertoire size and signal redundancy remain constant. To our knowledge, this is the first study reporting multiple and complex responses on the vocal repertoire of animals exposed to turbine noise and unveiling a shift of the dominant note in response to anthropogenic noise in general. These findings suggest that the Dupont's lark exhibits some level of phenotypic plasticity, which might enable the species to cope with noisy environments, although the vocal adjustments observed might have associated costs or alter the functionality of the signal. Future wind energy projects must include fine-scale noise assessments to quantify the consequences of chronic noise exposure.
Collapse
Affiliation(s)
- Julia Gómez-Catasús
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain; Novia University of Applied Sciences, Raseborgvägen 9, FI-10600, Ekenäs, Finland.
| | - Adrián Barrero
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain
| | - Diego Llusia
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain; Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
| | - Carlos Iglesias-Merchan
- CENERIC Research Centre, Tres Cantos, Spain; Escuela Ingeniería de Montes, Forestal y Medio Natural, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Traba
- Terrestrial Ecology Group, Department of Ecology, Universidad Autónoma de Madrid (TEG-UAM), Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Madrid, Spain
| |
Collapse
|
127
|
Iglesias-Carrasco M, Wong BBM, Jennions MD. In the shadows: wildlife behaviour in tree plantations. Trends Ecol Evol 2022; 37:838-850. [PMID: 35710479 DOI: 10.1016/j.tree.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
Destruction of natural habitats for tree plantations is a major threat to wildlife. These novel environments elicit behavioural changes that can either be detrimental or beneficial to survival and reproduction, with population - and community - level consequences. However, compared with well-documented changes following other forms of habitat modification, we know little about wildlife behavioural responses to tree plantations, and even less about their associated fitness costs. Here, we highlight critical knowledge gaps in understanding the ecological and evolutionary consequences of behavioural shifts caused by tree plantations and discuss how wildlife responses to plantations could be critical in determining which species persist in these highly modified environments.
Collapse
|
128
|
Thermal physiology, foraging pattern, and worker body size interact to influence coexistence in sympatric polymorphic harvester ants (Messor spp.). Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
129
|
Arakelyan M, Spangenberg V, Petrosyan V, Ryskov A, Kolomiets O, Galoyan E. Evolution of parthenogenetic reproduction in Caucasian rock lizards: A review. Curr Zool 2022; 69:128-135. [PMID: 37091994 PMCID: PMC10120964 DOI: 10.1093/cz/zoac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Despite numerous works devoted to hybrid origin of parthenogenesis in reptiles, the causes of hybridization between different species, resulting in the origin of parthenogenetic forms, remain uncertain. Recent studies demonstrate that sexual species considered parental to parthenogenetic rock lizards (Darevskia spp) avoid interspecific mating in the secondary overlap areas. A specific combination of environmental factors during last glaciation period was critical for ectotherms, which led to a change in their distribution and sex ratio. Biased population structure (e.g., male bias) and limited available distributional range favoured the deviation of reproductive behaviour when species switched to interspecific mates. To date, at least seven diploid parthenogenetic species of rock lizards (Darevskia, Lacertidae) originated through interspecific hybridization in the past. The cytogenetic specifics of meiosis, in particular the weak checkpoints of prophase I, may have allowed the formation of hybrid karyotypes in rock lizards. Hybridization and polyploidization are two important evolutionary forces in the genus Darevskia. At present, throughout backcrossing between parthenogenetic and parental species, the triploid and tetraploid hybrid individuals appear annually, but no triploid species found among Darevskia spp on current stage of evolution. The speciation by hybridization with the long-term stage of diploid parthenogenetic species, non-distorted meiosis, together with the high ecological plasticity of Caucasian rock lizards provide us with a new model for considering the pathways and persistence of the evolution of parthenogenesis in vertebrates.
Collapse
Affiliation(s)
- Marine Arakelyan
- Department of Zoology, Yerevan State University, Yerevan 0025, Armenia
| | | | - Varos Petrosyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | | | | - Eduard Galoyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
- Zoological Museum of Moscow State University, Russia
| |
Collapse
|
130
|
Improving wildlife tracking using 3D information. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2021.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
131
|
Lackmann C, Velki M, Šimić A, Müller A, Braun U, Ečimović S, Hollert H. Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner. ENVIRONMENT INTERNATIONAL 2022; 163:107190. [PMID: 35316749 DOI: 10.1016/j.envint.2022.107190] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Microplastics are small plastic fragments that are widely distributed in marine and terrestrial environments. While the soil ecosystem represents a large reservoir for plastic, research so far has focused mainly on the impact on aquatic ecosystems and there is a lack of information on the potentially adverse effects of microplastics on soil biota. Earthworms are key organisms of the soil ecosystem and are due to their crucial role in soil quality and fertility a suitable and popular model organism in soil ecotoxicology. Therefore, the aim of this study was to gain insight into the effects of environmentally relevant concentrations of microplastics on the earthworm Eisenia andrei on multiple levels of biological organization after different exposure periods. Earthworms were exposed to two types of microplastics: (1) polystyrene-HBCD and (2) car tire abrasion in natural soil for 2, 7, 14 and 28d. Acute and chronic toxicity and all subcellular investigations were conducted for all exposure times, avoidance behavior assessed after 48 h and reproduction after 28d. Subcellular endpoints included enzymatic biomarker responses, namely, carboxylesterase, glutathione peroxidase, acetylcholinesterase, glutathione reductase, glutathione S-transferase and catalase activities, as well as fluorescence-based measurements of oxidative stress-related markers and multixenobiotic resistance activity. Multiple biomarkers showed significant changes in activity, but a recovery of most enzymatic activities could be observed after 28d. Overall, only minor effects could be observed on a subcellular level, showing that in this exposure scenario with environmentally relevant concentrations based on German pollution levels the threat to soil biota is minimal. However, in areas with higher concentrations of microplastics in the environment, these results can be interpreted as an early warning signal for more adverse effects. In conclusion, these findings provide new insights regarding the ecotoxicological effects of environmentally relevant concentrations of microplastics on soil organisms.
Collapse
Affiliation(s)
- Carina Lackmann
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Antonio Šimić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Axel Müller
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany; Bundesanstalt für Materialforschung und -prüfung (BAM), Fachbereich 6.6: Physik und chemische Analytik der Polymere, Unter den Eichen 87, 12205 Berlin, Germany
| | - Ulrike Braun
- Bundesanstalt für Materialforschung und -prüfung (BAM), Fachbereich 6.6: Physik und chemische Analytik der Polymere, Unter den Eichen 87, 12205 Berlin, Germany; Umweltbundesamt (UBA), Fachgebiet III 2.5 - Überwachungsverfahren, Abwasserentsorgung, Schichauweg 58, 12307 Berlin, Germany
| | - Sandra Ečimović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany.
| |
Collapse
|
132
|
Valladares MA, Fabres AA, Collado GA, Sáez PA, Méndez MA. Coping With Dynamism: Phylogenetics and Phylogeographic Analyses Reveal Cryptic Diversity in Heleobia Snails of Atacama Saltpan, Chile. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.869626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The species that inhabit systems highly affected by anthropic activities usually exhibit this external influence in their gene pool. In this study, we investigated the genetic patterns of populations of Heleobia atacamensis, a freshwater microgastropod endemic to the Atacama Saltpan, a system historically exposed to environmental changes, and currently subjected to conditions associated with metallic and non-metallic mining and other anthropic activities. Molecular analyses based on nuclear and mitochondrial sequences indicate that the saltpan populations are highly fragmented and that the genetic structure is mainly explained by historical geographic isolation, with little influence of contemporary factors. The microsatellite results suggest a moderate genetic diversity and sharp differentiation mediated by isolation by distance. Additionally, despite the high environmental heterogeneity detected and the marked historical dynamism of the region, our data reveal no signs of demographic instability. The patterns of contemporary gene flow suggest a change in the current genetic structure, based on the geographic proximity and specific environmental conditions for each population. Our results, highlight the role of fragmentation as a modulator of genetic diversity, but also suggest that the historical persistence of isolated populations in naturally dynamic environments could explain the apparent demographic stability detected.
Collapse
|
133
|
Giuntini S, Pedruzzi L. Sex and the patch: the influence of habitat fragmentation on terrestrial vertebrates’ mating strategies. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2059787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Silvia Giuntini
- Dipartimento di Biologia, Università di Pisa, Via Alessandro Volta 6, Pisa 56126, Italy
- Environmental Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell’Insubria, Varese, Italy
| | - Luca Pedruzzi
- Dipartimento di Biologia, Università di Pisa, Via Alessandro Volta 6, Pisa 56126, Italy
| |
Collapse
|
134
|
The Feeding Landscape: Bird and Human Use of Food Resources across a Biocultural Landscape of the Colombian Andes. SUSTAINABILITY 2022. [DOI: 10.3390/su14084789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Agriculture impacts both human welfare and biodiversity at the same time. Still, social and ecological assessments have commonly analyzed the relevance of agroecosystems separately. We evaluated the human and avian feeding use of the biocultural landscape in Jardín, Colombia, using a socioecological approach. Together with farmers, we identified the main socioecological units of the landscape (i.e., fincas, grazing lands, town, forests) and determined the use of each unit in terms of food foraging from forests, crop cultivation, cattle grazing, food commercialization, and food industrialization. We compared the richness of the food resources produced among finca sections (i.e., gardens, coffee–banana plantations, grazing lands). Then, we surveyed avian behavior to contrast the richness of bird species, feeding use and intensity, and food types consumed by birds among the units. Fincas were shown to play a pivotal role in feeding both humans and birds. Gardens provide food for people as well as nectarivore and frugivore birds. Coffee–banana plantations are economically relevant, but their food provision is limited and could be enhanced by increasing the diversity of the food crops within them. The town supports commerce and granivorous birds, whereas grazing lands have limited feeding importance. Forests are used by birds to capture invertebrates but do not supply much food for the people. Our approach fosters the identification of key socioecological units, demonstrating that studying both humans and wildlife enhances the comprehension of biocultural landscapes.
Collapse
|
135
|
Jones N, Sherwen SL, Robbins R, McLelland DJ, Whittaker AL. Welfare Assessment Tools in Zoos: From Theory to Practice. Vet Sci 2022; 9:170. [PMID: 35448668 PMCID: PMC9025157 DOI: 10.3390/vetsci9040170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Zoos are increasingly implementing formalized animal welfare assessment programs to allow monitoring of welfare over time, as well as to aid in resource prioritization. These programs tend to rely on assessment tools that incorporate resource-based and observational animal-focused measures. A narrative review of the literature was conducted to bring together recent studies examining welfare assessment methods in zoo animals. A summary of these methods is provided, with advantages and limitations of the approaches presented. We then highlight practical considerations with respect to implementation of these tools into practice, for example scoring schemes, weighting of criteria, and innate animal factors for consideration. It is concluded that there would be value in standardizing guidelines for development of welfare assessment tools since zoo accreditation bodies rarely prescribe these. There is also a need to develop taxon or species-specific assessment tools to complement more generic processes and more directly inform welfare management.
Collapse
Affiliation(s)
- Narelle Jones
- School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia; (D.J.M.); (A.L.W.)
| | - Sally L. Sherwen
- Wildlife Conservation and Science, Zoos Victoria, Melbourne, VIC 3052, Australia;
- The Animal Welfare Science Centre, The University of Melbourne, Melbourne, VIC 3052, Australia
| | | | - David J. McLelland
- School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia; (D.J.M.); (A.L.W.)
- Zoos South Australia, Adelaide, SA 5000, Australia;
| | - Alexandra L. Whittaker
- School of Animal & Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia; (D.J.M.); (A.L.W.)
| |
Collapse
|
136
|
Santicchia F, Wauters LA, Tranquillo C, Villa F, Dantzer B, Palme R, Preatoni D, Martinoli A. Invasive alien species as an environmental stressor and its effects on coping style in a native competitor, the Eurasian red squirrel. Horm Behav 2022; 140:105127. [PMID: 35121301 DOI: 10.1016/j.yhbeh.2022.105127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 01/17/2023]
Abstract
Free-living animals cope with environmental stressors through physiological and behavioural responses. According to the unidimensional model, these responses are integrated within a coping style: proactive individuals (bold, active-explorative and social) have a lower hypothalamic-pituitary-adrenal (HPA) axis reactivity than reactive ones (shy, less active-explorative, less social). These associations may change when individuals are exposed to human-induced rapid environmental change (HIREC), such as the introduction of invasive alien species (IAS). Here, we studied Eurasian red squirrels to investigate the relationship between personality traits and one integrated measure of HPA axis activity, both in areas uncolonized (natural populations) and colonized by an IAS, the Eastern grey squirrel (invaded populations). We expected an association between physiological and behavioural responses, and that activity, exploration and social tendency would covary, forming a behavioural syndrome in natural populations, while competition with the IAS was predicted to disrupt these associations. We used faecal glucocorticoid metabolites (FGMs) as an integrated measure of adrenocortical activity, and measured the levels of four personality traits (exploration, activity, activity-exploration and social tendency) with an open field test and a mirror image stimulation test. We found no correlation between FGMs and personality traits, neither in natural nor invaded populations. However, we found correlations among personality traits in areas without interspecific competition, indicating a behavioural syndrome, which was disrupted in invaded populations. This is one of the few studies showing that an IAS, acting as an environmental stressor, alters a native species' behavioural syndrome, but does not influence its coping style.
Collapse
Affiliation(s)
- Francesca Santicchia
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy.
| | - Lucas Armand Wauters
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Claudia Tranquillo
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Federica Villa
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Ben Dantzer
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Damiano Preatoni
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Adriano Martinoli
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
137
|
Satsias ZM, Silk MJ, Hockings KJ, Cibot M, Rohen J, McLennan MR. Sex-specific responses to anthropogenic risk shape wild chimpanzee social networks in a human-impacted landscape. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
138
|
Bumble bees exhibit body size clines across an urban gradient despite low genetic differentiation. Sci Rep 2022; 12:4166. [PMID: 35264687 PMCID: PMC8907314 DOI: 10.1038/s41598-022-08093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental heterogeneity resulting from human-modified landscapes can increase intraspecific trait variation. However, less known is whether such phenotypic variation is driven by plastic or adaptive responses to local environments. Here, we study five bumble bee (Apidae: Bombus) species across an urban gradient in the greater Saint Louis, Missouri region in the North American Midwest and ask: (1) Can urban environments induce intraspecific spatial structuring of body size, an ecologically consequential functional trait? And, if so, (2) is this body size structure the result of plasticity or adaptation? We additionally estimate genetic diversity, inbreeding, and colony density of these species—three factors that affect extinction risk. Using ≥ 10 polymorphic microsatellite loci per species and measurements of body size, we find that two of these species (Bombus impatiens, Bombus pensylvanicus) exhibit body size clines across the urban gradient, despite a lack of population genetic structure. We also reaffirm reports of low genetic diversity in B. pensylvanicus and find evidence that Bombus griseocollis, a species thought to be thriving in North America, is inbred in the greater Saint Louis region. Collectively, our results have implications for conservation in urban environments and suggest that plasticity can cause phenotypic clines across human-modified landscapes.
Collapse
|
139
|
Kasada M, Yamamichi M. Idea paper: Controlling trait adaptation to decrease population densities for conservation and management. Ecol Res 2022. [DOI: 10.1111/1440-1703.12300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Minoru Kasada
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Department of Experimental Limnology, Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Germany
| | - Masato Yamamichi
- School of Biological Sciences The University of Queensland Brisbane Australia
- Institute of Tropical Medicine Nagasaki University Nagasaki Japan
| |
Collapse
|
140
|
Adeola AO, Ore OT, Fapohunda O, Adewole AH, Akerele DD, Akingboye AS, Oloye FF. Psychotropic Drugs of Emerging Concerns in Aquatic Systems: Ecotoxicology and Remediation Approaches. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00334-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
141
|
Helle S, Tanskanen AO, Coall DA, Danielsbacka M. Matrilateral bias of grandparental investment in grandchildren persists despite the grandchildren's adverse early life experiences. Proc Biol Sci 2022; 289:20212574. [PMID: 35168400 PMCID: PMC8848246 DOI: 10.1098/rspb.2021.2574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Evolutionary theory predicts a downward flow of investment from older to younger generations, representing individual efforts to maximize inclusive fitness. Maternal grandparents and maternal grandmothers (MGMs) in particular consistently show the highest levels of investment (e.g. time, care and resources) in their grandchildren. Grandparental investment overall may depend on social and environmental conditions that affect the development of children and modify the benefits and costs of investment. Currently, the responses of grandparents to adverse early life experiences (AELEs) in their grandchildren are assessed from a perspective of increased investment to meet increased need. Here, we formulate an alternative prediction that AELEs may be associated with reduced grandparental investment, as they can reduce the reproductive value of the grandchildren. Moreover, we predicted that paternal grandparents react more strongly to AELEs compared to maternal grandparents because maternal kin should expend extra effort to invest in their descendants. Using population-based survey data for English and Welsh adolescents, we found evidence that the investment of maternal grandparents (MGMs in particular) in their grandchildren was unrelated to the grandchildren's AELEs, while paternal grandparents invested less in grandchildren who had experienced more AELEs. These findings seemed robust to measurement errors in AELEs and confounding due to omitted shared causes.
Collapse
Affiliation(s)
- Samuli Helle
- Department of Social Research, Faculty of Social Sciences, University of Turku, Assistentinkatu 7, 20014 Turku, Finland
| | - Antti O Tanskanen
- Department of Social Research, Faculty of Social Sciences, University of Turku, Assistentinkatu 7, 20014 Turku, Finland.,Population Research Institute, 00101 Helsinki, Finland
| | - David A Coall
- School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia
| | - Mirkka Danielsbacka
- Department of Social Research, Faculty of Social Sciences, University of Turku, Assistentinkatu 7, 20014 Turku, Finland.,Population Research Institute, 00101 Helsinki, Finland
| |
Collapse
|
142
|
White AF, Dawson RD. Manipulations of brood age reveal limited parental flexibility in an insectivorous passerine. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
143
|
Jellison BM, Elsmore KE, Miller JT, Ng G, Ninokawa AT, Hill TM, Gaylord B. Low-pH seawater alters indirect interactions in rocky-shore tidepools. Ecol Evol 2022; 12:e8607. [PMID: 35169457 PMCID: PMC8840877 DOI: 10.1002/ece3.8607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification is expected to degrade marine ecosystems, yet most studies focus on organismal-level impacts rather than ecological perturbations. Field studies are especially sparse, particularly ones examining shifts in direct and indirect consumer interactions. Here we address such connections within tidepool communities of rocky shores, focusing on a three-level food web involving the keystone sea star predator, Pisaster ochraceus, a common herbivorous snail, Tegula funebralis, and a macroalgal basal resource, Macrocystis pyrifera. We demonstrate that during nighttime low tides, experimentally manipulated declines in seawater pH suppress the anti-predator behavior of snails, bolstering their grazing, and diminishing the top-down influence of predators on basal resources. This attenuation of top-down control is absent in pools maintained experimentally at higher pH. These findings suggest that as ocean acidification proceeds, shifts of behaviorally mediated links in food webs could change how cascading effects of predators manifest within marine communities.
Collapse
Affiliation(s)
- Brittany M. Jellison
- Department of Biological SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Kristen E. Elsmore
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
| | - Jeffrey T. Miller
- Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Gabriel Ng
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
- Marine Invasions LaboratoryEstuary Ocean Science CenterTiburonCaliforniaUSA
| | - Aaron T. Ninokawa
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
| | - Tessa M. Hill
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Earth and Planetary SciencesUniversity of California DavisDavisCaliforniaUSA
| | - Brian Gaylord
- Bodega Marine LaboratoryUniversity of California DavisBodega BayCaliforniaUSA
- Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| |
Collapse
|
144
|
Gunn RL, Hartley IR, Algar AC, Nadiarti N, Keith SA. Variation in the behaviour of an obligate corallivore is influenced by resource availability. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03132-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Marine environments are subject to increasing disturbance events, and coral reef ecosystems are particularly vulnerable. During periods of environmental change, organisms respond initially through rapid behavioural modifications. Whilst mean population level modifications to behaviour are well documented, how these shifts vary between individuals, and the relative trade-offs that are induced, are unknown. We test whether the frequency and time invested in different behaviours varies both between and within individuals with varying resource availability. To do this, we quantify differences in four key behavioural categories (aggression, exploration, feeding and sociability) at two sites of different resource availability, using an obligate corallivore butterflyfish species (Chaetodon lunulatus). Individuals on a low resource site held larger territories, investing more time in exploration, which was traded off with less time invested on aggression, feeding and sociability. Repeatability measures indicated that behavioural differences between sites could plausibly be driven by both plasticity of behaviour within individuals and habitat patchiness within feeding territories. By combining population-level means, co-correlation of different behaviours and individual-level analyses, we reveal potential mechanisms behind behavioural variation in C. lunulatus due to differences in resource availability.
Significance statement
Using observational methods, we identify differences in the behaviour of an obligate corallivorous butterflyfish (Chaetodon lunulatus) between a high and a low resource site. We use a combination of density surveys, territory mapping and behavioural observation methods in a comparative analysis to relate behaviour directly to the environment in which it occurs. Bringing together insights from game theory and optimal foraging, we also use our results to highlight how understanding the correlations of different behaviours can inform our understanding of the extent to which behaviours are plastic or fixed. Furthermore, by considering how multiple behaviours are correlated, we move away from exploring individual behaviours in isolation and provide an in-depth insight into how differences in behaviour both between individuals and at the population level can affect responses to declining resource availability.
Collapse
|
145
|
Fleig P, Kramar M, Wilczek M, Alim K. Emergence of behaviour in a self-organized living matter network. eLife 2022; 11:62863. [PMID: 35060901 PMCID: PMC8782570 DOI: 10.7554/elife.62863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
What is the origin of behaviour? Although typically associated with a nervous system, simple organisms also show complex behaviours. Among them, the slime mold Physarum polycephalum, a giant single cell, is ideally suited to study emergence of behaviour. Here, we show how locomotion and morphological adaptation behaviour emerge from self-organized patterns of rhythmic contractions of the actomyosin lining of the tubes making up the network-shaped organism. We quantify the spatio-temporal contraction dynamics by decomposing experimentally recorded contraction patterns into spatial contraction modes. Notably, we find a continuous spectrum of modes, as opposed to a few dominant modes. Our data suggests that the continuous spectrum of modes allows for dynamic transitions between a plethora of specific behaviours with transitions marked by highly irregular contraction states. By mapping specific behaviours to states of active contractions, we provide the basis to understand behaviour’s complexity as a function of biomechanical dynamics.
Collapse
Affiliation(s)
- Philipp Fleig
- Department of Physics & Astronomy, University of Pennsylvania
- Max Planck Institute for Dynamics and Self-Organization
| | - Mirna Kramar
- Max Planck Institute for Dynamics and Self-Organization
| | | | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization
- Physik-Department and Center for Protein Assemblies, Technische Universität München
| |
Collapse
|
146
|
OUP accepted manuscript. Behav Ecol 2022. [DOI: 10.1093/beheco/arab154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
147
|
McIntosh MM, Cibils AF, Estell RE, Gong Q, Cao H, Gonzalez AL, Nyamuryekung'e S, Spiegal SA. Can cattle geolocation data yield behavior-based criteria to inform precision grazing systems on rangeland? Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
148
|
|
149
|
Mazaleyrat A, Lorenzetti F, Dupuch A. Invasion of alien slugs in disturbed habitats: role of behavioural phenotype, plasticity and interspecific competition. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
150
|
Dyson CJ, Piscano OL, Durham RM, Thompson VJ, Johnson CH, Goodisman MAD. Temporal Analysis of Effective Population Size and Mating System in a Social Wasp. J Hered 2021; 112:626-634. [PMID: 34558622 DOI: 10.1093/jhered/esab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Highly social species are successful because they cooperate in obligately integrated societies. We examined temporal genetic variation in the eusocial wasp Vespula maculifrons to gain a greater understanding of evolution in highly social taxa. First, we wished to test if effective population sizes of eusocial species were relatively low due to the reproductive division of labor that characterizes eusocial taxa. We thus estimated the effective population size of V. maculifrons by examining temporal changes in population allele frequencies. We sampled the genetic composition of a V. maculifrons population at 3 separate timepoints spanning a 13-year period. We found that effective population size ranged in the hundreds of individuals, which is similar to estimates in other, non-eusocial taxa. Second, we estimated levels of polyandry in V. maculifrons in different years to determine if queen mating system varied over time. We found no significant change in the number or skew of males mated to queens. In addition, mating skew was not significant within V. maculifrons colonies. Therefore, our data suggest that queen mate number may be subject to stabilizing selection in this taxon. Overall, our study provides novel insight into the selective processes operating in eusocial species by analyzing temporal genetic changes within populations.
Collapse
Affiliation(s)
- Carl J Dyson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Olivia L Piscano
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca M Durham
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Veronica J Thompson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Catherine H Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|