101
|
Alshehri MA, Manee MM, Alqahtani FH, Al-Shomrani BM, Uversky VN. On the Prevalence and Potential Functionality of an Intrinsic Disorder in the MERS-CoV Proteome. Viruses 2021; 13:v13020339. [PMID: 33671602 PMCID: PMC7926987 DOI: 10.3390/v13020339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Middle East respiratory syndrome is a severe respiratory illness caused by an infectious coronavirus. This virus is associated with a high mortality rate, but there is as of yet no effective vaccine or antibody available for human immunity/treatment. Drug design relies on understanding the 3D structures of viral proteins; however, arriving at such understanding is difficult for intrinsically disordered proteins, whose disorder-dependent functions are key to the virus’s biology. Disorder is suggested to provide viral proteins with highly flexible structures and diverse functions that are utilized when invading host organisms and adjusting to new habitats. To date, the functional roles of intrinsically disordered proteins in the mechanisms of MERS-CoV pathogenesis, transmission, and treatment remain unclear. In this study, we performed structural analysis to evaluate the abundance of intrinsic disorder in the MERS-CoV proteome and in individual proteins derived from the MERS-CoV genome. Moreover, we detected disordered protein binding regions, namely, molecular recognition features and short linear motifs. Studying disordered proteins/regions in MERS-CoV could contribute to unlocking the complex riddles of viral infection, exploitation strategies, and drug development approaches in the near future by making it possible to target these important (yet challenging) unstructured regions.
Collapse
Affiliation(s)
- Manal A. Alshehri
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Manee M. Manee
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Fahad H. Alqahtani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
| | - Badr M. Al-Shomrani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (M.A.A.); (M.M.M.); (F.H.A.)
- Correspondence: (B.M.A.-S.); (V.N.U.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612, USA
- Correspondence: (B.M.A.-S.); (V.N.U.)
| |
Collapse
|
102
|
Martínez YA, Guo X, Portales-Pérez DP, Rivera G, Castañeda-Delgado JE, García-Pérez CA, Enciso-Moreno JA, Lara-Ramírez EE. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus. PLoS One 2021; 16:e0246901. [PMID: 33596252 PMCID: PMC7888644 DOI: 10.1371/journal.pone.0246901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.
Collapse
Affiliation(s)
- Yamelie A. Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Diana P. Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Cátedras-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Carlos A. García-Pérez
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A. Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| |
Collapse
|
103
|
Yang CW, Shi ZL. Uncovering potential host proteins and pathways that may interact with eukaryotic short linear motifs in viral proteins of MERS, SARS and SARS2 coronaviruses that infect humans. PLoS One 2021; 16:e0246150. [PMID: 33534852 PMCID: PMC7857568 DOI: 10.1371/journal.pone.0246150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A coronavirus pandemic caused by a novel coronavirus (SARS-CoV-2) has spread rapidly worldwide since December 2019. Improved understanding and new strategies to cope with novel coronaviruses are urgently needed. Viruses (especially RNA viruses) encode a limited number and size (length of polypeptide chain) of viral proteins and must interact with the host cell components to control (hijack) the host cell machinery. To achieve this goal, the extensive mimicry of SLiMs in host proteins provides an effective strategy. However, little is known regarding SLiMs in coronavirus proteins and their potential targets in host cells. The objective of this study is to uncover SLiMs in coronavirus proteins that are present within host cells. These SLiMs have a high possibility of interacting with host intracellular proteins and hijacking the host cell machinery for virus replication and dissemination. In total, 1,479 SLiM hits were identified in the 16 proteins of 590 coronaviruses infecting humans. Overall, 106 host proteins were identified that may interact with SLiMs in 16 coronavirus proteins. These SLiM-interacting proteins are composed of many intracellular key regulators, such as receptors, transcription factors and kinases, and may have important contributions to virus replication, immune evasion and viral pathogenesis. A total of 209 pathways containing proteins that may interact with SLiMs in coronavirus proteins were identified. This study uncovers potential mechanisms by which coronaviruses hijack the host cell machinery. These results provide potential therapeutic targets for viral infections.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Center for Applied Artificial Intelligence Research, Soochow University, Taipei, Taiwan
- * E-mail:
| | - Zhi-Ling Shi
- Ocean School of Fuzhou University, Fuzhou University, Fuzhou, China
| |
Collapse
|
104
|
Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:618835. [PMID: 33597960 PMCID: PMC7882706 DOI: 10.3389/fpls.2020.618835] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.
Collapse
|
105
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
106
|
Csizmadia G, Erdős G, Tordai H, Padányi R, Tosatto S, Dosztányi Z, Hegedűs T. The MemMoRF database for recognizing disordered protein regions interacting with cellular membranes. Nucleic Acids Res 2021; 49:D355-D360. [PMID: 33119751 PMCID: PMC7778998 DOI: 10.1093/nar/gkaa954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Protein and lipid membrane interactions play fundamental roles in a large number of cellular processes (e.g. signalling, vesicle trafficking, or viral invasion). A growing number of examples indicate that such interactions can also rely on intrinsically disordered protein regions (IDRs), which can form specific reversible interactions not only with proteins but also with lipids. We named IDRs involved in such membrane lipid-induced disorder-to-order transition as MemMoRFs, in an analogy to IDRs exhibiting disorder-to-order transition upon interaction with protein partners termed Molecular Recognition Features (MoRFs). Currently, both the experimental detection and computational characterization of MemMoRFs are challenging, and information about these regions are scattered in the literature. To facilitate the related investigations we generated a comprehensive database of experimentally validated MemMoRFs based on manual curation of literature and structural data. To characterize the dynamics of MemMoRFs, secondary structure propensity and flexibility calculated from nuclear magnetic resonance chemical shifts were incorporated into the database. These data were supplemented by inclusion of sentences from papers, functional data and disease-related information. The MemMoRF database can be accessed via a user-friendly interface at https://memmorf.hegelab.org, potentially providing a central resource for the characterization of disordered regions in transmembrane and membrane-associated proteins.
Collapse
Affiliation(s)
- Georgina Csizmadia
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Gábor Erdős
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Rita Padányi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| | - Silvio Tosatto
- Department of Biomedical Sciences, University of Padua, Padua 35131, Italy
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest 1094, Hungary
| |
Collapse
|
107
|
Louadi Z, Yuan K, Gress A, Tsoy O, Kalinina OV, Baumbach J, Kacprowski T, List M. DIGGER: exploring the functional role of alternative splicing in protein interactions. Nucleic Acids Res 2021; 49:D309-D318. [PMID: 32976589 PMCID: PMC7778957 DOI: 10.1093/nar/gkaa768] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing plays a major role in regulating the functional repertoire of the proteome. However, isoform-specific effects to protein-protein interactions (PPIs) are usually overlooked, making it impossible to judge the functional role of individual exons on a systems biology level. We overcome this barrier by integrating protein-protein interactions, domain-domain interactions and residue-level interactions information to lift exon expression analysis to a network level. Our user-friendly database DIGGER is available at https://exbio.wzw.tum.de/digger and allows users to seamlessly switch between isoform and exon-centric views of the interactome and to extract sub-networks of relevant isoforms, making it an essential resource for studying mechanistic consequences of alternative splicing.
Collapse
Affiliation(s)
- Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kevin Yuan
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Alexander Gress
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Olga Tsoy
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.,Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.,Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Tim Kacprowski
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
108
|
Kliche J, Kuss H, Ali M, Ivarsson Y. Cytoplasmic short linear motifs in ACE2 and integrin β 3 link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. Sci Signal 2021; 14:14/665/eabf1117. [PMID: 33436498 PMCID: PMC7928716 DOI: 10.1126/scisignal.abf1117] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2, the virus that causes COVID-19, enters cells through endocytosis upon binding to the cell surface receptor ACE2 and potentially others, including integrins. Using bioinformatics, Mészáros et al. predicted the presence of short amino acid sequences, called short linear motifs (SLiMs), in the cytoplasmic tails of ACE2 and various integrins that may engage the endocytic and autophagic machinery. Using affinity binding assays, Kliche et al. not only confirmed that many of these predicted SLiMs interacted with target peptides in various components of the endocytosis and autophagy machinery, but also found that these interactions were regulated by the phosphorylation of SLiM-adjacent amino acids. Together, these findings have identified a potential link between autophagy and integrin signaling and could lead to new ways to prevent viral infection. The spike protein of SARS-CoV-2 binds the angiotensin-converting enzyme 2 (ACE2) on the host cell surface and subsequently enters host cells through receptor-mediated endocytosis. Additional cell receptors may be directly or indirectly involved, including integrins. The cytoplasmic tails of ACE2 and integrins contain several predicted short linear motifs (SLiMs) that may facilitate internalization of the virus as well as its subsequent propagation through processes such as autophagy. Here, we measured the binding affinity of predicted interactions between SLiMs in the cytoplasmic tails of ACE2 and integrin β3 with proteins that mediate endocytic trafficking and autophagy. We validated that a class I PDZ-binding motif mediated binding of ACE2 to the scaffolding proteins SNX27, NHERF3, and SHANK, and that a binding site for the clathrin adaptor AP2 μ2 in ACE2 overlaps with a phospho-dependent binding site for the SH2 domains of Src family tyrosine kinases. Furthermore, we validated that an LC3-interacting region (LIR) in integrin β3 bound to the ATG8 domains of the autophagy receptors MAP1LC3 and GABARAP in a manner enhanced by LIR-adjacent phosphorylation. Our results provide molecular links between cell receptors and mediators of endocytosis and autophagy that may facilitate viral entry and propagation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Hanna Kuss
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.,WWU Münster, Institute for Evolution and Biodiversity, DE-48149 Münster, Germany
| | - Muhammad Ali
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
109
|
Mészáros B, Sámano-Sánchez H, Alvarado-Valverde J, Čalyševa J, Martínez-Pérez E, Alves R, Shields DC, Kumar M, Rippmann F, Chemes LB, Gibson TJ. Short linear motif candidates in the cell entry system used by SARS-CoV-2 and their potential therapeutic implications. Sci Signal 2021; 14:eabd0334. [PMID: 33436497 PMCID: PMC7928535 DOI: 10.1126/scisignal.abd0334] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The first reported receptor for SARS-CoV-2 on host cells was the angiotensin-converting enzyme 2 (ACE2). However, the viral spike protein also has an RGD motif, suggesting that cell surface integrins may be co-receptors. We examined the sequences of ACE2 and integrins with the Eukaryotic Linear Motif (ELM) resource and identified candidate short linear motifs (SLiMs) in their short, unstructured, cytosolic tails with potential roles in endocytosis, membrane dynamics, autophagy, cytoskeleton, and cell signaling. These SLiM candidates are highly conserved in vertebrates and may interact with the μ2 subunit of the endocytosis-associated AP2 adaptor complex, as well as with various protein domains (namely, I-BAR, LC3, PDZ, PTB, and SH2) found in human signaling and regulatory proteins. Several motifs overlap in the tail sequences, suggesting that they may act as molecular switches, such as in response to tyrosine phosphorylation status. Candidate LC3-interacting region (LIR) motifs are present in the tails of integrin β3 and ACE2, suggesting that these proteins could directly recruit autophagy components. Our findings identify several molecular links and testable hypotheses that could uncover mechanisms of SARS-CoV-2 attachment, entry, and replication against which it may be possible to develop host-directed therapies that dampen viral infection and disease progression. Several of these SLiMs have now been validated to mediate the predicted peptide interactions.
Collapse
Affiliation(s)
- Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Jesús Alvarado-Valverde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jelena Čalyševa
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Elizabeth Martínez-Pérez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Laboratorio de bioinformática estructural, Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
| | - Renato Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Denis C Shields
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Friedrich Rippmann
- Computational Chemistry & Biology, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Lucía B Chemes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, CP1650 San Martín, Buenos Aires, Argentina.
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
110
|
Piovesan D, Necci M, Escobedo N, Monzon AM, Hatos A, Mičetić I, Quaglia F, Paladin L, Ramasamy P, Dosztányi Z, Vranken WF, Davey N, Parisi G, Fuxreiter M, Tosatto SE. MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res 2021; 49:D361-D367. [PMID: 33237329 PMCID: PMC7779018 DOI: 10.1093/nar/gkaa1058] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.
Collapse
Affiliation(s)
- Damiano Piovesan
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Marco Necci
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Nahuel Escobedo
- Dept. of Science and Technology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | | | - András Hatos
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Ivan Mičetić
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Federica Quaglia
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Lisanna Paladin
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Pathmanaban Ramasamy
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, BC building, 6th floor, CP 263, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent 9000, Belgium
- Department of Biomolecular Medicine, Faculty of Health Sciences and Medicine, Ghent University, Ghent 9000, Belgium
| | | | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Triomflaan, BC building, 6th floor, CP 263, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Centre for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Gustavo Parisi
- Dept. of Science and Technology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Monika Fuxreiter
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| | - Silvio C E Tosatto
- Dept. of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua 35121, Italy
| |
Collapse
|
111
|
Abstract
Intrinsically disordered proteins, defying the traditional protein structure-function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.
Collapse
|
112
|
Novel RB1 and MET Gene Mutations in a Case with Bilateral Retinoblastoma Followed by Multiple Metastatic Osteosarcoma. Diagnostics (Basel) 2020; 11:diagnostics11010028. [PMID: 33375764 PMCID: PMC7823920 DOI: 10.3390/diagnostics11010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Retinoblastoma (Rb) is a malignant tumor of the developing retina that affects children before the age of five years in association with inherited or early germline mutations of the RB1 gene. The genetic predisposition is also a driver for other primary malignancies, which have become the leading cause of death in retinoblastoma survivors. Other malignancies can occur as a consequence of radiotherapy. We describe a patient with retinoblastoma in which we detected a novel RB1 c.2548C > T, p.(Gln850Ter) and a synchronous MET c.3029C > T, p.(Thr1010Ile) mutation as well. After presenting with bilateral retinoblastoma, the patient developed at least four different manifestations of two independent osteosarcomas. Our goal was to identify all germline and somatic genetic alterations in available tissue samples from different time periods and to reconstruct their clonal relations using next generation sequencing (NGS). We also used structural and functional prediction of the mutant RB and MET proteins to find interactions between the defected proteins with potential causative role in the development of this unique form of retinoblastoma. Both histopathology and NGS findings supported the independent nature of a chondroblastic osteosarcoma of the irradiated facial bone followed by an osteoblastic sarcoma of the leg (tibia).
Collapse
|
113
|
Hekman RM, Hume AJ, Goel RK, Abo KM, Huang J, Blum BC, Werder RB, Suder EL, Paul I, Phanse S, Youssef A, Alysandratos KD, Padhorny D, Ojha S, Mora-Martin A, Kretov D, Ash PEA, Verma M, Zhao J, Patten JJ, Villacorta-Martin C, Bolzan D, Perea-Resa C, Bullitt E, Hinds A, Tilston-Lunel A, Varelas X, Farhangmehr S, Braunschweig U, Kwan JH, McComb M, Basu A, Saeed M, Perissi V, Burks EJ, Layne MD, Connor JH, Davey R, Cheng JX, Wolozin BL, Blencowe BJ, Wuchty S, Lyons SM, Kozakov D, Cifuentes D, Blower M, Kotton DN, Wilson AA, Mühlberger E, Emili A. Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Mol Cell 2020; 80:1104-1122.e9. [PMID: 33259812 PMCID: PMC7674017 DOI: 10.1016/j.molcel.2020.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.
Collapse
Affiliation(s)
- Ryan M Hekman
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Raghuveera Kumar Goel
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kristine M Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jessie Huang
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Indranil Paul
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Sadhna Phanse
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Ahmed Youssef
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA
| | - Konstantinos D Alysandratos
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | | - Dmitry Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Mamta Verma
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - J J Patten
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Dante Bolzan
- Department of Computer Science, University of Miami, Miami, FL, USA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Harvard Medical School, Boston, MA, USA
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Anne Hinds
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Julian H Kwan
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark McComb
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, USA
| | - Avik Basu
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Valentina Perissi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Robert Davey
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Benjamin L Wolozin
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, FL, USA; Department of Biology, University of Miami, Miami, FL, USA; Miami Institute of Data Science and Computing, Miami, FL, USA
| | - Shawn M Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Blower
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Molecular Biology, Harvard Medical School, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
114
|
Mavri M, Spiess K, Rosenkilde MM, Rutland CS, Vrecl M, Kubale V. Methods for Studying Endocytotic Pathways of Herpesvirus Encoded G Protein-Coupled Receptors. Molecules 2020; 25:E5710. [PMID: 33287269 PMCID: PMC7730005 DOI: 10.3390/molecules25235710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Endocytosis is a fundamental process involved in trafficking of various extracellular and transmembrane molecules from the cell surface to its interior. This enables cells to communicate and respond to external environments, maintain cellular homeostasis, and transduce signals. G protein-coupled receptors (GPCRs) constitute a family of receptors with seven transmembrane alpha-helical domains (7TM receptors) expressed at the cell surface, where they regulate physiological and pathological cellular processes. Several herpesviruses encode receptors (vGPCRs) which benefits the virus by avoiding host immune surveillance, supporting viral dissemination, and thereby establishing widespread and lifelong infection, processes where receptor signaling and/or endocytosis seem central. vGPCRs are rising as potential drug targets as exemplified by the cytomegalovirus-encoded receptor US28, where its constitutive internalization has been exploited for selective drug delivery in virus infected cells. Therefore, studying GPCR trafficking is of great importance. This review provides an overview of the current knowledge of endocytic and cell localization properties of vGPCRs and methodological approaches used for studying receptor internalization. Using such novel approaches, we show constitutive internalization of the BILF1 receptor from human and porcine γ-1 herpesviruses and present motifs from the eukaryotic linear motif (ELM) resources with importance for vGPCR endocytosis.
Collapse
Affiliation(s)
- Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, Sutton, Bonington Campus, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| |
Collapse
|
115
|
England SJ, Cerda GA, Kowalchuk A, Sorice T, Grieb G, Lewis KE. Hmx3a Has Essential Functions in Zebrafish Spinal Cord, Ear and Lateral Line Development. Genetics 2020; 216:1153-1185. [PMID: 33077489 PMCID: PMC7768253 DOI: 10.1534/genetics.120.303748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Transcription factors that contain a homeodomain DNA-binding domain have crucial functions in most aspects of cellular function and embryonic development in both animals and plants. Hmx proteins are a subfamily of NK homeodomain-containing proteins that have fundamental roles in development of sensory structures such as the eye and the ear. However, Hmx functions in spinal cord development have not been analyzed. Here, we show that zebrafish (Danio rerio) hmx2 and hmx3a are coexpressed in spinal dI2 and V1 interneurons, whereas hmx3b, hmx1, and hmx4 are not expressed in spinal cord. Using mutational analyses, we demonstrate that, in addition to its previously reported role in ear development, hmx3a is required for correct specification of a subset of spinal interneuron neurotransmitter phenotypes, as well as correct lateral line progression and survival to adulthood. Surprisingly, despite similar expression patterns of hmx2 and hmx3a during embryonic development, zebrafish hmx2 mutants are viable and have no obviously abnormal phenotypes in sensory structures or neurons that require hmx3a In addition, embryos homozygous for deletions of both hmx2 and hmx3a have identical phenotypes to severe hmx3a single mutants. However, mutating hmx2 in hypomorphic hmx3a mutants that usually develop normally, results in abnormal ear and lateral line phenotypes. This suggests that while hmx2 cannot compensate for loss of hmx3a, it does function in these developmental processes, although to a much lesser extent than hmx3a More surprisingly, our mutational analyses suggest that Hmx3a may not require its homeodomain DNA-binding domain for its roles in viability or embryonic development.
Collapse
Affiliation(s)
| | - Gustavo A Cerda
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3DY, UK
| | | | - Taylor Sorice
- Department of Biology, Syracuse University, New York 13244
| | - Ginny Grieb
- Department of Biology, Syracuse University, New York 13244
| | | |
Collapse
|
116
|
Teyra J, Kelil A, Jain S, Helmy M, Jajodia R, Hooda Y, Gu J, D’Cruz AA, Nicholson SE, Min J, Sudol M, Kim PM, Bader GD, Sidhu SS. Large-scale survey and database of high affinity ligands for peptide recognition modules. Mol Syst Biol 2020; 16:e9310. [PMID: 33438817 PMCID: PMC7724964 DOI: 10.15252/msb.20199310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins involved in signal transduction contain peptide recognition modules (PRMs) that recognize short linear motifs (SLiMs) within their interaction partners. Here, we used large-scale peptide-phage display methods to derive optimal ligands for 163 unique PRMs representing 79 distinct structural families. We combined the new data with previous data that we collected for the large SH3, PDZ, and WW domain families to assemble a database containing 7,984 unique peptide ligands for 500 PRMs representing 82 structural families. For 74 PRMs, we acquired enough new data to map the specificity profiles in detail and derived position weight matrices and binding specificity logos based on multiple peptide ligands. These analyses showed that optimal peptide ligands resembled peptides observed in existing structures of PRM-ligand complexes, indicating that a large majority of the phage-derived peptides are likely to target natural peptide-binding sites and could thus act as inhibitors of natural protein-protein interactions. The complete dataset has been assembled in an online database (http://www.prm-db.org) that will enable many structural, functional, and biological studies of PRMs and SLiMs.
Collapse
Affiliation(s)
- Joan Teyra
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | | | - Shobhit Jain
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
| | - Mohamed Helmy
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
Singapore Institute of Food and Biotechnology Innovation (SIFBI)Agency for ScienceTechnology and Research (A*STAR)Singapore CitySingapore
| | - Raghav Jajodia
- Indian Institute of Engineering Science and TechnologyShibpurIndia
| | - Yogesh Hooda
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Present address:
MRC Laboratory of Molecular BiologyCambridgeUK
| | - Jun Gu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
| | - Akshay A D’Cruz
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Jinrong Min
- Structural Genomics ConsortiumUniversity of TorontoTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Marius Sudol
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Philip M Kim
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Gary D Bader
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Computer ScienceUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Sachdev S Sidhu
- The Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
117
|
Abstract
The ubiquitin–proteasome system (UPS) is responsible for the rapid targeting of proteins for degradation at 26S proteasomes and requires the orchestrated action of E1, E2 and E3 enzymes in a well-defined cascade. F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases that determine which proteins are ubiquitinated. To date, around 70 FBPs have been identified in humans and can be subdivided into distinct families, based on the protein-recruiting domains they possess. The FBXL subfamily is defined by the presence of multiple leucine-rich repeat (LRR) protein-binding domains. But how the 22 FBPs of the FBXL family achieve their individual specificities, despite having highly similar structural domains to recruit their substrates, is not clear. Here, we review and explore the FBXL family members in detail highlighting their structural and functional similarities and differences and how they engage their substrates through their LRRs to adopt unique interactomes.
Collapse
Affiliation(s)
- Bethany Mason
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
| |
Collapse
|
118
|
Schiavina M, Salladini E, Murrali MG, Tria G, Felli IC, Pierattelli R, Longhi S. Ensemble description of the intrinsically disordered N-terminal domain of the Nipah virus P/V protein from combined NMR and SAXS. Sci Rep 2020; 10:19574. [PMID: 33177626 PMCID: PMC7658984 DOI: 10.1038/s41598-020-76522-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Using SAXS and NMR spectroscopy, we herein provide a high-resolution description of the intrinsically disordered N-terminal domain (PNT, aa 1-406) shared by the Nipah virus (NiV) phosphoprotein (P) and V protein, two key players in viral genome replication and in evasion of the host innate immune response, respectively. The use of multidimensional NMR spectroscopy allowed us to assign as much as 91% of the residues of this intrinsically disordered domain whose size constitutes a technical challenge for NMR studies. Chemical shifts and nuclear relaxation measurements provide the picture of a highly flexible protein. The combination of SAXS and NMR information enabled the description of the conformational ensemble of the protein in solution. The present results, beyond providing an overall description of the conformational behavior of this intrinsically disordered region, also constitute an asset for obtaining atomistic information in future interaction studies with viral and/or cellular partners. The present study can thus be regarded as the starting point towards the design of inhibitors that by targeting crucial protein-protein interactions involving PNT might be instrumental to combat this deadly virus.
Collapse
Affiliation(s)
- Marco Schiavina
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Edoardo Salladini
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France
| | - Maria Grazia Murrali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giancarlo Tria
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
- Florence Center for Electron Nanoscopy (FloCEN), University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Isabella C Felli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University and CNRS, 163 Avenue de Luminy, Case 932, Marseille, France.
| |
Collapse
|
119
|
Ramos-Vicente D, Bayés À. AMPA receptor auxiliary subunits emerged during early vertebrate evolution by neo/subfunctionalization of unrelated proteins. Open Biol 2020; 10:200234. [PMID: 33108974 PMCID: PMC7653359 DOI: 10.1098/rsob.200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammalian synapses, the function of ionotropic glutamate receptors is critically modulated by auxiliary subunits. Most of these specifically regulate the synaptic localization and electrophysiological properties of AMPA-type glutamate receptors (AMPARs). Here, we comprehensively investigated the animal evolution of the protein families that contain AMPAR auxiliary subunits (ARASs). We observed that, on average, vertebrates have four times more ARASs than other animal species. We also demonstrated that ARASs belong to four unrelated protein families: CACNG-GSG1, cornichon, shisa and Dispanin C. Our study demonstrates that, despite the ancient origin of these four protein families, the majority of ARASs emerged during vertebrate evolution by independent but convergent processes of neo/subfunctionalization that resulted in the multiple ARASs found in present vertebrate genomes. Importantly, although AMPARs appeared and diversified in the ancestor of bilateral animals, the ARAS expansion did not occur until much later, in early vertebrate evolution. We propose that the surge in ARASs and consequent increase in AMPAR functionalities, contributed to the increased complexity of vertebrate brains and cognitive functions.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
120
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
121
|
Blagotinšek Cokan K, Mavri M, Rutland CS, Glišić S, Senćanski M, Vrecl M, Kubale V. Critical Impact of Different Conserved Endoplasmic Retention Motifs and Dopamine Receptor Interacting Proteins (DRIPs) on Intracellular Localization and Trafficking of the D 2 Dopamine Receptor (D 2-R) Isoforms. Biomolecules 2020; 10:biom10101355. [PMID: 32977535 PMCID: PMC7598153 DOI: 10.3390/biom10101355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023] Open
Abstract
The type 2 dopamine receptor D2 (D2-R), member of the G protein-coupled receptor (GPCR) superfamily, exists in two isoforms, short (D2S-R) and long (D2L-R). They differ by an additional 29 amino acids (AA) in the third cytoplasmic loop (ICL3) of the D2L-R. These isoforms differ in their intracellular localization and trafficking functionality, as D2L-R possesses a larger intracellular pool, mostly in the endoplasmic reticulum (ER). This review focuses on the evolutionarily conserved motifs in the ICL3 of the D2-R and proteins interacting with the ICL3 of both isoforms, specifically with the 29 AA insert. These motifs might be involved in D2-R exit from the ER and have an impact on cell-surface and intracellular localization and, therefore, also play a role in the function of dopamine receptor signaling, ligand binding and possible homo/heterodimerization. Our recent bioinformatic data on potential new interaction partners for the ICL3 of D2-Rs are also presented. Both are highly relevant, and have clinical impacts on the pathophysiology of several diseases such as Parkinson’s disease, schizophrenia, Tourette’s syndrome, Huntington’s disease, manic depression, and others, as they are connected to a variety of essential motifs and differences in communication with interaction partners.
Collapse
Affiliation(s)
- Kaja Blagotinšek Cokan
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, University of Nottingham, Sutton, Bonington Campus, Loughborough LE12 5RD, UK;
| | - Sanja Glišić
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milan Senćanski
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Vinča, Belgrade, Serbia; (S.G.); (M.S.)
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (K.B.C.); (M.M.); (M.V.)
- Correspondence:
| |
Collapse
|
122
|
Tessier TM, MacNeil KM, Mymryk JS. Piggybacking on Classical Import and Other Non-Classical Mechanisms of Nuclear Import Appear Highly Prevalent within the Human Proteome. BIOLOGY 2020; 9:biology9080188. [PMID: 32718019 PMCID: PMC7463951 DOI: 10.3390/biology9080188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022]
Abstract
One of the most conserved cellular pathways among eukaryotes is the extensively studied classical protein nuclear import pathway mediated by importin-α. Classical nuclear localization signals (cNLSs) are recognized by importin-α and are highly predictable due to their abundance of basic amino acids. However, various studies in model organisms have repeatedly demonstrated that only a fraction of nuclear proteins contain identifiable cNLSs, including those that directly interact with importin-α. Using data from the Human Protein Atlas and the Human Reference Interactome, and proteomic data from BioID/protein-proximity labeling studies using multiple human importin-α proteins, we determine that nearly 50% of the human nuclear proteome does not have a predictable cNLS. Surprisingly, between 25% and 50% of previously identified human importin-α cargoes do not have predictable cNLS. Analysis of importin-α cargo without a cNLS identified an alternative basic rich motif that does not resemble a cNLS. Furthermore, several previously suspected piggybacking proteins were identified, such as those belonging to the RNA polymerase II and transcription factor II D complexes. Additionally, many components of the mediator complex interact with at least one importin-α, yet do not have a predictable cNLS, suggesting that many of the subunits may enter the nucleus through an importin-α-dependent piggybacking mechanism.
Collapse
Affiliation(s)
- Tanner M. Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada; (T.M.T.); (K.M.M.)
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada; (T.M.T.); (K.M.M.)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 3K7, Canada; (T.M.T.); (K.M.M.)
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Oncology, The University of Western Ontario, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Correspondence: ; Tel.: +1-519-685-8600 (ext. 53012)
| |
Collapse
|
123
|
Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Front Cell Dev Biol 2020; 8:420. [PMID: 32587856 PMCID: PMC7297954 DOI: 10.3389/fcell.2020.00420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a conserved and essential intracellular mechanism for the removal of damaged components. Since autophagy deregulation is linked to different kinds of pathologies, it is fundamental to gain knowledge on the fine molecular and structural details related to the core proteins of the autophagy machinery. Among these, the family of human ATG8 proteins plays a central role in recruiting other proteins to the different membrane structures involved in the autophagic pathway. Several experimental structures are available for the members of the ATG8 family alone or in complex with their different biological partners, including disordered regions of proteins containing a short linear motif called LC3 interacting motif. Recently, the first structural details of the interaction of ATG8 proteins with biological membranes came into light. The availability of structural data for human ATG8 proteins has been paving the way for studies on their structure-function-dynamic relationship using biomolecular simulations. Experimental and computational structural biology can help to address several outstanding questions on the mechanism of human ATG8 proteins, including their specificity toward different interactors, their association with membranes, the heterogeneity of their conformational ensemble, and their regulation by post-translational modifications. We here summarize the main results collected so far and discuss the future perspectives within the field and the knowledge gaps. Our review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
124
|
Guo Y, Ning W, Jiang P, Lin S, Wang C, Tan X, Yao L, Peng D, Xue Y. GPS-PBS: A Deep Learning Framework to Predict Phosphorylation Sites that Specifically Interact with Phosphoprotein-Binding Domains. Cells 2020; 9:cells9051266. [PMID: 32443803 PMCID: PMC7290655 DOI: 10.3390/cells9051266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is essential for regulating cellular activities by modifying substrates at specific residues, which frequently interact with proteins containing phosphoprotein-binding domains (PPBDs) to propagate the phosphorylation signaling into downstream pathways. Although massive phosphorylation sites (p-sites) have been reported, most of their interacting PPBDs are unknown. Here, we collected 4458 known PPBD-specific binding p-sites (PBSs), considerably improved our previously developed group-based prediction system (GPS) algorithm, and implemented a deep learning plus transfer learning strategy for model training. Then, we developed a new online service named GPS-PBS, which can hierarchically predict PBSs of 122 single PPBD clusters belonging to two groups and 16 families. By comparison, GPS-PBS achieved a highly competitive accuracy against other existing tools. Using GPS-PBS, we predicted 371,018 mammalian p-sites that potentially interact with at least one PPBD, and revealed that various PPBD-containing proteins (PPCPs) and protein kinases (PKs) can simultaneously regulate the same p-sites to orchestrate important pathways, such as the PI3K-Akt signaling pathway. Taken together, we anticipate GPS-PBS can be a great help for further dissecting phosphorylation signaling networks.
Collapse
Affiliation(s)
- Yaping Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peiran Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lan Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
125
|
Postic G, Marcoux J, Reys V, Andreani J, Vandenbrouck Y, Bousquet MP, Mouton-Barbosa E, Cianférani S, Burlet-Schiltz O, Guerois R, Labesse G, Tufféry P. Probing Protein Interaction Networks by Combining MS-Based Proteomics and Structural Data Integration. J Proteome Res 2020; 19:2807-2820. [PMID: 32338910 DOI: 10.1021/acs.jproteome.0c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.
Collapse
Affiliation(s)
- Guillaume Postic
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France.,Institut Français de Bioinformatique (IFB), UMS 3601-CNRS, Universite Paris-Saclay, 91400 Orsay, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Victor Reys
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, 38000 Grenoble, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gilles Labesse
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France
| |
Collapse
|
126
|
Simonetti L, Ivarsson Y. Genetically Encoded Cyclic Peptide Phage Display Libraries. ACS CENTRAL SCIENCE 2020; 6:336-338. [PMID: 32232131 PMCID: PMC7099589 DOI: 10.1021/acscentsci.0c00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Leandro Simonetti
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 23, Sweden
| | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Uppsala 751 23, Sweden
| |
Collapse
|
127
|
Palopoli N, Iserte JA, Chemes LB, Marino-Buslje C, Parisi G, Gibson TJ, Davey NE. The articles.ELM resource: simplifying access to protein linear motif literature by annotation, text-mining and classification. Database (Oxford) 2020; 2020:baaa040. [PMID: 32507889 PMCID: PMC7276420 DOI: 10.1093/database/baaa040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 11/12/2022]
Abstract
Modern biology produces data at a staggering rate. Yet, much of these biological data is still isolated in the text, figures, tables and supplementary materials of articles. As a result, biological information created at great expense is significantly underutilised. The protein motif biology field does not have sufficient resources to curate the corpus of motif-related literature and, to date, only a fraction of the available articles have been curated. In this study, we develop a set of tools and a web resource, 'articles.ELM', to rapidly identify the motif literature articles pertinent to a researcher's interest. At the core of the resource is a manually curated set of about 8000 motif-related articles. These articles are automatically annotated with a range of relevant biological data allowing in-depth search functionality. Machine-learning article classification is used to group articles based on their similarity to manually curated motif classes in the Eukaryotic Linear Motif resource. Articles can also be manually classified within the resource. The 'articles.ELM' resource permits the rapid and accurate discovery of relevant motif articles thereby improving the visibility of motif literature and simplifying the recovery of valuable biological insights sequestered within scientific articles. Consequently, this web resource removes a critical bottleneck in scientific productivity for the motif biology field. Database URL: http://slim.icr.ac.uk/articles/.
Collapse
Affiliation(s)
- N Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Saenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | - J A Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina
| | - L B Chemes
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, Av. 25 de Mayo y Francia, San Martín, Buenos Aires B1650, Argentina
| | - C Marino-Buslje
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina
| | - G Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Roque Saenz Peña 352, Bernal, Buenos Aires B1876BXD, Argentina
| | - T J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - N E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|