101
|
Berbers B, Vanneste K, Roosens NHCJ, Marchal K, Ceyssens PJ, De Keersmaecker SCJ. Using a combination of short- and long-read sequencing to investigate the diversity in plasmid- and chromosomally encoded extended-spectrum beta-lactamases (ESBLs) in clinical Shigella and Salmonella isolates in Belgium. Microb Genom 2023; 9:mgen000925. [PMID: 36748573 PMCID: PMC9973847 DOI: 10.1099/mgen.0.000925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/03/2022] [Indexed: 01/25/2023] Open
Abstract
For antimicrobial resistance (AMR) surveillance, it is important not only to detect AMR genes, but also to determine their plasmidic or chromosomal location, as this will impact their spread differently. Whole-genome sequencing (WGS) is increasingly used for AMR surveillance. However, determining the genetic context of AMR genes using only short-read sequencing is complicated. The combination with long-read sequencing offers a potential solution, as it allows hybrid assemblies. Nevertheless, its use in surveillance has so far been limited. This study aimed to demonstrate its added value for AMR surveillance based on a case study of extended-spectrum beta-lactamases (ESBLs). ESBL genes have been reported to occur also on plasmids. To gain insight into the diversity and genetic context of ESBL genes detected in clinical isolates received by the Belgian National Reference Center between 2013 and 2018, 100 ESBL-producing Shigella and 31 ESBL-producing Salmonella were sequenced with MiSeq and a representative selection of 20 Shigella and six Salmonella isolates additionally with MinION technology, allowing hybrid assembly. The bla CTX-M-15 gene was found to be responsible for a rapid rise in the ESBL Shigella phenotype from 2017. This gene was mostly detected on multi-resistance-carrying IncFII plasmids. Based on clustering, these plasmids were determined to be distinct from the circulating plasmids before 2017. They were spread to different Shigella species and within Shigella sonnei between multiple genotypes. Another similar IncFII plasmid was detected after 2017 containing bla CTX-M-27 for which only clonal expansion occurred. Matches of up to 99 % to plasmids of various bacterial hosts from all over the world were found, but global alignments indicated that direct or recent ESBL-plasmid transfers did not occur. It is most likely that travellers introduced these in Belgium and subsequently spread them domestically. However, a clear link to a specific country could not be made. Moreover, integration of bla CTX-M in the chromosome of two Shigella isolates was determined for the first time, and shown to be related to ISEcp1. In contrast, in Salmonella, ESBL genes were only found on plasmids, of which bla CTX-M-55 and IncHI2 were the most prevalent, respectively. No matching ESBL plasmids or cassettes were detected between clinical Shigella and Salmonella isolates. The hybrid assembly data allowed us to check the accuracy of plasmid prediction tools. MOB-suite showed the highest accuracy. However, these tools cannot replace the accuracy of long-read and hybrid assemblies. This study illustrates the added value of hybrid assemblies for AMR surveillance and shows that a strategy where even just representative isolates of a collection used for hybrid assemblies could improve international AMR surveillance as it allows plasmid tracking.
Collapse
Affiliation(s)
- Bas Berbers
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, 1050 Brussels, Belgium
| | | | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | | |
Collapse
|
102
|
da Silva Rodrigues R, Machado SG, de Carvalho AF, Nero LA. Comparative genomic and functional annotation of Pseudomonas spp. genomes responsible for blue discoloration of Brazilian fresh soft cheese. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
103
|
Apjok G, Számel M, Christodoulou C, Seregi V, Vásárhelyi BM, Stirling T, Eszenyi B, Sári T, Vidovics F, Nagrand E, Kovács D, Szili P, Lantos II, Méhi O, Jangir PK, Herczeg R, Gálik B, Urbán P, Gyenesei A, Draskovits G, Nyerges Á, Fekete G, Bodai L, Zsindely N, Dénes B, Yosef I, Qimron U, Papp B, Pál C, Kintses B. Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains. Nat Microbiol 2023; 8:410-423. [PMID: 36759752 PMCID: PMC9981461 DOI: 10.1038/s41564-023-01320-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.
Collapse
Affiliation(s)
- Gábor Apjok
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mónika Számel
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Chryso Christodoulou
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Viktória Seregi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tamás Stirling
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Bálint Eszenyi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Tóbiás Sári
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Fanni Vidovics
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erika Nagrand
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Dorina Kovács
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Petra Szili
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Ildikó Ilona Lantos
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Orsolya Méhi
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Pramod K. Jangir
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Biology, University of Szeged, Szeged, Hungary ,grid.4991.50000 0004 1936 8948Present Address: Department of Zoology, University of Oxford, Oxford, UK
| | - Róbert Herczeg
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Bence Gálik
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Péter Urbán
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- grid.9679.10000 0001 0663 9479Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, Szentágothai Research Centre, University of Pécs, Pécs, Hungary ,grid.48324.390000000122482838Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Gábor Draskovits
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ákos Nyerges
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gergely Fekete
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - László Bodai
- grid.9008.10000 0001 1016 9625Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- grid.9008.10000 0001 1016 9625Department of Genetics, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Béla Dénes
- grid.432859.10000 0004 4647 7293Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Ido Yosef
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Udi Qimron
- grid.12136.370000 0004 1937 0546Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Balázs Papp
- grid.481814.00000 0004 0479 9817Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,grid.481814.00000 0004 0479 9817Institute of Biochemistry, Biological Research Centre, National Laboratory for Health Security, Eötvös Loránd Research Network (ELKH), Szeged, Hungary ,HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary
| | - Csaba Pál
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and System Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary. .,HCEMM-BRC Translational Microbiology Research Group, Szeged, Hungary. .,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
104
|
Uddin MJ, Haque F, Jabeen I, Shuvo SR. Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Can J Microbiol 2023; 69:44-52. [PMID: 36332226 DOI: 10.1139/cjm-2022-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L-1 sodium arsenite, 400 mmol L-1 sodium arsenate, 5 mmol L-1 manganese sulfate, 3 mmol L-1 lead nitrate, 2.5 mmol L-1 cobalt chloride, 2.5 mmol L-1 cadmium acetate, and 2.5 mmol L-1 chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain.
Collapse
Affiliation(s)
- Mohammed Jafar Uddin
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Farhana Haque
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Ishrat Jabeen
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| | - Sabbir R Shuvo
- Department of Biochemistry & Microbiology, School of Health & Life Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
105
|
Sciallano C, Auguy F, Boulard G, Szurek B, Cunnac S. The Complete Genome Resource of Xanthomonas oryzae pv. oryzae CIX2779 Includes the First Sequence of a Plasmid for an African Representative of This Rice Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:73-77. [PMID: 36537805 DOI: 10.1094/mpmi-09-22-0191-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The bacterial plant pathogen Xanthomonas oryzae pv. oryzae is responsible for the foliar rice bacterial blight disease. Genetically contrasted, continent-specific, sublineages of this species can cause important damages to rice production both in Asia and Africa. We report on the genome of the CIX2779 strain of this pathogen, previously named NAI1 and originating from Niger. Oxford Nanopore long reads assembly and Illumina short reads polishing produced a genome sequence composed of a 4,725,792-bp circular chromosome and a 39,798-bp-long circular plasmid designated pCIX2779_1. The chromosome structure and base-level sequence are highly related to reference strains of African X. oryzae pv. oryzae and encode identical transcription activator-like effectors for virulence. Importantly, our in silico analysis strongly indicates that pCIX2779_1 is a genuine conjugative plasmid, the first indigenous one sequenced from an African strain of the X. oryzae species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Coline Sciallano
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Auguy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gabriel Boulard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sébastien Cunnac
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
106
|
Cao H, Bougouffa S, Park TJ, Lau A, Tong MK, Chow KH, Ho PL. Sharing of Antimicrobial Resistance Genes between Humans and Food Animals. mSystems 2022; 7:e0077522. [PMID: 36218363 PMCID: PMC9765467 DOI: 10.1128/msystems.00775-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022] Open
Abstract
The prevalence and propagation of antimicrobial resistance (AMR) are serious global public health concerns. The large and the ever-increasing use of antibiotics in livestock is also considered a great concern. The extent of the similarity of acquired antibiotic resistance genes (ARGs) between humans and food animals and the driving factors underlying AMR transfer between them are not clear, although a link between ARGs in both hosts was proposed. To address this question, with swine and chicken as examples of food animals, we analyzed over 1,000 gut metagenomes of humans and food animals from over the world. A relatively high abundance and diversity of ARGs were observed in swine compared with those in humans as a whole. Commensal bacteria, particularly species from Clostridiales, contribute the most ARGs associated with mobile genetic elements (MGEs) and were found in both humans and food animals. Further studies demonstrate that overrepresented MGEs, namely, Tn4451/Tn4453 and TnAs3, are attributed mainly to the sharing between humans and food animals. A member of large resolvase family site-specific recombinases, TnpX, is found in Tn4451/Tn4453 which facilitates the insertions of the transient circular molecule. Although the variance in the transferability of ARGs in humans is higher than that in swine, a higher average transferability was observed in swine than that in humans. In conclusion, the potential antibiotic resistance hot spots with higher transferability in food animals observed in the present study emphasize the importance of surveillance for emerging resistance threats before they spread. IMPORTANCE Antimicrobial resistance (AMR) has proven to be a global public health concern. To conquer this increasingly worrying trend, an overarching, One Health approach has been used that brings together different sectors, but the fundamental knowledge of the relationship between humans, food animals, and their environments is not mature yet or is lacking in some aspect. With swine and chicken as examples of food animals, a large global data set of over 1,000 human and food animal gut metagenomes was analyzed with a focus on acquired antibiotic resistance genes (ARGs) associated with mobile genetic elements (MGEs) to answer this question. Outputs from this work open a new avenue to further our understanding of ARG transferability in food animals. It is a necessary milestone to better equip governmental agencies to monitor and pre-empt antibiotic resistance hot spots. This work will assist and give guidance on how to decipher other links within any One Health initiatives with expected positive feedback to human health.
Collapse
Affiliation(s)
- Huiluo Cao
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Salim Bougouffa
- Computational Bioscience Research Center and Bioscience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tae-Jin Park
- HME Healthcare Co., Ltd., Suwon-si, Gyeonggi-do, Republic of Korea
| | - Andes Lau
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Man-Ki Tong
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Kin-Hung Chow
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
| | - Pak-Leung Ho
- Carol Yu Center for Infection and Department of Microbiology, University of Hong Kong, Hong Kong, People’s Republic of China
- Department of Microbiology, Queen Mary Hospital, Hong Kong, People’s Republic of China
| |
Collapse
|
107
|
Zou X, Nguyen M, Overbeek J, Cao B, Davis JJ. Classification of bacterial plasmid and chromosome derived sequences using machine learning. PLoS One 2022; 17:e0279280. [PMID: 36525447 PMCID: PMC9757591 DOI: 10.1371/journal.pone.0279280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Plasmids are important genetic elements that facilitate horizonal gene transfer between bacteria and contribute to the spread of virulence and antimicrobial resistance. Most bacterial genome sequences in the public archives exist in draft form with many contigs, making it difficult to determine if a contig is of chromosomal or plasmid origin. Using a training set of contigs comprising 10,584 chromosomes and 10,654 plasmids from the PATRIC database, we evaluated several machine learning models including random forest, logistic regression, XGBoost, and a neural network for their ability to classify chromosomal and plasmid sequences using nucleotide k-mers as features. Based on the methods tested, a neural network model that used nucleotide 6-mers as features that was trained on randomly selected chromosomal and plasmid subsequences 5kb in length achieved the best performance, outperforming existing out-of-the-box methods, with an average accuracy of 89.38% ± 2.16% over a 10-fold cross validation. The model accuracy can be improved to 92.08% by using a voting strategy when classifying holdout sequences. In both plasmids and chromosomes, subsequences encoding functions involved in horizontal gene transfer-including hypothetical proteins, transporters, phage, mobile elements, and CRISPR elements-were most likely to be misclassified by the model. This study provides a straightforward approach for identifying plasmid-encoding sequences in short read assemblies without the need for sequence alignment-based tools.
Collapse
Affiliation(s)
- Xiaohui Zou
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China
| | - Marcus Nguyen
- Data Science and Learning Division, Computing Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, United States of America
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States of America
| | - Jamie Overbeek
- Data Science and Learning Division, Computing Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, United States of America
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States of America
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing, China
- * E-mail: (JJD); (BC)
| | - James J. Davis
- Data Science and Learning Division, Computing Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, United States of America
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, United States of America
- * E-mail: (JJD); (BC)
| |
Collapse
|
108
|
Fichant A, Felten A, Gallet A, Firmesse O, Bonis M. Identification of Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety. Foods 2022; 11:foods11233924. [PMID: 36496733 PMCID: PMC9739007 DOI: 10.3390/foods11233924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally involves spraying mixtures containing spores and crystals on crops intended for human consumption. Recent studies have suggested that the consumption of commercial Bt strains may be responsible for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto (Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on 286 complete genomes of Bc group strains to identify and validate in silico new molecular markers specific to different Bt subtypes. The analyses led to the determination and the in silico validation of 128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described proximity clusters associated with these subspecies. We developed a command line tool based on a 14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context of FBOs.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Arnaud Felten
- Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
109
|
Comparative Genomics of Lentilactobacillus parabuchneri isolated from dairy, KEM complex, Makgeolli, and Saliva Microbiomes. BMC Genomics 2022; 23:803. [PMID: 36471243 PMCID: PMC9724434 DOI: 10.1186/s12864-022-09053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lentilactobacillus parabuchneri is of particular concern in fermented food bioprocessing due to causing unwanted gas formation, cracks, and off-flavor in fermented dairy foods. This species is also a known culprit of histamine poisonings because of decarboxylating histidine to histamine in ripening cheese. Twenty-eight genomes in NCBI GenBank were evaluated via comparative analysis to determine genomic diversity within this species and identify potential avenues for reducing health associated risks and economic losses in the food industry caused by these organisms. RESULT Core genome-based phylogenetic analysis revealed four distinct major clades. Eight dairy isolates, two strains from an unknown source, and a saliva isolate formed the first clade. Three out of five strains clustered on clade 2 belonged to dairy, and the remaining two strains were isolated from the makgeolli and Korean effective microorganisms (KEM) complex. The third and fourth clade members were isolated from Tete de Moine and dairy-associated niches, respectively. Whole genome analysis on twenty-eight genomes showed ~ 40% of all CDS were conserved across entire strains proposing a considerable diversity among L. parabuchneri strains analyzed. After assigning CDS to their corresponding function, ~ 79% of all strains were predicted to carry putative intact prophages, and ~ 43% of the strains harbored at least one plasmid; however, all the strains were predicted to encode genomic island, insertion sequence, and CRISPR-Cas system. A type I-E CRISPR-Cas subgroup was identified in all the strains, with the exception of DSM15352, which carried a type II-A CRISPR-Cas system. Twenty strains were predicted to encode histidine decarboxylase gene cluster that belongs to not only dairy but also saliva, KEM complex, and unknown source. No bacteriocin-encoding gene(s) or antibiotic resistome was found in any of the L. parabuchneri strains screened. CONCLUSION The findings of the present work provide in-depth knowledge of the genomics of L. parabuchneri by comparing twenty-eight genomes available to date. For example, the hdc gene cluster was generally reported in cheese isolates; however, our findings in the current work indicated that it could also be encoded in those strains isolated from saliva, KEM complex, and unknown source. We think prophages are critical mobile elements of L. parabuchneri genomes that could pave the way for developing novel tools to reduce the occurrence of this unwanted species in the food industry.
Collapse
|
110
|
Lo HY, Martínez-Lavanchy PM, Goris T, Heider J, Boll M, Kaster AK, Müller JA. IncP-type plasmids carrying genes for antibiotic resistance or for aromatic compound degradation are prevalent in sequenced Aromatoleum and Thauera strains. Environ Microbiol 2022; 24:6411-6425. [PMID: 36306376 DOI: 10.1111/1462-2920.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Self-transferable plasmids of the incompatibility group P-1 (IncP-1) are considered important carriers of genes for antibiotic resistance and other adaptive functions. In the laboratory, these plasmids have a broad host range; however, little is known about their in situ host profile. In this study, we discovered that Thauera aromatica K172T , a facultative denitrifying microorganism capable of degrading various aromatic compounds, contains a plasmid highly similar to the IncP-1 ε archetype pKJK5. The plasmid harbours multiple antibiotic resistance genes and is maintained in strain K172T for at least 1000 generations without selection pressure from antibiotics. In a subsequent search, we found additional nine IncP-type plasmids in a total of 40 sequenced genomes of the closely related genera Aromatoleum and Thauera. Six of these plasmids form a novel IncP-1 subgroup designated θ, four of which carry genes for anaerobic or aerobic degradation of aromatic compounds. Pentanucleotide sequence analyses (k-mer profiling) indicated that Aromatoleum spp. and Thauera spp. are among the most suitable hosts for the θ plasmids. Our results highlight the importance of IncP-1 plasmids for the genetic adaptation of these common facultative denitrifying bacteria and provide novel insights into the in situ host profile of these plasmids.
Collapse
Affiliation(s)
- Hao-Yu Lo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Paula M Martínez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Goris
- Department of Molecular Toxicology, Intestinal Microbiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, Germany
| | - Matthias Boll
- Institute of Biology II, Albert-Ludwigs-Universität Freiburg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
111
|
Acolatse JEE, Portal EAR, Boostrom I, Akafity G, Dakroah MP, Chalker VJ, Sands K, Spiller OB. Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. Antimicrob Resist Infect Control 2022; 11:49. [PMID: 35296353 PMCID: PMC8925048 DOI: 10.1186/s13756-022-01090-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. Methods The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum β-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. Results We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying blaNDM-1 observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards.
Conclusion Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple blaNDM carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), blaVIM-5 or blaDIM-1 showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01090-2.
Collapse
|
112
|
Nüesch-Inderbinen M, Tresch S, Zurfluh K, Cernela N, Biggel M, Stephan R. Finding of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales in wild game meat originating from several European countries: predominance of Moellerella wisconsensis producing CTX-M-1, November 2021. Euro Surveill 2022; 27:2200343. [PMID: 36695441 PMCID: PMC9732924 DOI: 10.2807/1560-7917.es.2022.27.49.2200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
IntroductionMeat can be a vehicle for food-borne transmission of antimicrobial resistant bacteria and antimicrobial resistance genes. The occurrence of extended-spectrum beta-lactamase (ESBL) producing Enterobacterales has been observed in meat from livestock production but has not been well studied in meat from wild game.AimWe aimed to investigate, particularly in central Europe, to what extent ESBL-producing Enterobacterales may be present in wild game meat.MethodsA total of 111 samples of different types of game meat supplied by butchers, hunters, retail stores and a large game-processing establishment in Europe were screened for ESBL-producing Enterobacterales using a selective culture medium. Isolates were genotypically and phenotypically characterised.ResultsThirty-nine samples (35% of the total) yielded ESBL-producing Enterobacterales, with most (35/39) supplied by the game-processing establishment. Isolates included 32 Moellerella wisconsensis, 18 Escherichia coli and one Escherichia marmotae. PCR screening identified bla CTX-M-1 (n = 31), bla CTX-M-32 (n = 8), bla CTX-M-65 (n = 4), bla CTX-M-15 (n = 3), bla CTX-M-8 (n = 1), bla CTX-M-14 (n = 1), bla CTX-M-55 (n = 1), and bla SHV-12 (n = 2). Most E. coli belonged to phylogenetic group A (n = 7) or B1 (n = 9), but several isolates belonged to extraintestinal pathogenic E. coli (ExPEC) sequence types (ST)58 (n = 4), ST68 (n = 1) and ST540 (n = 1). Whole genome sequencing of six selected isolates localised bla CTX-M-1 on megaplasmids in four M. wisconsensis and bla CTX-M-32 on IncN_1 plasmids in one M. wisconsensis and one E. marmotae. Forty-eight isolates (94%) exhibited a multidrug-resistance phenotype.ConclusionWe found a high occurrence of ESBL-producing Enterobacterales in wild game meat, suggesting wildlife habitat pollution and possible microbial contamination events occurring during skinning or cutting carcasses.
Collapse
Affiliation(s)
| | - Silvan Tresch
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
113
|
Munk P, Brinch C, Møller FD, Petersen TN, Hendriksen RS, Seyfarth AM, Kjeldgaard JS, Svendsen CA, van Bunnik B, Berglund F, Larsson DGJ, Koopmans M, Woolhouse M, Aarestrup FM. Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance. Nat Commun 2022; 13:7251. [PMID: 36456547 PMCID: PMC9715550 DOI: 10.1038/s41467-022-34312-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.
Collapse
Affiliation(s)
- Patrick Munk
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Frederik Duus Møller
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Thomas N Petersen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Rene S Hendriksen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Anne Mette Seyfarth
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Jette S Kjeldgaard
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Christina Aaby Svendsen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Bram van Bunnik
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Marion Koopmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mark Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby, Denmark
| |
Collapse
|
114
|
Colagrossi L, Costabile V, Scutari R, Agosta M, Onori M, Mancinelli L, Lucignano B, Onetti Muda A, Del Baldo G, Mastronuzzi A, Locatelli F, Trua G, Montanari M, Alteri C, Bernaschi P, Perno CF. Evidence of pediatric sepsis caused by a drug resistant Lactococcus garvieae contaminated platelet concentrate. Emerg Microbes Infect 2022; 11:1325-1334. [PMID: 35475418 PMCID: PMC9132404 DOI: 10.1080/22221751.2022.2071174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Owing to an increasing number of infections in adults, Lactococcus (L.) garvieae has gained recognition as an emerging human pathogen, causing bacteraemia and septicaemia. In September 2020, four paediatric onco-hematologic patients received a platelet concentrate from the same adult donor at Bambino Gesù Children’s Hospital IRCCS, Rome. Three of four patients experienced L. garvieae sepsis one day after transfusion. The L. garvieae pediatric isolates and the donor’s platelet concentrates were retrospectively collected for whole-genome sequencing and shot-gun metagenomics, respectively (Illumina HiSeq). By de novo assembly of the L. garvieae genomes, we found that all three pediatric isolates shared a 99.9% identity and were characterized by 440 common SNPs. Plasmid pUC11C (conferring virulence properties) and the temperate prophage Plg-Tb25 were detected in all three strains. Core SNP genome-based maximum likelihood and Bayesian trees confirmed their phylogenetic common origin and revealed their relationship with L. garvieae strains affecting cows and humans (bootstrap values >100 and posterior probabilities = 1.00). Bacterial reads obtained by the donor’s platelet concentrate have been profiled with MetaPhlAn2 (v.2.7.5); among these, 29.9% belonged to Firmicutes, and 5.16% to Streptococcaceae (>97% identity with L. garvieae), confirming the presence of L. garvieae in the platelet concentrate transfusion. These data showed three episodes of sepsis for the first time due to a transfusion-associated transmission of L. garvieae in three pediatric hospitalized hematology patients. This highlights the importance to implement the screening of platelet components with new human-defined pathogens for ensuring the safety of blood supply, and more broadly, for the surveillance of emerging pathogens.
Collapse
Affiliation(s)
- Luna Colagrossi
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valentino Costabile
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Rossana Scutari
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Marilena Agosta
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Manuela Onori
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Livia Mancinelli
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Barbara Lucignano
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Onetti Muda
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Guglielmo Trua
- Department of Transfusion Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Mauro Montanari
- Department of Transfusion Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Claudia Alteri
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Paola Bernaschi
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
115
|
Johnson G, Bataclan S, So M, Banerjee S, Wolfe AJ, Putonti C. Plasmids of the urinary microbiota. Access Microbiol 2022; 4:acmi000429. [PMID: 36644432 PMCID: PMC9833419 DOI: 10.1099/acmi.0.000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Studies of the last decade have identified a phylogenetically diverse community of bacteria within the urinary tract of individuals with and without urinary symptoms. Mobile genetic elements (MGEs), including plasmids and phages, within this niche have only recently begun to be explored. These MGEs can expand metabolic capacity and increase virulence, as well as confer antibiotic resistance. As such, they have the potential to contribute to urinary symptoms. While plasmids for some of the bacterial taxa found within the urinary microbiota (urobiome) have been well characterized, many urinary species are under-studied with few genomes sequenced to date. Using a two-pronged bioinformatic approach, we have conducted a comprehensive investigation of the plasmid content of urinary isolates representative of 102 species. The bioinformatic tools plasmidSPAdes and Recycler were used in tandem to identify plasmid sequences from raw short-read sequence data followed by manual curation. In total, we identified 603 high-confidence plasmid sequences in 20 different genera of the urobiome. In total, 70 % of these high-confidence plasmids exhibit sequence similarity to plasmid sequences from the gut. This observation is primarily driven by plasmids from E. coli , which is found in both anatomical niches. To confirm our bioinformatic predictions, long-read sequencing was performed for 23 of the E. coli isolates in addition to two E. coli strains that were sequenced as part of a prior study. Overall, 66.95 % of these predictions were confirmed highlighting the strengths and weaknesses of current bioinformatic tools. Future studies of the urobiome, especially concerning under-studied species in the urobiome, should employ long-read sequencing to expand the catalogue of plasmids for this niche.
Collapse
Affiliation(s)
| | - Seanna Bataclan
- Biology Program, Division of Natural Sciences, University of Guam, Mangilao, GU, USA
| | - Minerva So
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA,Department of Biology, Loyola University Chicago, Chicago, IL, USA,*Correspondence: Catherine Putonti,
| |
Collapse
|
116
|
Downing T, Rahm A. Bacterial plasmid-associated and chromosomal proteins have fundamentally different properties in protein interaction networks. Sci Rep 2022; 12:19203. [PMID: 36357451 PMCID: PMC9649638 DOI: 10.1038/s41598-022-20809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Plasmids facilitate horizontal gene transfer, which enables the diversification of pathogens into new anatomical and environmental niches, implying that plasmid-encoded genes can cooperate well with chromosomal genes. We hypothesise that such mobile genes are functionally different to chromosomal ones due to this ability to encode proteins performing non-essential functions like antimicrobial resistance and traverse distinct host cells. The effect of plasmid-driven gene gain on protein-protein interaction network topology is an important question in this area. Moreover, the extent to which these chromosomally- and plasmid-encoded proteins interact with proteins from their own groups compared to the levels with the other group remains unclear. Here, we examined the incidence and protein-protein interactions of all known plasmid-encoded proteins across representative specimens from most bacteria using all available plasmids. We found that plasmid-encoded genes constitute ~ 0.65% of the total number of genes per bacterial sample, and that plasmid genes are preferentially associated with different species but had limited taxonomical power beyond this. Surprisingly, plasmid-encoded proteins had both more protein-protein interactions compared to chromosomal proteins, countering the hypothesis that genes with higher mobility rates should have fewer protein-level interactions. Nonetheless, topological analysis and investigation of the protein-protein interaction networks' connectivity and change in the number of independent components demonstrated that the plasmid-encoded proteins had limited overall impact in > 96% of samples. This paper assembled extensive data on plasmid-encoded proteins, their interactions and associations with diverse bacterial specimens that is available for the community to investigate in more detail.
Collapse
Affiliation(s)
- Tim Downing
- grid.15596.3e0000000102380260School of Biotechnology, Dublin City University, Dublin, Ireland ,grid.63622.330000 0004 0388 7540Present Address: The Pirbright Institute, Pirbright, UK
| | - Alexander Rahm
- grid.449688.f0000 0004 0647 1487GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
117
|
Wu Z, Che Y, Dang C, Zhang M, Zhang X, Sun Y, Li X, Zhang T, Xia Y. Nanopore-based long-read metagenomics uncover the resistome intrusion by antibiotic resistant bacteria from treated wastewater in receiving water body. WATER RESEARCH 2022; 226:119282. [PMID: 36332295 DOI: 10.1016/j.watres.2022.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plant (WWTP) effluent discharge could induce the resistome enrichment in the receiving water environments. However, because of the general lack of a robust antibiotic-resistant bacteria (ARB) identification method, the driving mechanism for resistome accumulation in receiving environment is unclear. Here, we took advantage of the enhanced ARBs recognition by nanopore long reads to distinguish the indigenous ARBs and the accumulation of WWTP-borne ARBs in the receiving water body of a domestic WWTP. A bioinformatic framework (named ARGpore2: https://github.com/sustc-xylab/ARGpore2) was constructed and evaluate to facilitate antibiotic resistance genes (ARGs) and ARBs identification in nanopore reads. ARGs identification by ARGpore2 showed comparable precision and recall to that of the commonly adopt BLASTP-based method, whereas the spectrum of ARBs doubled that of the assembled Illumina dataset. Totally, we identified 33 ARBs genera carrying 65 ARG subtypes in the receiving seawater, whose concentration was in general 10 times higher than clean seawater's. Notably we report a primary resistome intrusion caused by the revival of residual microbes survived from disinfection treatment. These WWTP-borne ARBs, including several animal/human enteric pathogens, contributed up to 85% of the receiving water resistome. Plasmids and class 1 integrons were reckoned as major vehicles facilitating the persistence and dissemination of ARGs. Moreover, our work demonstrated the importance of extensive carrier identification in determining the driving force of multifactor coupled resistome booming in complicated environmental conditions, thereby paving the way for establishing priority for effective ARGs mitigation strategies.
Collapse
Affiliation(s)
- Ziqi Wu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuyang Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuhong Sun
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
118
|
Leigh RJ, McKenna C, McWade R, Lynch B, Walsh F. Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Enterococcus faecium
has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.
Hypothesis/Gap statement. Vancomycin resistance rates persist amongst
E. faecium
isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.
Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.
Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of
E. faecium
persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.
Conclusions. These results highlight the evolutionary history of Irish
E. faecium
isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible
E. faecium
should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.
Collapse
Affiliation(s)
- Robert J. Leigh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Chloe McKenna
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Robert McWade
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
119
|
Global Distribution and Diversity of Prevalent Sewage Water Plasmidomes. mSystems 2022; 7:e0019122. [PMID: 36069451 PMCID: PMC9600348 DOI: 10.1128/msystems.00191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sewage water from around the world contains an abundance of short plasmids, several of which harbor antimicrobial resistance genes (ARGs). The global dynamics of plasmid-derived antimicrobial resistance and functions are only starting to be unveiled. Here, we utilized a previously created data set of 159,332 assumed small plasmids from 24 different global sewage samples. The detailed phylogeny, as well as the interplay between their protein domains, ARGs, and predicted bacterial host genera, were investigated to understand sewage plasmidome dynamics globally. A total of 58,429 circular elements carried genes encoding plasmid-related features, and MASH distance analyses showed a high degree of diversity. A single (yet diverse) cluster of 520 predicted Acinetobacter plasmids was predominant among the European sewage water. Our results suggested a prevalence of plasmid-backbone gene combinations over others. This could be related to selected bacterial genera that act as bacterial hosts. These combinations also mirrored the geographical locations of the sewage samples. Our functional domain network analysis identified three groups of plasmids. However, these backbone domains were not exclusive to any given group, and Acinetobacter was the dominant host genus among the theta-replicating plasmids, which contained a reservoir of the macrolide resistance gene pair msr(E) and mph(E). Macrolide resistance genes were the most common in the sewage plasmidomes and were found in the largest number of unique plasmids. While msr(E) and mph(E) were limited to Acinetobacter, erm(B) was disseminated among a range of Firmicutes plasmids, including Staphylococcus and Streptococcus, highlighting a potential reservoir of antibiotic resistance for these pathogens from around the globe. IMPORTANCE Antimicrobial resistance is a global threat to human health, as it inhibits our ability to treat infectious diseases. This study utilizes sewage water plasmidomes to identify plasmid-derived features and highlights antimicrobial resistance genes, particularly macrolide resistance genes, as abundant in sewage water plasmidomes in Firmicutes and Acinetobacter hosts. The emergence of macrolide resistance in these bacteria suggests that macrolide selective pressure exists in sewage water and that the resident bacteria can readily acquire macrolide resistance via small plasmids.
Collapse
|
120
|
Ashrafi S, Kuzmanović N, Patz S, Lohwasser U, Bunk B, Spröer C, Lorenz M, Elhady A, Frühling A, Neumann-Schaal M, Verbarg S, Becker M, Thünen T. Two New Rhizobiales Species Isolated from Root Nodules of Common Sainfoin (Onobrychis viciifolia) Show Different Plant Colonization Strategies. Microbiol Spectr 2022; 10:e0109922. [PMID: 36005754 PMCID: PMC9603459 DOI: 10.1128/spectrum.01099-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Root nodules of legume plants are primarily inhabited by rhizobial nitrogen-fixing bacteria. Here, we propose two new Rhizobiales species isolated from root nodules of common sainfoin (Onobrychis viciifolia), as shown by core-gene phylogeny, overall genome relatedness indices, and pan-genome analysis. Mesorhizobium onobrychidis sp. nov. actively induces nodules and achieves atmospheric nitrogen and carbon dioxide fixation. This species appears to be depleted in motility genes and is enriched in genes for direct effects on plant growth performance. Its genome reveals functional and plant growth-promoting signatures, like a large unique chromosomal genomic island with high density of symbiotic genetic traits. Onobrychidicola muellerharveyae gen. nov. sp. nov. is described as a type species of the new genus Onobrychidicola in Rhizobiaceae. This species comprises unique genetic features and plant growth-promoting traits (PGPTs), which strongly indicate its function in biotic stress reduction and motility. We applied a newly developed bioinformatics approach for in silico prediction of PGPTs (PGPT-Pred), which supports the different lifestyles of the two new species and the plant growth-promoting performance of M. onobrychidis in the greenhouse trial. IMPORTANCE The intensive use of chemical fertilizers has a variety of negative effects on the environment. Increased utilization of biological nitrogen fixation (BNF) is one way to mitigate those negative impacts. In order to optimize BNF, suitable candidates for different legume species are required. Despite intensive search for new rhizobial bacteria associated with legumes, no new rhizobia have recently been identified from sainfoin (Onobrychis viciifolia). Here, we report on the discovery of two new rhizobial species associated with sainfoin, which are of high importance for the host and may help to increase sustainability in agricultural practices. We employed the combination of in silico prediction and in planta experiments, which is an effective way to detect promising plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Samad Ashrafi
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Nemanja Kuzmanović
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany
| | - Sascha Patz
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, Algorithms in Bioinformatics, Tübingen, Germany
| | - Ulrike Lohwasser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Genebank Department, Seeland, Germany
| | - Boyke Bunk
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Maria Lorenz
- Technische Universität Braunschweig, Braunschweig, Germany
| | - Ahmed Elhady
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Anja Frühling
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Susanne Verbarg
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Matthias Becker
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Torsten Thünen
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
| |
Collapse
|
121
|
Mafuna T, Matle I, Magwedere K, Pierneef RE, Reva ON. Comparative Genomics of Listeria Species Recovered from Meat and Food Processing Facilities. Microbiol Spectr 2022; 10:e0118922. [PMID: 36066257 PMCID: PMC9604131 DOI: 10.1128/spectrum.01189-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Listeria species (spp.) are contaminants that can survive in food, on equipment, and on food processing premises if appropriate hygiene measures are not used. Homologous stress tolerance genes, virulence gene clusters such as the prfA cluster, and clusters of internalin genes that contribute to the pathogenic potential of the strains can be carried by both pathogenic and nonpathogenic Listeria spp. To enhance understanding of the genome evolution of virulence and virulence-associated properties, a comparative genome approach was used to analyze 41 genome sequences belonging to L. innocua and L. welshimeri isolated from food and food processing facilities. Genetic determinants responsible for disinfectant and stress tolerance were identified, including the efflux cassette bcrABC and Tn6188_qac_1 disinfectant resistance determinant, and stress survival islets. These disinfectant-resistant genes were more frequently found in L. innocua (12%) than in L. welshimeri (2%). Several isolates representing the presumed nonpathogenic L. innocua still carried virulence-associated genes, including LGI2, LGI3, LIPI-3, and LIPI-4 which were absent in all L. welshimeri isolates. The mobile genetic elements identified were plasmids (pLGUG1 and J1776) and prophages (PHAGE_Lister_vB_LmoS_188, PHAGE_Lister_LP_030_3, PHAGE_Lister_A118, PHAGE_Lister_B054, and PHAGE_Lister_vB_LmoS_293). The results suggest that the presumed nonpathogenic isolates especially L. innocua can carry genes relevant to the strain's virulence and stress tolerance in the food and food processing facilities. IMPORTANCE This study provides genomic insights into the recently expanded genus in order to gain valuable information about the evolution of the virulence and stress tolerance properties of the genus Listeria and the distribution of these genetic elements pertinent to the pathogenic potential across Listeria spp. and clonal lineages in South Africa (SA).
Collapse
Affiliation(s)
- T. Mafuna
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - I. Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - K. Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - R. E. Pierneef
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - O. N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
122
|
Domínguez-Maqueda M, Pérez-Gómez O, Grande-Pérez A, Esteve C, Seoane P, Tapia-Paniagua ST, Balebona MC, Moriñigo MA. Pathogenic strains of Shewanella putrefaciens contain plasmids that are absent in the probiotic strain Pdp11. PeerJ 2022; 10:e14248. [PMID: 36312754 PMCID: PMC9610664 DOI: 10.7717/peerj.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Shewanella putrefaciens Pdp11 is a strain described as a probiotic for use in aquaculture. However, S. putrefaciens includes strains reported to be pathogenic or saprophytic to fish. Although the probiotic trait has been related to the presence of a group of genes in its genome, the existence of plasmids that could determine the probiotic or pathogenic character of this bacterium is unknown. In the present work, we searched for plasmids in several strains of S. putrefaciens that differ in their pathogenic and probiotic character. Under the different conditions tested, plasmids were only found in two of the five pathogenic strains, but not in the probiotic strain nor in the two saprophytic strains tested. Using a workflow integrating Sanger and Illumina reads, the complete consensus sequences of the plasmids were obtained. Plasmids differed in one ORF and encoded a putative replication initiator protein of the repB family, as well as proteins related to plasmid stability and a toxin-antitoxin system. Phylogenetic analysis showed some similarity to functional repB proteins of other Shewanella species. The implication of these plasmids in the probiotic or pathogenic nature of S. putrefaciens is discussed.
Collapse
Affiliation(s)
| | | | - Ana Grande-Pérez
- Área de Genética, Universidad de Málaga, Málaga, Spain,Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Consuelo Esteve
- Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Pedro Seoane
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Madrid, Spain,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | |
Collapse
|
123
|
Behra PRK, Pettersson BMF, Ramesh M, Das S, Dasgupta S, Kirsebom LA. Comparative genome analysis of mycobacteria focusing on tRNA and non-coding RNA. BMC Genomics 2022; 23:704. [PMID: 36243697 PMCID: PMC9569102 DOI: 10.1186/s12864-022-08927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Mycobacterium genus encompasses at least 192 named species, many of which cause severe diseases such as tuberculosis. Non-tuberculosis mycobacteria (NTM) can also infect humans and animals. Some are of emerging concern because they show high resistance to commonly used antibiotics while others are used and evaluated in bioremediation or included in anticancer vaccines. RESULTS We provide the genome sequences for 114 mycobacterial type strains and together with 130 available mycobacterial genomes we generated a phylogenetic tree based on 387 core genes and supported by average nucleotide identity (ANI) data. The 244 genome sequences cover most of the species constituting the Mycobacterium genus. The genome sizes ranged from 3.2 to 8.1 Mb with an average of 5.7 Mb, and we identified 14 new plasmids. Moreover, mycobacterial genomes consisted of phage-like sequences ranging between 0 and 4.64% dependent on mycobacteria while the number of IS elements varied between 1 and 290. Our data also revealed that, depending on the mycobacteria, the number of tRNA and non-coding (nc) RNA genes differ and that their positions on the chromosome varied. We identified a conserved core set of 12 ncRNAs, 43 tRNAs and 18 aminoacyl-tRNA synthetases among mycobacteria. CONCLUSIONS Phages, IS elements, tRNA and ncRNAs appear to have contributed to the evolution of the Mycobacterium genus where several tRNA and ncRNA genes have been horizontally transferred. On the basis of our phylogenetic analysis, we identified several isolates of unnamed species as new mycobacterial species or strains of known mycobacteria. The predicted number of coding sequences correlates with genome size while the number of tRNA, rRNA and ncRNA genes does not. Together these findings expand our insight into the evolution of the Mycobacterium genus and as such they establish a platform to understand mycobacterial pathogenicity, their evolution, antibiotic resistance/tolerance as well as the function and evolution of ncRNA among mycobacteria.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - B. M. Fredrik Pettersson
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
124
|
Sanders JG, Yan W, Mjungu D, Lonsdorf EV, Hart JA, Sanz CM, Morgan DB, Peeters M, Hahn BH, Moeller AH. A low-cost genomics workflow enables isolate screening and strain-level analyses within microbiomes. Genome Biol 2022; 23:212. [PMID: 36224660 PMCID: PMC9558970 DOI: 10.1186/s13059-022-02777-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Earth's environments harbor complex consortia of microbes that affect processes ranging from host health to biogeochemical cycles. Understanding their evolution and function is limited by an inability to isolate genomes in a high-throughput manner. Here, we present a workflow for bacterial whole-genome sequencing using open-source labware and the OpenTrons robotics platform, reducing costs to approximately $10 per genome. We assess genomic diversity within 45 gut bacterial species from wild-living chimpanzees and bonobos. We quantify intraspecific genomic diversity and reveal divergence of homologous plasmids between hosts. This enables population genetic analyses of bacterial strains not currently possible with metagenomic data alone.
Collapse
Affiliation(s)
- Jon G Sanders
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| | - Weiwei Yan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Deus Mjungu
- Gombe Stream Research Center, Kigoma, Tanzania
| | - Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA, USA
- Department of Anthropology, Emory University, Atlanta, GA, 30322, USA
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, 1 Brookings Drive, Saint Louis, MO, USA
- Wildlife Conservation Society, Congo Program, Brazzaville, B.P. 14537, Republic of Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | - Martine Peeters
- Recherche Translationnelle Appliquée Au VIH Et Aux Maladies Infectieuses, Institut de Recherche Pour Le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
125
|
Effects of Nutrient Level and Growth Rate on the Conjugation Process That Transfers Mobile Antibiotic Resistance Genes in Continuous Cultures. Appl Environ Microbiol 2022; 88:e0112122. [PMID: 36094214 PMCID: PMC9552606 DOI: 10.1128/aem.01121-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria in the effluent of wastewater treatment plants (WWTPs) can transfer antibiotic resistance genes (ARGs) to the bacteria in receiving water through conjugation; however, there is a lack of quantitative assessment of this phenomenon in continuous cultures. Our objective was to determine the effects of background nutrient levels in river water column and growth rates of bacteria on the conjugation frequency of ARGs from effluent bacteria to river bacteria, as well as on the resulting resistance level (i.e., MICs) of the river bacteria. Chemostats were employed to simulate the discharge points of WWTPs into rivers, where effluent bacteria (donor cells) meet river bacteria (recipient cells). Both donor and recipient cells were Escherichia coli cells, and the donor cells were constructed by filter mating with bacteria in the effluent of a local WWTP. Results showed that higher bacterial growth rate (0.45 h-1 versus 0.15 h-1) led to higher conjugation frequencies (10-4 versus 10-6 transconjugant per recipient). The nutrient level also significantly affected the conjugation frequency, albeit to a lesser extent than the growth rate. The MIC against tetracycline increased from 2 mg/L in the recipient to 64 to 128 mg/L in transconjugants. In comparison, the MIC only increased to as high as 8 mg/L in mutants. Whole-genome sequencing showed that the tet-containing plasmid in both the donor and the transconjugant cells also occur in other fecal bacterial genera. The quantitative information obtained from this study can inform hazard identification related to the proliferation of wastewater-associated ARGs in surface water. IMPORTANCE WWTPs have been regarded as an important hot spot of ARGs. The discharge point of WWTP effluent, where ARGs may be horizontally transferred from bacteria of treated wastewater to bacteria of receiving water, is an important interface between the human-dominated ecosystem and the natural environment. The use of batch cultures in previous studies cannot adequately simulate the nutrient conditions and growth rates in receiving water. In this study, chemostats were employed to simulate the continuous growth of bacteria in receiving water. Furthermore, the experimental setup allowed for separate investigations on the effects of nutrient levels (i.e., simulating background nutrients in river water) and bacterial growth rates on conjugation frequencies and resulting resistance levels. The study generates statistically sound ecological data that can be used to estimate the risk of wastewater-originated ARGs as part of the One Health framework.
Collapse
|
126
|
Monshizadeh M, Zomorodi S, Mortensen K, Ye Y. Revealing bacteria-phage interactions in human microbiome through the CRISPR-Cas immune systems. Front Cell Infect Microbiol 2022; 12:933516. [PMID: 36250060 PMCID: PMC9554610 DOI: 10.3389/fcimb.2022.933516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The human gut microbiome is composed of a diverse consortium of microorganisms. Relatively little is known about the diversity of the bacteriophage population and their interactions with microbial organisms in the human microbiome. Due to the persistent rivalry between microbial organisms (hosts) and phages (invaders), genetic traces of phages are found in the hosts' CRISPR-Cas adaptive immune system. Mobile genetic elements (MGEs) found in bacteria include genetic material from phage and plasmids, often resultant from invasion events. We developed a computational pipeline (BacMGEnet), which can be used for inference and exploratory analysis of putative interactions between microbial organisms and MGEs (phages and plasmids) and their interaction network. Given a collection of genomes as the input, BacMGEnet utilizes computational tools we have previously developed to characterize CRISPR-Cas systems in the genomes, which are then used to identify putative invaders from publicly available collections of phage/prophage sequences. In addition, BacMGEnet uses a greedy algorithm to summarize identified putative interactions to produce a bacteria-MGE network in a standard network format. Inferred networks can be utilized to assist further examination of the putative interactions and for discovery of interaction patterns. Here we apply the BacMGEnet pipeline to a few collections of genomic/metagenomic datasets to demonstrate its utilities. BacMGEnet revealed a complex interaction network of the Phocaeicola vulgatus pangenome with its phage invaders, and the modularity analysis of the resulted network suggested differential activities of the different P. vulgatus' CRISPR-Cas systems (Type I-C and Type II-C) against some phages. Analysis of the phage-bacteria interaction network of human gut microbiome revealed a mixture of phages with a broad host range (resulting in large modules with many bacteria and phages), and phages with narrow host range. We also showed that BacMGEnet can be used to infer phages that invade bacteria and their interactions in wound microbiome. We anticipate that BacMGEnet will become an important tool for studying the interactions between bacteria and their invaders for microbiome research.
Collapse
Affiliation(s)
| | | | | | - Yuzhen Ye
- Indiana University, Bloomington, IN, United States
| |
Collapse
|
127
|
Liu B, Zhang D, Pan X. Nodules of wild legumes as unique natural hotspots of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156036. [PMID: 35597353 DOI: 10.1016/j.scitotenv.2022.156036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Root nodules (RN) of legumes have distinct microenvironment from their symbiotic roots and surrounding soils. The rhizobia can withstand the host-produced phytoalexins and antimicrobial compounds. We thus hypothesize that the wild legume RN may develop unique natural resistome and be antibiotic resistance gene (ARG) hotspots. In this study, in comparison with rhizosphere soil (RS) and bulk soil (BS), we characterized the feature of antibiotic resistance in the RN of two wild legumes, Medicago polymorpha and Astragalus sinicus, by metagenomics. It was shown that the total relative abundance of ARGs followed the order of RN > RS > BS for both legumes. ARGs encoding antibiotic efflux pump predominated in all samples with increased proportion from BS to RN samples for both legumes. Totally 275 ARG subtypes were detected, and diversity of ARGs in RN was significantly lower than in BS samples for both legumes. 32 and 25 unique ARGs subtypes were detected in RN of both legumes. Bacterial community played a key role in shaping nodule-associated resistome because both ARG profiles and bacterial community differed greatly among BS, RS and RN. Rhizobia potentially hosted 10 and 15 ARGs subtypes for both legumes. The number and proportion of plasmid- and ARG-carrying contigs (ACCs) were higher in RN than in BS. Host tracking analysis of plasmid-ACCs suggests that proportion of rhizobial bacteria identified as their hosts decreased from BS to RN samples. No plasmid-ACCs with multiple ARGs were observed in BS samples, whereas they were detected in RN samples of both legumes. Our study showed that even wild legume nodules are unique natural ARG hotspots and enough attention should be paid to the dissemination risk of ARGs posed by globally produced legume crops.
Collapse
Affiliation(s)
- Bingshen Liu
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
128
|
Kang JTL, Teo JJY, Bertrand D, Ng A, Ravikrishnan A, Yong M, Ng OT, Marimuthu K, Chen SL, Chng KR, Gan YH, Nagarajan N. Long-term ecological and evolutionary dynamics in the gut microbiomes of carbapenemase-producing Enterobacteriaceae colonized subjects. Nat Microbiol 2022; 7:1516-1524. [PMID: 36109646 PMCID: PMC9519440 DOI: 10.1038/s41564-022-01221-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/29/2022] [Indexed: 11/09/2022]
Abstract
AbstractLong-term colonization of the gut microbiome by carbapenemase-producing Enterobacteriaceae (CPE) is a growing area of public health concern as it can lead to community transmission and rapid increase in cases of life-threatening CPE infections. Here, leveraging the observation that many subjects are decolonized without interventions within a year, we used longitudinal shotgun metagenomics (up to 12 timepoints) for detailed characterization of ecological and evolutionary dynamics in the gut microbiome of a cohort of CPE-colonized subjects and family members (n = 46; 361 samples). Subjects who underwent decolonization exhibited a distinct ecological shift marked by recovery of microbial diversity, key commensals and anti-inflammatory pathways. In addition, colonization was marked by elevated but unstable Enterobacteriaceae abundances, which exhibited distinct strain-level dynamics for different species (Escherichia coli and Klebsiella pneumoniae). Finally, comparative analysis with whole-genome sequencing data from CPE isolates (n = 159) helped identify substrain variation in key functional genes and the presence of highly similar E. coli and K. pneumoniae strains with variable resistance profiles and plasmid sharing. These results provide an enhanced view into how colonization by multi-drug-resistant bacteria associates with altered gut ecology and can enable transfer of resistance genes, even in the absence of overt infection and antibiotic usage.
Collapse
|
129
|
Assessing the genomic composition, putative ecological relevance and biotechnological potential of plasmids from sponge bacterial symbionts. Microbiol Res 2022; 265:127183. [PMID: 36108440 DOI: 10.1016/j.micres.2022.127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.
Collapse
|
130
|
El-Deeb W, Cave R, Fayez M, Alhumam N, Quadri S, Mkrtchyan HV. Methicillin Resistant Staphylococci Isolated from Goats and Their Farm Environments in Saudi Arabia Genotypically Linked to Known Human Clinical Isolates: a Pilot Study. Microbiol Spectr 2022; 10:e0038722. [PMID: 35913203 PMCID: PMC9431424 DOI: 10.1128/spectrum.00387-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022] Open
Abstract
We conducted a pilot whole genome sequencing (WGS) study to characterize the genotypes of nine methicillin resistant staphylococci (MRS) isolates recovered from goats and their farm environments in Eastern Province, Saudi Arabia, between November 2019 to August 2020. Seven out of nine isolates were methicillin resistant Staphylococcus aureus (MRSA), and two were methicillin resistant Staphylococcus epidermidis (MRSE). All MRSA isolates possessed genotypes previously identified to infect humans, including isolates harboring ST6-SCCmec IV-t304 (n = 4), ST5-SCCmec VI- t688 (n = 2) and ST5-SCCmec V-t311 (n = 1). 2 MRSA isolates possessed plasmids that were genetically similar to those identified in S. aureus isolates recovered from humans and poultry. In contrast, plasmids found in three MRSA isolates and one MRSE isolate were genetically similar to those recovered from humans. All MRSA isolates harbored the host innate modulate genes sak and scn previously associated with human infections. The genotypes of MRSE isolates were determined as ST35, a well-known zoonotic sequence type and ST153, which has been associated with humans. However, the MRSE isolates were untypeable due to extra ccr complexes identified in their SCCmec elements. Moreover, we identified in ST153 isolate SCCmec element also harbored the Arginine Catabolic Mobile Element (ACME) IV. All MRS isolates were phenotypically resistant to trimethoprim-sulfamethoxazole, an antibiotic for the decolonization of MRS. Three isolates carried antibiotic resistance genes in their SCCmec elements that were not previously described, including those encoding fusidic acid resistance (fusC) and trimethoprim resistance (dfrC) incorporated in the MRSA SCCmec VI. IMPORTANCE Our findings demonstrate a possible cross-transmission of methicillin resistant staphylococci between goats and their local environments and between goats and humans. Due to ever increasing resistance to multiple antibiotics, the burden of MRS has a significant impact on livestock farming, public health, and the economy worldwide. This study highlights that implementing a holistic approach to whole genome sequencing surveillance in livestock and farm environments would aid our understanding of the transmission of methicillin resistant staphylococci and, most importantly, allow us to implement appropriate infection control and hygiene practices.
Collapse
Affiliation(s)
- Wael El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Department of Internal Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rory Cave
- School of Biomedical Sciences, University of West London, London, United Kingdom
| | - Mahmoud Fayez
- Al Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Hofuf, Al-Ahsa, Saudi Arabia
- Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo, Egypt
| | - Naser Alhumam
- Department of Microbiology and parasitology, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Sayed Quadri
- Division of Microbiology and Immunology, Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, Kingdom of Saudi Arabia
| | - Hermine V. Mkrtchyan
- School of Biomedical Sciences, University of West London, London, United Kingdom
| |
Collapse
|
131
|
Somerville V, Schowing T, Chabas H, Schmidt RS, von Ah U, Bruggmann R, Engel P. Extensive diversity and rapid turnover of phage defense repertoires in cheese-associated bacterial communities. MICROBIOME 2022; 10:137. [PMID: 36028909 PMCID: PMC9419375 DOI: 10.1186/s40168-022-01328-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Phages are key drivers of genomic diversity in bacterial populations as they impose strong selective pressure on the evolution of bacterial defense mechanisms across closely related strains. The pan-immunity model suggests that such diversity is maintained because the effective immune system of a bacterial species is the one distributed across all strains present in the community. However, only few studies have analyzed the distribution of bacterial defense systems at the community-level, mostly focusing on CRISPR and comparing samples from complex environments. Here, we studied 2778 bacterial genomes and 188 metagenomes from cheese-associated communities, which are dominated by a few bacterial taxa and occur in relatively stable environments. RESULTS We corroborate previous laboratory findings that in cheese-associated communities nearly identical strains contain diverse and highly variable arsenals of innate and adaptive (i.e., CRISPR-Cas) immunity systems suggesting rapid turnover. CRISPR spacer abundance correlated with the abundance of matching target sequences across the metagenomes providing evidence that the identified defense repertoires are functional and under selection. While these characteristics align with the pan-immunity model, the detected CRISPR spacers only covered a subset of the phages previously identified in cheese, providing evidence that CRISPR does not enable complete immunity against all phages, and that the innate immune mechanisms may have complementary roles. CONCLUSIONS Our findings show that the evolution of bacterial defense mechanisms is a highly dynamic process and highlight that experimentally tractable, low complexity communities such as those found in cheese, can help to understand ecological and molecular processes underlying phage-defense system relationships. These findings can have implications for the design of robust synthetic communities used in biotechnology and the food industry. Video Abstract.
Collapse
Affiliation(s)
- Vincent Somerville
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
- Agroscope, Bern, Switzerland.
| | - Thibault Schowing
- Agroscope, Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Hélène Chabas
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
132
|
Lam TJ, Mortensen K, Ye Y. Diversity and dynamics of the CRISPR-Cas systems associated with Bacteroides fragilis in human population. BMC Genomics 2022; 23:573. [PMID: 35953824 PMCID: PMC9367070 DOI: 10.1186/s12864-022-08770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR-associated proteins) systems are adaptive immune systems commonly found in prokaryotes that provide sequence-specific defense against invading mobile genetic elements (MGEs). The memory of these immunological encounters are stored in CRISPR arrays, where spacer sequences record the identity and history of past invaders. Analyzing such CRISPR arrays provide insights into the dynamics of CRISPR-Cas systems and the adaptation of their host bacteria to rapidly changing environments such as the human gut. Results In this study, we utilized 601 publicly available Bacteroides fragilis genome isolates from 12 healthy individuals, 6 of which include longitudinal observations, and 222 available B. fragilis reference genomes to update the understanding of B. fragilis CRISPR-Cas dynamics and their differential activities. Analysis of longitudinal genomic data showed that some CRISPR array structures remained relatively stable over time whereas others involved radical spacer acquisition during some periods, and diverse CRISPR arrays (associated with multiple isolates) co-existed in the same individuals with some persisted over time. Furthermore, features of CRISPR adaptation, evolution, and microdynamics were highlighted through an analysis of host-MGE network, such as modules of multiple MGEs and hosts, reflecting complex interactions between B. fragilis and its invaders mediated through the CRISPR-Cas systems. Conclusions We made available of all annotated CRISPR-Cas systems and their target MGEs, and their interaction network as a web resource at https://omics.informatics.indiana.edu/CRISPRone/Bfragilis. We anticipate it will become an important resource for studying of B. fragilis, its CRISPR-Cas systems, and its interaction with mobile genetic elements providing insights into evolutionary dynamics that may shape the species virulence and lead to its pathogenicity. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08770-8).
Collapse
Affiliation(s)
- Tony J Lam
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Kate Mortensen
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
| | - Yuzhen Ye
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
133
|
Antibiotic resistance genes in the gut microbiota of mothers and linked neonates with or without sepsis from low- and middle-income countries. Nat Microbiol 2022; 7:1337-1347. [PMID: 35927336 PMCID: PMC9417982 DOI: 10.1038/s41564-022-01184-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/23/2022] [Indexed: 12/29/2022]
Abstract
Early development of the microbiome has been shown to affect general health and physical development of the infant and, although some studies have been undertaken in high-income countries, there are few studies from low- and middle-income countries. As part of the BARNARDS study, we examined the rectal microbiota of 2,931 neonates (term used up to 60 d) with clinical signs of sepsis and of 15,217 mothers screening for blaCTX-M-15, blaNDM, blaKPC and blaOXA-48-like genes, which were detected in 56.1%, 18.5%, 0% and 4.1% of neonates’ rectal swabs and 47.1%, 4.6%, 0% and 1.6% of mothers’ rectal swabs, respectively. Carbapenemase-positive bacteria were identified by MALDI-TOF MS and showed a high diversity of bacterial species (57 distinct species/genera) which exhibited resistance to most of the antibiotics tested. Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae/E. cloacae complex, the most commonly found isolates, were subjected to whole-genome sequencing analysis and revealed close relationships between isolates from different samples, suggesting transmission of bacteria between neonates, and between neonates and mothers. Associations between the carriage of antimicrobial resistance genes (ARGs) and healthcare/environmental factors were identified, and the presence of ARGs was a predictor of neonatal sepsis and adverse birth outcomes. Analysis of gut microbiota of mothers and its neonates—as part of the BARNARDS study—reveals associations between β-lactamase gene carriage and neonatal sepsis risk in low-income settings.
Collapse
|
134
|
Cuesta-Morrondo S, Redondo C, Palacio-Bielsa A, Garita-Cambronero J, Cubero J. Complete Genome Sequence Resources of Six Strains of the Most Virulent Pathovars of Xanthomonas arboricola Using Long- and Short-Read Sequencing Approaches. PHYTOPATHOLOGY 2022; 112:1808-1813. [PMID: 35522570 DOI: 10.1094/phyto-10-21-0436-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Sara Cuesta-Morrondo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid 28040, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Cristina Redondo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid 28040, Spain
| | - Ana Palacio-Bielsa
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059, Zaragoza, Spain
| | | | - Jaime Cubero
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid 28040, Spain
| |
Collapse
|
135
|
Smyth C, Leigh RJ, Delaney S, Murphy RA, Walsh F. Shooting hoops: globetrotting plasmids spreading more than just antimicrobial resistance genes across One Health. Microb Genom 2022; 8:mgen000858. [PMID: 35960657 PMCID: PMC9484753 DOI: 10.1099/mgen.0.000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Our study provides novel insights into the global nature of antimicrobial resistance (AMR) plasmids across the food chain. We provide compelling evidence of the globetrotting nature of AMR plasmids and the need for surveillance to sequence plasmids with a template of analyses for others to expand these data. The AMR plasmids analysed were detected in 63 countries and in samples from humans, animals and the environment. They contained a combination of known and novel AMR genes, metal resistance genes, virulence factors, phage and replicon types.
Collapse
Affiliation(s)
- Cian Smyth
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Robert J. Leigh
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sarah Delaney
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Fiona Walsh
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
136
|
Hossain M, Ibne Momen AM, Rahman A, Biswas J, Yasmin M, Nessa J, Ahsan CR. Draft-genome analysis provides insights into the virulence properties and genome plasticity of Vibrio fluvialis organisms isolated from shrimp farms and Turag river in Bangladesh. Arch Microbiol 2022; 204:527. [PMID: 35895240 DOI: 10.1007/s00203-022-03128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Vibrio fluvialis is an opportunistic waterborne and seafood-borne enteric pathogen capable of causing severe diarrhea leading to death. This pathogen is endemic to Bangladesh, a country which is a major producer of cultured shrimp and wild-caught prawns. In this study, we carried out whole-genome sequencing of three V. fluvialis organisms isolated from shrimp farm and river sediment showing strong pathogenic characteristics in vivo and in vitro and compared their genomes against other V. fluvialis and related pathogenic species to glean insights into their potential as pathogens. Numerous virulence-associated genes including hemolysins, cytolysins, three separate Type IV pili, Types II and VI secretion systems, biofilm, and the V. cholerae pathogenesis regulating gene, toxR, were identified. Moreover, we found strain S-10 to have the propensity to acquire antibiotic resistance genes through horizontal gene transfer. These findings indicate that shrimp farms and rivers could be potential sources of V. fluvialis organisms which are an infection threat of public health concern.
Collapse
Affiliation(s)
- Maqsud Hossain
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Abdul Mueed Ibne Momen
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Dhaka, Bangladesh.,Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Juthi Biswas
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Mahmuda Yasmin
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Jamalun Nessa
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
137
|
Revealing Genomic Insights of the Unexplored Porcine Pathogen Actinobacillus pleuropneumoniae Using Whole Genome Sequencing. Microbiol Spectr 2022; 10:e0118522. [PMID: 35856711 PMCID: PMC9430968 DOI: 10.1128/spectrum.01185-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is the causative agent of pleuropneumonia in pigs, one of the most relevant bacterial respiratory diseases in the swine industry. To date, 19 serotypes have been described based on capsular polysaccharide typing with significant virulence dissimilarities. In this study, 16 APP isolates from Spanish origin were selected to perform antimicrobial susceptibility tests and comparative genomic analysis using whole genome sequencing (WGS). To obtain a more comprehensive worldwide molecular epidemiologic analyses, all APP whole genome assemblies available at the National Center for Biotechnology Information (NCBI) at the time of the study were also included. An in-house in silico PCR approach enabled the correct serotyping of unserotyped or incorrectly serotyped isolates and allowed for the discrimination between serotypes 9 and 11. A pangenome analysis identified the presence or absence of gene clusters to be serotype specific, as well as virulence profile analyses targeting the apx operons. Antimicrobial resistance genes were correlated to the presence of specific plasmids. Altogether, this study provides new insights into the genetic variability within APP serotypes, correlates phenotypic tests with bioinformatic analyses and manifests the benefits of populated databases for a better assessment of diversity and variability of relatively unknown pathogens. Overall, genomic comparative analysis enhances the understanding of transmission and epidemiological patterns of this species and suggests vertical transmission of the pathogen, including the resistance genes, within the Spanish integrated systems. IMPORTANCE Pleuropneumonia is one of the most relevant respiratory infections in the swine industry. Despite Actinobacillus pleuropneumoniae (APP) being one of the most important pathogens in the pig production, this is the first comparative study including all available whole genome sequencing data from NCBI. Moreover, this study also includes 16 APP isolates of Spanish origin with known epidemiological relationships through vertical integrated systems. Genomic comparisons provided a deeper understanding of molecular and epidemiological knowledge between different APP serotypes. Furthermore, determination of resistance and toxin profiles allowed correlation with the presence of mobile genetic elements and specific serotype, respectively.
Collapse
|
138
|
Wyrsch ER, Dolejska M, Djordjevic SP. Genomic Analysis of an I1 Plasmid Hosting a sul3-Class 1 Integron and blaSHV-12 within an Unusual Escherichia coli ST297 from Urban Wildlife. Microorganisms 2022; 10:microorganisms10071387. [PMID: 35889108 PMCID: PMC9319951 DOI: 10.3390/microorganisms10071387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a β-lactamase gene that encodes the ability to hydrolyze oxyimino β-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic;
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, University Hospital Brno, 62500 Brno, Czech Republic
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Correspondence:
| |
Collapse
|
139
|
Comparative analysis of multiplexed PCR and short- and long-read whole genome sequencing to investigate a large Klebsiella pneumoniae outbreak in New York State. Diagn Microbiol Infect Dis 2022; 104:115765. [DOI: 10.1016/j.diagmicrobio.2022.115765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
|
140
|
Mestre MR, Gao LA, Shah SA, López-Beltrán A, González-Delgado A, Martínez-Abarca F, Iranzo J, Redrejo-Rodríguez M, Zhang F, Toro N. UG/Abi: a highly diverse family of prokaryotic reverse transcriptases associated with defense functions. Nucleic Acids Res 2022; 50:6084-6101. [PMID: 35648479 PMCID: PMC9226505 DOI: 10.1093/nar/gkac467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
Reverse transcriptases (RTs) are enzymes capable of synthesizing DNA using RNA as a template. Within the last few years, a burst of research has led to the discovery of novel prokaryotic RTs with diverse antiviral properties, such as DRTs (Defense-associated RTs), which belong to the so-called group of unknown RTs (UG) and are closely related to the Abortive Infection system (Abi) RTs. In this work, we performed a systematic analysis of UG and Abi RTs, increasing the number of UG/Abi members up to 42 highly diverse groups, most of which are predicted to be functionally associated with other gene(s) or domain(s). Based on this information, we classified these systems into three major classes. In addition, we reveal that most of these groups are associated with defense functions and/or mobile genetic elements, and demonstrate the antiphage role of four novel groups. Besides, we highlight the presence of one of these systems in novel families of human gut viruses infecting members of the Bacteroidetes and Firmicutes phyla. This work lays the foundation for a comprehensive and unified understanding of these highly diverse RTs with enormous biotechnological potential.
Collapse
Affiliation(s)
- Mario Rodríguez Mestre
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Linyi Alex Gao
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Ledreborg Allé 34, DK-2820 Gentofte, Denmark
| | - Adrián López-Beltrán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alejandro González-Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Spain
| | - Francisco Martínez-Abarca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Spain
| | - Jaime Iranzo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Modesto Redrejo-Rodríguez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Spain
| |
Collapse
|
141
|
Gruel G, Couvin D, Guyomard-Rabenirina S, Arlet G, Bambou JC, Pot M, Roy X, Talarmin A, Tressieres B, Ferdinand S, Breurec S. High Prevalence of bla CTXM-1/IncI1-Iγ/ST3 Plasmids in Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Collected From Domestic Animals in Guadeloupe (French West Indies). Front Microbiol 2022; 13:882422. [PMID: 35651489 PMCID: PMC9149308 DOI: 10.3389/fmicb.2022.882422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) have been classified in the group of resistant bacteria of highest priority. We determined the prevalence of ESBL-E collected in feces from household and shelter pets in Guadeloupe (French West Indies). A single rectal swab was taken from 125 dogs and 60 cats between June and September 2019. The prevalence of fecal carriage of ESBL-E was 7.6% (14/185, 95% CI: 4.2-12.4), within the range observed worldwide. The only risk factor associated with a higher prevalence of ESBL-E rectal carriage was a stay in a shelter, suggesting that refuges could be hotspots for their acquisition. All but one (Klebsiella pneumoniae from a cat) were Escherichia coli. We noted the presence of a bla CTX-M-1/IncI1-Iγ/sequence type (ST3) plasmid in 11 ESBL-producing E. coli isolates belonging to ST328 (n = 6), ST155 (n = 4) and ST953 (n = 1). A bla CTX-M-15 gene was identified in the three remaining ESBL-E isolates. The bla CTX-M-1 and most of the antimicrobial resistance genes were present in a well-conserved large conjugative IncI1-Iγ/ST3 plasmid characterized by two accessory regions containing antibiotic resistance genes. The plasmid has been detected worldwide in E. coli isolates from humans and several animal species, such as food-producing animals, wild birds and pets, and from the environment. This study shows the potential role of pets as a reservoir of antimicrobial-resistant bacteria or genes for humans and underlines the importance of basic hygiene measures by owners of companion animals.
Collapse
Affiliation(s)
- Gaëlle Gruel
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | | | | | - Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Benoit Tressieres
- INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France.,INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France.,Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, Pointe-à-Pitre, France
| |
Collapse
|
142
|
Pilla G, Arcari G, Tang CM, Carattoli A. Virulence plasmid pINV as a genetic signature for Shigella flexneri phylogeny. Microb Genom 2022; 8. [PMID: 35759406 PMCID: PMC9455713 DOI: 10.1099/mgen.0.000846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella flexneri is a major health burden in low- and middle-income countries, where it is a leading cause of mortality associated with diarrhoea in children, and shows an increasing incidence among travellers and men having sex with men. Like all Shigella spp., S. flexneri has evolved from commensal Escherichia coli following the acquisition of a large plasmid pINV, which contains genes essential for virulence. Current sequence typing schemes of Shigella are based on combinations of chromosomal genetic loci, since pINV-encoded virulence genes are often lost during growth in the laboratory, making these elements inappropriate for sequence typing. By performing comparative analysis of pINVs from S. flexneri strains isolated from different geographical regions and belonging to different serotypes, we found that in contrast to plasmid-encoded virulence genes, plasmid maintenance genes are highly stable pINV-encoded elements. For the first time, to our knowledge, we have developed a S. flexneri plasmid multilocus sequence typing (pMLST) method based on different combinations of alleles of the vapBC and yacAB toxin–antitoxin (TA) systems, and the parAB partitioning system. This enables typing of S. flexneri pINV plasmids into distinct ‘virulence sequence types’ (vSTs). Furthermore, the phylogenies of vST alleles and bacterial host core genomes suggests an intimate co-evolution of pINV with the chromosome of its bacterial host, consistent with previous findings. This work demonstrates the potential of plasmid maintenance loci as genetic characteristics to study as well as to trace the molecular phylogenesis of S. flexneri pINV and the phylogenetic relationship of this plasmid with its bacterial host.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
143
|
Phenotypic characterization and analysis of complete genomes of two distinct strains of the proposed species "L. swaminathanii". Sci Rep 2022; 12:9137. [PMID: 35650389 PMCID: PMC9159981 DOI: 10.1038/s41598-022-13119-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Recently, a new Listeria species, “Listeria swaminathanii”, was proposed. Here, we phenotypically and genotypically characterize two additional strains that were previously obtained from soil samples and compare the results to the type strain. Complete genomes for both strains were assembled from hybrid Illumina and Nanopore sequencing reads and annotated. Further genomic analysis including average nucleotide identity (ANI) and detection of mobile genetic elements and genes of interest (e.g., virulence-associated) were conducted. The strains showed 98.7–98.8% ANI with the type strain. The UTK C1-0015 genome contained a partial monocin locus and a plasmid, while the UTK C1-0024 genome contained a full monocin locus and a prophage. Phenotypic characterization consistent with those performed on the proposed type strain was conducted to assess consistency of phenotypes across a greater diversity of the proposed species (n = 3 instead of n = 1). Only a few findings were notably different from those of the type strain, such as catalase activity, glycerol metabolism, starch metabolism, and growth at 41 °C. This study further expands our understanding of this newly proposed sensu stricto Listeria species.
Collapse
|
144
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2022; 50:4315-4328. [PMID: 34606604 DOI: 10.1093/nar/gkab859/40506127/gkab859.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 05/27/2023] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
145
|
Whole genome sequencing of Klebsiella pneumoniae clinical isolates sequence type 627 isolated from Egyptian patients. PLoS One 2022; 17:e0265884. [PMID: 35320327 PMCID: PMC8942217 DOI: 10.1371/journal.pone.0265884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is considered a threat to public health especially due to multidrug resistance emergence. It is largely oligoclonal based on multi-locus sequence typing (MLST); in Egypt, ST 627 was recently detected. Despites the global dissemination of this ST, there is still paucity of information about it. Herein, we used 4 K. pneumoniae ST627 for whole genome sequencing utilizing an Illumina MiSeq platform. Genome sequences were examined for resistance and virulence determinants, capsular types, plasmids, insertion sequences, phage regions, and Clustered Regularly Interspaced Palindromic Repeats (CRISPR) regions using bioinformatic analysis. The molecular characterization revealed 15 and 65 antimicrobial resistance and virulence genes, respectively. Resistance genes such as tet(D), aph(3’’)-Ib, aph(6)-Id, blaTEM-234, fosA, and fosA6; were mainly responsible for tetracycline, aminoglycoside, and fosfomycin resistance; respectively. The capsular typing revealed that the four strains are KL-24 and O1v1. One plasmid was found in all samples known as pC17KP0052-1 and another plasmid with accession no. NZ_CP032191.1 was found only in K90. IncFIB(K) and IncFII(K) are two replicons found in all samples, while ColRNAI replicon was found only in K90. Entero P88, Salmon SEN5, and Klebsi phiKO2 intact phage regions were identified. All samples harbored CRISPR arrays including CRISPR1 and CRISPR2. Our results shed light on critical tasks of mobile genetic elements in ST 627 in antibiotic resistance spreading.
Collapse
|
146
|
Chen C, Xu H, Liu R, Hu X, Han J, Wu L, Fu H, Zheng B, Xiao Y. Emergence of Neonatal Sepsis Caused by MCR-9- and NDM-1-Co-Producing Enterobacter hormaechei in China. Front Cell Infect Microbiol 2022; 12:879409. [PMID: 35601097 PMCID: PMC9120612 DOI: 10.3389/fcimb.2022.879409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
Mobile colistin resistance (mcr) genes represent an emerging threat to public health. Reports on the prevalence, antimicrobial profiles, and clonality of MCR-9-producing Enterobacter cloacae complex (ECC) isolates on a national scale in China are limited. We screened 3,373 samples from humans, animals, and the environment and identified eleven MCR-9-positive ECC isolates. We further investigated their susceptibility, epidemiology, plasmid profiles, genetic features, and virulence potential. Ten strains were isolated from severe bloodstream infection cases, especially three of them were recovered from neonatal sepsis. Enterobacter hormaechei was the most predominant species among the MCR-9-producing ECC population. Moreover, the co-existence of MCR-9, CTX-M, and SHV-12 encoding genes in MCR-9-positive isolates was globally observed. Notably, mcr-9 was mainly carried by IncHI2 plasmids, and we found a novel ~187 kb IncFII plasmid harboring mcr-9, with low similarity with known plasmids. In summary, our study presented genomic insights into genetic characteristics of MCR-9-producing ECC isolates retrieved from human, animal, and environment samples with one health perspective. This study is the first to reveal NDM-1- and MCR-9-co-producing ECC from neonatal sepsis in China. Our data highlights the risk for the hidden spread of the mcr-9 colistin resistance gene.
Collapse
Affiliation(s)
- Chunlei Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jianfeng Han
- Sansure Biotech Inc. Medical Affairs Department, National Joint Local Engineering Research Center for Genetic Diagnosis of Infection Diseases and Tumors, Beijing, China
| | - Lingjiao Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Fu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| | - Yonghong Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Beiwen Zheng, ; Yonghong Xiao,
| |
Collapse
|
147
|
Azli B, Razak MN, Omar AR, Mohd Zain NA, Abdul Razak F, Nurulfiza I. Metagenomics Insights Into the Microbial Diversity and Microbiome Network Analysis on the Heterogeneity of Influent to Effluent Water. Front Microbiol 2022; 13:779196. [PMID: 35495647 PMCID: PMC9048743 DOI: 10.3389/fmicb.2022.779196] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sanitizing the water sources of local communities is important to control the spread of microbial resistance genes, especially those for water-borne illnesses. The activities of antibiotic resistance gene (ARG)-host pathogens pose a threat to public health, and it has been estimated that the infection will lead up to 10 million deaths globally by the year 2050. Hence, in this study, we aim to analyze the efficiency of our municipal wastewater treatment plant (WWTP) process in producing pathogen-free water by investigating the microbial composition between influent and effluent water sites. Shotgun metagenomics sequencing using the Illumina platform was performed on the influent and effluent samples of six different WWTP sites located in Johore, Malaysia. After raw data pre-processing, the non-redundant contigs library was then aligned against BLASTP for taxonomy profiling and the Comprehensive Antibiotic Resistance Database for ARG annotation. Interestingly, the alpha-diversity result reported that effluent site samples showed higher abundance and diverse heterogeneity compared to the influent site. The principal component analysis (PCA) and non-metric multidimensional scaling (NMDS) plots also suggested that effluent sites showed high variation in the genetic material due to loosely clustered sample plots, as compared to the tightly clustered influent samples. This study has successfully identified the top three abundant phyla in influent-Proteobacteria, Firmicutes, and Bacteroidetes-and effluent-Proteobacteria, Actinobacteria, and Bacteroidetes-water. Despite the overlap within the top three abundant phyla in influent and effluent sites (Proteobacteria and Bacteroidetes), the ARG composition heat map and drug class phenotype plot bar exhibits a general trend of a downward shift, showing the efficiency of WWTP in reducing opportunistic pathogens. Overall, it was demonstrated that our municipal WWTP efficiently eliminated pathogenic microbes from the influent water before its total discharge to the environment, though not with the total elimination of microorganisms. This metagenomics study allowed for an examination of our water source and showed the potential interaction of species and ARGs residing in the influent and effluent environment. Both microbial profile structure and co-occurrence network analysis provide integrated understanding regarding the diversity of microorganisms and interactions for future advanced water sanitation treatments.
Collapse
Affiliation(s)
- Bahiyah Azli
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Mohd Nasharudin Razak
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Nor Azimah Mohd Zain
- Department of Biosciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia.,Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Fatimah Abdul Razak
- Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - I Nurulfiza
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Seri Kembangan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
148
|
Belaouni HA, Compant S, Antonielli L, Nikolic B, Zitouni A, Sessitsch A. In-depth genome analysis of Bacillus sp. BH32, a salt stress-tolerant endophyte obtained from a halophyte in a semiarid region. Appl Microbiol Biotechnol 2022; 106:3113-3137. [PMID: 35435457 DOI: 10.1007/s00253-022-11907-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Endophytic strains belonging to the Bacillus cereus group were isolated from the halophytes Atriplex halimus L. (Amaranthaceae) and Tamarix aphylla L. (Tamaricaceae) from costal and continental regions in Algeria. Based on their salt tolerance (up to 5%), the strains were tested for their ability to alleviate salt stress in tomato and wheat. Bacillus sp. strain BH32 showed the highest potential to reduce salinity stress (up to + 50% and + 58% of dry weight improvement, in tomato and wheat, respectively, compared to the control). To determine putative mechanisms involved in salt tolerance and plant growth promotion, the whole genome of Bacillus sp. BH32 was sequenced, annotated, and used for comparative genomics against the genomes of closely related strains. The pangenome of Bacillus sp. BH32 and its closest relative was further analyzed. The phylogenomic analyses confirmed its taxonomic position, a member of the Bacillus cereus group, with intergenomic distances (GBDP analysis) pinpointing to a new taxon (digital DNA-DNA hybridization, dDDH < 70%). Genome mining unveiled several genes involved in stress tolerance, production of anti-oxidants and genes involved in plant growth promotion as well as in the production of secondary metabolites. KEY POINTS : • Bacillus sp. BH32 and other bacterial endophytes were isolated from halophytes, to be tested on tomato and wheat and to limit salt stress adverse effects. • The strain with the highest potential was then studied at the genomic level to highlight numerous genes linked to plant growth promotion and stress tolerance. • Pangenome approaches suggest that the strain belongs to a new taxon within the Bacillus cereus group.
Collapse
Affiliation(s)
- Hadj Ahmed Belaouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Stéphane Compant
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria.
| | - Livio Antonielli
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Branislav Nikolic
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| | - Abdelghani Zitouni
- Laboratoire de Biologie Des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algiers, Algeria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, 3430, Tulln, Austria
| |
Collapse
|
149
|
Bird MT, Greig DR, Nair S, Jenkins C, Godbole G, Gharbia SE. Use of Nanopore Sequencing to Characterise the Genomic Architecture of Mobile Genetic Elements Encoding bla CTX-M-15 in Escherichia coli Causing Travellers' Diarrhoea. Front Microbiol 2022; 13:862234. [PMID: 35422790 PMCID: PMC9002331 DOI: 10.3389/fmicb.2022.862234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Increasing levels of antimicrobial resistance (AMR) have been documented in Escherichia coli causing travellers’ diarrhoea, particularly to the third-generation cephalosporins. Diarrhoeagenic E. coli (DEC) can act as a reservoir for the exchange of AMR genes between bacteria residing in the human gut, enabling them to survive and flourish through the selective pressures of antibiotic treatments. Using Oxford Nanopore Technology (ONT), we sequenced eight isolates of DEC from four patients’ specimens who had all recently returned to the United Kingdome from Pakistan. Sequencing yielded two DEC harbouring blaCTX-M-15 per patient, all with different sequence types (ST) and belonging to five different pathotypes. The study aimed to determine whether blaCTX-M-15 was located on the chromosome or plasmid and to characterise the drug-resistant regions to better understand the mechanisms of onward transmission of AMR determinants. Patients A and C both had one isolate where blaCTX-M-15 was located on the plasmid (899037 & 623213, respectively) and one chromosomally encoded (899091 & 623214, respectively). In patient B, blaCTX-M-15 was plasmid-encoded in both DEC isolates (786605 & 7883090), whereas in patient D, blaCTX-M-15 was located on the chromosome in both DEC isolates (542093 & 542099). The two blaCTX-M-15-encoding plasmids associated with patient B were different although the blaCTX-M-15-encoding plasmid isolated from 788309 (IncFIB) exhibited high nucleotide similarity to the blaCTX-M-15-encoding plasmid isolated from 899037 (patient A). In the four isolates where blaCTX-M-15 was chromosomally encoded, two isolates (899091 & 542099) shared the same insertion site. The blaCTX-M-15 insertion site in isolate 623214 was described previously, whereas that of isolate 542093 was unique to this study. Analysis of Nanopore sequencing data enables us to characterise the genomic architecture of mobile genetic elements encoding AMR determinants. These data may contribute to a better understanding of persistence and onward transmission of AMR determinants in multidrug-resistant (MDR) E. coli causing gastrointestinal and extra-intestinal infections.
Collapse
Affiliation(s)
- Matthew T Bird
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| | - David R Greig
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Satheesh Nair
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Saheer E Gharbia
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| |
Collapse
|
150
|
Shalon N, Relman DA, Yaffe E. Precise genotyping of circular mobile elements from metagenomic data uncovers human-associated plasmids with recent common ancestors. Genome Res 2022; 32:986-1003. [PMID: 35414589 PMCID: PMC9104695 DOI: 10.1101/gr.275894.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Mobile genetic elements with circular genomes play a key role in the evolution of microbial communities. Their circular genomes correspond to circular walks in metagenome graphs, and yet, assemblies derived from natural microbial communities produce graphs riddled with spurious cycles, complicating the accurate reconstruction of circular genomes. We present DomCycle, an algorithm that reconstructs likely circular genomes based on the identification of so-called 'dominant' graph cycles. In the implementation we leverage paired reads to bridge assembly gaps and scrutinize cycles through a nucleotide-level analysis, making the approach robust to misassembly artifacts. We validated the approach using simulated and real sequencing data. Application of DomCycle to 32 publicly available DNA shotgun sequence data sets from diverse natural environments led to the reconstruction of hundreds of circular mobile genomes. Clustering revealed 20 highly prevalent and cryptic plasmids that have clonal population structures with recent common ancestors. This method facilitates the study of microbial communities that evolve through horizontal gene transfer.
Collapse
|