101
|
Ballester P, Navarrete-Gómez M, Carbonero P, Oñate-Sánchez L, Ferrándiz C. Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. PHYSIOLOGIA PLANTARUM 2015; 155:21-32. [PMID: 25625546 DOI: 10.1111/ppl.12327] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 05/10/2023]
Abstract
The NGATHA (NGA) clade of transcription factors (TFs) forms a small subfamily of four members in Arabidopsis thaliana. NGA genes act redundantly to direct the development of apical tissues in the gynoecium, where they have been shown to be essential for style and stigma specification. In addition, NGA genes have a more general role in controlling lateral organ growth. The four NGA genes in Arabidopsis are expressed in very similar domains, although little is known about the nature of their putative regulators. Here, we have identified a conserved region within the four NGA promoters that we have used as a bait to screen a yeast library, aiming to identify such NGA regulators. Three members of the TCP family of TFs, named after the founding factors TEOSINTE BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTOR 1 AND 2), were recovered from this screening, of which two [TCP2 and TCP3, members of the CINCINNATA (CIN) family of TCP genes (CIN-TCP) subclade] were shown to activate the NGA3 promoter in planta. We provide evidence that support that CIN-TCP genes are true regulators of NGA gene expression, and that part of the CIN-TCP role in leaf development is mediated by NGA upregulation. Moreover, we have found that this TCP-NGA regulatory interaction is likely conserved in angiosperms, including important crop species, for which the regulation of leaf development is a target for biotechnological improvement.
Collapse
Affiliation(s)
- Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Marisa Navarrete-Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, 46022, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, 46022, Spain
| |
Collapse
|
102
|
Huang T, Irish VF. Temporal Control of Plant Organ Growth by TCP Transcription Factors. Curr Biol 2015; 25:1765-70. [PMID: 26073137 DOI: 10.1016/j.cub.2015.05.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022]
Abstract
The Arabidopsis petal is a simple laminar organ whose development is largely impervious to environmental effects, making it an excellent model for dissecting the regulation of cell-cycle progression and post-mitotic cell expansion that together sculpt organ form. Arabidopsis petals grow via basipetal waves of cell division, followed by a phase of cell expansion. RABBIT EARS (RBE) encodes a C2H2 zinc finger transcriptional repressor and is required for petal development. During the early phase of petal initiation, RBE regulates a microRNA164-dependent pathway that controls cell proliferation at the petal primordium boundaries. The effects of rbe mutations on petal lamina growth suggest that RBE is also required to regulate later developmental events during petal organogenesis. Here, we demonstrate that, early in petal development, RBE represses the transcription of a suite of CIN-TCP genes that in turn act to inhibit the number and duration of cell divisions; the temporal alleviation of that repression results in the transition from cell division to post-mitotic cell expansion and concomitant petal maturation.
Collapse
Affiliation(s)
- Tengbo Huang
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8104, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520-8104, USA; Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520-8106, USA.
| |
Collapse
|
103
|
Mukhopadhyay P, Tyagi AK. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 2015; 5:9998. [PMID: 25925167 PMCID: PMC4415230 DOI: 10.1038/srep09998] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/25/2015] [Indexed: 01/22/2023] Open
Abstract
Class-I TCP transcription factors are plant-specific developmental regulators. In this study, the role of one such rice gene, OsTCP19, in water-deficit and salt stress response was explored. Besides a general upregulation by abiotic stresses, this transcript was more abundant in tolerant than sensitive rice genotypes during early hours of stress. Stress, tissue and genotype-dependent retention of a small in-frame intron in this transcript was also observed. Overexpression of OsTCP19 in Arabidopsis caused upregulation of IAA3, ABI3 and ABI4 and downregulation of LOX2, and led to developmental abnormalities like fewer lateral root formation. Moreover, decrease in water loss and reactive oxygen species, and hyperaccumulation of lipid droplets in the transgenics contributed to better stress tolerance both during seedling establishment and in mature plants. OsTCP19 was also shown to directly regulate a rice triacylglycerol biosynthesis gene in transient assays. Genes similar to those up- or downregulated in the transgenics were accordingly found to coexpress positively and negatively with OsTCP19 in Rice Oligonucleotide Array Database. Interactions of OsTCP19 with OsABI4 and OsULT1 further suggest its function in modulation of abscisic acid pathways and chromatin structure. Thus, OsTCP19 appears to be an important node in cell signaling which crosslinks stress and developmental pathways.
Collapse
Affiliation(s)
- Pradipto Mukhopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi. 110067, India
| | - Akhilesh Kumar Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi. 110067, India
| |
Collapse
|
104
|
Lopez JA, Sun Y, Blair PB, Mukhtar MS. TCP three-way handshake: linking developmental processes with plant immunity. TRENDS IN PLANT SCIENCE 2015; 20:238-45. [PMID: 25655280 DOI: 10.1016/j.tplants.2015.01.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 05/08/2023]
Abstract
The TCP gene family encodes plant-specific transcription factors involved in growth and development. Equally important are the interactions between TCP factors and other pathways extending far beyond development, as they have been found to regulate a variety of hormonal pathways and signaling cascades. Recent advances reveal that TCP factors are targets of pathogenic effectors and are likely to play a vital role in plant immunity. Our focus is on reviewing the involvement of TCP in known pathways and shedding light on other linkages in the nexus of plant immunity centered around TCP factors with an emphasis on the convergence of effectors, interconnected hormonal networks, utility of the circadian clock, and the potential mechanisms by which pathogen defense may occur.
Collapse
Affiliation(s)
- Jessica A Lopez
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Yali Sun
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | - Peter B Blair
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, AL 35294, USA.
| |
Collapse
|
105
|
Resentini F, Felipo-Benavent A, Colombo L, Blázquez MA, Alabadí D, Masiero S. TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. MOLECULAR PLANT 2015; 8:482-5. [PMID: 25655823 DOI: 10.1016/j.molp.2014.11.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 05/04/2023]
Affiliation(s)
- Francesca Resentini
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Amelia Felipo-Benavent
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Ingeniero Fausto Elio, s/n 46022 Valencia, Spain
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Ingeniero Fausto Elio, s/n 46022 Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Ingeniero Fausto Elio, s/n 46022 Valencia, Spain
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
106
|
Li S. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. PLANT SIGNALING & BEHAVIOR 2015; 10:e1044192. [PMID: 26039357 PMCID: PMC4622585 DOI: 10.1080/15592324.2015.1044192] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 05/18/2023]
Abstract
The TCP family of transcription factors is named after the first 4 characterized members, namely TEOSINTE BRANCHED1 (TB1) from maize (Zea mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), as well as PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) and PCF2 from rice (Oryza sativa). Phylogenic analysis of this plant-specific protein family unveils a conserved bHLH-containing DNA-binding motif known as the TCP domain. In accordance with the structure of this shared domain, TCP proteins are grouped into class I (TCP-P) and class II (TCP-C), which are suggested to antagonistically modulate plant growth and development via competitively binding similar cis-regulatory modules called site II elements. Over the last decades, TCPs across the plant kingdom have been demonstrated to control a plethora of plant processes. Notably, TCPs also regulate plant development and defense responses via stimulating the biosynthetic pathways of bioactive metabolites, such as brassinosteroid (BR), jasmonic acid (JA) and flavonoids. Besides, mutagenesis analysis coupled with biochemical experiments identifies several crucial amino acids located within the TCP domain, which confer the redox sensitivity of class I TCPs and determine the distinct DNA-binding properties of TCPs. In this review, developmental functions of TCPs in various biological pathways are briefly described with an emphasis on their involvement in the synthesis of bioactive substances. Furthermore, novel biochemical aspects of TCPs with respect to redox regulation and DNA-binding preferences are elaborated. In addition, the unexpected participation of TCPs in effector-triggered immunity (ETI) and defense against insects indicates that the widely recognized developmental regulators are capable of fine-tuning defense signaling and thereby enable plants to evade deleterious developmental phenotypes. Altogether, these recent impressive breakthroughs remarkably advance our understanding as to how TCPs integrate internal developmental cues with external environmental stimuli to orchestrate plant development.
Collapse
Affiliation(s)
- Shutian Li
- Department of Biology/Chemistry; Osnabrück University; Osnabrück, Germany
- Correspondence to: Shutian Li; ;
| |
Collapse
|
107
|
van Doorn WG, Kamdee C. Flower opening and closure: an update. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5749-57. [PMID: 25135521 DOI: 10.1093/jxb/eru327] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This review is an update of a 2003 review (Journal of Experimental Botany 54,1801-1812) by the same corresponding author. Many examples of flower opening have been recorded using time-lapse photography, showing its velocity and the required elongation growth. Ethylene regulates flower opening, together with at least gibberellins and auxin. Ethylene and gibberellic acid often promote and inhibit, respectively, the expression of DELLA genes and the stability of DELLA proteins. DELLA results in growth inhibition. Both hormones also inhibited and promoted, respectively, the expression of aquaporin genes required for cell elongation. Arabidopsis miRNA319a mutants exhibited narrow and short petals, whereby miRNA319a indirectly regulates auxin effects. Flower opening in roses was controlled by a NAC transcription factor, acting through miRNA164. The regulatory role of light and temperature, in interaction with the circadian clock, has been further elucidated. The end of the life span in many flowers is determined by floral closure. In some species pollination resulted in earlier closure of turgid flowers, compared with unpollinated flowers. It is hypothesized that this pollination-induced effect is only found in flowers in which closure is regulated by ethylene.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Chanattika Kamdee
- Department of Horticulture, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
108
|
Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proc Natl Acad Sci U S A 2014; 111:15267-72. [PMID: 25288754 DOI: 10.1073/pnas.1411375111] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To compete for nutrients in diverse soil microenvironments, plants proliferate lateral roots preferentially in nutrient-rich zones. For nitrate, root foraging involves local and systemic signaling; however, little is known about the genes that function in the systemic signaling pathway. By using nitrate enhancer DNA to screen a library of Arabidopsis transcription factors in the yeast one-hybrid system, the transcription factor gene TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) was identified. TCP20, which belongs to an ancient, plant-specific gene family that regulates shoot, flower, and embryo development, was implicated in nitrate signaling by its ability to bind DNA in more than 100 nitrate-regulated genes. Analysis of insertion mutants of TCP20 showed that they had normal primary and lateral root growth on homogenous nitrate media but were impaired in preferential lateral root growth (root foraging) on heterogeneous media in split-root plates. Inhibition of preferential lateral root growth was still evident in the mutants even when ammonium was uniformly present in the media, indicating that the TCP20 response was to nitrate. Comparison of tcp20 mutants with those of nlp7 mutants, which are defective in local control of root growth but not in the root-foraging response, indicated that TCP20 function is independent of and distinct from NLP7 function. Further analysis showed that tcp20 mutants lack systemic control of root growth regardless of the local nitrate concentrations. These results indicate that TCP20 plays a key role in the systemic signaling pathway that directs nitrate foraging by Arabidopsis roots.
Collapse
|
109
|
Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, de Maagd RA. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC PLANT BIOLOGY 2014; 14:157. [PMID: 24903607 PMCID: PMC4070083 DOI: 10.1186/1471-2229-14-157] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/22/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND TCP proteins are plant-specific transcription factors, which are known to have a wide range of functions in different plant species such as in leaf development, flower symmetry, shoot branching, and senescence. Only a small number of TCP genes has been characterised from tomato (Solanum lycopersicum). Here we report several functional features of the members of the entire family present in the tomato genome. RESULTS We have identified 30 Solanum lycopersicum SlTCP genes, most of which have not been described before. Phylogenetic analysis clearly distinguishes two homology classes of the SlTCP transcription factor family - class I and class II. Class II differentiates in two subclasses, the CIN-TCP subclass and the CYC/TB1 subclass, involved in leaf development and axillary shoots formation, respectively. The expression patterns of all members were determined by quantitative PCR. Several SlTCP genes, like SlTCP12, SlTCP15 and SlTCP18 are preferentially expressed in the tomato fruit, suggesting a role during fruit development or ripening. These genes are regulated by RIN (RIPENING INHIBITOR), CNR (COLORLESS NON-RIPENING) and SlAP2a (APETALA2a) proteins, which are transcription factors with key roles in ripening. With a yeast one-hybrid assay we demonstrated that RIN binds the promoter fragments of SlTCP12, SlTCP15 and SlTCP18, and that CNR binds the SlTCP18 promoter. This data strongly suggests that these class I SlTCP proteins are involved in ripening. Furthermore, we demonstrate that SlTCPs bind the promoter fragments of members of their own family, indicating that they regulate each other. Additional yeast one-hybrid studies performed with Arabidopsis transcription factors revealed binding of the promoter fragments by proteins involved in the ethylene signal transduction pathway, contributing to the idea that these SlTCP genes are involved in the ripening process. Yeast two-hybrid data shows that SlTCP proteins can form homo and heterodimers, suggesting that they act together in order to form functional protein complexes and together regulate developmental processes in tomato. CONCLUSIONS The comprehensive analysis we performed, like phylogenetic analysis, expression studies, identification of the upstream regulators and the dimerization specificity of the tomato TCP transcription factor family provides the basis for functional studies to reveal the role of this family in tomato development.
Collapse
Affiliation(s)
- Violeta Parapunova
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen-UR, PO Box 386, 6700 AJ Wageningen, the Netherlands
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, the Netherlands
| | - Marco Busscher
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, the Netherlands
| | | | - Michiel Lammers
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, the Netherlands
| | - Rumyana Karlova
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, the Netherlands
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arnaud G Bovy
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, the Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen-UR, PO Box 386, 6700 AJ Wageningen, the Netherlands
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, the Netherlands
| | - Ruud A de Maagd
- Plant Research International, P.O. Box 619, 6700 AP Wageningen, the Netherlands
| |
Collapse
|
110
|
Kim SH, Son GH, Bhattacharjee S, Kim HJ, Nam JC, Nguyen PDT, Hong JC, Gassmann W. The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:978-89. [PMID: 24689742 DOI: 10.1111/tpj.12527] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 05/20/2023]
Abstract
The plant immune system must be tightly controlled both positively and negatively to maintain normal plant growth and health. We previously identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator specifically of effector-triggered immunity. SRFR1 is localized in both a cytoplasmic microsomal compartment and in the nucleus. Its TPR domain has sequence similarity to TPR domains of transcriptional repressors in other organisms, suggesting that SRFR1 may negatively regulate effector-triggered immunity via transcriptional control. We show here that excluding SRFR1 from the nucleus prevented complementation of the srfr1 phenotype. To identify transcription factors that interact with SRFR1, we screened an Arabidopsis transcription factor prey library by yeast two-hybrid assay and isolated six class I members of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factor family. Specific interactions were verified in planta. Although single or double T-DNA mutant tcp8, tcp14 or tcp15 lines were not more susceptible to bacteria expressing AvrRps4, the triple tcp8 tcp14 tcp15 mutant displayed decreased effector-triggered immunity mediated by the resistance genes RPS2, RPS4, RPS6 and RPM1. In addition, expression of PATHOGENESIS-RELATED PROTEIN2 was attenuated in srfr1-4 tcp8-1 tcp14-5 tcp15-3 plants compared to srfr1-4 plants. To date, TCP transcription factors have been implicated mostly in developmental processes. Our data indicate that one function of a subset of TCP proteins is to regulate defense gene expression in antagonism to SRFR1, and suggest a mechanism for an intimate connection between plant development and immunity.
Collapse
Affiliation(s)
- Sang Hee Kim
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211-7310, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Espinosa-Soto C, Immink RGH, Angenent GC, Alvarez-Buylla ER, de Folter S. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network. BMC SYSTEMS BIOLOGY 2014; 8:9. [PMID: 24468197 PMCID: PMC3913338 DOI: 10.1186/1752-0509-8-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. RESULTS We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. CONCLUSIONS Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins.
Collapse
Affiliation(s)
- Carlos Espinosa-Soto
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Mexico
- Current address: Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, C.P. 78290 San Luis Potosí, Mexico
| | | | - Gerco C Angenent
- Plant Research International, 6700 AA Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Elena R Alvarez-Buylla
- Departamento de Ecología Funcional. Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, 3er Circ. Ext. Jto. Jard. Bot., CU, C.P. 04510 Mexico, D.F., Mexico
| | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km 9.6 Libramiento Norte Carretera León, C.P. 36821 Irapuato, Mexico
| |
Collapse
|