101
|
Thome R, Boehm A, Ishikawa LLW, Casella G, Munhoz J, Ciric B, Zhang GX, Rostami A. Comprehensive Analysis of the Immune and Stromal Compartments of the CNS in EAE Mice Reveal Pathways by Which Chloroquine Suppresses Neuroinflammation. Brain Sci 2020; 10:brainsci10060348. [PMID: 32516999 PMCID: PMC7349328 DOI: 10.3390/brainsci10060348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are neuroinflammatory diseases of the central nervous system (CNS), where leukocytes and CNS resident cells play important roles in disease development and pathogenesis. The antimalarial drug chloroquine (CQ) has been shown to suppress EAE by modulating dendritic cells (DCs) and Th17 cells. However, the mechanism of action by which CQ modulates EAE is far from being elucidated. Here, we comprehensively analyzed the CNS of CQ and PBS-treated EAE mice to identify and characterize the cells that are affected by CQ. Our results show that leukocytes are largely modulated by CQ and have a reduction in the expression of inflammatory markers. Intriguingly, CQ vastly modulated the CNS resident cells astrocytes, oligodendrocytes (OLs) and microglia (MG), with the latter producing IL-10 and IL-12p70. Overall, our results show a panoramic view of the cellular components that are affect by CQ and provide further evidence that drug repurposing of CQ will be beneficial to MS patients.
Collapse
|
102
|
Hydroxychloroquine and chloroquine in COVID-19: should they be used as standard therapy? Clin Rheumatol 2020; 39:2461-2465. [PMID: 32495226 PMCID: PMC7267470 DOI: 10.1007/s10067-020-05202-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022]
Abstract
The pandemic of the new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has urged the nations to an unprecedented world-wide reaction, including an accelerated exploration of therapeutic options. In the absence of a vaccine and specifically designed antivirals, the medical community has proposed the use of various previously available medications in order to reduce the number of patients requiring prolonged hospitalizations, oxygen therapy, and mechanical ventilation and to decrease mortality from coronavirus disease 2019 (COVID-19). Hydroxychloroquine and chloroquine are among the proposed drugs and are the most widely used so far, despite the lack of robust evidence on their usefulness. The objective of this article is to review and discuss the possible role of these drugs in the therapy of COVID-19.
Collapse
|
103
|
Park JB, Peters R, Pham Q, Wang TTY. Javamide-II Inhibits IL-6 without Significant Impact on TNF-alpha and IL-1beta in Macrophage-Like Cells. Biomedicines 2020; 8:biomedicines8060138. [PMID: 32485858 PMCID: PMC7344767 DOI: 10.3390/biomedicines8060138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main aim of this study is to find a therapeutic compound to inhibit IL-6, not TNF-alpha and IL-1beta, in macrophage-like cells, because the high-levels of IL-6 production by macrophages are reported to cause unfavorable outcomes under several disease conditions (e.g., autoimmune diseases, and acute viral infections, including COVID-19). In this study, the potential effects of javamide-II on IL-6, IL-1beta and TNF-alpha productions were determined using their ELISA kits in macrophage-like THP-1 cells. Western blots were also performed using the same cells, to determine its effects on signaling pathways (ERK, p38, JNK, c-Fos, ATF-2, c-Jun and NF-κB p65). At concentrations of 0.2–40 µM, javamide-II inhibited IL-6 production significantly in the THP-1 cells (IC50 of 0.8 µM) (P < 0.02). However, javamide-II did not inhibit IL-1beta or TNF-alpha productions much at the same concentrations. In addition, the treatment of javamide-II decreased the phosphorylation of p38 without significant effects on ERK and JNK phosphorylations in the THP-1 cells. Furthermore, the p38 inhibition, followed by the reduction of ATF-2 phosphorylation (not c-Fos, c-Jun or NF-κB p65), led to the suppression of IL-6 mRNA expression in the cells (P < 0.02). The data indicate that javamide-II may be a potent compound to inhibit IL-6 production via suppressing the p38 signal pathway, without significant effects on the productions of TNF-alpha and IL-1beta in macrophage-like THP-1 cells.
Collapse
Affiliation(s)
- Jae B. Park
- Correspondence: ; Tel.: +301-504-8365; Fax: +301-504-9062
| | | | | | | |
Collapse
|
104
|
Saber-Ayad M, Saleh MA, Abu-Gharbieh E. The Rationale for Potential Pharmacotherapy of COVID-19. Pharmaceuticals (Basel) 2020; 13:E96. [PMID: 32423024 PMCID: PMC7281404 DOI: 10.3390/ph13050096] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
On 11 March 2020, the coronavirus disease (COVID-19) was defined by the World Health Organization as a pandemic. Severe acute respiratory syndrome-2 (SARS-CoV-2) is the newly evolving human coronavirus infection that causes COVID-19, and it first appeared in Wuhan, China in December 2019 and spread rapidly all over the world. COVID-19 is being increasingly investigated through virology, epidemiology, and clinical management strategies. There is currently no established consensus on the standard of care in the pharmacological treatment of COVID-19 patients. However, certain medications suggested for other diseases have been shown to be potentially effective for treating this infection, though there has yet to be clear evidence. Therapies include new agents that are currently tested in several clinical trials, in addition to other medications that have been repurposed as antiviral and immune-modulating therapies. Previous high-morbidity human coronavirus epidemics such as the 2003 SARS-CoV and the 2012 Middle East respiratory syndrome coronavirus (MERS-CoV) prompted the identification of compounds that could theoretically be active against the emerging coronavirus SARS-CoV-2. Moreover, advances in molecular biology techniques and computational analysis have allowed for the better recognition of the virus structure and the quicker screening of chemical libraries to suggest potential therapies. This review aims to summarize rationalized pharmacotherapy considerations in COVID-19 patients in order to serve as a tool for health care professionals at the forefront of clinical care during this pandemic. All the reviewed therapies require either additional drug development or randomized large-scale clinical trials to be justified for clinical use.
Collapse
Affiliation(s)
- Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE; (M.A.S.); (E.A.-G.)
- College of Medicine, Cairo University, Cairo 12613, Egypt
| | - Mohamed A. Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE; (M.A.S.); (E.A.-G.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE; (M.A.S.); (E.A.-G.)
| |
Collapse
|
105
|
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020; 55:105938. [PMID: 32171740 PMCID: PMC7118659 DOI: 10.1016/j.ijantimicag.2020.105938] [Citation(s) in RCA: 662] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Recently, a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Despite drastic containment measures, the spread of this virus is ongoing. SARS-CoV-2 is the aetiological agent of coronavirus disease 2019 (COVID-19) characterised by pulmonary infection in humans. The efforts of international health authorities have since focused on rapid diagnosis and isolation of patients as well as the search for therapies able to counter the most severe effects of the disease. In the absence of a known efficient therapy and because of the situation of a public-health emergency, it made sense to investigate the possible effect of chloroquine/hydroxychloroquine against SARS-CoV-2 since this molecule was previously described as a potent inhibitor of most coronaviruses, including SARS-CoV-1. Preliminary trials of chloroquine repurposing in the treatment of COVID-19 in China have been encouraging, leading to several new trials. Here we discuss the possible mechanisms of chloroquine interference with the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
106
|
Meyerowitz EA, Vannier AGL, Friesen MGN, Schoenfeld S, Gelfand JA, Callahan MV, Kim AY, Reeves PM, Poznansky MC. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J 2020; 34:6027-6037. [PMID: 32350928 PMCID: PMC7267640 DOI: 10.1096/fj.202000919] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
There are currently no proven or approved treatments for coronavirus disease 2019 (COVID-19). Early anecdotal reports and limited in vitro data led to the significant uptake of hydroxychloroquine (HCQ), and to lesser extent chloroquine (CQ), for many patients with this disease. As an increasing number of patients with COVID-19 are treated with these agents and more evidence accumulates, there continues to be no high-quality clinical data showing a clear benefit of these agents for this disease. Moreover, these agents have the potential to cause harm, including a broad range of adverse events including serious cardiac side effects when combined with other agents. In addition, the known and potent immunomodulatory effects of these agents which support their use in the treatment of auto-immune conditions, and provided a component in the original rationale for their use in patients with COVID-19, may, in fact, undermine their utility in the context of the treatment of this respiratory viral infection. Specifically, the impact of HCQ on cytokine production and suppression of antigen presentation may have immunologic consequences that hamper innate and adaptive antiviral immune responses for patients with COVID-19. Similarly, the reported in vitro inhibition of viral proliferation is largely derived from the blockade of viral fusion that initiates infection rather than the direct inhibition of viral replication as seen with nucleoside/tide analogs in other viral infections. Given these facts and the growing uncertainty about these agents for the treatment of COVID-19, it is clear that at the very least thoughtful planning and data collection from randomized clinical trials are needed to understand what if any role these agents may have in this disease. In this article, we review the datasets that support or detract from the use of these agents for the treatment of COVID-19 and render a data informed opinion that they should only be used with caution and in the context of carefully thought out clinical trials, or on a case-by-case basis after rigorous consideration of the risks and benefits of this therapeutic approach.
Collapse
Affiliation(s)
- Eric A. Meyerowitz
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
| | - Augustin G. L. Vannier
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Morgan G. N. Friesen
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Sara Schoenfeld
- Division of Allergy, Immunology and RheumatologyMGH and HMSBostonMAUSA
| | - Jeffrey A. Gelfand
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Michael V. Callahan
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
- Special Advisor to the Assistant Secretary of Public Health Preparedness and Response U.S Dept of Health and Human ServicesWashingtonDCUSA
| | - Arthur Y. Kim
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
| | - Patrick M. Reeves
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| | - Mark C. Poznansky
- Division of Infectious DiseasesMassachusetts General Hospital (MGH) and Harvard Medical School (HMS)BostonMAUSA
- Vaccine and Immunotherapy Center (VIC)MGH and HMSBostonMAUSA
| |
Collapse
|
107
|
Shukla AM, Archibald LK, Wagle Shukla A, Mehta HJ, Cherabuddi K. Chloroquine and hydroxychloroquine in the context of COVID-19. Drugs Context 2020; 9:2020-4-5. [PMID: 32373183 PMCID: PMC7192209 DOI: 10.7573/dic.2020-4-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Chloroquine and closely related structural analogs, employed initially for the treatment of malaria, are now gaining worldwide attention due to the rapidly spreading pandemic caused by severe acute respiratory syndrome-coronavirus-2, named coronavirus disease (COVID) of 2019 (COVID-19). Although much of this attention has a mechanistic basis, the hard efficacy data for chloroquine/hydroxychloroquine in the management of the clinical syndrome of COVID-19 have been limited thus far. This review aims to present the available in vitro and clinical data for the role of chloroquine/hydroxychloroquine in COVID-19 and attempts to put them into perspective, especially in relation to the different risks/benefits particular to each patient who may require treatment.
Collapse
Affiliation(s)
- Ashutosh M Shukla
- North Florida South Georgia VHS, Gainesville, FL, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Lennox K Archibald
- North Florida South Georgia VHS, Gainesville, FL, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Hiren J Mehta
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
108
|
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020. [PMID: 32171740 DOI: 10.1016/j.ijantimicag.2020.105938.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Recently, a novel coronavirus (2019-nCoV), officially known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China. Despite drastic containment measures, the spread of this virus is ongoing. SARS-CoV-2 is the aetiological agent of coronavirus disease 2019 (COVID-19) characterised by pulmonary infection in humans. The efforts of international health authorities have since focused on rapid diagnosis and isolation of patients as well as the search for therapies able to counter the most severe effects of the disease. In the absence of a known efficient therapy and because of the situation of a public-health emergency, it made sense to investigate the possible effect of chloroquine/hydroxychloroquine against SARS-CoV-2 since this molecule was previously described as a potent inhibitor of most coronaviruses, including SARS-CoV-1. Preliminary trials of chloroquine repurposing in the treatment of COVID-19 in China have been encouraging, leading to several new trials. Here we discuss the possible mechanisms of chloroquine interference with the SARS-CoV-2 replication cycle.
Collapse
Affiliation(s)
- Christian A Devaux
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; CNRS, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France.
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Philippe Colson
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France; IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
109
|
Abdallah GEM, Elbiih EAS, Sayed D, Moeen SM, Gafer S, Thabet AF. Revisiting the management of chronic ITP; a randomized controlled clinical trial. Platelets 2020; 32:243-249. [PMID: 32151176 DOI: 10.1080/09537104.2020.1738367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The balance between therapy effectiveness and economic efficiency in chronic immune thrombocytopenia (ITP) becomes more confusing. This single-center open label randomized controlled trial evaluates the effectiveness and safety of hydroxychloroquine in chronic ITP patients against other affordable second-line treatments. It is registered under number (NCT03229746) at Clinical Trials.gov. 120 patients were recruited and randomly allocated to three arms of hydroxychloroquine, vincristine, and azathioprine equally. Platelet counts of more than 100 × 109/L were interpreted as complete response (CR), while response (R) was determined as platelet counts ranging from 30 × 109/L to less than 100 × 109/L with the doubling of the pretreatment platelet count. Overall response (OR) was defined to include both CR and R. Patients were monitored every 6 weeks for a total of 24 weeks. The population baseline characteristics regarding age, sex, duration of the disease, baseline platelets count, and presence of antinuclear antibodies ANA or antiplatelet antibodies were similar among tested groups. There was a significant difference in the overall response between hydroxychloroquine (80.6%) and azathioprine (55.9%) (p-value <0.05). This difference was not significant between hydroxychloroquine and vincristine group (63.2%) (p-value = 0.09). This study proves that hydroxychloroquine can contribute to the therapy of chronic ITP especially as an affordable and well-tolerated drug.
Collapse
Affiliation(s)
- Ghada E M Abdallah
- Department of Internal Medicine, Clinical Hematology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esam A S Elbiih
- Department of Internal Medicine, Clinical Hematology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Douaa Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Sawsan M Moeen
- Department of Internal Medicine, Clinical Hematology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shima Gafer
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Ahmad F Thabet
- Department of Internal Medicine, Clinical Hematology Unit, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
110
|
Lübow C, Bockstiegel J, Weindl G. Lysosomotropic drugs enhance pro-inflammatory responses to IL-1β in macrophages by inhibiting internalization of the IL-1 receptor. Biochem Pharmacol 2020; 175:113864. [PMID: 32088265 DOI: 10.1016/j.bcp.2020.113864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-1 signaling leads to production of pro-inflammatory mediators and is regulated by receptor endocytosis. Lysosomotropic drugs have been linked to increased pro-inflammatory responses under sterile inflammatory conditions but the underlying mechanisms have not been fully elucidated. Here, we report that lysosomotropic drugs potentiate pro-inflammatory effects in response to IL-1β via a mechanism involving reactive oxygen species, p38 mitogen-activated protein kinase and reduced IL-1 receptor internalization. Chloroquine and hydroxychloroquine increased IL-1β-induced CXCL8 secretion in macrophages which was critically dependent on the lysosomotropic character and inhibition of macroautophagy but independent from the NLRP3 inflammasome. Co-stimulation with the autophagy inducer interferon gamma attenuated CXCL8 release. Other lysosomotropic drugs like bafilomycin A1, fluoxetine and chlorpromazine but also the endocytosis inhibitor dynasore showed similar pro-inflammatory responses. Increased cell surface expression of IL-1 receptor suggests reduced receptor degradation in the presence of lysosomotropic drugs. Our findings provide new insights into a potentially crucial immunoregulatory mechanism in macrophages that may explain how lysosomotropic drugs drive sterile inflammation.
Collapse
Affiliation(s)
- Charlotte Lübow
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Judith Bockstiegel
- University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Günther Weindl
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany.
| |
Collapse
|
111
|
CD154 Induces Interleukin-6 Secretion by Kidney Tubular Epithelial Cells under Hypoxic Conditions: Inhibition by Chloroquine. Mediators Inflamm 2020; 2020:6357046. [PMID: 32089648 PMCID: PMC7013356 DOI: 10.1155/2020/6357046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a major contributor to tubular epithelium injury in kidney disorders, and the involvement of blood platelets in driving inflammation is increasingly stressed. CD154, the ligand of CD40, is one of the mediators supporting platelet proinflammatory properties. Although hypoxia is an essential constituent of the inflammatory reaction, if and how platelets and CD154 regulate inflammation in hypoxic conditions remain unclear. Here, we studied the control by CD154 of the proinflammatory cytokine interleukin- (IL-) 6 secretion in short-term oxygen (O2) deprivation conditions, using the HK-2 cell line as a kidney tubular epithelial cell (TEC) model. IL-6 secretion was markedly stimulated by CD154 after 1 to 3 hours of hypoxic stress. Both intracellular IL-6 expression and secretion were stimulated by CD154 and associated with a strong upregulation of IL-6 mRNA and increased transcription. Searching for inhibitors of CD154-mediated IL-6 production by HK-2 cells in hypoxic conditions, we observed that chloroquine, a drug that has been repurposed as an anti-inflammatory agent, alleviated this induction. Therefore, CD154 is a potent early stimulus for IL-6 secretion by TECs in O2 deprivation conditions, a mechanism likely to take part in the deleterious inflammatory consequences of platelet activation in kidney tubular injury. The inhibition of CD154-induced IL-6 production by chloroquine suggests the potential usefulness of this drug as a therapeutic adjunct in conditions associated with acute kidney injury.
Collapse
|
112
|
Shukla AM, Wagle Shukla A. Expanding horizons for clinical applications of chloroquine, hydroxychloroquine, and related structural analogues. Drugs Context 2019; 8:2019-9-1. [PMID: 31844421 PMCID: PMC6905642 DOI: 10.7573/dic.2019-9-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Several experimental and clinical studies have transformed the traditional antimalarial role of chloroquine (CHQ) and related structural analogues to potent therapeutic agents for a host of nonmalarial indications. The expanding clinical applicability for these drugs includes rheumatological and cardiovascular disorders (CVD), chronic kidney disease (CKD), oncology, and a variety of nonmalarial infections. These clinical advancements are primarily related to pleiotropic pharmacological actions of these drugs, including immunomodulation, anti-inflammatory properties, and capabilities of inducing autophagy and apoptosis at a cellular level. Historically, many clinical benefits in nonmalarial indications were first recognized through serendipitous observations; however, with numerous ongoing systematic clinical studies, the clinical horizons of these drugs have a promising future.
Collapse
Affiliation(s)
- Ashutosh M Shukla
- North Florida/South Georgia, Veteran Healthcare System, Gainesville, FL, USA
- Department of Medicine, Division of Nephrology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
113
|
Park TY, Jang Y, Kim W, Shin J, Toh HT, Kim CH, Yoon HS, Leblanc P, Kim KS. Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep 2019; 9:15559. [PMID: 31664129 PMCID: PMC6820774 DOI: 10.1038/s41598-019-52085-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/12/2019] [Indexed: 12/19/2022] Open
Abstract
For over a half-century the anti-malarial drug chloroquine (CQ) has been used as a therapeutic agent, alone or in combination, to treat autoimmune diseases. However, neither the underlying mechanism(s) of action nor their molecular target(s) are well defined. The orphan nuclear receptor Nurr1 (also known as NR4A2) is an essential transcription factor affecting the development and maintenance of midbrain dopaminergic neurons. In this study, using in vitro T cell differentiation models, we demonstrate that CQ activates TREG cell differentiation and induces Foxp3 gene expression in a Nurr1-dependent manner. Remarkably, CQ appears to induce Nurr1 function by two distinct mechanisms: firstly, by direct binding to Nurr1’s ligand-binding domain and promoting its transcriptional activity and secondly by upregulation of Nurr1 expression through the CREB signaling pathway. In contrast, CQ suppressed gene expression and differentiation of pathogenic TH17 cells. Importantly, using a valid animal model of inflammatory bowel disease (IBD), we demonstrated that CQ promotes Foxp3 expression and differentiation of TREG cells in a Nurr1-dependent manner, leading to significant improvement of IBD-related symptoms. Taken together, these data suggest that CQ ameliorates autoimmune diseases via regulating Nurr1 function/expression and that Nurr1 is a promising target for developing effective therapeutics of human inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Yongwoo Jang
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Woori Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Ting Toh
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chun-Hyung Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pierre Leblanc
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA.
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, Massachusetts, 02478, USA. .,Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
114
|
Grassin-Delyle S, Salvator H, Mantov N, Abrial C, Brollo M, Faisy C, Naline E, Couderc LJ, Devillier P. Bitter Taste Receptors (TAS2Rs) in Human Lung Macrophages: Receptor Expression and Inhibitory Effects of TAS2R Agonists. Front Physiol 2019; 10:1267. [PMID: 31632299 PMCID: PMC6783802 DOI: 10.3389/fphys.2019.01267] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bitter-taste receptors (TAS2Rs) are involved in airway relaxation but are also expressed in human blood leukocytes. We studied TAS2R expression and the effects of TAS2R agonists on the lipopolysaccharide (LPS)-induced cytokine release in human lung macrophages (LMs). METHODS Lung macrophages were isolated from patients undergoing surgery for carcinoma. We used RT-qPCR to measure transcripts of 16 TAS2Rs (TAS2Rs 3/4/5/7/8/9/10/14/19/20/31/38/39/43/45 and 46) in unstimulated and LPS-stimulated (10 ng.mL-1) LMs. The macrophages were also incubated with TAS2R agonists for 24 h. Supernatant levels of the cytokines TNF-α, CCL3, CXCL8 and IL-10 were measured using ELISAs. RESULTS The transcripts of all 16 TAS2Rs were detected in macrophages. The addition of LPS led to an increase in the expression of most TAS2Rs, which was significant for TAS2R7 and 38. Although the promiscuous TAS2R agonists, quinine and denatonium, inhibited the LPS-induced release of TNF-α, CCL3 and CXCL8, diphenidol was inactive. Partially selective agonists (dapsone, colchicine, strychnine, and chloroquine) and selective agonists [erythromycin (TAS2R10), phenanthroline (TAS2R5), ofloxacin (TAS2R9), and carisoprodol (TAS2R14)] also suppressed the LPS-induced cytokine release. In contrast, two other agonists [sodium cromoglycate (TAS2R20) and saccharin (TAS2R31 and 43)] were inactive. TAS2R agonists suppressed IL-10 production - suggesting that this anti-inflammatory cytokine is not involved in the inhibition of cytokine production. CONCLUSION Human LMs expressed TAS2Rs. Experiments with TAS2R agonists' suggested the involvement of TAS2Rs 3, 4, 5, 9, 10, 14, 30, 39 and 40 in the inhibition of cytokine production. TAS2Rs may constitute new drug targets in inflammatory obstructive lung disease.
Collapse
Affiliation(s)
- Stanislas Grassin-Delyle
- Department of Airway Diseases, Foch Hospital, Suresnes, France
- INSERM UMR 1173, UFR Simone Veil - Santé, University Versailles Saint-Quentin, University of Paris-Saclay, Montigny-le-Bretonneux, France
| | - Hélène Salvator
- Department of Airway Diseases, Foch Hospital, Suresnes, France
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| | - Nikola Mantov
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| | - Charlotte Abrial
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| | - Christophe Faisy
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| | - Emmanuel Naline
- Department of Airway Diseases, Foch Hospital, Suresnes, France
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| | - Louis-Jean Couderc
- Department of Airway Diseases, Foch Hospital, Suresnes, France
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| | - Philippe Devillier
- Department of Airway Diseases, Foch Hospital, Suresnes, France
- Laboratory of Research in Respiratory Pharmacology–UPRES EA 220, Foch Hospital, University Versailles Saint-Quentin, University of Paris-Saclay, Suresnes, France
| |
Collapse
|
115
|
Chinchu JU, Mohan MC, Devi SJR, Kumar BP. Evaluation of anti-inflammatory effect of Varanadi Kashayam (decoction) in THP-1-derived macrophages. Ayu 2019; 39:243-249. [PMID: 31367148 PMCID: PMC6639814 DOI: 10.4103/ayu.ayu_53_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Varanadi Kashayam is an Ayurvedic polyherbal decoction containing 16 ingredients, for which the mechanisms of action involved in controlling chronic inflammatory conditions have not been evaluated. The inhibition of release of proinflammatory cytokines by lipopolysaccharide (LPS)-stimulated monocytes/macrophages is an ideal in vitro model for identifying anti-inflammatory molecules. Aim The aim of the study is to determine the anti-inflammatory effect of Varanadi Kashayam in THP-1-derived macrophages. Materials and Methods The efficacy of Varanadi Kashayam on monocyte cell differentiation was determined by quantitative polymerase chain reaction to assess the expression of differentiation markers MMP-9, CD36, CD11b and CD14. Further Varanadi Kashayam treated THP-1 macrophages were induced with LPS and the production of proinflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) were measured and corresponding genes expressions were quantified. Results The results indicate that Varanadi Kashayam reduced the differentiation of THP-1 monocytes to macrophages and downregulated the expression of cell surface markers. Furthermore, it could decrease the release of proinflammatory cytokines from LPS-induced THP-1 macrophages and downregulated the expression of TNF-α and IL-1β genes. Conclusion The results obtained from this study suggest a possible mechanism of action of the herbal decoction in inflammatory processes and opens up the possibilities of identifying bioactive lead molecules with anti-inflammatory potentials.
Collapse
Affiliation(s)
- J U Chinchu
- Department of School of Biosciences, Inflammation Research Lab, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Mohind C Mohan
- Department of School of Biosciences, Inflammation Research Lab, Mahatma Gandhi University, Kottayam, Kerala, India
| | - S J Rahitha Devi
- Department of School of Biosciences, Inflammation Research Lab, Mahatma Gandhi University, Kottayam, Kerala, India
| | - B Prakash Kumar
- Department of School of Biosciences, Inflammation Research Lab, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
116
|
Nayak AP, Shah SD, Michael JV, Deshpande DA. Bitter Taste Receptors for Asthma Therapeutics. Front Physiol 2019; 10:884. [PMID: 31379597 PMCID: PMC6647873 DOI: 10.3389/fphys.2019.00884] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
Clinical management of asthma and chronic obstructive pulmonary disease (COPD) has primarily relied on the use of beta 2 adrenergic receptor agonists (bronchodilators) and corticosteroids, and more recently, monoclonal antibody therapies (biologics) targeting specific cytokines and their functions. Although these approaches provide relief from exacerbations, questions remain on their long-term efficacy and safety. Furthermore, current therapeutics do not address progressive airway remodeling (AR), a key pathological feature of severe obstructive lung disease. Strikingly, agonists of the bitter taste receptors (TAS2Rs) deliver robust bronchodilation, curtail allergen-induced inflammatory responses in the airways and regulate airway smooth muscle (ASM) cell proliferation and mitigate features of AR in vitro and in animal models. The scope of this review is to provide a comprehensive and systematic insight into our current understanding of TAS2Rs with an emphasis on the molecular events that ensue TAS2R activation in distinct airway cell types and expand on the pleiotropic effects of TAS2R targeting in mitigating various pathological features of obstructive lung diseases. Finally, we will discuss specific opportunities that could help the development of selective agonists for specific TAS2R subtypes in the treatment of asthma.
Collapse
Affiliation(s)
- Ajay P Nayak
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sushrut D Shah
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - James V Michael
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| | - Deepak A Deshpande
- Division of Pulmonary, Allergy and Critical Care Medicine, Center for Translational Medicine, Department of Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
117
|
Miedel MT, Gavlock DC, Jia S, Gough A, Taylor DL, Stern AM. Modeling the Effect of the Metastatic Microenvironment on Phenotypes Conferred by Estrogen Receptor Mutations Using a Human Liver Microphysiological System. Sci Rep 2019; 9:8341. [PMID: 31171849 PMCID: PMC6554298 DOI: 10.1038/s41598-019-44756-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Reciprocal coevolution of tumors and their microenvironments underlies disease progression, yet intrinsic limitations of patient-derived xenografts and simpler cell-based models present challenges towards a deeper understanding of these intercellular communication networks. To help overcome these barriers and complement existing models, we have developed a human microphysiological system (MPS) model of the human liver acinus, a common metastatic site, and have applied this system to estrogen receptor (ER)+ breast cancer. In addition to their hallmark constitutive (but ER-dependent) growth phenotype, different ESR1 missense mutations, prominently observed during estrogen deprivation therapy, confer distinct estrogen-enhanced growth and drug resistant phenotypes not evident under cell autonomous conditions. Under low molecular oxygen within the physiological range (~5–20%) of the normal liver acinus, the estrogen-enhanced growth phenotypes are lost, a dependency not observed in monoculture. In contrast, the constitutive growth phenotypes are invariant within this range of molecular oxygen suggesting that ESR1 mutations confer a growth advantage not only during estrogen deprivation but also at lower oxygen levels. We discuss the prospects and limitations of implementing human MPS, especially in conjunction with in situ single cell hyperplexed computational pathology platforms, to identify biomarkers mechanistically linked to disease progression that inform optimal therapeutic strategies for patients.
Collapse
Affiliation(s)
- Mark T Miedel
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dillon C Gavlock
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shanhang Jia
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Albert Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | - Andrew M Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
118
|
Li Z, Liu XM, Li AY, Du XX, Wang XB, Liu JX, Wang ZG, Zhang QQ, Yu HY. Teleost Type 2 Interleukin-1 Receptor (IL-1R2) from the Spotted Halibut (Verasper variegatus): 3D Structure and a Role in Immune Response. Mol Biol 2019. [DOI: 10.1134/s0026893319020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
119
|
De Lorenzis E, Gremese E, Bosello S, Nurmohamed MT, Sinagra G, Ferraccioli G. Microvascular heart involvement in systemic autoimmune diseases: The purinergic pathway and therapeutic insights from the biology of the diseases. Autoimmun Rev 2019; 18:317-324. [DOI: 10.1016/j.autrev.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
120
|
Korhonen E, Piippo N, Hytti M, Hyttinen JM, Kaarniranta K, Kauppinen A. SQSTM1/p62 regulates the production of IL-8 and MCP-1 in IL-1β-stimulated human retinal pigment epithelial cells. Cytokine 2019; 116:70-77. [DOI: 10.1016/j.cyto.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
|
121
|
Laws TR, Taylor AW, Russell P, Williamson D. The treatment of melioidosis: is there a role for repurposed drugs? A proposal and review. Expert Rev Anti Infect Ther 2019; 17:957-967. [PMID: 30626237 DOI: 10.1080/14787210.2018.1496330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Melioidosis is a significant health problem within endemic areas such as Southeast Asia and Northern Australia. The varied presentation of melioidosis and the intrinsic antibiotic resistance of Burkholderia pseudomallei, the causative organism, make melioidosis a difficult infection to manage. Often prolonged courses of antibiotic treatments are required with no guarantee of clinical success.Areas covered: B. pseudomallei is able to enter phagocytic cells, affect immune function, and replicate, via manipulation of the caspase system. An examination of this mechanism, and a look at other factors in the pathogenesis of melioidosis, shows that there are multiple potential points of therapeutic intervention, some of which may be complementary. These include the directed use of antimicrobial compounds, blocking virulence mechanisms, balancing or modulating cytokine responses, and ameliorating sepsis.Expert commentary: There may be therapeutic options derived from drugs in clinical use for unrelated conditions that may have benefit in melioidosis. Key compounds of interest primarily affect the disequilibrium of the cytokine response, and further preclinical work is needed to explore the utility of this approach and encourage the clinical research needed to bring these into beneficial use.
Collapse
Affiliation(s)
- Thomas R Laws
- CBR Division, DSTL Porton Down, Salisbury, Wiltshire, UK
| | - Adam W Taylor
- CBR Division, DSTL Porton Down, Salisbury, Wiltshire, UK
| | - Paul Russell
- CBR Division, DSTL Porton Down, Salisbury, Wiltshire, UK
| | | |
Collapse
|
122
|
Cumming BM, Goldring JPD. Monocyte phagocytosis of malaria β-haematin in the presence of artemisinin, amodiaquine, chloroquine, doxycycline, primaquine, pyrimethamine and quinine. Exp Parasitol 2018; 197:93-102. [PMID: 30562480 DOI: 10.1016/j.exppara.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 11/07/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
The intraerythrocytic malaria parasite digests haemoglobin to provide amino acids for metabolism and releases toxic haem that is sequestered into haemozoin, a non-toxic, insoluble, crystalline pigment. Following erythrocyte rupture, haemozoin is released into circulation and phagocytosed by monocytes. Phagocytosed haemozoin and antimalarial drugs have both been reported to modulate monocyte functions. This study determined the effects of therapeutic concentrations of seven antimalarial drugs; amodiaquine, artemisinin, chloroquine, doxycycline, primaquine, pyrimethamine and quinine, on the phagocytosis of β-haematin (synthetic haemozoin) by two monocytic cell lines, J774A.1 and U937, and human peripheral blood mononuclear cells. A novel spectrophotometric method based on the absorbance (O.D 400 nm) of alkali/SDS treated monocytes containing β-haematin was developed to complement counting phagocytosis with microscopy. The method has potential use for the large scale screening of monocyte phagocytic activity. Artemisinin, quinine, primaquine and pyrimethamine activated β-haematin phagocytosis by 12% or more, whereas amodiaquine, chloroquine and doxycyline inhibited β-haematin phagocytosis. In contrast, antimalarial drugs had minimal inhibitory effects on the phagocytosis of latex beads with only quinine resulting in more than 20% inhibition. Antimalarial drugs appear to alter monocyte phagocytic activity which has implications for the treatment, pathogenicity and adjunct therapies for malaria.
Collapse
Affiliation(s)
- Bridgette M Cumming
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - J P Dean Goldring
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
123
|
Angmo S, Rana S, Yadav K, Sandhir R, Singhal NK. Novel Liposome Eencapsulated Guanosine Di Phosphate based Therapeutic Target against Anemia of Inflammation. Sci Rep 2018; 8:17684. [PMID: 30523271 PMCID: PMC6283875 DOI: 10.1038/s41598-018-35992-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Hepcidin, master regulator of iron homeostasis, causes anemia under infectious and inflammatory conditions by reducing intestinal absorption of iron with decreased release of iron from macrophages and liver despite adequate iron stores leading to Anemia of Inflammation (AI). Many therapeutic trials have been carried out but none have been effective due to its adverse effects. In present study, we discover that Guanosine 5'-diphosphate (GDP) encapsulated in lipid vesicle (NH+) was found to inhibit NF-ҝB activation by limiting phosphorylation and degradation of IҝBα, thus, attenuating IL-6 secretion from macrophage cells. Moreover, the suppressed IL-6 levels down regulated JAK2/STAT3 pathway with decrease inflammation-mediated Hamp mRNA transcription (HepG2) and increase iron absorption (Caco2) in HepG2/Caco2 co-culture model. Analogous results were obtained in acute and chronic AI mice model thus, correcting haemoglobin level. These results proved NH + GDP as novel therapeutic agent to overcome limitations and suggests it as potential drug to ameliorate AI.
Collapse
Affiliation(s)
- Stanzin Angmo
- Food Science and Technology Department, National Agri-Food Biotechnology Institute (NABI) Sector-81(Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Shilpa Rana
- Food Science and Technology Department, National Agri-Food Biotechnology Institute (NABI) Sector-81(Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Kamalendra Yadav
- Food Science and Technology Department, National Agri-Food Biotechnology Institute (NABI) Sector-81(Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, 160014, Chandigarh, India
| | - Nitin Kumar Singhal
- Food Science and Technology Department, National Agri-Food Biotechnology Institute (NABI) Sector-81(Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India.
| |
Collapse
|
124
|
Hartman O, Kovanen PT, Lehtonen J, Eklund KK, Sinisalo J. Hydroxychloroquine for the prevention of recurrent cardiovascular events in myocardial infarction patients: rationale and design of the OXI trial. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2018; 3:92-97. [PMID: 28025216 DOI: 10.1093/ehjcvp/pvw035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 01/11/2023]
Abstract
Background Inflammation of the arterial wall plays a central role in the pathogenesis of atherosclerosis. Among patients with rheumatic diseases, anti-rheumatic medication reduces the incidence of cardiovascular (CV) diseases, but only few studies have addressed their cardioprotective effects on patients with no rheumatic diseases. Hydroxychloroquine (HCQ) is an anti-rheumatic drug commonly used in the treatment of rheumatoid arthritis and systemic lupus erythematosus. In addition to its anti-inflammatory properties, HCQ reduces cholesterol levels and the risk of type II diabetes, and has also anti-platelet effects. Design The OXI trial is an event-driven trial that will randomize 2500 patients hospitalized for myocardial infarction (MI). Participants will receive active HCQ or placebo for at least 12 months, and until 350 CV events are confirmed. The primary trial endpoint is the composite of death, MI, hospitalization for unstable angina, urgent percutaneous coronary intervention, and urgent coronary artery bypass grafting. Secondary trial endpoints are the primary end point plus stroke, the effect of HCQ treatment on lipids, on the incidence of Type 2 diabetes, on the level of haemoglobin A1c, and on inflammatory parameters. A 6 months placebo-controlled safety pilot trial with 200 patients is currently ongoing to assess the safety of HCQ in the setting of MI. Summary The OXI trial will determine whether treatment with HCQ, as compared with placebo, will reduce recurrent CV events among MI patients. If positive, then the OXI trial would provide an entirely novel multitarget approach for the secondary prevention of atherosclerotic cardiovascular diseases (ACVD).
Collapse
Affiliation(s)
- Otto Hartman
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, PL 340, 00029 HUS, Finland
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | - Jukka Lehtonen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, PL 340, 00029 HUS, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, PL 340, 00029 HUS, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, PL 340, 00029 HUS, Finland
| |
Collapse
|
125
|
Ren C, Liang Z. Piperine alleviates lipopolysaccharide-induced inflammatory injury by down-regulating microRNA-127 in murine chondrogenic ATDC5 cells. Biomed Pharmacother 2018; 103:947-954. [DOI: 10.1016/j.biopha.2018.04.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023] Open
|
126
|
Bobade D, Khandare AV, Deval M, Shastry P, Deshpande P. Hemozoin-induced activation of human monocytes toward M2-like phenotype is partially reversed by antimalarial drugs-chloroquine and artemisinin. Microbiologyopen 2018; 8:e00651. [PMID: 29877619 PMCID: PMC6436431 DOI: 10.1002/mbo3.651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum malaria is the most severe form of malaria with several complications. The malaria pigment‐hemozoin (Hz) is associated with severe anemia, cytokine dysfunction, and immunosuppression, thus making it an interesting target for developing new strategies for antimalarial therapy. Monocytes (MO) in circulation actively ingest Hz released by Plasmodium parasites and secrete pro‐ and anti‐inflammatory cytokines. M1 and M2 types represent the two major forms of MO/macrophages (MQ) with distinct phenotypes and opposing functions. Imbalance in the polarization of these types is reported in many infectious diseases. Though the association of Hz with immunosuppression is well documented, its role in activation of MO in context of M1/M2 phenotypes remains to be addressed. We report here that natural Hz drives human MO toward M2‐like phenotype as evidenced by the expression of M2 signature markers. Hz‐fed MO showed elevated transcript and secreted level of IL‐10, CCL17, CCL1, expression of mannose‐binding lectin receptor (CD206), and arginase activity. Hz attenuated HLA‐DR expression, nitric oxide, and reactive oxygen species production, which are the features of M1 phenotype. Our data also implicate the involvement of p38 MAPK, PI3K/AKT, and NF‐κB signaling pathways in skewing of Hz‐fed MO toward M2‐like type and suppression of mitogen‐stimulated lymphocyte proliferation. Importantly, antimalarial drugs—chloroquine and artemisinin—partially reversed activation of Hz‐induced MO toward M2‐like phenotype. Considering the limitations in the current therapeutic options for malaria, we propose that these drugs may be re‐examined for their potential as immunomodulators and candidates for adjunctive treatment in malaria.
Collapse
Affiliation(s)
| | | | - Mangesh Deval
- National Centre for Cell Science (NCCS), Pune, India
| | - Padma Shastry
- National Centre for Cell Science (NCCS), Pune, India
| | | |
Collapse
|
127
|
Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review. Clin Drug Investig 2018; 38:653-671. [DOI: 10.1007/s40261-018-0656-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
128
|
Mai S, Zou L, Tian X, Liao X, Luan Y, Han X, Wei Y, Wu Y, Kuang S, Yang Y, Ma J, Chen Q, Yang J. Double-Edged Effect of Hydroxychloroquine on Human Umbilical Cord-Derived Mesenchymal Stem Cells Treating Lupus Nephritis in MRL/lpr Mice. Mol Pharm 2018; 15:1800-1813. [PMID: 29668284 DOI: 10.1021/acs.molpharmaceut.7b01146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxychloroquine (HCQ) and human umbilical cord-derived mesenchymal stem cells (UC-MSCs) were used to treat systemic lupus erythematosus (SLE), respectively. However, the effect of HCQ on UC-MSCs in lupus nephritis (LN) has not been investigated. In this study, HCQ and UC-MSCs were used in MRL/lpr mice. Surprisingly, although the treatment of both HCQ and UC-MSCs could ameliorate renal damage separately, the presence of HCQ decreased unexpectedly the therapeutic effects of UC-MSCs through interfering expression of IFN-γ. However, HCQ-pretreated UC-MSCs showed significant improvements of renal morphology and function more rapidly than that of UC-MSCs and HCQ alone. To test the role of HCQ in UC-MSCs, MRL/lpr mice and SLE patients' peripheral blood were used in vivo and in vitro. Results showed that after administration of UC-MSCs pretreated by HCQ, CXCR3 expression in renal tissues, serum IL-2, and IgM levels decreased significantly, and serum IL-10 level increased significantly. HCQ pretreatment caused a significant decrease of TNF-α and MCP-1 secretion and an increase of IL-1β and CXCL10 release from UC-MSCs. Our results indicate that HCQ plays a double-edged role in UC-MSCs. It is necessary for clinical treatment to pre-evaluated concomitant application of UC-MSCs with HCQ. More importantly, the alterative expression of IFN-γ, the improvement of migration ability of UC-MSCs, the regulation of Th1/Th2 balance, and the changes of antibodies secretion in B cell might be involved in its mechanisms.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China
| | - Lin Zou
- Center for Clinical Molecular Medicine , Children's Hospital of Chongqing Medical University , Chongqing 400014 , China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014 , China
| | - Xiaoyan Tian
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China
| | | | - Yizhao Luan
- State Key Lab of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center , Sun Yat-sen University , Guangzhou 510000 , China
| | - Xing Han
- Center for Clinical Molecular Medicine , Children's Hospital of Chongqing Medical University , Chongqing 400014 , China
| | - Yuling Wei
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China.,Department of Pharmacy , Chongqing Hospital of Traditional Chinese Medicine , Chongqing 400011 , China
| | - Yue Wu
- Department of Neurosurgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing 400016 , China
| | - Shengnan Kuang
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China.,Department of Pharmacy , People's Hospital of Rongchang District , Chongqing 402460 , China
| | - Yang Yang
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China
| | - Jie Ma
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China
| | - Qi Chen
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China
| | - Junqing Yang
- Department of Pharmacology , Chongqing Medical University , Chongqing 400016 , China.,The Key Laboratory of Biochemistry and Molecular Pharmacology , Chongqing 400016 , China
| |
Collapse
|
129
|
Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 2018; 9:17937-17950. [PMID: 29707159 PMCID: PMC5915167 DOI: 10.18632/oncotarget.24788] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/25/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages are critical mediators of the innate immune response against foreign pathogens, including bacteria, physical stress, and injury. Therefore, these cells play a key role in the "inflammatory pathway" which in turn can lead to an array of diseases and disorders such as autoimmune neuropathies and myocarditis, inflammatory bowel disease, atherosclerosis, sepsis, arthritis, diabetes, and angiogenesis. Recently, more studies have focused on the macrophages inflammatory diseases since the discovery of the two subtypes of macrophages, which are differentiated on the basis of their phenotype and distinct gene expression pattern. Of these, M1 macrophages are pro-inflammatory and responsible for inflammatory signaling, while M2 are anti-inflammatory macrophages that participate in the resolution of the inflammatory process, M2 macrophages produce anti-inflammatory cytokines, thereby contributing to tissue healing. Many studies have shown the role of these two subtypes in the inflammatory pathway, and their emergence appears to decide the fate of inflammatory signaling and disease progression. As a next step in directing the pro-inflammatory response toward the anti-inflammatory type after an insult by a foreign pathogen (e. g., bacterial lipopolysaccharide), investigators have identified many natural compounds that have the potential to modulate M1 to M2 macrophages. In this review, we provide a focused discussion of advances in the identification of natural therapeutic molecules with anti-inflammatory properties that modulate the phenotype of macrophages from M1 to M2.
Collapse
Affiliation(s)
- Uzma Saqib
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore, MP, India
| | - Sutripta Sarkar
- PostGraduate Department of Food & Nutrition, BRSN College (affiliated to WBSU), Kolkata, WB, India
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Joong-gu Daegu, South Korea
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, UP, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Indore, MP, India
| | - Rajkumar Savai
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus Liebig University, Giessen 35392, Germany.,Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the DZL, Bad Nauheim, Germany
| |
Collapse
|
130
|
D'Abramo A, Gebremeskel Tekle S, Iannetta M, Scorzolini L, Oliva A, Paglia MG, Corpolongo A, Nicastri E. Severe Plasmodium ovale malaria complicated by acute respiratory distress syndrome in a young Caucasian man. Malar J 2018; 17:139. [PMID: 29609605 PMCID: PMC5879577 DOI: 10.1186/s12936-018-2289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Background Although Plasmodium ovale is considered the cause of only mild malaria, a case of severe malaria due to P. ovale with acute respiratory distress syndrome is reported. Case presentation A 37-year old Caucasian man returning home from Angola was admitted for ovale malaria to the National Institute for Infectious Diseases Lazzaro Spallanzani in Rome, Italy. Two days after initiation of oral chloroquine treatment, an acute respiratory distress syndrome was diagnosed through chest X-ray and chest CT scan with intravenous contrast. Intravenous artesunate and oral doxycycline were started and he made a full recovery. Conclusion Ovale malaria is usually considered a tropical infectious disease associated with low morbidity and mortality. However, severe disease and death have occasionally been reported. In this case clinical failure of oral chloroquine treatment with clinical progression towards acute respiratory distress syndrome is described.
Collapse
Affiliation(s)
- Alessandra D'Abramo
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy
| | - Saba Gebremeskel Tekle
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy.
| | - Marco Iannetta
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy
| | - Laura Scorzolini
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy
| | - Alessandra Oliva
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy
| | - Maria Grazia Paglia
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy
| | - Angela Corpolongo
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy
| | - Emanuele Nicastri
- National Institute of Infectious Diseases, IRCCS, Lazzaro Spallanzani, Via Portuense 292, 00149, Rome, Italy
| |
Collapse
|
131
|
Chen Y, Traore YL, Yang S, Lajoie J, Fowke KR, Rickey DW, Ho EA. Implant delivering hydroxychloroquine attenuates vaginal T lymphocyte activation and inflammation. J Control Release 2018; 277:102-113. [PMID: 29545105 DOI: 10.1016/j.jconrel.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
Abstract
Evidence suggests that women who are naturally resistant to HIV infection exhibit low baseline immune activation at the female genital tract (FGT). This "immune quiescent" state is associated with lower expression of T-cell activation markers, reduced levels of gene transcription and pro-inflammatory cytokine or chemokine production involved in HIV infection while maintaining an intact immune response against pathogens. Therefore, if this unique immune quiescent state can be pharmacologically induced locally, it will provide an excellent women-oriented strategy against HIV infection To our knowledge, this is the first research article evaluating in vivo, an innovative trackable implant that can provide controlled delivery of hydroxychloroquine (HCQ) to successfully attenuate vaginal T lymphocyte activation and inflammation in a rabbit model as a potential strategy to induce an "immune quiescent" state within the FGT for the prevention of HIV infection. This biocompatible implant can deliver HCQ above therapeutic concentrations in a controlled manner, reduce submucosal immune cell recruitment, improve mucosal epithelium integrity, decrease protein and gene expression of T-cell activation markers, and attenuate the induction of key pro-inflammatory mediators. Our results suggest that microbicides designed to maintain a low level of immune activation at the FGT may offer a promising new strategy for reducing HIV infection.
Collapse
Affiliation(s)
- Yufei Chen
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada; College of Pharmacy, University of Manitoba, Canada
| | - Yannick L Traore
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada
| | - Sidi Yang
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Canada; Department of Medical Microbiology, University of Nairobi, Kenya
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Canada; Department of Medical Microbiology, University of Nairobi, Kenya
| | - Daniel W Rickey
- Department of Radiology, University of Manitoba, Canada; Department of Physics & Astronomy, University of Manitoba, Canada
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada.
| |
Collapse
|
132
|
Zhang B, Li SL, Xie HL, Fan JW, Gu CW, Kang C, Teng MJ. Effects of silencing the DUSP1 gene using lentiviral vector-mediated siRNA on the release of proinflammatory cytokines through regulation of the MAPK signaling pathway in mice with acute pancreatitis. Int J Mol Med 2018; 41:2213-2224. [PMID: 29393354 DOI: 10.3892/ijmm.2018.3429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the effects of dual specificity phosphatase 1 (DUSP1) gene silencing using lentiviral vector-mediated small interfering (si)RNA on the release of proinflammatory cytokines through the regulation of the mitogen‑activated protein kinase (MAPK) signaling pathway in mice with acute pancreatitis (AP). Two siRNA‑DUSP1 sequences and one scramble siRNA sequence were designed, and the expression of DUSP1 was detected using western blot analysis to screen for the one with a higher interference rate. An AP mouse model was established, and KM mice were assigned to either a control, siRNA, AP, AP+PD98059, AP+scramble, AP+siRNA or AP+PD98059+siRNA group. The expression of proinflammatory cytokines, including tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6, high mobility group box 1 (HMGB1), and S100A12 in serum samples were detected using an enzyme‑linked immunosorbent assay at 12, 24 and 48 h post‑modeling. The serum amylase levels were also detected. The expression levels of DUSP1, TNF‑α, IL‑1β, IL‑6, HMGB1, S100A12, phosphorylated (p‑) extracellular signal‑regulated kinase (ERK), p‑c‑Jun N‑terminal kinase (JNK), p‑p38, ERK, JNK and p38 in pancreatic, liver, kidney and lung tissues were detected using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Compared with the control group, the siRNA group demonstrated marginally upregulated serum amylase, lipase, urinary trypsinogen‑2, and proinflammatory cytokines, HMGB1 and S100A12 in serum and tissues, with no statistically significant difference, elevated expression levels of p‑ERK, p‑JNK and p‑p38, and decreased expression of DUSP1. The other five groups demonstrated increased expression levels of TNF‑α, IL‑1β, IL‑6, HMGB1, S100A12, amylase, lipase and urinary trypsinogen‑2 in serum, and increased expression levels of DUSP1, TNF‑α, IL‑1β, IL‑6, HMGB1, S100A12, p‑ERK, p‑JNK and p‑p38 in tissues. Compared with the AP group, the AP+PD98059+siRNA group had decreased expression of DUSP1 in tissues, whereas the AP+PD98059 group had decreased serum expression levels of TNF‑α, IL‑1β, IL‑6, HMGB1, S100A12 and amylase, lipase and urinary trypsinogen‑2. The expression levels of TNF‑α, IL‑1β, IL‑6, HMGB1, S100A12, p‑ERK, p‑JNK, p‑p38 in tissues, and edema of pancreatic tissue were alleviated, whereas the opposite results were observed in the AP+siRNA group with the decreased expression of DUSP1. The results suggested that DUSP1 gene silencing promoted the release of proinflammatory cytokines through activation of the MAPK signaling pathway in mice with AP.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Hepatobiliary Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Shu-Liang Li
- Department of General Surgery, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252600, P.R. China
| | - Hua-Lei Xie
- Department of Emergency, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252600, P.R. China
| | - Jia-Wei Fan
- Department of Emergency, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252600, P.R. China
| | - Chuan-Wei Gu
- Department of Emergency, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252600, P.R. China
| | - Chao Kang
- Department of Emergency, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252600, P.R. China
| | - Mu-Jian Teng
- Department of Hepatobiliary Surgery, Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
133
|
Li J, Zheng Y, Li M, Yang C, Liu Y. Tanshinone IIA alleviates lipopolysaccharide-induced acute lung injury by downregulating TRPM7 and pro-inflammatory factors. J Cell Mol Med 2018; 22:646-654. [PMID: 29047214 PMCID: PMC5742685 DOI: 10.1111/jcmm.13350] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
The study aimed to investigate the role of Tanshinone IIA (Tan IIA) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in its regulation of TRPM7. Wistar male rats were randomly divided into the normal saline (NS), LPS, knockout (KO) + LPS, low-dose Tan IIA (Tan-L), middle-dose Tan IIA (Tan-M), high-dose Tan IIA (Tan-H) and KO + high-dose Tan IIA (KO + Tan-H) groups. The level of tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, TRPM7 protein expression, current density-voltage curve and Ca2+ concentration were detected through ELISA, Western blotting, electrophysiological experiment and a calcium-imaging technique, respectively. The rats in the KO + LPS, Tan-L, Tan-M, Tan-H and KO + Tan-H groups all displayed lower levels of TNF-α, IL-1β and IL-6 than the LPS group. Rats in the KO + Tan-H group exhibited lower levels of NF-α, IL-1β and IL-6 than rats in the Tan-H group. Elevated levels of TRPM7 protein expression in the LPS and Tan groups were detected in comparison with the NS group. However, TRPM7 protein expression in Tan-M and Tan-H groups was notably lower than in that of the LPS group. In comparison with the NS group, the LPS and Tan groups had a greater PIMs cell density and a higher concentration of Ca2+ . Contrary results were observed in the KO + LPS, Tan-H and KO + Tan-H groups. Tan IIA decreases calcium influx in PIMs and inhibits pro-inflammatory factors which provide an alleviatory effect in regards to LPS-induced ALI by suppressing TRPM7 expression.
Collapse
Affiliation(s)
- Jie Li
- Department of Geriatricsthe First Hospital of Jilin UniversityChangchunChina
| | - Yan Zheng
- Department of Geriatricsthe First Hospital of Jilin UniversityChangchunChina
| | - Ming‐Xian Li
- Department of Respiratorythe First Hospital of Jilin UniversityChangchunChina
| | - Chu‐Wei Yang
- Emergency Departmentthe Second Hospital of Dalian Medical UniversityDalianChina
| | - Yu‐Fei Liu
- Emergency Departmentthe Second Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
134
|
Val F, Avalos S, Gomes AA, Zerpa JEA, Fontecha G, Siqueira AM, Bassat Q, Alecrim MGC, Monteiro WM, Lacerda MVG. Are respiratory complications of Plasmodium vivax malaria an underestimated problem? Malar J 2017; 16:495. [PMID: 29273053 PMCID: PMC5741897 DOI: 10.1186/s12936-017-2143-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Respiratory complications are uncommon, but often life-threatening features of Plasmodium vivax malaria. This study aimed to estimate the prevalence and lethality associated with such complications among P. vivax malaria patients in a tertiary hospital in the Western Brazilian Amazon, and to identify variables associated with severe respiratory complications, intensive care need and death. Medical records from 2009 to 2016 were reviewed aiming to identify all patients diagnosed with P. vivax malaria and respiratory complications. Prevalence, lethality and risk factors associated with WHO defined respiratory complications, intensive care need and death were assessed. RESULTS A total of 587 vivax malaria patients were hospitalized during the study period. Thirty (5.1%) developed respiratory complications. Thirteen (43.3%) developed severe respiratory complications, intensive care was required for 12 (40%) patients and 5 (16.6%) died. On admission, anaemia and thrombocytopaenia were common findings, whereas fever was unusual. Patients presented different classes of parasitaemia and six were aparasitaemic on admission. Time to respiratory complications occurred after anti-malarials administration in 18 (60%) patients and progressed very rapidly. Seventeen patients (56.7%) had comorbidities and/or concomitant conditions, which were significantly associated to higher odds of developing severe respiratory complications, need for intensive care and death (p < 0.05). CONCLUSION Respiratory complications were shown to be associated with significant mortality in this population. Patients with comorbidities and/or concomitant conditions require special attention to avoid this potential life-threatening complication.
Collapse
Affiliation(s)
- Fernando Val
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil. .,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.
| | - Sara Avalos
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - André Alexandre Gomes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - José Evelio Albornoz Zerpa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - André Machado Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Maria Graças Costa Alecrim
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil. .,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.,Instituto de Pesquisas Leônidas and Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| |
Collapse
|
135
|
Abstract
Recent clinical reports indicate that infection with dengue virus (DENV) commonly has ocular manifestations. The most serious threat to vision is dengue retinopathy, including retinal vasculopathy and macular edema. Mechanisms of retinopathy are unstudied, but observations in patients implicate retinal pigment epithelial cells and retinal endothelial cells. Human retinal cells were inoculated with DENV-2 and monitored for up to 72 hours. Epithelial and endothelial cells supported DENV replication and release, but epithelial cells alone demonstrated clear cytopathic effect, and infection was more productive in those cells. Infection induced type I interferon responses from both cells, but this was stronger in epithelial cells. Endothelial cells increased expression of adhesion molecules, with sustained overexpression of vascular adhesion molecule-1. Transcellular impedance decreased for epithelial monolayers, but not endothelial monolayers, coinciding with cytopathic effect. This reduction was accompanied by disorganization of intracellular filamentous-actin and decreased expression of junctional molecules, zonula occludens 1, and catenin-β1. Changes in endothelial expression of adhesion molecules are consistent with the retinal vasculopathy seen in patients infected with DENV; decreases in epithelial junctional protein expression, paralleling loss of integrity of the epithelium, provide a molecular basis for DENV-associated macular edema. These molecular processes present potential therapeutic targets for vision-threatening dengue retinopathy.
Collapse
|
136
|
Zhu D, Tan J, Maleken AS, Muljadi R, Chan ST, Lau SN, Elgass K, Leaw B, Mockler J, Chambers D, Leeman KT, Kim CF, Wallace EM, Lim R. Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury. Stem Cell Res Ther 2017; 8:257. [PMID: 29126435 PMCID: PMC5681809 DOI: 10.1186/s13287-017-0689-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/14/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023] Open
Abstract
Background Despite advances in neonatal care, bronchopulmonary dysplasia (BPD) remains a significant contributor to infant mortality and morbidity. While human amnion epithelial cells (hAECs) have shown promise in small and large animal models of BPD, there is scarce information on long-term benefit and clinically relevant questions surrounding administration strategy remain unanswered. In assessing the therapeutic potential of hAECs, we investigated the impact of cell dosage, administration routes and timing of treatment in a pre-clinical model of BPD. Methods Lipopolysaccharide was introduced intra-amniotically at day 16 of pregnancy prior to exposure to 65% oxygen (hyperoxia) at birth. hAECs were administered either 12 hours (early) or 4 days (late) after hyperoxia commenced. Collective lung tissues were subjected to histological analysis, multikine ELISA for inflammatory cytokines, FACS for immune cell populations and 3D lung stem cell culture at neonatal stage (postnatal day 7 and 14). Invasive lung function test and echocardiography were applied at 6 and 10 weeks of age. Results hAECs improved the tissue-to-airspace ratio and septal crest density in a dose-dependent manner, regardless of administration route. Early administration of hAECs, coinciding with the commencement of postnatal hyperoxia, was associated with reduced macrophages, dendritic cells and natural killer cells. This was not the case if hAECs were administered when lung injury was established. Fittingly, early hAEC treatment was more efficacious in reducing interleukin-1β, tumour necrosis factor alpha and monocyte chemoattractant protein-1 levels. Early hAEC treatment was also associated with reduced airway hyper-responsiveness and normalisation of pressure–volume loops. Pulmonary hypertension and right ventricle hypertrophy were also prevented in the early hAEC treatment group, and this persisted until 10 weeks of age. Conclusions Early hAEC treatment appears to be advantageous over late treatment. There was no difference in efficacy between intravenous and intratracheal administration. The benefits of hAEC administration resulted in long-term improvements in cardiorespiratory function. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0689-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Jean Tan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Amina S Maleken
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Ruth Muljadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Siow T Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Sin N Lau
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Kirstin Elgass
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Joanne Mockler
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Daniel Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kristen T Leeman
- Division of Newborn Medicine, Department of Paediatrics, Boston Children's Hospital Boston, Harvard Medical School, Clayton, Victoria, Australia.,Boston Children's Hospital Boston Stem Cell Program, Department of Genetics, Harvard Medical School and Harvard Stem Cell Institute, Clayton, Victoria, Australia
| | - Carla F Kim
- Boston Children's Hospital Boston Stem Cell Program, Department of Genetics, Harvard Medical School and Harvard Stem Cell Institute, Clayton, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia. .,Department of Obstetrics and Gynaecology, Monash University, 27-31 Wright Street, Clayton, VIC, 3800, Australia.
| |
Collapse
|
137
|
Batún-Garrido JADJ, Salas-Magaña M, Juárez-Rojop IE. Association between leptin and IL-6 concentrations with cardiovascular risk in patients with rheumatoid arthritis. Clin Rheumatol 2017; 37:631-637. [PMID: 29101672 DOI: 10.1007/s10067-017-3897-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 11/29/2022]
Abstract
Pro-inflammatory cytokines such as leptin and IL-6 play an important role in the development of cardiovascular risk. Determine the relationship between leptin and IL-6 concentrations with cardiovascular risk in patients with rheumatoid arthritis. We determined IL-6 and leptin levels in 77 patients with the diagnosis of rheumatoid arthritis. The cardiovascular risk was calculated using the modified Framingham scale. Statistical analysis was performed using SPSS 22 considering a significant p < 0.05. Serum leptin concentrations and cardiovascular risk (CVR) factors were compared and found that there was a significant difference between higher leptin values and disease activity (p 0.047), obesity (p 0.038), positive rheumatoid factor (p 0.009), tobacco (p 0.009), and metabolic syndrome (p 0.001). Likewise, a significant relationship was found between lower leptin concentrations and hydroxychloroquine consumption (p = 0.023). We found significant difference between IL-6 concentrations and disease activity (p 0.028), hypertriglyceridemia (p 0.023), LDL-C (p 0.029), and smoking (0.005). Similarly, an association between hydroxychloroquine consumption and low concentrations of IL-6 was found (p 0.005). Framingham CVR was calculated and the result obtained was multiplied by 1.5. The 35.2% of the population studied had a low Framingham CVR, 38.9% moderate, and 25.9% presented a high risk. We compared the level of CVR and serum leptin and IL-6 concentrations, finding that the highest CVR was the leptin and IL-6 values. There is a positive association between CVR and serum leptin concentrations. It is also significantly associated with traditional and non-traditional risk factors.
Collapse
|
138
|
Samaras P, Tusup M, Nguyen-Kim TDL, Seifert B, Bachmann H, von Moos R, Knuth A, Pascolo S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother Pharmacol 2017; 80:1005-1012. [PMID: 28980060 DOI: 10.1007/s00280-017-3446-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/23/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE Following a previously published pre-clinical validation, this phase I study evaluated the safety, maximum tolerated dose, anti-tumour activity and immune status of a gemcitabine-chloroquine combination as a first- or late-line treatment in patients with metastatic or unresectable pancreatic cancer. METHODS In this 3 + 3 dose escalation study, patients received a single weekly standard dose of intravenous gemcitabine, followed by single weekly oral intake of 100, 200 or 300 mg of chloroquine. Tumour response was assessed using the Response Evaluation Criteria in Solid Tumors version 1.1. Immune status was evaluated by RT-PCR to measure the relative expression of immune-related genes in peripheral blood mononuclear cells (PBMCs). RESULTS Overall, nine patients [median age 72 years; interquartile range (IQR), 68-78 years] were treated. No dose-limiting toxicities as defined in the protocol were observed. Three patients experienced partial response, and two patients had stable disease. The median time to progression was 4 months (95% CI 0.8-7.2), and the median overall survival was 7.6 months (95% CI 5.3-9.9). Among 86 assayed immune genes, three were significantly differentially expressed in PBMCs from responding versus non-responding patients: interferon-gamma receptor-1, toll-like receptor 2, and beta-2 microglobulin. CONCLUSIONS The addition of chloroquine to gemcitabine was well tolerated and showed promising effects on the clinical response to the anti-cancer chemotherapy. Based on these initial results, the efficacy of the gemcitabine-chloroquine combination should be further assessed.
Collapse
Affiliation(s)
- Panagiotis Samaras
- Department of Oncology, University Hospital of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Department of Diagnostic and Interventional Radiology, University Hospital of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Burkhardt Seifert
- Department of Biostatistics at the Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zurich, Switzerland
| | - Helga Bachmann
- Department of Oncology, University Hospital of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Roger von Moos
- Department of Oncology, University Hospital of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Alexander Knuth
- Department of Oncology, University Hospital of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland.,National Center for Cancer Care and Research NCCCR, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Steve Pascolo
- Department of Oncology, University Hospital of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland. .,Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091, Zurich, Switzerland. .,Department of Dermatology, University Hospital of Zürich, Gloriastrasse 31, 8091, Zurich, Switzerland.
| |
Collapse
|
139
|
Lee-Montiel FT, George SM, Gough AH, Sharma AD, Wu J, DeBiasio R, Vernetti LA, Taylor DL. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med (Maywood) 2017; 242:1617-1632. [PMID: 28409533 PMCID: PMC5661766 DOI: 10.1177/1535370217703978] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices.
Collapse
Affiliation(s)
| | - Subin M George
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Albert H Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Anup D Sharma
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - Juanfang Wu
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lawrence A Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
| | - D Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260,USA
- Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
140
|
Dose-dependent effects of peroxisome proliferator-activated receptors β/δ agonist on systemic inflammation after haemorrhagic shock. Cytokine 2017; 103:127-132. [PMID: 28969938 DOI: 10.1016/j.cyto.2017.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/27/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION PPARβ/δ agonists are known to modulate the systemic inflammatory response after sepsis. In this study, inflammation modulation effects of PPARβ/δ are investigated using the selective PPARβ/δ agonist (GW0742) in a model of haemorrhagic shock (HS)-induced sterile systemic inflammation. METHODS Blood pressure-controlled (35±5mmHg) HS was performed in C57/BL6 mice for 90min. Low-dose GW0742 (0.03mg/kg/BW) and high-dose GW0742 (0.3mg/kg/BW) were then administered at the beginning of resuscitation. Mice were sacrificed 6h after induction of HS. Plasma levels of IL-6, IL-1β, IL-10, TNFα, KC, MCP-1, and GM-CSF were determined by ELISA. Myeloperoxidase (MPO) activity in pulmonary and liver tissues was analysed with standardised MPO kits. RESULTS In mice treated with high-dose GW0742, plasma levels of IL-6, IL-1β, and MCP-1 were significantly increased compared to the control group mice. When compared to mice treated with low-dose GW0742 plasma levels of IL-6, IL-1β, GM-CSF, KC, and MCP-1 were significantly elevated in high-dose-treated mice. Low-dose GW0742 treatment was associated with a non-significant downtrend of inflammatory factors in mice with HS. No significant changes of MPO activity in lung and liver were observed between the control group and the GW0742 treatment groups. CONCLUSION This study identified dose-dependent effects of GW0742 on systemic inflammation after HS. While high-dose GW0742 substantially enhanced the systemic inflammatory response, low-dose GW0742 led to a downtrend of pro-inflammation cytokine expression. The exact mechanisms are yet unknown and need to be assessed in further studies.
Collapse
|
141
|
Cholesterol-modified Hydroxychloroquine-loaded Nanocarriers in Bleomycin-induced Pulmonary Fibrosis. Sci Rep 2017; 7:10737. [PMID: 28878315 PMCID: PMC5587549 DOI: 10.1038/s41598-017-11450-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
An increasing number of reports have suggested the use of hydroxychloroquine (HCQ) as an adjunct anti-cancer treatment to enhance the chemotherapeutic response, as well as for the treatment of several fibrotic skin diseases and cystic fibrosis. In this study, we synthesized a cholesterol-modified HCQ (Chol-HCQ) and hypothesized that a systemic delivery system with Chol-HCQ nanocarriers could be effective for the treatment of bleomycin-induced pulmonary fibrosis. Chol-HCQ significantly inhibits the proliferation of rat lung fibroblasts, regulates inflammation and ameliorates bleomycin-induced pulmonary fibrosis in rats. It regulates the expression of pro-inflammatory cytokines, such as TNF-α; reduces the infiltration of inflammatory neutrophils; and inhibits the phosphorylation of NF-κB. Chol-HCQ also reduces the expression of connective tissue growth factor (CTGF) and phosphorylation of extracellular regulated protein kinase (p-ERK) in rats with bleomycin-induced pulmonary fibrosis. Chol-HCQ nanocarriers reduce early pulmonary inflammation and inhibit the CTGF/ERK signalling pathway in bleomycin-induced pulmonary fibrosis. These results demonstrate that Chol-HCQ liposomes suppress pulmonary inflammation and reduce pulmonary fibrosis induced by bleomycin. The systemic administration safety of Chol-HCQ liposomes was confirmed after intravenous administration for 28 days in rats. The present study provides evidence that Chol-HCQ liposomes may be a potential therapeutic agent for inflammation associated with pulmonary fibrosis.
Collapse
|
142
|
Wijnant GJ, Van Bocxlaer K, Yardley V, Murdan S, Croft SL. Efficacy of Paromomycin-Chloroquine Combination Therapy in Experimental Cutaneous Leishmaniasis. Antimicrob Agents Chemother 2017; 61:e00358-17. [PMID: 28607026 PMCID: PMC5527568 DOI: 10.1128/aac.00358-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/13/2017] [Indexed: 01/07/2023] Open
Abstract
The 4-aminoquinoline chloroquine (CQ) is clinically used in combination with doxycycline to cure chronic Q fever, as it enhances the activity of the antibiotic against the causative bacterium Coxiella burnetii residing within macrophage phagolysosomes. As there is a similar cellular host-pathogen biology for Leishmania parasites, this study aimed to determine whether such an approach could also be the basis for a new, improved treatment for cutaneous leishmaniasis (CL). We have evaluated the in vitro and in vivo activities of combinations of CQ with the standard drugs paromomycin (PM), miltefosine, and amphotericin B against Leishmania major and Leishmania mexicana In 72-h intracellular antileishmanial assays, outcomes were variable for different drugs. Significantly, the addition of 10 μM CQ to PM reduced 50% effective concentrations (EC50s) by over 5-fold against L. major and against normally insensitive L. mexicana parasites. In murine models of L. major and L. mexicana CL, daily coadministration of 50 mg/kg of body weight PM and 25 mg/kg CQ for 10 days resulted in a significant reduction in lesion size but not in parasite load compared to those for mice given the same doses of PM alone. Overall, our data indicate that PM-CQ combination therapy is unlikely to be a potential candidate for further preclinical development.
Collapse
Affiliation(s)
- Gert-Jan Wijnant
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Katrien Van Bocxlaer
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vanessa Yardley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom
| | - Simon L Croft
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
143
|
Li P, Zheng Y, Chen X. Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics. Front Pharmacol 2017; 8:460. [PMID: 28785220 PMCID: PMC5506195 DOI: 10.3389/fphar.2017.00460] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Although initially described as an anti-tumor mediator, tumor necrosis factor-alpha (TNF) is generally considered as the master pro-inflammatory cytokine. It plays a crucial role in the pathogenesis of inflammatory diseases, such as rheumatoid arthritis (RA), inflammatory bowel disease, ankylosing spondylitis (AS), and psoriasis. Consequently, anti-TNF therapy has become mainstay treatment for autoimmune diseases. Historically, anti-inflammatory agents were developed before the identification of TNF. Salicylates, the active components of Willow spp., were identified in the mid-19th century for the alleviation of pain, fever, and inflammatory responses. Study of this naturally occurring compound led to the discovery of aspirin, which was followed by the development of non-steroidal anti-inflammatory drugs (NSAIDs) due to the chemical advances in the 19th–20th centuries. Initially, the most of NSAIDs were organic acid, but the non-acidic compounds were also identified as NSAIDs. Although effective in the treatment of inflammatory diseases, NSAIDs have some undesirable and adverse effect, such as ulcers, kidney injury, and bleeding in the gastrointestinal tract. In the past two decades, anti-TNF biologics were developed. Drugs belong to this class include soluble TNF receptor 2 fusion protein and anti-TNF antibodies. The introduction of anti-TNF therapeutics has revolutionized the management of autoimmune diseases, such as RA, psoriatic arthritis (PsA), plaque psoriasis (PP), AS, CD and ulcerative colitis (UC). Nevertheless, up to 40% of patients have no response to anti-TNF treatment. Furthermore, this treatment is associated with some adverse effects such as increased risk of infection, and even triggered the de novo development of autoimmune diseases. Such harmful effect of anti-TNF treatment is likely caused by the global inhibition of TNF biological functions. Therefore, specific inhibition of TNF receptor (TNFR1 or TNFR2) may represent a safer and more effective treatment, as proposed by some recent studies. In this review article, the historical development of anti-inflammatory drugs after World War II as briefly described above will be reviewed and analyzed. The future trend in the development of novel TNF receptor-targeting therapeutics will be discussed in the context of latest progress in the research of TNF biology.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
144
|
Heterogeneity of the cytokinome in undifferentiated arthritis progressing to rheumatoid arthritis and its change in the course of therapy. Move toward personalized medicine. Cytokine 2017; 97:1-13. [PMID: 28551592 DOI: 10.1016/j.cyto.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To conduct a comprehensive analysis of cytokine concentrations in sera and mononuclear cell supernatants in order to examine inter- and intra-individual cytokine variations in undifferentiated arthritis progressing to rheumatoid arthritis and healthy control groups. METHODS Patients with UA (undifferentiated arthritis) developing RA (rheumatoid arthritis) (UA→RA) (n=16) and healthy controls (n=16) were enrolled into the study. UA→RA patients were followed up for six months since the final RA diagnosis. Cytokines IFN-γ, IL-10, TNF, IL-17A, IL-6, IL-1β, IL-2 in sera and mononuclear cell supernatants in 72h and 120h culture variants with- and without anti-CD3 stimulations were assayed using flow cytometric bead array. RESULTS The cytokine profile of UA→RA differs from the healthy individual cytokine profile. It is possible to observe specific cytokine pattern characterizing each patient, which alters during course of disease. Specifically, we can distinguish three UA→RA cohorts: the group of patients susceptible to the therapy, characterized by the drop of cytokine levels between 1st and 3rd visit with visible decrease of cytokines in 2nd visit and then secondary slighter increase in 3rd visit; the group of patients refractory or clinically worsening on the therapy, characterized by the highest cytokine levels at 2nd visit with secondary decrease in 3rd visit; and the group of patients with variable responses to the therapy without any specific common cytokine pattern. The cytokine patterns in supernatants of PBMC stimulated anti-CD3 for 72h and 120h are very similar. CONCLUSIONS The personal profile including multiplexed cytokine patterns in serum and supernatant may be potentially used for optimization of therapy introduction and monitoring.
Collapse
|
145
|
Malysheva KV, Finiuk NS, Pavlenko OK, Havrylyuk DY, Lesyk RB, Stoika RS, Korchynsky OG. 4-Thiazolidinone-based derivatives rescue TNAα-inhibited osteoblast differentiation in mouse mesenchymal precursor cells. UKRAINIAN BIOCHEMICAL JOURNAL 2017. [DOI: 10.15407/ubj89.si01.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
146
|
Malysheva K, de Rooij K, Lowik CW, Baeten DL, Rose-John S, Stoika R, Korchynskyi O. Interleukin 6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblasts. Croat Med J 2017; 57:89-98. [PMID: 27106351 PMCID: PMC4856197 DOI: 10.3325/cmj.2016.57.89] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim To evaluate the impact of previously unrecognized negative interaction between the Wnt and interleukin (IL) 6 signaling pathways in skeletal tissues as a possible major mechanism leading to age- and inflammation-related destruction of bone and joints. Methods Luciferase reporter assays were performed to monitor Wnt pathway activation upon IL-6 and tumor necrosis factor-α (TNFα) treatment. Functional contribution of IL-6 and TNFα interaction to inhibition of bone formation was evaluated in vitro using small hairpin RNAs (shRNA) in mouse mesenchymal precursor cells (MPC) of C2C12 and KS483 lines induced to differentiate into osteoblasts by bone morphogenetic proteins (BMP). Results IL-6 inhibited the activation of Wnt signaling in primary human synoviocytes, and, together with TNFα and Dickkopf-1, inhibited the activation of Wnt response. ShRNA-mediated knockdown of IL-6 mRNA significantly increased early BMP2/7-induced osteogenesis and rescued it from the negative effect of TNFα in C2C12 cells, as well as intensified bone matrix mineralization in KS483 cells. Conclusion IL-6 is an important mediator in the inhibition of osteoblast differentiation by TNFα, and knockdown of IL-6 partially rescues osteogenesis from the negative control of inflammation. The anti-osteoblastic effects of IL-6 are most likely mediated by its negative interaction with Wnt signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olexandr Korchynskyi
- Olexandr Korchynskyi, Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of the National Academy of Sciences of Ukraine (NASU), 14/16, Drahomanov St., Lviv 79005, Ukraine,
| |
Collapse
|
147
|
Human CD64-targeted non-viral siRNA delivery system for blood monocyte gene modulation. Sci Rep 2017; 7:42171. [PMID: 28169353 PMCID: PMC5294565 DOI: 10.1038/srep42171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/03/2017] [Indexed: 01/25/2023] Open
Abstract
A subset of phagocytes including inflammatory monocytes in blood migrate and give rise to macrophages in inflammatory tissues which generated the idea that blood monocytes are the therapeutic targets for drug delivery. Fc gamma receptor I (CD64) is a membrane receptor for the Fc region of immunoglobulin G, primarily expressed on monocyte-lineage, and H22 a monoclonal antibody for human CD64 had shown rapid blood monocyte binding and occupation in clinical studies. Small interfering RNA-mediated gene silencing as a therapeutic has been proposed and is a promising strategy in terms of its "knock-down" ability on the target gene prior to translation. However, its instability and off-targeting effect must be overcome for success in clinical studies. In this study, we developed a non-viral delivery system composed of oligo-nona-arginine (9R) and anti-human CD64 single chain antibodies (H22) for human monocyte-specific siRNA delivery. A targeted and efficient siRNA delivery mediated by anti-CD64 scFv-9R was observed in CD64 positive human leukemia cells, THP-1. With primary human blood cells, anti-CD64 scFv-9R mediated gene silencing was quantitatively confirmed representing blood monocyte selective gene delivery. These results demonstrate the potential of anti-CD64 scFv-9R mediated siRNA delivery for the treatment of human inflammatory diseases via blood monocytes gene delivery.
Collapse
|
148
|
Ding C, Li F, Long Y, Zheng J. Chloroquine attenuates lipopolysaccharide-induced inflammatory responses through upregulation of USP25. Can J Physiol Pharmacol 2016; 95:481-491. [PMID: 28134560 DOI: 10.1139/cjpp-2016-0303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS) is a key pathogenic factor in sepsis, and its recognition by toll-like receptor 4 (TLR4) can activate two district signaling pathways, leading to activation of transcription factors including NF-κB and interferon regulatory factor 3 (IRF3). Chloroquine (CQ) has been shown to affect LPS-TLR4 colocalization and inhibit both MyD88-dependent and TRAM/TRIF-dependent pathways, though the mechanism involved is still poorly understood. Here, we found that the ubiquitin-proteasome system might be involved in this process. CQ increased USP25, a deubiquitinating enzyme, as well as mRNA and protein expression in a dose-dependent manner, which might to some degree be involved in CQ attenuation of LPS-induced macrophage activation. Overexpression of USP25 decreased LPS-induced inflammatory cytokines like TNF-α, IL-6, and IFN-β, while specific siRNA-mediated USP25 silencing increased TNF-α, IL-6, and IFN-β production and secretion. In addition, USP25 deletion strengthened mitogen-activated protein kinase (MAPKs) phosphorylation and IκB degradation. Moreover, USP25 interference increased NF-κB and IRF3 nuclear translocation. Taken together, our data demonstrated a new possible regulator of LPS-induced macrophage activation mediated by CQ, through upregulation of USP25.
Collapse
Affiliation(s)
- Changyu Ding
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| | - Fangfang Li
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| | - Yupeng Long
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China.,Medical Research Center, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba Distrinct, Chongqing 400038, P.R. China
| |
Collapse
|
149
|
The anti-inflammatory properties of Satureja khuzistanica Jamzad essential oil attenuate the effects of traumatic brain injuries in rats. Sci Rep 2016; 6:31866. [PMID: 27535591 PMCID: PMC4989136 DOI: 10.1038/srep31866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/26/2016] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health concern affecting the general public as well as military personnel. However, there is no FDA-approved therapy for the treatment of TBIs. In this work, we investigated the neurotherapeutic effects of the well-known natural Iranian medicine Satureja Khuzistanica Jamzad (SKJ) essential oil (SKEO) on the outcomes of diffused experimental TBI, with particular attention paid to its anti-inflammatory and anti-apoptotic effects. Male Wistar rats were treated with doses of 50, 100 and 200 (mg/kg, i.p) SKEO after induction of diffused TBIs. The results showed that injecting SKEO (200 mg/kg) 30 minutes after TBI significantly reduced brain oedema and damage to the blood-brain barrier (BBB) and limited the post-TBI increase in intracranial pressure. The veterinary coma scale (VCS) scores significantly improved in the treatment group. Also, inflammatory marker assays showed reduced levels of TNF-α, IL-1β, and IL-6 and increased IL-10 in the treated groups. Moreover, the immunohistochemical results indicated that SKEO not only reduced neuronal death and BBB permeability but also affected astrocytic activation. Overall, our data indicate potential clinical neurological applications for SKEO.
Collapse
|
150
|
Sun C, Chen L, Shi X, Cao Z, Hu B, Yu W, Ren M, Hu R, Deng H. Combined effects of proinflammatory cytokines and intermittent cyclic mechanical strain in inhibiting osteogenicity in human periodontal ligament cells. Cell Biol Int 2016; 40:999-1007. [DOI: 10.1002/cbin.10641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Chaofan Sun
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Lijiao Chen
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Xinlian Shi
- Department of Periodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Zhensheng Cao
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Bibo Hu
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Wenbin Yu
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Manman Ren
- Department of Periodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Rongdang Hu
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Hui Deng
- Department of Periodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| |
Collapse
|