101
|
Libkind S, Baas A, Halter M, Patterson E, Fairbanks JP. An algebraic framework for structured epidemic modelling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210309. [PMID: 35965465 PMCID: PMC9376710 DOI: 10.1098/rsta.2021.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/07/2022] [Indexed: 05/07/2023]
Abstract
Pandemic management requires that scientists rapidly formulate and analyse epidemiological models in order to forecast the spread of disease and the effects of mitigation strategies. Scientists must modify existing models and create novel ones in light of new biological data and policy changes such as social distancing and vaccination. Traditional scientific modelling workflows detach the structure of a model-its submodels and their interactions-from its implementation in software. Consequently, incorporating local changes to model components may require global edits to the code base through a manual, time-intensive and error-prone process. We propose a compositional modelling framework that uses high-level algebraic structures to capture domain-specific scientific knowledge and bridge the gap between how scientists think about models and the code that implements them. These algebraic structures, grounded in applied category theory, simplify and expedite modelling tasks such as model specification, stratification, analysis and calibration. With their structure made explicit, models also become easier to communicate, criticize and refine in light of stakeholder feedback. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.
Collapse
Affiliation(s)
- Sophie Libkind
- Department of Mathematics, Stanford University, Stanford, CA, USA
| | - Andrew Baas
- Georgia Tech Research Institute, Atlanta, GA, USA
| | - Micah Halter
- Georgia Tech Research Institute, Atlanta, GA, USA
| | | | - James P. Fairbanks
- Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
102
|
Deng Y, Beahm DR, Ran X, Riley TG, Sarpeshkar R. Rapid modeling of experimental molecular kinetics with simple electronic circuits instead of with complex differential equations. Front Bioeng Biotechnol 2022; 10:947508. [PMID: 36246369 PMCID: PMC9554301 DOI: 10.3389/fbioe.2022.947508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Kinetic modeling has relied on using a tedious number of mathematical equations to describe molecular kinetics in interacting reactions. The long list of differential equations with associated abstract variables and parameters inevitably hinders readers’ easy understanding of the models. However, the mathematical equations describing the kinetics of biochemical reactions can be exactly mapped to the dynamics of voltages and currents in simple electronic circuits wherein voltages represent molecular concentrations and currents represent molecular fluxes. For example, we theoretically derive and experimentally verify accurate circuit models for Michaelis-Menten kinetics. Then, we show that such circuit models can be scaled via simple wiring among circuit motifs to represent more and arbitrarily complex reactions. Hence, we can directly map reaction networks to equivalent circuit schematics in a rapid, quantitatively accurate, and intuitive fashion without needing mathematical equations. We verify experimentally that these circuit models are quantitatively accurate. Examples include 1) different mechanisms of competitive, noncompetitive, uncompetitive, and mixed enzyme inhibition, important for understanding pharmacokinetics; 2) product-feedback inhibition, common in biochemistry; 3) reversible reactions; 4) multi-substrate enzymatic reactions, both important in many metabolic pathways; and 5) translation and transcription dynamics in a cell-free system, which brings insight into the functioning of all gene-protein networks. We envision that circuit modeling and simulation could become a powerful scientific communication language and tool for quantitative studies of kinetics in biology and related fields.
Collapse
Affiliation(s)
- Yijie Deng
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | | | - Xinping Ran
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Tanner G. Riley
- School of Undergraduate Arts and Sciences, Dartmouth College, Hanover, NH, United States
| | - Rahul Sarpeshkar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Departments of Engineering, Microbiology and Immunology, Physics, and Molecular and Systems Biology, Dartmouth College, Hanover, NH, United States
- *Correspondence: Rahul Sarpeshkar,
| |
Collapse
|
103
|
Voskamp M, Vinhoven L, Stanke F, Hafkemeyer S, Nietert MM. Integrating Text Mining into the Curation of Disease Maps. Biomolecules 2022; 12:biom12091278. [PMID: 36139119 PMCID: PMC9496510 DOI: 10.3390/biom12091278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
An adequate visualization form is required to gain an overview and ultimately understand the complex and diverse biological mechanisms of diseases. Recently, disease maps have been introduced for this purpose. A disease map is defined as a systems biological map or model that combines metabolic, signaling, and physiological pathways to create a comprehensive overview of known disease mechanisms. With the increase in publications describing biological interactions, efforts in creating and curating comprehensive disease maps is growing accordingly. Therefore, new computational approaches are needed to reduce the time that manual curation takes. Test mining algorithms can be used to analyse the natural language of scientific publications. These types of algorithms can take humanly readable text passages and convert them into a more ordered, machine-usable data structure. To support the creation of disease maps by text mining, we developed an interactive, user-friendly disease map viewer. The disease map viewer displays text mining results in a systems biology map, where the user can review them and either validate or reject identified interactions. Ultimately, the viewer brings together the time-saving advantages of text mining with the accuracy of manual data curation.
Collapse
Affiliation(s)
- Malte Voskamp
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany
| | - Liza Vinhoven
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany
| | - Frauke Stanke
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), the German Center for Lung Research, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | - Manuel Manfred Nietert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Goldschmidtstraße 1, 37077 Göttingen, Germany
- CIDAS Campus Institute Data Science, Goldschmidtstraße 1, 37077 Göttingen, Germany
- Correspondence: ; Tel.: +49-551-39-14920
| |
Collapse
|
104
|
Shahidi N, Pan M, Tran K, Crampin EJ, Nickerson DP. SBML to bond graphs: From conversion to composition. Math Biosci 2022; 352:108901. [PMID: 36096376 DOI: 10.1016/j.mbs.2022.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
The Systems Biology Markup Language (SBML) is a popular software-independent XML-based format for describing models of biological phenomena. The BioModels Database is the largest online repository of SBML models. Several tools and platforms are available to support the reuse and composition of SBML models. However, these tools do not explicitly assess whether models are physically plausible or thermodynamically consistent. This often leads to ill-posed models that are physically impossible, impeding the development of realistic complex models in biology. Here, we present a framework that can automatically convert SBML models into bond graphs, which imposes energy conservation laws on these models. The new bond graph models are easily mergeable, resulting in physically plausible coupled models. We illustrate this by automatically converting and coupling a model of pyruvate distribution to a model of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Niloofar Shahidi
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand.
| | - Michael Pan
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Victoria, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Edmund J Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Victoria, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, 3010, Victoria, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 3010, Victoria, Australia; School of Medicine, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
105
|
Connectivity concepts in neuronal network modeling. PLoS Comput Biol 2022; 18:e1010086. [PMID: 36074778 PMCID: PMC9455883 DOI: 10.1371/journal.pcbi.1010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Sustainable research on computational models of neuronal networks requires published models to be understandable, reproducible, and extendable. Missing details or ambiguities about mathematical concepts and assumptions, algorithmic implementations, or parameterizations hinder progress. Such flaws are unfortunately frequent and one reason is a lack of readily applicable standards and tools for model description. Our work aims to advance complete and concise descriptions of network connectivity but also to guide the implementation of connection routines in simulation software and neuromorphic hardware systems. We first review models made available by the computational neuroscience community in the repositories ModelDB and Open Source Brain, and investigate the corresponding connectivity structures and their descriptions in both manuscript and code. The review comprises the connectivity of networks with diverse levels of neuroanatomical detail and exposes how connectivity is abstracted in existing description languages and simulator interfaces. We find that a substantial proportion of the published descriptions of connectivity is ambiguous. Based on this review, we derive a set of connectivity concepts for deterministically and probabilistically connected networks and also address networks embedded in metric space. Beside these mathematical and textual guidelines, we propose a unified graphical notation for network diagrams to facilitate an intuitive understanding of network properties. Examples of representative network models demonstrate the practical use of the ideas. We hope that the proposed standardizations will contribute to unambiguous descriptions and reproducible implementations of neuronal network connectivity in computational neuroscience.
Collapse
|
106
|
The automated Galaxy-SynBioCAD pipeline for synthetic biology design and engineering. Nat Commun 2022; 13:5082. [PMID: 36038542 PMCID: PMC9424320 DOI: 10.1038/s41467-022-32661-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Here we introduce the Galaxy-SynBioCAD portal, a toolshed for synthetic biology, metabolic engineering, and industrial biotechnology. The tools and workflows currently shared on the portal enables one to build libraries of strains producing desired chemical targets covering an end-to-end metabolic pathway design and engineering process from the selection of strains and targets, the design of DNA parts to be assembled, to the generation of scripts driving liquid handlers for plasmid assembly and strain transformations. Standard formats like SBML and SBOL are used throughout to enforce the compatibility of the tools. In a study carried out at four different sites, we illustrate the link between pathway design and engineering with the building of a library of E. coli lycopene-producing strains. We also benchmark our workflows on literature and expert validated pathways. Overall, we find an 83% success rate in retrieving the validated pathways among the top 10 pathways generated by the workflows.
Collapse
|
107
|
Bartoli C, Boivin S, Marta M, Gris C, Gasciolli V, Gaston M, Auriac MC, Debellé F, Cottret L, Carlier A, Masson-Boivin C, Lepetit M, Lefebvre B. Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes that can stimulate root development. Environ Microbiol 2022; 24:5509-5523. [PMID: 35920038 DOI: 10.1111/1462-2920.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Although rhizobia that establish a nitrogen-fixing symbiosis with legumes are also known to promote growth in non-legumes, studies on rhizobial associations with wheat roots are scarce. We searched for Rhizobium leguminosarum symbiovar viciae (Rlv) strains naturally competent to endophytically colonize wheat roots. We isolated 20 strains from surface-sterilized wheat roots, and found a low diversity of Rlv compared to that observed in the Rlv species complex. We tested the ability of a subset of these Rlv for wheat root colonization when co-inoculated with other Rlv. Only a few strains, including those isolated from wheat roots, and one strain isolated from pea nodules, were efficient in colonizing roots in co-inoculation conditions, while all the strains tested in single strain inoculation conditions were found to colonize the surface and interior of roots. Furthermore, Rlv strains isolated from wheat roots were able to stimulate root development and early arbuscular mycorrhizal fungi colonization. These responses were strain and host genotype dependent. Our results suggest that wheat can be an alternative host for Rlv; nevertheless, there is a strong competition between Rlv strains for wheat root colonization. In addition, we showed that Rlv are endophytic wheat root bacteria with potential ability to modify wheat development.
Collapse
Affiliation(s)
- Claudia Bartoli
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.,LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes INRAE, IRD, CIRAD, University of Montpellier, Montpellier SupAgro Montpellier, France
| | - Marchetti Marta
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Carine Gris
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Mégane Gaston
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Marie-Christine Auriac
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.,FRAIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, 24 chemin de Borderouge, Castanet-Tolosan, France
| | - Frédéric Debellé
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Aurélien Carlier
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes INRAE, IRD, CIRAD, University of Montpellier, Montpellier SupAgro Montpellier, France.,Institut Sophia Agrobiotech INRAE, CNRS, University Côte d'azur, Sophia Antipolis, France
| | - Benoit Lefebvre
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
108
|
Modeling-Guided Amendments Lead to Enhanced Biodegradation in Soil. mSystems 2022; 7:e0016922. [PMID: 35913191 PMCID: PMC9426591 DOI: 10.1128/msystems.00169-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extensive use of agrochemicals is emerging as a serious environmental issue coming at the cost of the pollution of soil and water resources. Bioremediation techniques such as biostimulation are promising strategies used to remove pollutants from agricultural soils by supporting the indigenous microbial degraders. Though considered cost-effective and eco-friendly, the success rate of these strategies typically varies, and consequently, they are rarely integrated into commercial agricultural practices. In the current study, we applied metabolic-based community-modeling approaches for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Efficacy of biostimulants as enhancers of the indigenous degrader Paenarthrobacter was ranked through simulation and validated in pot experiments. A two-dimensional simulation matrix predicting the effect of different biostimulants on additional potential indigenous degraders (Pseudomonas, Clostridium, and Geobacter) was crossed with experimental observations. The overall ability of the models to predict the compounds that act as taxa-selective stimulants indicates that computational algorithms can guide the manipulation of the soil microbiome in situ and provides an additional step toward the educated design of biostimulation strategies. IMPORTANCE Providing the food requirements of a growing population comes at the cost of intensive use of agrochemicals, including pesticides. Native microbial soil communities are considered key players in the degradation of such exogenous substances. Manipulating microbial activity toward an optimized outcome in efficient biodegradation processes conveys a promise of maintaining intensive yet sustainable agriculture. Efficient strategies for harnessing the native microbiome require the development of approaches for processing big genomic data. Here, we pursued metabolic modeling for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Our genomic-based predictions point at strategies for optimizing biodegradation by the native community. Developing a systematic, data-guided understanding of metabolite-driven targeted enhancement of selected microorganisms lays the foundation for the design of ecologically sound methods for optimizing microbiome functioning.
Collapse
|
109
|
Eriksson O, Bhalla US, Blackwell KT, Crook SM, Keller D, Kramer A, Linne ML, Saudargienė A, Wade RC, Hellgren Kotaleski J. Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows. eLife 2022; 11:e69013. [PMID: 35792600 PMCID: PMC9259018 DOI: 10.7554/elife.69013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Modeling in neuroscience occurs at the intersection of different points of view and approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model is constructed to investigate a specific hypothesis about how the system works or why certain phenomena are observed. Data-driven modeling, on the other hand, follows a more unbiased approach, with model construction informed by the computationally intensive use of data. At the same time, researchers employ models at different biological scales and at different levels of abstraction. Combining these models while validating them against experimental data increases understanding of the multiscale brain. However, a lack of interoperability, transparency, and reusability of both models and the workflows used to construct them creates barriers for the integration of models representing different biological scales and built using different modeling philosophies. We argue that the same imperatives that drive resources and policy for data - such as the FAIR (Findable, Accessible, Interoperable, Reusable) principles - also support the integration of different modeling approaches. The FAIR principles require that data be shared in formats that are Findable, Accessible, Interoperable, and Reusable. Applying these principles to models and modeling workflows, as well as the data used to constrain and validate them, would allow researchers to find, reuse, question, validate, and extend published models, regardless of whether they are implemented phenomenologically or mechanistically, as a few equations or as a multiscale, hierarchical system. To illustrate these ideas, we use a classical synaptic plasticity model, the Bienenstock-Cooper-Munro rule, as an example due to its long history, different levels of abstraction, and implementation at many scales.
Collapse
Affiliation(s)
- Olivia Eriksson
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Upinder Singh Bhalla
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Kim T Blackwell
- Department of Bioengineering, Volgenau School of Engineering, George Mason UniversityFairfaxUnited States
| | - Sharon M Crook
- School of Mathematical and Statistical Sciences, Arizona State UniversityTempeUnited States
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Andrei Kramer
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Ausra Saudargienė
- Neuroscience Institute, Lithuanian University of Health SciencesKaunasLithuania
- Department of Informatics, Vytautas Magnus UniversityKaunasLithuania
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
- Center for Molecular Biology (ZMBH), ZMBH-DKFZ Alliance, University of HeidelbergHeidelbergGermany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg UniversityHeidelbergGermany
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| |
Collapse
|
110
|
Calhoun S, Kamel B, Bell TA, Kruse CP, Riley R, Singan V, Kunde Y, Gleasner CD, Chovatia M, Sandor L, Daum C, Treen D, Bowen BP, Louie KB, Northen TR, Starkenburg SR, Grigoriev IV. Multi-omics profiling of the cold tolerant Monoraphidium minutum 26B-AM in response to abiotic stress. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
111
|
Yang B, Misirli G, Wipat A, Hallinan J. Modelling the fitness landscapes of a SCRaMbLEd yeast genome. Biosystems 2022; 219:104730. [PMID: 35772570 DOI: 10.1016/j.biosystems.2022.104730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 01/04/2023]
Abstract
The use of microorganisms for the production of industrially important compounds and enzymes is becoming increasingly important. Eukaryotes have been less widely used than prokaryotes in biotechnology, because of the complexity of their genomic structure and biology. The Yeast2.0 project is an international effort to engineer the yeast Saccharomyces cerevisiae to make it easy to manipulate, and to generate random variants using a system called SCRaMbLE. SCRaMbLE relies on artificial evolution in vitro to identify useful variants, an approach which is time consuming and expensive. We developed an in silico simulator for the SCRaMbLE system, using an evolutionary computing approach, which can be used to investigate and optimize the fitness landscape of the system. We applied the system to the investigation of the fitness landscape of one of the S. saccharomyces chromosomes, and found that our results fitted well with those previously published. We then simulated directed evolution with or without manipulation of SCRaMbLE, and revealed that controlling the SCRaMbLE process could effectively impact directed evolution. Our simulator can be applied to the analysis of the fitness landscapes of any organism for which SCRaMbLE has been implemented.
Collapse
Affiliation(s)
- Bill Yang
- ICOS School of Computing Newcastle University 1, Urban Sciences Building Science Square, Newcastle Upon Tyne, UK
| | - Goksel Misirli
- School of Computing and Mathematics Keele University, UK
| | - Anil Wipat
- ICOS School of Computing Newcastle University 1, Urban Sciences Building Science Square, Newcastle Upon Tyne, UK
| | | |
Collapse
|
112
|
Capela J, Lagoa D, Rodrigues R, Cunha E, Cruz F, Barbosa A, Bastos J, Lima D, Ferreira EC, Rocha M, Dias O. merlin, an improved framework for the reconstruction of high-quality genome-scale metabolic models. Nucleic Acids Res 2022; 50:6052-6066. [PMID: 35694833 PMCID: PMC9226533 DOI: 10.1093/nar/gkac459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/10/2022] [Indexed: 01/18/2023] Open
Abstract
Genome-scale metabolic models have been recognised as useful tools for better understanding living organisms' metabolism. merlin (https://www.merlin-sysbio.org/) is an open-source and user-friendly resource that hastens the models' reconstruction process, conjugating manual and automatic procedures, while leveraging the user's expertise with a curation-oriented graphical interface. An updated and redesigned version of merlin is herein presented. Since 2015, several features have been implemented in merlin, along with deep changes in the software architecture, operational flow, and graphical interface. The current version (4.0) includes the implementation of novel algorithms and third-party tools for genome functional annotation, draft assembly, model refinement, and curation. Such updates increased the user base, resulting in multiple published works, including genome metabolic (re-)annotations and model reconstructions of multiple (lower and higher) eukaryotes and prokaryotes. merlin version 4.0 is the only tool able to perform template based and de novo draft reconstructions, while achieving competitive performance compared to state-of-the art tools both for well and less-studied organisms.
Collapse
Affiliation(s)
- João Capela
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Davide Lagoa
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Ruben Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel Cunha
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Cruz
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Barbosa
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - José Bastos
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Diogo Lima
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Eugénio C Ferreira
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Oscar Dias
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
113
|
Erdem C, Mutsuddy A, Bensman EM, Dodd WB, Saint-Antoine MM, Bouhaddou M, Blake RC, Gross SM, Heiser LM, Feltus FA, Birtwistle MR. A scalable, open-source implementation of a large-scale mechanistic model for single cell proliferation and death signaling. Nat Commun 2022; 13:3555. [PMID: 35729113 PMCID: PMC9213456 DOI: 10.1038/s41467-022-31138-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Mechanistic models of how single cells respond to different perturbations can help integrate disparate big data sets or predict response to varied drug combinations. However, the construction and simulation of such models have proved challenging. Here, we developed a python-based model creation and simulation pipeline that converts a few structured text files into an SBML standard and is high-performance- and cloud-computing ready. We applied this pipeline to our large-scale, mechanistic pan-cancer signaling model (named SPARCED) and demonstrate it by adding an IFNγ pathway submodel. We then investigated whether a putative crosstalk mechanism could be consistent with experimental observations from the LINCS MCF10A Data Cube that IFNγ acts as an anti-proliferative factor. The analyses suggested this observation can be explained by IFNγ-induced SOCS1 sequestering activated EGF receptors. This work forms a foundational recipe for increased mechanistic model-based data integration on a single-cell level, an important building block for clinically-predictive mechanistic models.
Collapse
Affiliation(s)
- Cemal Erdem
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| | - Arnab Mutsuddy
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Ethan M Bensman
- Computer Science, School of Computing, Clemson University, Clemson, SC, USA
| | - William B Dodd
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Michael M Saint-Antoine
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Robert C Blake
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sean M Gross
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - F Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC, USA.
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
114
|
Hephzibah Cathryn R, Udhaya Kumar S, Younes S, Zayed H, George Priya Doss C. A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:85-164. [PMID: 35871897 DOI: 10.1016/bs.apcsb.2022.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Over the past decade, conventional lab work strategies have gradually shifted from being limited to a laboratory setting towards a bioinformatics era to help manage and process the vast amounts of data generated by omics technologies. The present work outlines the latest contributions of bioinformatics in analyzing microarray data and their application to cancer. We dissect different microarray platforms and their use in gene expression in cancer models. We highlight how computational advances empowered the microarray technology in gene expression analysis. The study on protein-protein interaction databases classified into primary, derived, meta-database, and prediction databases describes the strategies to curate and predict novel interaction networks in silico. In addition, we summarize the areas of bioinformatics where neural graph networks are currently being used, such as protein functions, protein interaction prediction, and in silico drug discovery and development. We also discuss the role of deep learning as a potential tool in the prognosis, diagnosis, and treatment of cancer. Integrating these resources efficiently, practically, and ethically is likely to be the most challenging task for the healthcare industry over the next decade; however, we believe that it is achievable in the long term.
Collapse
Affiliation(s)
- R Hephzibah Cathryn
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
115
|
Mobeen A, Puniya BL, Ramachandran S. A computational approach to investigate constitutive activation of
NF‐κB. Proteins 2022; 90:1944-1964. [DOI: 10.1002/prot.26388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ahmed Mobeen
- CSIR – Institute of Genomics & Integrative Biology, Sukhdev Vihar New Delhi India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Bhanwar Lal Puniya
- Department of Biochemistry University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Srinivasan Ramachandran
- CSIR – Institute of Genomics & Integrative Biology, Sukhdev Vihar New Delhi India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
116
|
Benito-Vaquerizo S, Parera Olm I, de Vroet T, Schaap PJ, Sousa DZ, Martins Dos Santos VAP, Suarez-Diez M. Genome-scale metabolic modelling enables deciphering ethanol metabolism via the acrylate pathway in the propionate-producer Anaerotignum neopropionicum. Microb Cell Fact 2022; 21:116. [PMID: 35710409 PMCID: PMC9205015 DOI: 10.1186/s12934-022-01841-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microbial production of propionate from diluted streams of ethanol (e.g., deriving from syngas fermentation) is a sustainable alternative to the petrochemical production route. Yet, few ethanol-fermenting propionigenic bacteria are known, and understanding of their metabolism is limited. Anaerotignum neopropionicum is a propionate-producing bacterium that uses the acrylate pathway to ferment ethanol and CO2 to propionate and acetate. In this work, we used computational and experimental methods to study the metabolism of A. neopropionicum and, in particular, the pathway for conversion of ethanol into propionate. RESULTS Our work describes iANEO_SB607, the first genome-scale metabolic model (GEM) of A. neopropionicum. The model was built combining the use of automatic tools with an extensive manual curation process, and it was validated with experimental data from this and published studies. The model predicted growth of A. neopropionicum on ethanol, lactate, sugars and amino acids, matching observed phenotypes. In addition, the model was used to implement a dynamic flux balance analysis (dFBA) approach that accurately predicted the fermentation profile of A. neopropionicum during batch growth on ethanol. A systematic analysis of the metabolism of A. neopropionicum combined with model simulations shed light into the mechanism of ethanol fermentation via the acrylate pathway, and revealed the presence of the electron-transferring complexes NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn) and acryloyl-CoA reductase-EtfAB, identified for the first time in this bacterium. CONCLUSIONS The realisation of the GEM iANEO_SB607 is a stepping stone towards the understanding of the metabolism of the propionate-producer A. neopropionicum. With it, we have gained insight into the functioning of the acrylate pathway and energetic aspects of the cell, with focus on the fermentation of ethanol. Overall, this study provides a basis to further exploit the potential of propionigenic bacteria as microbial cell factories.
Collapse
Affiliation(s)
- Sara Benito-Vaquerizo
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Thijs de Vroet
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Vening Meinesz building C, Princetonlaan 6, Utrecht, 3584 CB, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,Bioprocess Engineering, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, Wageningen, 6708WE, The Netherlands.
| |
Collapse
|
117
|
Shi Z, Liu P, Liao X, Mao Z, Zhang J, Wang Q, Sun J, Ma H, Ma Y. Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing. BIODESIGN RESEARCH 2022; 2022:9898461. [PMID: 37850146 PMCID: PMC10521697 DOI: 10.34133/2022/9898461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2022] [Indexed: 10/19/2023] Open
Abstract
Revolutionary breakthroughs in artificial intelligence (AI) and machine learning (ML) have had a profound impact on a wide range of scientific disciplines, including the development of artificial cell factories for biomanufacturing. In this paper, we review the latest studies on the application of data-driven methods for the design of new proteins, pathways, and strains. We first briefly introduce the various types of data and databases relevant to industrial biomanufacturing, which are the basis for data-driven research. Different types of algorithms, including traditional ML and more recent deep learning methods, are also presented. We then demonstrate how these data-based approaches can be applied to address various issues in cell factory development using examples from recent studies, including the prediction of protein function, improvement of metabolic models, and estimation of missing kinetic parameters, design of non-natural biosynthesis pathways, and pathway optimization. In the last section, we discuss the current limitations of these data-driven approaches and propose that data-driven methods should be integrated with mechanistic models to complement each other and facilitate the development of synthetic strains for industrial biomanufacturing.
Collapse
Affiliation(s)
- Zhenkun Shi
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Pi Liu
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Xiaoping Liao
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Zhitao Mao
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Jianqi Zhang
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Hongwu Ma
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308China
| |
Collapse
|
118
|
Vignet P, Coquet J, Auber S, Boudet M, Siegel A, Théret N. Discrete modeling for integration and analysis of large-scale signaling networks. PLoS Comput Biol 2022; 18:e1010175. [PMID: 35696426 PMCID: PMC9232147 DOI: 10.1371/journal.pcbi.1010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/24/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Most biological processes are orchestrated by large-scale molecular networks which are described in large-scale model repositories and whose dynamics are extremely complex. An observed phenotype is a state of this system that results from control mechanisms whose identification is key to its understanding. The Biological Pathway Exchange (BioPAX) format is widely used to standardize the biological information relative to regulatory processes. However, few modeling approaches developed so far enable for computing the events that control a phenotype in large-scale networks. Here we developed an integrated approach to build large-scale dynamic networks from BioPAX knowledge databases in order to analyse trajectories and to identify sets of biological entities that control a phenotype. The Cadbiom approach relies on the guarded transitions formalism, a discrete modeling approach which models a system dynamics by taking into account competition and cooperation events in chains of reactions. The method can be applied to every BioPAX (large-scale) model thanks to a specific package which automatically generates Cadbiom models from BioPAX files. The Cadbiom framework was applied to the BioPAX version of two resources (PID, KEGG) of the Pathway Commons database and to the Atlas of Cancer Signalling Network (ACSN). As a case-study, it was used to characterize sets of biological entities implicated in the epithelial-mesenchymal transition. Our results highlight the similarities between the PID and ACSN resources in terms of biological content, and underline the heterogeneity of usage of the BioPAX semantics limiting the fusion of models that require curation. Causality analyses demonstrate the smart complementarity of the databases in terms of combinatorics of controllers that explain a phenotype. From a biological perspective, our results show the specificity of controllers for epithelial and mesenchymal phenotypes that are consistent with the literature and identify a novel signature for intermediate states. The computation of sets of biological entities implicated in phenotypes is hampered by the complex nature of controllers acting in competitive or cooperative combinations. These biological mechanisms are underlied by chains of reactions involving interactions between biomolecules (DNA, RNA, proteins, lipids, complexes, etc.), all of which form complex networks. Hence, the identification of controllers relies on computational methods for dynamical systems, which require the biological information about the interactions to be translated into a formal language. The BioPAX standard is a reference ontology associated with a description language to describe biological mechanisms, which satisfies the Linked Open Data initiative recommendations for data interoperability. Although it has been widely adopted by the community to describe biological pathways, no computational method is able of studying the dynamics of the networks described in the BioPAX large-scale resources. To solve this issue, our Cadbiom framework was designed to automatically transcribe the biological systems knowledge of large-scale BioPAX networks into discrete models. The framework then identifies the trajectories that explain a biological phenotype (e.g., all the biomolecules that are activated to induce the expression of a gene). Here, we created Cadbiom models from three biological pathway databases (KEGG, PID and ACSN). The comparative analysis of these models highlighted the diversity of molecules in sets of biological entities that can explain a same phenotype. The application of our framework to the search of biomolecules regulating the epithelial-mesenchymal transition not only confirmed known pathways in the control of epithelial or mesenchymal cell markers but also highlighted new pathways for transient states.
Collapse
Affiliation(s)
- Pierre Vignet
- Univ Rennes, Inserm, EHESP, Irset, UMR S1085, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France
| | - Jean Coquet
- Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France
| | - Sébastien Auber
- Univ Rennes, Inserm, EHESP, Irset, UMR S1085, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France
| | - Matéo Boudet
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, Le Rheu, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France
- * E-mail: (AS); (NT)
| | - Nathalie Théret
- Univ Rennes, Inserm, EHESP, Irset, UMR S1085, Rennes, France
- * E-mail: (AS); (NT)
| |
Collapse
|
119
|
Verma A, Manchel A, Melunis J, Hengstler JG, Vadigepalli R. From Seeing to Simulating: A Survey of Imaging Techniques and Spatially-Resolved Data for Developing Multiscale Computational Models of Liver Regeneration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:917191. [PMID: 37575468 PMCID: PMC10421626 DOI: 10.3389/fsysb.2022.917191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Liver regeneration, which leads to the re-establishment of organ mass, follows a specifically organized set of biological processes acting on various time and length scales. Computational models of liver regeneration largely focused on incorporating molecular and signaling detail have been developed by multiple research groups in the recent years. These modeling efforts have supported a synthesis of disparate experimental results at the molecular scale. Incorporation of tissue and organ scale data using noninvasive imaging methods can extend these computational models towards a comprehensive accounting of multiscale dynamics of liver regeneration. For instance, microscopy-based imaging methods provide detailed histological information at the tissue and cellular scales. Noninvasive imaging methods such as ultrasound, computed tomography and magnetic resonance imaging provide morphological and physiological features including volumetric measures over time. In this review, we discuss multiple imaging modalities capable of informing computational models of liver regeneration at the organ-, tissue- and cellular level. Additionally, we discuss available software and algorithms, which aid in the analysis and integration of imaging data into computational models. Such models can be generated or tuned for an individual patient with liver disease. Progress towards integrated multiscale models of liver regeneration can aid in prognostic tool development for treating liver disease.
Collapse
Affiliation(s)
- Aalap Verma
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Manchel
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Justin Melunis
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jan G. Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
120
|
Shahidi N, Pan M, Tran K, Crampin EJ, Nickerson DP. A semantics, energy-based approach to automate biomodel composition. PLoS One 2022; 17:e0269497. [PMID: 35657966 PMCID: PMC9165793 DOI: 10.1371/journal.pone.0269497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
Hierarchical modelling is essential to achieving complex, large-scale models. However, not all modelling schemes support hierarchical composition, and correctly mapping points of connection between models requires comprehensive knowledge of each model's components and assumptions. To address these challenges in integrating biosimulation models, we propose an approach to automatically and confidently compose biosimulation models. The approach uses bond graphs to combine aspects of physical and thermodynamics-based modelling with biological semantics. We improved on existing approaches by using semantic annotations to automate the recognition of common components. The approach is illustrated by coupling a model of the Ras-MAPK cascade to a model of the upstream activation of EGFR. Through this methodology, we aim to assist researchers and modellers in readily having access to more comprehensive biological systems models.
Collapse
Affiliation(s)
- Niloofar Shahidi
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Michael Pan
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Victoria, Australia
| | - Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Edmund J. Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David P. Nickerson
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
121
|
Panagiotou S, Sidiropoulos H, Soudris D, Negrello M, Strydis C. EDEN: A High-Performance, General-Purpose, NeuroML-Based Neural Simulator. Front Neuroinform 2022; 16:724336. [PMID: 35669596 PMCID: PMC9167055 DOI: 10.3389/fninf.2022.724336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Modern neuroscience employs in silico experimentation on ever-increasing and more detailed neural networks. The high modeling detail goes hand in hand with the need for high model reproducibility, reusability and transparency. Besides, the size of the models and the long timescales under study mandate the use of a simulation system with high computational performance, so as to provide an acceptable time to result. In this work, we present EDEN (Extensible Dynamics Engine for Networks), a new general-purpose, NeuroML-based neural simulator that achieves both high model flexibility and high computational performance, through an innovative model-analysis and code-generation technique. The simulator runs NeuroML-v2 models directly, eliminating the need for users to learn yet another simulator-specific, model-specification language. EDEN's functional correctness and computational performance were assessed through NeuroML models available on the NeuroML-DB and Open Source Brain model repositories. In qualitative experiments, the results produced by EDEN were verified against the established NEURON simulator, for a wide range of models. At the same time, computational-performance benchmarks reveal that EDEN runs from one to nearly two orders-of-magnitude faster than NEURON on a typical desktop computer, and does so without additional effort from the user. Finally, and without added user effort, EDEN has been built from scratch to scale seamlessly over multiple CPUs and across computer clusters, when available.
Collapse
Affiliation(s)
- Sotirios Panagiotou
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Harry Sidiropoulos
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dimitrios Soudris
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Mario Negrello
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christos Strydis
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Quantum and Computer Engineering Department, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
122
|
Buecherl L, Myers CJ. Engineering genetic circuits: advancements in genetic design automation tools and standards for synthetic biology. Curr Opin Microbiol 2022; 68:102155. [PMID: 35588683 DOI: 10.1016/j.mib.2022.102155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/23/2023]
Abstract
Synthetic biology (SynBio) is a field at the intersection of biology and engineering. Inspired by engineering principles, researchers use defined parts to build functionally defined biological circuits. Genetic design automation (GDA) allows scientists to design, model, and analyze their genetic circuits in silico before building them in the lab, saving time, and resources in the process. Establishing SynBio's future is dependent on GDA, since the computational approach opens the field to a broad, interdisciplinary community. However, challenges with part libraries, standards, and software tools are currently stalling progress in the field. This review first covers recent advancements in GDA, followed by an assessment of the challenges ahead, and a proposed automated genetic design workflow for the future.
Collapse
Affiliation(s)
- Lukas Buecherl
- Biomedical Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, Boulder, 80309 CO, United States
| | - Chris J Myers
- Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, 425 UCB, Boulder, 80309 CO, United States.
| |
Collapse
|
123
|
Pérez-Guaita D, Quintás G, Farhane Z, Tauler R, Byrne HJ. Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints. Cells 2022; 11:1555. [PMID: 35563861 PMCID: PMC9099467 DOI: 10.3390/cells11091555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Raman microspectroscopy is a label-free technique which is very suited for the investigation of pharmacokinetics of cellular uptake, mechanisms of interaction, and efficacies of drugs in vitro. However, the complexity of the spectra makes the identification of spectral patterns associated with the drug and subsequent cellular responses difficult. Indeed, multivariate methods that relate spectral features to the inoculation time do not normally take into account the kinetics involved, and important theoretical information which could assist in the elucidation of the relevant spectral signatures is excluded. Here, we propose the integration of kinetic equations in the modelling of drug uptake and subsequent cellular responses using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and tailored kinetic constraints, based on a system of ordinary differential equations. Advantages of and challenges to the methodology were evaluated using simulated Raman spectral data sets and real Raman spectra acquired from A549 and Calu-1 human lung cells inoculated with doxorubicin, in vitro. The results suggest a dependency of the outcome on the system of equations used, and the importance of the temporal resolution of the data set to enable the use of complex equations. Nevertheless, the use of tailored kinetic constraints during MCR-ALS allowed a more comprehensive modelling of the system, enabling the elucidation of not only the time-dependent concentration profiles and spectral features of the drug binding and cellular responses, but also an accurate computation of the kinetic constants.
Collapse
Affiliation(s)
- David Pérez-Guaita
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
- Department of Anaytical Chemistry, University of Valencia, 46100 Valencia, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Centre, 08028 Barcelona, Spain;
| | - Zeineb Farhane
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| | - Romá Tauler
- Institute of Environmental Assessment and Water Research (IDAEA)—Higher Council for Scientific Research (CSIC), 08043 Barcelona, Spain;
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, D08 CKP1 Dublin, Ireland;
| |
Collapse
|
124
|
Lüders C, Sturm T, Radulescu O. ODEbase: a repository of ODE systems for systems biology. BIOINFORMATICS ADVANCES 2022; 2:vbac027. [PMID: 36699350 PMCID: PMC9710575 DOI: 10.1093/bioadv/vbac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 01/28/2023]
Abstract
Summary Recently, symbolic computation and computer algebra systems have been successfully applied in systems biology, especially in chemical reaction network theory. One advantage of symbolic computation is its potential for qualitative answers to biological questions. Qualitative methods analyze dynamical input systems as formal objects, in contrast to investigating only part of the state space, as is the case with numerical simulation. However, corresponding tools and libraries have a different set of requirements for their input data than their numerical counterparts. A common format used in mathematical modeling of biological processes is Systems Biology Markup Language (SBML). We illustrate that the use of SBML data in symbolic computation requires significant pre-processing, incorporating external biological and mathematical expertise. ODEbase provides suitable input data derived from established existing biomodels, covering in particular the BioModels database. Availability and implementation ODEbase is available free of charge at https://odebase.org.
Collapse
Affiliation(s)
- Christoph Lüders
- Institute of Mathematics, University of Kassel, 34132 Kassel, Germany,To whom correspondence should be addressed.
| | - Thomas Sturm
- CNRS, Inria and the University of Lorraine, 54506 Nancy, France,MPI Informatics and Saarland University, 66123 Saarbrücken, Germany
| | - Ovidiu Radulescu
- Laboratory of Pathogen Host Interactions UMR 5235, University of Montpellier and CNRS, 34095 Montpellier, France
| |
Collapse
|
125
|
Dynamic publication media with the COPASI R Connector (CoRC). Math Biosci 2022; 348:108822. [PMID: 35452633 DOI: 10.1016/j.mbs.2022.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
In this article we show how dynamic publication media and the COPASI R Connector (CoRC) can be combined in a natural and synergistic way to communicate (biochemical) models. Dynamic publication media are becoming a popular tool for authors to effectively compose and publish their work. They are built from templates and the final documents are created dynamically. In addition, they can also be interactive. Working with dynamic publication media is made easy with the programming environment R via its integration with tools such as R Markdown, Jupyter and Shiny. Additionally, the COmplex PAthway SImulator COPASI (http://www.copasi.org), a widely used biochemical modelling toolkit, is available in R through the use of the COPASI R Connector (CoRC, https://jpahle.github.io/CoRC). Models are a common tool in the mathematical biosciences, in particular kinetic models of biochemical networks in (computational) systems biology. We focus on three application areas of dynamic publication media and CoRC: Documentation (reproducible workflows), Teaching (creating self-paced lessons) and Science Communication (immersive and engaging presentation). To illustrate these, we created six dynamic document examples in the form of R Markdown and Jupyter notebooks, hosted on the platforms GitHub, shinyapps.io, Google Colaboratory. Having code and output in one place, creating documents in template-form and the option of interactivity make the combination of dynamic documents and CoRC a versatile tool. All our example documents are freely available at https://jpahle.github.io/DynamiCoRC under the Creative Commons BY 4.0 licence.
Collapse
|
126
|
Poole W, Pandey A, Shur A, Tuza ZA, Murray RM. BioCRNpyler: Compiling chemical reaction networks from biomolecular parts in diverse contexts. PLoS Comput Biol 2022; 18:e1009987. [PMID: 35442944 PMCID: PMC9060376 DOI: 10.1371/journal.pcbi.1009987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/02/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Biochemical interactions in systems and synthetic biology are often modeled with chemical reaction networks (CRNs). CRNs provide a principled modeling environment capable of expressing a huge range of biochemical processes. In this paper, we present a software toolbox, written in Python, that compiles high-level design specifications represented using a modular library of biochemical parts, mechanisms, and contexts to CRN implementations. This compilation process offers four advantages. First, the building of the actual CRN representation is automatic and outputs Systems Biology Markup Language (SBML) models compatible with numerous simulators. Second, a library of modular biochemical components allows for different architectures and implementations of biochemical circuits to be represented succinctly with design choices propagated throughout the underlying CRN automatically. This prevents the often occurring mismatch between high-level designs and model dynamics. Third, high-level design specification can be embedded into diverse biomolecular environments, such as cell-free extracts and in vivo milieus. Finally, our software toolbox has a parameter database, which allows users to rapidly prototype large models using very few parameters which can be customized later. By using BioCRNpyler, users ranging from expert modelers to novice script-writers can easily build, manage, and explore sophisticated biochemical models using diverse biochemical implementations, environments, and modeling assumptions. This paper describes a new software package BioCRNpyler (pronounced “Biocompiler”) designed to support rapid development and exploration of mathematical models of biochemical networks and circuits by computational biologists, systems biologists, and synthetic biologists. BioCRNpyler allows its users to generate large complex models using very few lines of code in a way that is modular. To do this, BioCRNpyler uses a powerful new representation of biochemical circuits which defines their parts, underlying biochemical mechanisms, and chemical context independently. BioCRNpyler was developed as a Python scripting language designed to be accessible to beginning users as well as easily extendable and customizable for advanced users. Ultimately, we see Biocrnpyler being used to accelerate computer automated design of biochemical circuits and model driven hypothesis generation in biology.
Collapse
Affiliation(s)
- William Poole
- Computation and Neural Systems, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| | - Ayush Pandey
- Control and Dynamical Systems, California Institute of Technology, Pasadena, California, United States of America
| | - Andrey Shur
- Bioengineering, California Institute of Technology, Pasadena, California, United States of America
| | - Zoltan A. Tuza
- Bioengineering, Imperial College London, London, England
| | - Richard M. Murray
- Control and Dynamical Systems, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
127
|
Liu F, Heiner M, Gilbert D. Hybrid modelling of biological systems: current progress and future prospects. Brief Bioinform 2022; 23:6555400. [PMID: 35352101 PMCID: PMC9116374 DOI: 10.1093/bib/bbac081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Integrated modelling of biological systems is becoming a necessity for constructing models containing the major biochemical processes of such systems in order to obtain a holistic understanding of their dynamics and to elucidate emergent behaviours. Hybrid modelling methods are crucial to achieve integrated modelling of biological systems. This paper reviews currently popular hybrid modelling methods, developed for systems biology, mainly revealing why they are proposed, how they are formed from single modelling formalisms and how to simulate them. By doing this, we identify future research requirements regarding hybrid approaches for further promoting integrated modelling of biological systems.
Collapse
Affiliation(s)
- Fei Liu
- School of Software Engineering, South China University of Technology, Guangzhou 510006, P.R. China
- Corresponding author: Fei Liu, School of Software Engineering, South China University of Technology, Guangzhou 510006, P.R. China. E-mail:
| | - Monika Heiner
- Department of Computer Science, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus 03046, Germany
| | - David Gilbert
- Department of Computer Science, Brunel University London, Middlesex UB8 3PH, UK
| |
Collapse
|
128
|
Sinitsyn D, Garcia-Reyero N, Watanabe KH. From Qualitative to Quantitative AOP: A Case Study of Neurodegeneration. FRONTIERS IN TOXICOLOGY 2022; 4:838729. [PMID: 35434701 PMCID: PMC9006165 DOI: 10.3389/ftox.2022.838729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Adverse outcome pathways (AOPs) include a sequence of events that connect a molecular-level initiating event with an adverse outcome at the cellular level for human health endpoints, or at the population level for ecological endpoints. When there is enough quantitative understanding of the relationships between key events in an AOP, a mathematical model may be developed to connect key events in a quantitative AOP (qAOP). Ideally, a qAOP will reduce the time and resources spent for chemical toxicity testing and risk assessment and enable the extrapolation of data collected at the molecular-level by in vitro assays, for example, to predict whether an adverse outcome may occur. Here, we review AOPs in the AOPWiki, an AOP repository, to determine best practices that would facilitate conversion from AOP to qAOP. Then, focusing on a particular case study, acetylcholinesterase inhibition leading to neurodegeneration, we describe specific methods and challenges. Examples of challenges include the availability and collection of quantitative data amenable to model development, the lack of studies that measure multiple key events, and model accessibility or transferability across platforms. We conclude with recommendations for improving key event and key event relationship descriptions in the AOPWiki that facilitate the transition of qualitative AOPs to qAOPs.
Collapse
Affiliation(s)
- Dennis Sinitsyn
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, AZ, United States
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, United States
| | - Natàlia Garcia-Reyero
- US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, United States
| | - Karen H. Watanabe
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, AZ, United States
- *Correspondence: Karen H. Watanabe,
| |
Collapse
|
129
|
Discrete Logic Modeling of Cell Signaling Pathways. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2488:159-181. [PMID: 35347689 DOI: 10.1007/978-1-0716-2277-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell signaling pathways often crosstalk generating complex biological behaviors observed in different cellular contexts. Frequently, laboratory experiments focus on a few putative regulators, alone unable to predict the molecular mechanisms behind the observed phenotypes. Here, systems biology complements these approaches by giving a holistic picture to complex signaling crosstalk. In particular, Boolean network models are a meaningful tool to study large network behaviors and can cope with incomplete kinetic information. By introducing a model describing pathways involved in hematopoietic stem cell maintenance, we present a general approach on how to model cell signaling pathways with Boolean network models.
Collapse
|
130
|
Network Reconstruction and Modelling Made Reproducible with moped. Metabolites 2022; 12:metabo12040275. [PMID: 35448462 PMCID: PMC9032245 DOI: 10.3390/metabo12040275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
Mathematical modeling of metabolic networks is a powerful approach to investigate the underlying principles of metabolism and growth. Such approaches include, among others, differential-equation-based modeling of metabolic systems, constraint-based modeling and metabolic network expansion of metabolic networks. Most of these methods are well established and are implemented in numerous software packages, but these are scattered between different programming languages, packages and syntaxes. This complicates establishing straight forward pipelines integrating model construction and simulation. We present a Python package moped that serves as an integrative hub for reproducible construction, modification, curation and analysis of metabolic models. moped supports draft reconstruction of models directly from genome/proteome sequences and pathway/genome databases utilizing GPR annotations, providing a completely reproducible model construction and curation process within executable Python scripts. Alternatively, existing models published in SBML format can be easily imported. Models are represented as Python objects, for which a wide spectrum of easy-to-use modification and analysis methods exist. The model structure can be manually altered by adding, removing or modifying reactions, and gap-filling reactions can be found and inspected. This greatly supports the development of draft models, as well as the curation and testing of models. Moreover, moped provides several analysis methods, in particular including the calculation of biosynthetic capacities using metabolic network expansion. The integration with other Python-based tools is facilitated through various model export options. For example, a model can be directly converted into a CobraPy object for constraint-based analyses. moped is a fully documented and expandable Python package. We demonstrate the capability to serve as a hub for integrating reproducible model construction and curation, database import, metabolic network expansion and export for constraint-based analyses.
Collapse
|
131
|
Manna S, Ruano CSM, Hegenbarth JC, Vaiman D, Gupta S, McCarthy FP, Méhats C, McCarthy C, Apicella C, Scheel J. Computational Models on Pathological Redox Signalling Driven by Pregnancy: A Review. Antioxidants (Basel) 2022; 11:585. [PMID: 35326235 PMCID: PMC8945226 DOI: 10.3390/antiox11030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress is associated with a myriad of diseases including pregnancy pathologies with long-term cardiovascular repercussions for both the mother and baby. Aberrant redox signalling coupled with deficient antioxidant defence leads to chronic molecular impairment. Abnormal placentation has been considered the primary source for reactive species; however, placental dysfunction has been deemed secondary to maternal cardiovascular maladaptation in pregnancy. While various therapeutic interventions, aimed at combating deregulated oxidative stress during pregnancy have shown promise in experimental models, they often result as inconclusive or detrimental in clinical trials, warranting the need for further research to identify candidates. The strengths and limitations of current experimental methods in redox research are discussed. Assessment of redox status and oxidative stress in experimental models and in clinical practice remains challenging; the state-of-the-art of computational models in this field is presented in this review, comparing static and dynamic models which provide functional information such as protein-protein interactions, as well as the impact of changes in molecular species on the redox-status of the system, respectively. Enhanced knowledge of redox biology in during pregnancy through computational modelling such as generation of Systems Biology Markup Language model which integrates existing models to a larger network in the context of placenta physiology.
Collapse
Affiliation(s)
- Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland;
| | - Camino S. M. Ruano
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Jana-Charlotte Hegenbarth
- Department of Molecular Genetics, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 KH Maastricht, The Netherlands;
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Daniel Vaiman
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Rostock University, 18051 Rostock, Germany; (S.G.); (J.S.)
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, T12 YE02 Cork, Ireland;
| | - Céline Méhats
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, T12 K8AF Cork, Ireland;
| | - Clara Apicella
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Université de Paris, 75014 Paris, France; (C.S.M.R.); (D.V.); (C.M.); (C.A.)
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, Rostock University, 18051 Rostock, Germany; (S.G.); (J.S.)
| |
Collapse
|
132
|
Amara A, Frainay C, Jourdan F, Naake T, Neumann S, Novoa-del-Toro EM, Salek RM, Salzer L, Scharfenberg S, Witting M. Networks and Graphs Discovery in Metabolomics Data Analysis and Interpretation. Front Mol Biosci 2022; 9:841373. [PMID: 35350714 PMCID: PMC8957799 DOI: 10.3389/fmolb.2022.841373] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 01/19/2023] Open
Abstract
Both targeted and untargeted mass spectrometry-based metabolomics approaches are used to understand the metabolic processes taking place in various organisms, from prokaryotes, plants, fungi to animals and humans. Untargeted approaches allow to detect as many metabolites as possible at once, identify unexpected metabolic changes, and characterize novel metabolites in biological samples. However, the identification of metabolites and the biological interpretation of such large and complex datasets remain challenging. One approach to address these challenges is considering that metabolites are connected through informative relationships. Such relationships can be formalized as networks, where the nodes correspond to the metabolites or features (when there is no or only partial identification), and edges connect nodes if the corresponding metabolites are related. Several networks can be built from a single dataset (or a list of metabolites), where each network represents different relationships, such as statistical (correlated metabolites), biochemical (known or putative substrates and products of reactions), or chemical (structural similarities, ontological relations). Once these networks are built, they can subsequently be mined using algorithms from network (or graph) theory to gain insights into metabolism. For instance, we can connect metabolites based on prior knowledge on enzymatic reactions, then provide suggestions for potential metabolite identifications, or detect clusters of co-regulated metabolites. In this review, we first aim at settling a nomenclature and formalism to avoid confusion when referring to different networks used in the field of metabolomics. Then, we present the state of the art of network-based methods for mass spectrometry-based metabolomics data analysis, as well as future developments expected in this area. We cover the use of networks applications using biochemical reactions, mass spectrometry features, chemical structural similarities, and correlations between metabolites. We also describe the application of knowledge networks such as metabolic reaction networks. Finally, we discuss the possibility of combining different networks to analyze and interpret them simultaneously.
Collapse
Affiliation(s)
- Adam Amara
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Clément Frainay
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Thomas Naake
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Steffen Neumann
- Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Elva María Novoa-del-Toro
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sarah Scharfenberg
- Bioinformatics and Scientific Data, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Freising, Germany
| |
Collapse
|
133
|
Gerlin L, Cottret L, Escourrou A, Genin S, Baroukh C. A multi-organ metabolic model of tomato predicts plant responses to nutritional and genetic perturbations. PLANT PHYSIOLOGY 2022; 188:1709-1723. [PMID: 34907432 PMCID: PMC8896645 DOI: 10.1093/plphys/kiab548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Predicting and understanding plant responses to perturbations require integrating the interactions between nutritional sources, genes, cell metabolism, and physiology in the same model. This can be achieved using metabolic modeling calibrated by experimental data. In this study, we developed a multi-organ metabolic model of a tomato (Solanum lycopersicum) plant during vegetative growth, named Virtual Young TOmato Plant (VYTOP) that combines genome-scale metabolic models of leaf, stem and root and integrates experimental data acquired from metabolomics and high-throughput phenotyping of tomato plants. It is composed of 6,689 reactions and 6,326 metabolites. We validated VYTOP predictions on five independent use cases. The model correctly predicted that glutamine is the main organic nutrient of xylem sap. The model estimated quantitatively how stem photosynthetic contribution impacts exchanges between the different organs. The model was also able to predict how nitrogen limitation affects vegetative growth and the metabolic behavior of transgenic tomato lines with altered expression of core metabolic enzymes. The integration of different components, such as a metabolic model, physiological constraints, and experimental data, generates a powerful predictive tool to study plant behavior, which will be useful for several other applications, such as plant metabolic engineering or plant nutrition.
Collapse
Affiliation(s)
- Léo Gerlin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Antoine Escourrou
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Caroline Baroukh
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
134
|
Ayyadurai VS, Deonikar P, Bannuru RR. Attenuation of low-grade chronic inflammation by phytonutrients: A computational systems biology analysis. Clin Nutr ESPEN 2022; 49:425-435. [DOI: 10.1016/j.clnesp.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
135
|
Munarko Y, Sarwar DM, Rampadarath A, Atalag K, Gennari JH, Neal ML, Nickerson DP. NLIMED: Natural Language Interface for Model Entity Discovery in Biosimulation Model Repositories. Front Physiol 2022; 13:820683. [PMID: 35283794 PMCID: PMC8908213 DOI: 10.3389/fphys.2022.820683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Semantic annotation is a crucial step to assure reusability and reproducibility of biosimulation models in biology and physiology. For this purpose, the COmputational Modeling in BIology NEtwork (COMBINE) community recommends the use of the Resource Description Framework (RDF). This grounding in RDF provides the flexibility to enable searching for entities within models (e.g., variables, equations, or entire models) by utilizing the RDF query language SPARQL. However, the rigidity and complexity of the SPARQL syntax and the nature of the tree-like structure of semantic annotations, are challenging for users. Therefore, we propose NLIMED, an interface that converts natural language queries into SPARQL. We use this interface to query and discover model entities from repositories of biosimulation models. NLIMED works with the Physiome Model Repository (PMR) and the BioModels database and potentially other repositories annotated using RDF. Natural language queries are first “chunked” into phrases and annotated against ontology classes and predicates utilizing different natural language processing tools. Then, the ontology classes and predicates are composed as SPARQL and finally ranked using our SPARQL Composer and our indexing system. We demonstrate that NLIMED's approach for chunking and annotating queries is more effective than the NCBO Annotator for identifying relevant ontology classes in natural language queries.Comparison of NLIMED's behavior against historical query records in the PMR shows that it can adapt appropriately to queries associated with well-annotated models.
Collapse
Affiliation(s)
- Yuda Munarko
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- *Correspondence: Yuda Munarko
| | - Dewan M. Sarwar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Anand Rampadarath
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Koray Atalag
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - John H. Gennari
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - David P. Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
136
|
Sordo Vieira L, Laubenbacher RC. Computational models in systems biology: standards, dissemination, and best practices. Curr Opin Biotechnol 2022; 75:102702. [PMID: 35217296 DOI: 10.1016/j.copbio.2022.102702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
Mathematical and computational models are a key technology in systems biology. Progress in the field depends on the replicability and reproducibility of their properties and behavior. For this, an essential requirement is a set of clear standards for model specification and dissemination. This review covers existing standards, and it highlights the most important areas where further work is required. This includes the specification of agent-based models, an increasingly common modeling approach.
Collapse
Affiliation(s)
- Luis Sordo Vieira
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States; Department of Psychiatry, University of Florida, Gainesville, FL 32610, United States
| | - Reinhard C Laubenbacher
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
137
|
Oliver SG. From Petri Plates to Petri Nets, a revolution in yeast biology. FEMS Yeast Res 2022; 22:foac008. [PMID: 35142857 PMCID: PMC8862034 DOI: 10.1093/femsyr/foac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Stephen G Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
138
|
Uematsu S, Ohno S, Tanaka KY, Hatano A, Kokaji T, Ito Y, Kubota H, Hironaka KI, Suzuki Y, Matsumoto M, Nakayama KI, Hirayama A, Soga T, Kuroda S. Multi-omics-based label-free metabolic flux inference reveals obesity-associated dysregulatory mechanisms in liver glucose metabolism. iScience 2022; 25:103787. [PMID: 35243212 PMCID: PMC8859528 DOI: 10.1016/j.isci.2022.103787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Glucose homeostasis is maintained by modulation of metabolic flux. Enzymes and metabolites regulate the involved metabolic pathways. Dysregulation of glucose homeostasis is a pathological event in obesity. Analyzing metabolic pathways and the mechanisms contributing to obesity-associated dysregulation in vivo is challenging. Here, we introduce OMELET: Omics-Based Metabolic Flux Estimation without Labeling for Extended Trans-omic Analysis. OMELET uses metabolomic, proteomic, and transcriptomic data to identify relative changes in metabolic flux, and to calculate contributions of metabolites, enzymes, and transcripts to the changes in metabolic flux. By evaluating the livers of fasting ob/ob mice, we found that increased metabolic flux through gluconeogenesis resulted primarily from increased transcripts, whereas that through the pyruvate cycle resulted from both increased transcripts and changes in substrates of metabolic enzymes. With OMELET, we identified mechanisms underlying the obesity-associated dysregulation of metabolic flux in the liver. We developed OMELET to infer metabolic flux from label-free multi-omic data Contributions of metabolites, enzymes, and transcripts for flux were inferred Gluconeogenic flux increased in fasting ob/ob mice by increased transcripts Increased pyruvate cycle fluxes were led by increased transcripts and substrates
Collapse
Affiliation(s)
- Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Satoshi Ohno
- Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kaori Y Tanaka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Ito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.,Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.,Molecular Genetic Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
139
|
Maestri S, Merelli E, Pettini M. Agent-based models for detecting the driving forces of biomolecular interactions. Sci Rep 2022; 12:1878. [PMID: 35115584 PMCID: PMC8814177 DOI: 10.1038/s41598-021-04205-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Agent-based modelling and simulation have been effectively applied to the study of complex biological systems, especially when composed of many interacting entities. Representing biomolecules as autonomous agents allows this approach to bring out the global behaviour of biochemical processes as resulting from local molecular interactions. In this paper, we leverage the capabilities of the agent paradigm to construct an in silico replica of the glycolytic pathway; the aim is to detect the role that long-range electrodynamic forces might have on the rate of glucose oxidation. Experimental evidences have shown that random encounters and short-range potentials might not be sufficient to explain the high efficiency of biochemical reactions in living cells. However, while the latest in vitro studies are limited by present-day technology, agent-based simulations provide an in silico support to the outcomes hitherto obtained and shed light on behaviours not yet well understood. Our results grasp properties hard to uncover through other computational methods, such as the effect of electromagnetic potentials on glycolytic oscillations.
Collapse
Affiliation(s)
- Stefano Maestri
- School of Science and Technology, University of Camerino, 62032, Camerino, Italy
- Aix-Marseille Univ, Université de Toulon, CNRS, Centre de Physique Théorique, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France
| | - Emanuela Merelli
- School of Science and Technology, University of Camerino, 62032, Camerino, Italy.
| | - Marco Pettini
- Aix-Marseille Univ, Université de Toulon, CNRS, Centre de Physique Théorique, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France
| |
Collapse
|
140
|
Zamani Amirzakaria J, Marashi SA, Malboobi MA, Lohrasebi T, Forouzan E. Critical assessment of genome-scale metabolic models of Arabidopsis thaliana. Mol Omics 2022; 18:328-335. [PMID: 35081193 DOI: 10.1039/d1mo00351h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome-scale metabolic models (GEMs) have enabled researchers to perform systems-level studies of living organisms. Flux balance analysis (FBA), as a constraint-based technique, enables computation of reaction fluxes and prediction of the metabolic phenotypes of a cell under a set of specified conditions. The quality of a GEM is important for obtaining accurate predictions. In this study, we evaluated the quality of five available GEMs for Arabidopsis thaliana from various points of views. To do this, we inspected some of their important features, including the number of reactions with well-defined gene-protein-reaction rules, number of blocked reactions, mass-unbalanced reactions, prediction accuracy in the simulation of key metabolic functions and existence of erroneous energy generating cycles (EGCs). All of the models were found to include some mass-unbalanced reactions. Moreover, four out of five models were found to include EGCs. However, Aracell includes the maximum number of blocked reactions, which suggests the presence of several incomplete pathways. These results clearly show that simulation by using these models may result in erroneous predictions and all of the publicly available GEMs for A. thaliana require extensive curations before being applied in practice.
Collapse
Affiliation(s)
- Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Tahmineh Lohrasebi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Esmail Forouzan
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
141
|
Villaverde AF, Pathirana D, Fröhlich F, Hasenauer J, Banga JR. A protocol for dynamic model calibration. Brief Bioinform 2022; 23:bbab387. [PMID: 34619769 PMCID: PMC8769694 DOI: 10.1093/bib/bbab387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022] Open
Abstract
Ordinary differential equation models are nowadays widely used for the mechanistic description of biological processes and their temporal evolution. These models typically have many unknown and nonmeasurable parameters, which have to be determined by fitting the model to experimental data. In order to perform this task, known as parameter estimation or model calibration, the modeller faces challenges such as poor parameter identifiability, lack of sufficiently informative experimental data and the existence of local minima in the objective function landscape. These issues tend to worsen with larger model sizes, increasing the computational complexity and the number of unknown parameters. An incorrectly calibrated model is problematic because it may result in inaccurate predictions and misleading conclusions. For nonexpert users, there are a large number of potential pitfalls. Here, we provide a protocol that guides the user through all the steps involved in the calibration of dynamic models. We illustrate the methodology with two models and provide all the code required to reproduce the results and perform the same analysis on new models. Our protocol provides practitioners and researchers in biological modelling with a one-stop guide that is at the same time compact and sufficiently comprehensive to cover all aspects of the problem.
Collapse
Affiliation(s)
- Alejandro F Villaverde
- Universidade de Vigo, Department of Systems Engineering & Control, Vigo 36310, Galicia, Spain
| | - Dilan Pathirana
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn 53115, Germany
| | - Fabian Fröhlich
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Jan Hasenauer
- Center for Mathematics, Technische Universität München, Garching 85748, Germany
- Harvard Medical School, Cambridge, MA 02115, USA
| | - Julio R Banga
- Bioprocess Engineering Group, IIM-CSIC, Vigo 36208, Galicia, Spain
| |
Collapse
|
142
|
Yuan L, Wu C, Guo X, Yang C. ParaCopasi: A package for parallel biochemical simulation and analysis. J Comput Chem 2022; 43:144-154. [PMID: 34747038 DOI: 10.1002/jcc.26775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Biochemical simuflation and analysis play a significant role in systems biology research. Numerous software tools have been developed to serve this area. Using these tools for completing tasks, for example, stochastic simulation, parameter fitting and optimization, usually requires sufficient computational power to make the duration of completion acceptable. COPASI is one of the most powerful tools for quantitative simulation and analysis targeted at biological systems. It supports systems biology markup language and covers multiple categories of tasks. This work develops an open source package ParaCopasi for parallel COPASI tasks and investigates its performance regarding accelerations. ParaCopasi can be installed on platforms equipped with multicore CPU to exploit the cores, scaling from desktop computers to large scale high-performance computing clusters. More cores bring more performance. The results show that the parallel efficiency has a positive correlation with the total workload. The parallel efficiency reaches a level of at least 95% for both homogeneous and heterogenous tasks when computational workload is adequate. An example is illustrated by applicating this package in parameter estimation to calibrate a biochemical kinetics model.
Collapse
Affiliation(s)
- Lihuan Yuan
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Chengkun Wu
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Xiaowei Guo
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China
| | - Canqun Yang
- Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China
| |
Collapse
|
143
|
Stapor P, Schmiester L, Wierling C, Merkt S, Pathirana D, Lange BMH, Weindl D, Hasenauer J. Mini-batch optimization enables training of ODE models on large-scale datasets. Nat Commun 2022; 13:34. [PMID: 35013141 PMCID: PMC8748893 DOI: 10.1038/s41467-021-27374-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Quantitative dynamic models are widely used to study cellular signal processing. A critical step in modelling is the estimation of unknown model parameters from experimental data. As model sizes and datasets are steadily growing, established parameter optimization approaches for mechanistic models become computationally extremely challenging. Mini-batch optimization methods, as employed in deep learning, have better scaling properties. In this work, we adapt, apply, and benchmark mini-batch optimization for ordinary differential equation (ODE) models, thereby establishing a direct link between dynamic modelling and machine learning. On our main application example, a large-scale model of cancer signaling, we benchmark mini-batch optimization against established methods, achieving better optimization results and reducing computation by more than an order of magnitude. We expect that our work will serve as a first step towards mini-batch optimization tailored to ODE models and enable modelling of even larger and more complex systems than what is currently possible.
Collapse
Affiliation(s)
- Paul Stapor
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany
- Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748, Garching, Germany
| | - Leonard Schmiester
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany
- Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748, Garching, Germany
| | | | - Simon Merkt
- Universität Bonn, Faculty of Mathematics and Natural Sciences, 53115, Bonn, Germany
| | - Dilan Pathirana
- Universität Bonn, Faculty of Mathematics and Natural Sciences, 53115, Bonn, Germany
| | | | - Daniel Weindl
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany
| | - Jan Hasenauer
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany.
- Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748, Garching, Germany.
- Universität Bonn, Faculty of Mathematics and Natural Sciences, 53115, Bonn, Germany.
| |
Collapse
|
144
|
Tandon G, Yadav S, Kaur S. Pathway modeling and simulation analysis. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
145
|
Fitzpatrick R, Stefan MI. Validation Through Collaboration: Encouraging Team Efforts to Ensure Internal and External Validity of Computational Models of Biochemical Pathways. Neuroinformatics 2022; 20:277-284. [PMID: 35543917 PMCID: PMC9537119 DOI: 10.1007/s12021-022-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 01/09/2023]
Abstract
Computational modelling of biochemical reaction pathways is an increasingly important part of neuroscience research. In order to be useful, computational models need to be valid in two senses: First, they need to be consistent with experimental data and able to make testable predictions (external validity). Second, they need to be internally consistent and independently reproducible (internal validity). Here, we discuss both types of validity and provide a brief overview of tools and technologies used to ensure they are met. We also suggest the introduction of new collaborative technologies to ensure model validity: an incentivised experimental database for external validity and reproducibility audits for internal validity. Both rely on FAIR principles and on collaborative science practices.
Collapse
Affiliation(s)
- Richard Fitzpatrick
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK ,School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Melanie I. Stefan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK ,ZJU-UoE Institute, Zhejiang University, Haining, China
| |
Collapse
|
146
|
Relationship Between Dimensionality and Convergence of Optimization Algorithms: A Comparison Between Data-Driven Normalization and Scaling Factor-Based Methods Using PEPSSBI. Methods Mol Biol 2022; 2385:91-115. [PMID: 34888717 PMCID: PMC9446379 DOI: 10.1007/978-1-0716-1767-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ordinary differential equation models are used to represent intracellular signaling pathways in silico, aiding and guiding biological experiments to elucidate intracellular regulation. To construct such quantitative and predictive models of intracellular interactions, unknown parameters need to be estimated. Most of biological data are expressed in relative or arbitrary units, raising the question of how to compare model simulations with data. It has recently been shown that for models with large number of unknown parameters, fitting algorithms using a data-driven normalization of the simulations (DNS) performs best in terms of the convergence time and parameter identifiability. DNS approach compares model simulations and corresponding data both normalized by the same normalization procedure, without requiring additional parameters to be estimated, as necessary for widely used scaling factor-based methods. However, currently there is no parameter estimation software that directly supports DNS. In this chapter, we show how to apply DNS to dynamic models of systems and synthetic biology using PEPSSBI (Parameter Estimation Pipeline for Systems and Synthetic Biology). PEPSSBI is the first software that supports DNS, through algorithmically supported data normalization and objective function construction. PEPSSBI also supports model import using SBML and repeated parameter estimation runs executed in parallel either on a personal computer or a multi-CPU cluster.
Collapse
|
147
|
Fletcher AG, Osborne JM. Seven challenges in the multiscale modeling of multicellular tissues. WIREs Mech Dis 2022; 14:e1527. [PMID: 35023326 PMCID: PMC11478939 DOI: 10.1002/wsbm.1527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 03/25/2021] [Indexed: 11/11/2022]
Abstract
The growth and dynamics of multicellular tissues involve tightly regulated and coordinated morphogenetic cell behaviors, such as shape changes, movement, and division, which are governed by subcellular machinery and involve coupling through short- and long-range signals. A key challenge in the fields of developmental biology, tissue engineering and regenerative medicine is to understand how relationships between scales produce emergent tissue-scale behaviors. Recent advances in molecular biology, live-imaging and ex vivo techniques have revolutionized our ability to study these processes experimentally. To fully leverage these techniques and obtain a more comprehensive understanding of the causal relationships underlying tissue dynamics, computational modeling approaches are increasingly spanning multiple spatial and temporal scales, and are coupling cell shape, growth, mechanics, and signaling. Yet such models remain challenging: modeling at each scale requires different areas of technical skills, while integration across scales necessitates the solution to novel mathematical and computational problems. This review aims to summarize recent progress in multiscale modeling of multicellular tissues and to highlight ongoing challenges associated with the construction, implementation, interrogation, and validation of such models. This article is categorized under: Reproductive System Diseases > Computational Models Metabolic Diseases > Computational Models Cancer > Computational Models.
Collapse
Affiliation(s)
- Alexander G. Fletcher
- School of Mathematics and StatisticsUniversity of SheffieldSheffieldUK
- Bateson CentreUniversity of SheffieldSheffieldUK
| | - James M. Osborne
- School of Mathematics and StatisticsUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
148
|
A Modular Workflow for Model Building, Analysis, and Parameter Estimation in Systems Biology and Neuroscience. Neuroinformatics 2022; 20:241-259. [PMID: 34709562 PMCID: PMC9537196 DOI: 10.1007/s12021-021-09546-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 01/07/2023]
Abstract
Neuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Modeling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers use a variety of different software tools in the model building and analysis process. Here we focus on the scale of biochemical pathways, which is one of the main objects of study in systems biology. While systems biology is among the more standardized fields, conversion between different model formats and interoperability between various tools is still somewhat problematic. To offer our take on tackling these shortcomings and by keeping in mind the FAIR (findability, accessibility, interoperability, reusability) data principles, we have developed a workflow for building and analyzing biochemical pathway models, using pre-existing tools that could be utilized for the storage and refinement of models in all phases of development. We have chosen the SBtab format which allows the storage of biochemical models and associated data in a single file and provides a human readable set of syntax rules. Next, we implemented custom-made MATLAB® scripts to perform parameter estimation and global sensitivity analysis used in model refinement. Additionally, we have developed a web-based application for biochemical models that allows simulations with either a network free solver or stochastic solvers and incorporating geometry. Finally, we illustrate convertibility and use of a biochemical model in a biophysically detailed single neuron model by running multiscale simulations in NEURON. Using this workflow, we can simulate the same model in three different simulators, with a smooth conversion between the different model formats, enhancing the characterization of different aspects of the model.
Collapse
|
149
|
Singh D, Andrews SS. Python interfaces for the Smoldyn simulator. Bioinformatics 2021; 38:291-293. [PMID: 34293100 DOI: 10.1093/bioinformatics/btab530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Smoldyn is a particle-based biochemical simulator that is frequently used for systems biology and biophysics research. Previously, users could only define models using text-based input or a C/C++ application programming interface (API), which were convenient, but limited extensibility. RESULTS We added a Python API to Smoldyn to improve integration with other software tools, such as Jupyter notebooks, other Python code libraries and other simulators. It includes low-level functions that closely mimic the existing C/C++ API and higher-level functions that are more convenient to use. These latter functions follow modern object-oriented Python conventions. AVAILABILITY AND IMPLEMENTATION Smoldyn is open source and free, available at http://www.smoldyn.org and can be installed with the Python package manager pip. It runs on Mac, Windows and Linux. Documentation is available at http://www.smoldyn.org/SmoldynManual.pdf and https://smoldyn.readthedocs.io/en/latest/python/api.html.
Collapse
Affiliation(s)
- Dilawar Singh
- Subconscious Compute Pvt. Ltd., Bangalore, Karnataka 560064, India
| | - Steven S Andrews
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
150
|
Mc Auley MT. Modeling cholesterol metabolism and atherosclerosis. WIREs Mech Dis 2021; 14:e1546. [PMID: 34931487 DOI: 10.1002/wsbm.1546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality among Western populations. Many risk factors have been identified for ASCVD; however, elevated low-density lipoprotein cholesterol (LDL-C) remains the gold standard. Cholesterol metabolism at the cellular and whole-body level is maintained by an array of interacting components. These regulatory mechanisms have complex behavior. Likewise, the mechanisms which underpin atherogenesis are nontrivial and multifaceted. To help overcome the challenge of investigating these processes mathematical modeling, which is a core constituent of the systems biology paradigm has played a pivotal role in deciphering their dynamics. In so doing models have revealed new insights about the key drivers of ASCVD. The aim of this review is fourfold; to provide an overview of cholesterol metabolism and atherosclerosis, to briefly introduce mathematical approaches used in this field, to critically discuss models of cholesterol metabolism and atherosclerosis, and to highlight areas where mathematical modeling could help to investigate in the future. This article is categorized under: Cardiovascular Diseases > Computational Models.
Collapse
|