101
|
Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 2014; 81:12-34. [PMID: 24411729 PMCID: PMC3921176 DOI: 10.1016/j.neuron.2013.12.025] [Citation(s) in RCA: 1314] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| |
Collapse
|
102
|
Abstract
Human brain dynamics are nowadays routinely explored at the macroscopic level using a wide variety of non-invasive neuroimaging techniques, including single photon emission computed tomography (SPECT) and positron emission tomography (PET), near infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fMRI). In the past decades, the application of brain imaging methods to the study of sleep raised a renewed interest for the field, especially in the domain of neuroscience. Indeed, these studies enabled researchers to characterize the functional neuroanatomy of sleep stages and identify the neural correlates of phasic and tonic sleep mechanisms. Furthermore, they provided the scientific community with tools to address the crucial question of brain plasticity processes during human sleep, the role of sleep-related plasticity for memory consolidation, and how sleep and the lack of post-training sleep impacts brain functioning in the neural networks underlying memory-related cognitive processes. This chapter reviews the contributions of neuroimaging to our understanding of the functional neuroanatomy of sleep and sleep stages, and discusses how sleep contributes to the long-term consolidation of recently acquired memories in light of contemporary neural models for memory consolidation during sleep.
Collapse
Affiliation(s)
- Philippe Peigneux
- UR2NF-Neuropsychology and Functional Neuroimaging Research Unit, CRCN-Centre de Recherches Cognition et Neurosciences and UNI-ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), CP191, Av. F Roosevelt 50, 1050, Bruxelles, Belgium,
| |
Collapse
|
103
|
Santana R, McGarry LM, Bielza C, Larrañaga P, Yuste R. Classification of neocortical interneurons using affinity propagation. Front Neural Circuits 2013; 7:185. [PMID: 24348339 PMCID: PMC3847556 DOI: 10.3389/fncir.2013.00185] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/01/2013] [Indexed: 11/17/2022] Open
Abstract
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Collapse
Affiliation(s)
- Roberto Santana
- Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid Madrid, Spain ; Intelligent Systems Group, Department of Computer Science and Artificial Intelligence, University of The Basque Country San Sebastian, Spain
| | - Laura M McGarry
- Department Biological Sciences, Columbia University New York, NY, USA
| | - Concha Bielza
- Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid Madrid, Spain
| | - Pedro Larrañaga
- Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid Madrid, Spain
| | - Rafael Yuste
- Department Biological Sciences, Columbia University New York, NY, USA
| |
Collapse
|
104
|
Abstract
PURPOSE OF REVIEW Sleep undergoes major changes during development. Its relationship to the complex process of maturation in health and disease has recently received increased attention. This review aims to highlight the recent literature examining the interplay of altered sleep, brain development and emerging psychiatric illnesses in children and adolescents. RECENT FINDINGS In addition to a temporal relationship of sleep disturbances preceding the onset of psychiatric illnesses, a bi-directional interaction of altered sleep and symptom severity has increasingly been shown. Sleep architecture shows drastic age-dependent alterations on a structural level during the first 2 decades of life. However, findings regarding disease-specific patterns have remained inconsistent. On a functional level, recent evidence about sleep electroencephalographic characteristics points to a close relationship between slow waves, reflecting the depth of sleep, and cortical plasticity. SUMMARY Sleep provides a rich source of information to gain insight into both the healthy and disturbed processes of brain function and maturation. Emerging data suggest that the investigation of slow wave activity is a novel and promising tool for monitoring both of these processes. It is important to understand when and how deviations from typical developmental sleep alterations occur in order to improve prevention and early treatment of disorders affecting a substantial number of children and adolescents.
Collapse
|
105
|
Miano S, Donfrancesco R, Parisi P, Rabasco J, Mazzotta AR, Tabarrini A, Vitelli O, Villa MP. Case reports of sleep phenotypes of ADHD: from hypothesis to clinical practice. J Atten Disord 2013; 17:565-73. [PMID: 24022016 DOI: 10.1177/1087054713497254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Five sleep ADHD phenotypes have been hypothesized: (a) the hypo-arousal state of the "primary" form of ADHD, (b) the sleep phase advanced disorder, (c) sleep disordered breathing (SDB), (d) restless legs syndrome and/or periodic limb movements disorder (PLMD), and (e) epilepsy. METHOD Five case reports are presented; each child but one underwent video-polysomnography. RESULTS The first case report is an example of ADHD and SDB, with improvement of hypersomnolence after resolution of sleep apnea. The second case shows the impact of delayed sleep onset latency in the pathogenesis of ADHD, and the efficacy of melatonin. The third case report describes the association with PLMD, with amelioration after iron supplementation. The other two cases are examples of ADHD and epilepsy, with clinical improvement after antiepileptic treatment was started. CONCLUSION A diagnostic and therapeutic algorithm should be designed to find the best first-line treatment for ADHD and sleep problems/epilepsy.
Collapse
|
106
|
Nere A, Hashmi A, Cirelli C, Tononi G. Sleep-dependent synaptic down-selection (I): modeling the benefits of sleep on memory consolidation and integration. Front Neurol 2013; 4:143. [PMID: 24137153 PMCID: PMC3786405 DOI: 10.3389/fneur.2013.00143] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 09/12/2013] [Indexed: 11/27/2022] Open
Abstract
Sleep can favor the consolidation of both procedural and declarative memories, promote gist extraction, help the integration of new with old memories, and desaturate the ability to learn. It is often assumed that such beneficial effects are due to the reactivation of neural circuits in sleep to further strengthen the synapses modified during wake or transfer memories to different parts of the brain. A different possibility is that sleep may benefit memory not by further strengthening synapses, but rather by renormalizing synaptic strength to restore cellular homeostasis after net synaptic potentiation in wake. In this way, the sleep-dependent reactivation of neural circuits could result in the competitive down-selection of synapses that are activated infrequently and fit less well with the overall organization of memories. By using computer simulations, we show here that synaptic down-selection is in principle sufficient to explain the beneficial effects of sleep on the consolidation of procedural and declarative memories, on gist extraction, and on the integration of new with old memories, thereby addressing the plasticity-stability dilemma.
Collapse
Affiliation(s)
- Andrew Nere
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison , Madison, WI , USA
| | | | | | | |
Collapse
|
107
|
Horne J. Exercise benefits for the aging brain depend on the accompanying cognitive load: insights from sleep electroencephalogram. Sleep Med 2013; 14:1208-13. [PMID: 24051117 DOI: 10.1016/j.sleep.2013.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 01/08/2023]
Abstract
Although exercise clearly offsets aging effects on the body, its benefits for the aging brain are likely to depend on the extent that physical activity (especially locomotion) facilitates multisensory encounters, curiosity, and interactions with novel environments; this is especially true for exploratory activity, which occupies much of wakefulness for most mammals in the wild. Cognition is inseparable from physical activity, with both interlinked to promote neuroplasticity and more successful brain aging. In these respects and for humans, exercising in a static, featureless, artificially lit indoor setting contrasts with exploratory outdoor walking within a novel environment during daylight. However, little is known about the comparative benefits for the aging brain of longer-term daily regimens of this latter nature including the role of sleep, to the extent that sleep enhances neuroplasticity as shown in short-term laboratory studies. More discerning analyses of sleep electroencephalogram (EEG) slow-wave activity especially 0.5-2-Hz activity would provide greater insights into use-dependent recovery processes during longer-term tracking of these regimens and complement slower changing waking neuropsychologic and resting functional magnetic resonance imaging (fMRI) measures, including those of the brain's default mode network. Although the limited research only points to ephemeral small sleep EEG effects of pure exercise, more enduring effects seem apparent when physical activity incorporates cognitive challenges. In terms of "use it or lose it," curiosity-driven "getting out and about," encountering, interacting with, and enjoying novel situations may well provide the brain with its real exercise, further reflected in changes to the dynamics of sleep.
Collapse
Affiliation(s)
- Jim Horne
- Sleep Research Centre, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
108
|
Porkka-Heiskanen T, Zitting KM, Wigren HK. Sleep, its regulation and possible mechanisms of sleep disturbances. Acta Physiol (Oxf) 2013; 208:311-28. [PMID: 23746394 DOI: 10.1111/apha.12134] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022]
Abstract
The state of sleep consists of different phases that proceed in successive, tightly regulated order through the night forming a physiological program, which for each individual is different but stabile from one night to another. Failure to accomplish this program results in feeling of unrefreshing sleep and tiredness in the morning. The program core is constructed by genetic factors but regulated by circadian rhythm and duration and intensity of day time brain activity. Many environmental factors modulate sleep, including stress, health status and ingestion of vigilance-affecting nutrients or medicines (e.g. caffeine). Acute sleep loss results in compromised cognitive performance, memory deficits, depressive mood and involuntary sleep episodes during the day. Moreover, prolonged sleep curtailment has many adverse health effects, as evidenced by both epidemiological and experimental studies. These effects include increased risk for depression, type II diabetes, obesity and cardiovascular diseases. In addition to voluntary restriction of sleep, shift work, irregular working hours, jet lag and stress are important factors that induce curtailed or bad quality sleep and/or insomnia. This review covers the current theories on the function of normal sleep and describes current knowledge on the physiologic effects of sleep loss. It provides insights into the basic mechanisms of the regulation of wakefulness and sleep creating a theoretical background for understanding different disturbances of sleep.
Collapse
Affiliation(s)
| | - K.-M. Zitting
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| | - H.-K. Wigren
- Institute of Biomedicine; University of Helsinki; Helsinki; Finland
| |
Collapse
|
109
|
Stroh A, Adelsberger H, Groh A, Rühlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth A. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 2013; 77:1136-50. [PMID: 23522048 DOI: 10.1016/j.neuron.2013.01.031] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
Abstract
Corticothalamic slow oscillations of neuronal activity determine internal brain states. At least in the cortex, the electrical activity is associated with large neuronal Ca(2+) transients. Here we implemented an optogenetic approach to explore causal features of the generation of slow oscillation-associated Ca(2+) waves in the in vivo mouse brain. We demonstrate that brief optogenetic stimulation (3-20 ms) of a local group of layer 5 cortical neurons is sufficient for the induction of global brain Ca(2+) waves. These Ca(2+) waves are evoked in an all-or-none manner, exhibit refractoriness during repetitive stimulation, and propagate over long distances. By local optogenetic stimulation, we demonstrate that evoked Ca(2+) waves initially invade the cortex, followed by a secondary recruitment of the thalamus. Together, our results establish that synchronous activity in a small cluster of layer 5 cortical neurons can initiate a global neuronal wave of activity suited for long-range corticothalamic integration.
Collapse
Affiliation(s)
- Albrecht Stroh
- Institute of Neuroscience, Technical University Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Piantoni G, Cheung BLP, Van Veen BD, Romeijn N, Riedner BA, Tononi G, Van Der Werf YD, Van Someren EJW. Disrupted directed connectivity along the cingulate cortex determines vigilance after sleep deprivation. Neuroimage 2013; 79:213-22. [PMID: 23643925 DOI: 10.1016/j.neuroimage.2013.04.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
The cingulate cortex is regarded as the backbone of structural and functional connectivity of the brain. While its functional connectivity has been intensively studied, little is known about its effective connectivity, its modulation by behavioral states, and its involvement in cognitive performance. Given the previously reported effects on cingulate functional connectivity, we investigated how eye-closure and sleep deprivation changed cingulate effective connectivity, estimated from resting-state high-density electroencephalography (EEG) using a novel method to calculate Granger Causality directly in source space. Effective connectivity along the cingulate cortex was dominant in the forward direction. Eyes-open connectivity in the forward direction was greater compared to eyes-closed, in well-rested participants. The difference between eyes-open and eyes-closed connectivity was attenuated and no longer significant after sleep deprivation. Individual variability in the forward connectivity after sleep deprivation predicted subsequent task performance, such that those subjects who showed a greater increase in forward connectivity between the eyes-open and the eyes-closed periods also performed better on a sustained attention task. Effective connectivity in the opposite, backward, direction was not affected by whether the eyes were open or closed or by sleep deprivation. These findings indicate that the effective connectivity from posterior to anterior cingulate regions is enhanced when a well-rested subject has his eyes open compared to when they are closed. Sleep deprivation impairs this directed information flow, proportional to its deleterious effect on vigilance. Therefore, sleep may play a role in the maintenance of waking effective connectivity.
Collapse
Affiliation(s)
- Giovanni Piantoni
- Dept of Sleep and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Parsing the role of sleep in memory processing. Curr Opin Neurobiol 2013; 23:847-53. [PMID: 23618558 DOI: 10.1016/j.conb.2013.04.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 11/21/2022]
Abstract
It would be nice if we could talk about sleep and memory as if there were only one type of memory and one type of sleep. But this is far from the case. Sleep and memory each comes in many forms, and furthermore, memories can go through multiple forms of post-encoding processing that must be individually addressed. Finally, sleep stages per se do not affect memories. Rather, the neuromodulatory and electrophysiological events that characterize these sleep stages must mediate sleep-dependent memory processing. In this review, we attempt to parse out the relative contributions and interactions of these often frustratingly complex systems.
Collapse
|
112
|
Ringli M, Kurth S, Huber R, Jenni OG. The sleep EEG topography in children and adolescents shows sex differences in language areas. Int J Psychophysiol 2013; 89:241-5. [PMID: 23608523 DOI: 10.1016/j.ijpsycho.2013.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 11/16/2022]
Abstract
The topographic distribution of slow wave activity (SWA, EEG power between 0.75 and 4.5 Hz) during non-rapid eye movement (NREM) sleep was proposed to mirror cortical maturation with a typical age-related pattern. Here, we examined whether sex differences occur in SWA topography of children and adolescents (22 age-matched subjects, 11 boys, mean age 13.4 years, range: 8.7-19.4, and 11 girls, mean age 13.4 years, range: 9.1-19.0 years). In females, SWA during the first 60 min of NREM sleep was higher over bilateral cortical areas that are related to language functions, while in males SWA was increased over the right prefrontal cortex, a region also involved in spatial abilities. We conclude that cortical areas governing functions in which one sex outperforms the other exhibit increased sleep SWA and, thus, may indicate maturation of sex-specific brain function and higher cortical plasticity during development.
Collapse
Affiliation(s)
- Maya Ringli
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
113
|
Celada P, Puig MV, Artigas F. Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 2013; 7:25. [PMID: 23626526 PMCID: PMC3630391 DOI: 10.3389/fnint.2013.00025] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/01/2013] [Indexed: 01/20/2023] Open
Abstract
The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe.
Collapse
Affiliation(s)
- Pau Celada
- Department of Neurochemistry and Neuropharmacology, Institut d' Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS Barcelona, Spain ; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid, Spain
| | | | | |
Collapse
|
114
|
King BR, Fogel SM, Albouy G, Doyon J. Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Front Hum Neurosci 2013; 7:142. [PMID: 23616757 PMCID: PMC3628357 DOI: 10.3389/fnhum.2013.00142] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/01/2013] [Indexed: 11/14/2022] Open
Abstract
As the world's population ages, a deeper understanding of the relationship between aging and motor learning will become increasingly relevant in basic research and applied settings. In this context, this review aims to address the effects of age on motor sequence learning (MSL) and motor adaptation (MA) with respect to behavioral, neurological, and neuroimaging findings. Previous behavioral research investigating the influence of aging on motor learning has consistently reported the following results. First, the initial acquisition of motor sequences is not altered, except under conditions of increased task complexity. Second, older adults demonstrate deficits in motor sequence memory consolidation. And, third, although older adults demonstrate deficits during the exposure phase of MA paradigms, the aftereffects following removal of the sensorimotor perturbation are similar to young adults, suggesting that the adaptive ability of older adults is relatively intact. This paper will review the potential neural underpinnings of these behavioral results, with a particular emphasis on the influence of age-related dysfunctions in the cortico-striatal system on motor learning.
Collapse
Affiliation(s)
- Bradley R King
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, University of Montreal Montreal, QC, Canada
| | | | | | | |
Collapse
|
115
|
Ngo HVV, Martinetz T, Born J, Mölle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 2013; 78:545-53. [PMID: 23583623 DOI: 10.1016/j.neuron.2013.03.006] [Citation(s) in RCA: 543] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/19/2022]
Abstract
Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- Institute of Medical Psychology and Behavioral Neurobiology, and Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
116
|
Wamsley EJ. Engineering sleep to discover the function of slow wave activity (Commentary on Antonenko et al.). Eur J Neurosci 2013; 37:1140-1. [PMID: 23551659 DOI: 10.1111/ejn.12154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erin J Wamsley
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
117
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
118
|
Bernier A, Beauchamp MH, Bouvette-Turcot AA, Carlson SM, Carrier J. Sleep and Cognition in Preschool Years: Specific Links to Executive Functioning. Child Dev 2013; 84:1542-53. [DOI: 10.1111/cdev.12063] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
119
|
Oudiette D, Paller KA. Upgrading the sleeping brain with targeted memory reactivation. Trends Cogn Sci 2013; 17:142-9. [PMID: 23433937 DOI: 10.1016/j.tics.2013.01.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
A fundamental feature of human memory is the propensity for beneficial changes in information storage after initial encoding. Recent research findings favor the possibility that memory consolidation during sleep is instrumental for actively maintaining the storehouse of memories that individuals carry through their lives. The information that ultimately remains available for retrieval may tend to be that which is reactivated during sleep. A novel source of support for this idea comes from demonstrations that neurocognitive processing during sleep can benefit memory storage when memories are covertly cued via auditory or olfactory stimulation. Investigations of these subtle manipulations of memory processing during sleep can help elucidate the mechanisms of memory preservation in the human brain.
Collapse
Affiliation(s)
- Delphine Oudiette
- Department of Psychology and Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
120
|
Reato D, Gasca F, Datta A, Bikson M, Marshall L, Parra LC. Transcranial electrical stimulation accelerates human sleep homeostasis. PLoS Comput Biol 2013; 9:e1002898. [PMID: 23459152 PMCID: PMC3573006 DOI: 10.1371/journal.pcbi.1002898] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO) in the human electro-encephalogram (EEG). A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.
Collapse
Affiliation(s)
- Davide Reato
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
121
|
Piantoni G, Astill RG, Raymann RJEM, Vis JC, Coppens JE, Van Someren EJW. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children. Int J Psychophysiol 2013; 89:252-8. [PMID: 23403325 DOI: 10.1016/j.ijpsycho.2013.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Deep sleep is characterized by slow waves of electrical activity in the cerebral cortex. They represent alternating down states and up states of, respectively, hyperpolarization with accompanying neuronal silence and depolarization during which neuronal firing resumes. The up states give rise to faster oscillations, notably spindles and gamma activity which appear to be of major importance to the role of sleep in brain function and cognition. Unfortunately, while spindles are easily detectable, gamma oscillations are of very small amplitude. No previous sleep study has succeeded in demonstrating modulations of gamma power along the time course of slow waves in human scalp EEG. As a consequence, progress in our understanding of the functional role of gamma modulation during sleep has been limited to animal studies and exceptional human studies, notably those of intracranial recordings in epileptic patients. Because high synaptic density, which peaks some time before puberty depending on the brain region (Huttenlocher and Dabholkar, 1997), generates oscillations of larger amplitude, we considered that the best chance to demonstrate a modulation of gamma power by slow wave phase in regular scalp sleep EEG would be in school-aged children. Sleep EEG was recorded in 30 healthy children (aged 10.7 ± 0.8 years; mean ± s.d.). Time-frequency analysis was applied to evaluate the time course of spectral power along the development of a slow wave. Moreover, we attempted to modify sleep architecture and sleep characteristics through automated acoustic stimulation coupled to the occurrence of slow waves in one subset of the children. Gamma power increased on the rising slope and positive peak of the slow wave. Gamma and spindle activity is strongly suppressed during the negative peak. There were no differences between the groups who received and did not receive acoustic stimulation in the sleep parameters and slow wave-locked time-frequency analysis. Our findings show, for the first time in scalp EEG in humans, that gamma activity is associated with the up-going slope and peak of the slow wave. We propose that studies in children provide a uniquely feasible opportunity to conduct investigations into the role of gamma during sleep.
Collapse
Affiliation(s)
- Giovanni Piantoni
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
122
|
Chatburn A, Coussens S, Lushington K, Kennedy D, Baumert M, Kohler M. Sleep spindle activity and cognitive performance in healthy children. Sleep 2013; 36:237-43. [PMID: 23372271 DOI: 10.5665/sleep.2380] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES To investigate the association between indices of sleep spindle activity and cognitive performance in a sample of healthy children. DESIGN Correlational. Intelligence (Stanford-Binet) and neurocognitive functioning (NEPSY) were assessed, with sleep variables being measured during overnight polysomnography. SETTING Hospital sleep laboratory. PARTICIPANTS Twenty-seven healthy children (mean age 8.19 y; 14 female, 13 male). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Participants underwent a single night of overnight polysomnography after completing measures of intelligence and neurocognitive functioning. Sleep spindles were visually identified by an experienced sleep scoring technician and separated algorithmically into fast (> 13 Hz) and slow spindle (< 13 Hz) categories. The number of fast spindles was significantly correlated with narrative memory (r(s) = 0.38) and sensorimotor functioning (-0.43). Mean central frequency of spindles was also significantly correlated with sensorimotor functioning (-0.41), planning ability (-0.41), and working memory (-0.54). CONCLUSIONS Basal sleep spindle activity is associated with different aspects of cognitive performance in children. To the extent that these associations in a pediatric population are different from what is known in adult sleep may play an important role in development.
Collapse
Affiliation(s)
- Alex Chatburn
- Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
123
|
Hung CS, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C, Tononi G. Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 2013; 36:59-72. [PMID: 23288972 DOI: 10.5665/sleep.2302] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES Prolonged wakefulness leads to a progressive increase in sleep pressure, reflected in a global increase in slow wave activity (SWA, 0.5-4.5 Hz) in the sleep electroencephalogram (EEG). A global increase in wake theta activity (5-9 Hz) also occurs. Recently, it was shown that prolonged wakefulness in rodents leads to signs of "local sleep" in an otherwise awake brain, accompanied by a slow/theta wave (2-6 Hz) in the local EEG that occurs at different times in different cortical areas. Compelling evidence in animals and humans also indicates that sleep is locally regulated by the amount of experience-dependent plasticity. Here, we asked whether the extended practice of tasks that involve specific brain circuits results in increased occurrence of local intermittent theta waves in the human EEG, above and beyond the global EEG changes previously described. DESIGN Participants recorded with high-density EEG completed 2 experiments during which they stayed awake ≥ 24 h practicing a language task (audiobook listening [AB]) or a visuomotor task (driving simulator [DS]). SETTING Sleep laboratory. PATIENTS OR PARTICIPANTS 16 healthy participants (7 females). INTERVENTIONS Two extended wake periods. MEASUREMENTS AND RESULTS Both conditions resulted in global increases in resting wake EEG theta power at the end of 24 h of wake, accompanied by increased sleepiness. Moreover, wake theta power as well as the occurrence and amplitude of theta waves showed regional, task-dependent changes, increasing more over left frontal derivations in AB, and over posterior parietal regions in DS. These local changes in wake theta power correlated with similar local changes in sleep low frequencies including SWA. CONCLUSIONS Extended experience-dependent plasticity of specific circuits results in a local increase of the wake theta EEG power in those regions, followed by more intense sleep, as reflected by SWA, over the same areas.
Collapse
Affiliation(s)
- Ching-Sui Hung
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI 53719, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Ringli M, Souissi S, Kurth S, Brandeis D, Jenni OG, Huber R. Topography of sleep slow wave activity in children with attention-deficit/hyperactivity disorder. Cortex 2013; 49:340-7. [PMID: 22974674 DOI: 10.1016/j.cortex.2012.07.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 05/20/2012] [Accepted: 06/18/2012] [Indexed: 11/15/2022]
Affiliation(s)
- Maya Ringli
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
125
|
Censor N, Sagi D, Cohen LG. Common mechanisms of human perceptual and motor learning. Nat Rev Neurosci 2012; 13:658-64. [PMID: 22903222 DOI: 10.1038/nrn3315] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adult mammalian brain has a remarkable capacity to learn in both the perceptual and motor domains through the formation and consolidation of memories. Such practice-enabled procedural learning results in perceptual and motor skill improvements. Here, we examine evidence supporting the notion that perceptual and motor learning in humans exhibit analogous properties, including similarities in temporal dynamics and the interactions between primary cortical and higher-order brain areas. These similarities may point to the existence of a common general mechanism for learning in humans.
Collapse
Affiliation(s)
- Nitzan Censor
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
126
|
Sleep-related cognitive function and the K-complex in schizophrenia. Behav Brain Res 2012; 234:161-6. [DOI: 10.1016/j.bbr.2012.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 11/22/2022]
|
127
|
Ngo HVV, Claussen JC, Born J, Mölle M. Induction of slow oscillations by rhythmic acoustic stimulation. J Sleep Res 2012; 22:22-31. [PMID: 22913273 DOI: 10.1111/j.1365-2869.2012.01039.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- Institute for Neuro- and Bioinformatics, University of Lübeck, Germany
| | | | | | | |
Collapse
|
128
|
Cued memory reactivation during sleep influences skill learning. Nat Neurosci 2012; 15:1114-6. [PMID: 22751035 PMCID: PMC3498459 DOI: 10.1038/nn.3152] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/31/2012] [Indexed: 02/05/2023]
Abstract
Information acquired during waking can be reactivated during sleep, promoting memory stabilization. After people learned to produce two melodies in time with moving visual symbols, we produced a relative improvement in performance by presenting one melody during an afternoon nap. Electrophysiological signs of memory processing during sleep corroborated the notion that appropriate auditory stimulation that does not disrupt sleep can nevertheless bias memory consolidation in relevant brain circuitry.
Collapse
|
129
|
Goldstein MR, Plante DT, Hulse BK, Sarasso S, Landsness EC, Tononi G, Benca RM. Overnight changes in waking auditory evoked potential amplitude reflect altered sleep homeostasis in major depression. Acta Psychiatr Scand 2012; 125:468-77. [PMID: 22097901 PMCID: PMC3303968 DOI: 10.1111/j.1600-0447.2011.01796.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Sleep homeostasis is altered in major depressive disorder (MDD). Pre- to postsleep decline in waking auditory evoked potential (AEP) amplitude has been correlated with sleep slow wave activity (SWA), suggesting that overnight changes in waking AEP amplitude are homeostatically regulated in healthy individuals. This study investigated whether the overnight change in waking AEP amplitude and its relation to SWA is altered in MDD. METHOD Using 256-channel high-density electroencephalography, all-night sleep polysomnography and single-tone waking AEPs pre- and postsleep were collected in 15 healthy controls (HC) and 15 non-medicated individuals with MDD. RESULTS N1 and P2 amplitudes of the waking AEP declined after sleep in the HC group, but not in MDD. The reduction in N1 amplitude also correlated with fronto-central SWA in the HC group, but a comparable relationship was not found in MDD, despite equivalent SWA between groups. No pre- to postsleep differences were found for N1 or P2 latencies in either group. These findings were not confounded by varying levels of alertness or differences in sleep variables between groups. CONCLUSION MDD involves altered sleep homeostasis as measured by the overnight change in waking AEP amplitude. Future research is required to determine the clinical implications of these findings.
Collapse
Affiliation(s)
| | - David T. Plante
- Department of Psychiatry, University of Wisconsin Madison, Madison, WI, USA
| | - Brad K. Hulse
- Department of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Simone Sarasso
- Department of Psychiatry, University of Wisconsin Madison, Madison, WI, USA,Department of General Psychology, Università degli Studi di Padova, Padova, Italy
| | - Eric C. Landsness
- Department of Psychiatry, University of Wisconsin Madison, Madison, WI, USA
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin Madison, Madison, WI, USA
| | - Ruth M. Benca
- Department of Psychiatry, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
130
|
Lustenberger C, Huber R. High density electroencephalography in sleep research: potential, problems, future perspective. Front Neurol 2012; 3:77. [PMID: 22593753 PMCID: PMC3350944 DOI: 10.3389/fneur.2012.00077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/20/2012] [Indexed: 12/30/2022] Open
Abstract
High density EEG (hdEEG) during sleep combines the superior temporal resolution of EEG recordings with high spatial resolution. Thus, this method allows a topographical analysis of sleep EEG activity and thereby fosters the shift from a global view of sleep to a local one. HdEEG allowed to investigate sleep rhythms in terms of their characteristic behavior (e.g., the traveling of slow waves) and in terms of their relationship to cortical functioning (e.g., consciousness and cognitive abilities). Moreover, recent studies successfully demonstrated that hdEEG can be used to study brain functioning in neurological and neuro-developmental disorders, and to evaluate therapeutic approaches. This review highlights the potential, the problems, and future perspective of hdEEG in sleep research.
Collapse
|
131
|
Abstract
In most animals, sleep is considered a global brain and behavioral state. However, recent intracortical recordings have shown that aspects of non-rapid eye movement (NREM) sleep and wakefulness can occur simultaneously in different parts of the cortex in mammals, including humans. Paradoxically, however, NREM sleep still manifests as a global behavioral shutdown. In this review, the authors examine this paradox from an evolutionary perspective. On the basis of strategic modeling, they suggest that in animals with brains composed of heavily interconnected and functionally interdependent units, a global regulator of sleep maintains the behavioral shutdown that defines sleep and thereby ensures that local use-dependent functions are performed in a safe and efficient manner. This novel perspective has implications for understanding deficits in human cognitive performance resulting from sleep deprivation, sleep disorders such as sleepwalking, changes in consciousness that occur during sleep, and the function of sleep itself.
Collapse
|
132
|
Saletin JM, Walker MP. Nocturnal mnemonics: sleep and hippocampal memory processing. Front Neurol 2012; 3:59. [PMID: 22557988 PMCID: PMC3340569 DOI: 10.3389/fneur.2012.00059] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/28/2012] [Indexed: 11/20/2022] Open
Abstract
As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved: increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information. Instead, and based on explicit as well as saliency cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications.
Collapse
Affiliation(s)
- Jared M Saletin
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California Berkeley, CA, USA
| | | |
Collapse
|
133
|
Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast 2012; 2012:415250. [PMID: 22619736 PMCID: PMC3350977 DOI: 10.1155/2012/415250] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/13/2012] [Indexed: 12/13/2022] Open
Abstract
Sleep must serve an essential, universal function, one that offsets the risk of being disconnected from the environment. The synaptic homeostasis hypothesis (SHY) is an attempt to identify this essential function. Its core claim is that sleep is needed to reestablish synaptic homeostasis, which is challenged by the remarkable plasticity of the brain. In other words, sleep is "the price we pay for plasticity." In this issue, M. G. Frank reviewed several aspects of the hypothesis and raised several issues. The comments below provide a brief summary of the motivations underlying SHY and clarify that SHY is a hypothesis not about specific mechanisms, but about a universal, essential function of sleep. This function is the preservation of synaptic homeostasis in the face of a systematic bias toward a net increase in synaptic strength--a challenge that is posed by learning during adult wake, and by massive synaptogenesis during development.
Collapse
|
134
|
Impaired savings despite intact initial learning of motor adaptation in Parkinson's disease. Exp Brain Res 2012; 218:295-304. [PMID: 22430183 DOI: 10.1007/s00221-012-3060-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
In motor adaptation, the occurrence of savings (faster relearning of a previously learned motor adaptation task) has been explained in terms of operant reinforcement learning (Huang et al. in Neuron 70(4):787-801, 2011), which is thought to associate an adapted motor command with outcome success during repeated execution of the adapted movement. There is some evidence for deficient savings in Parkinson's Disease (PD), which might result from deficient operant reinforcement processes. However, this evidence is compromised by limited adaptation training during initial learning and by multi-target adaptation, which reduces the number of reinforced movement repetitions for each target. Here, we examined savings in PD patients and controls following overlearning with a single target. PD patients showed less savings than controls after successive adaptation and deadaptation blocks within the same test session, as well as less savings across test sessions separated by a 24-h delay. It is argued that impaired blunted dopaminergic signals in PD impairs the modulation of dopaminergic signals to the motor cortex in response to rewarding motor outcomes, thus impairing the association of the adapted motor command with rewarding motor outcomes. Consequently, the previously adapted motor command is not preferentially selected during relearning, and savings is impaired.
Collapse
|
135
|
Neuronal Oscillations in Sleep: Insights from Functional Neuroimaging. Neuromolecular Med 2012; 14:154-67. [DOI: 10.1007/s12017-012-8166-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/06/2012] [Indexed: 12/31/2022]
|
136
|
Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior. PROGRESS IN BRAIN RESEARCH 2012; 193:63-82. [PMID: 21854956 DOI: 10.1016/b978-0-444-53839-0.00005-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sleep slow waves are the major electrophysiological features of non-rapid eye movement (NREM) sleep. Although there is growing understanding of where slow waves originate and how they are generated during sleep, the function of slow waves is still largely unclear. A recently proposed hypothesis relates slow waves to the homeostatic regulation of synaptic plasticity. While several studies confirm a correlation between experimentally triggered synaptic changes and slow-wave activity (SWA), little is known about its association to synaptic changes occurring during cortical maturation. Interestingly, slow waves undergo remarkable changes during development that parallel the time course of cortical maturation. In a recent cross-sectional study including children and adolescents, the topographical distribution of SWA was analyzed with high-density electroencephalography. The results showed age-dependent differences in SWA topography: SWA was highest over posterior regions during early childhood and then shifted over central derivations to the frontal cortex in late adolescence. This trajectory of SWA topography matches the course of cortical gray maturation. In this chapter, the major changes in slow waves during development are highlighted and linked to cortical maturation and behavior. Interestingly, synaptic density and slow-wave amplitude increase during childhood are highest shortly before puberty, decline thereafter during adolescence, reaching overall stable levels during adulthood. The question arises whether SWA is merely reflecting cortical changes or if it plays an active role in brain maturation. We thereby propose a model, by which sleep slow waves may contribute to cortical maturation. We hypothesize that while there is a balance between synaptic strengthening and synaptic downscaling in adults, the balance of strengthening/formation and weakening/elimination is tilted during development.
Collapse
Affiliation(s)
- Maya Ringli
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
| | | |
Collapse
|
137
|
Modulation of gamma and theta spectral amplitude and phase synchronization is associated with the development of visuo-motor learning. J Neurosci 2011; 31:14810-9. [PMID: 21994398 DOI: 10.1523/jneurosci.1319-11.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The formation of new motor memories, which is fundamental for efficient performance during adaptation to a visuo-motor rotation, occurs when accurate planning is achieved mostly with feedforward mechanisms. The dynamics of brain activity underlying the switch from feedback to feedforward control is still matter of debate. Based on the results of studies in declarative learning, it is likely that phase synchronization of low and high frequencies as well as their temporal modulation in power amplitude underlie the formation of new motor memories during visuo-motor adaptation. High-density EEG (256 electrodes) was recorded in 17 normal human subjects during adaptation to a visuo-motor rotation of 60° in four incremental steps of 15°. We found that initial learning is associated with enhancement of gamma power in a right parietal region during movement execution as well as gamma/theta phase coherence during movement planning. Late stages of learning are instead accompanied by an increase of theta power over that same right parietal region during movement planning, which is correlated with the degree of learning and retention. Altogether, these results suggest that the formation of new motor memories and, thus, the switch from feedback to feedforward control is associated with the modulation of gamma and theta spectral activities, with respect to their amplitude and phase, during movement planning and execution. Specifically, we propose that gamma/theta phase coupling plays a pivotal role in the integration of a new representation into motor memories.
Collapse
|
138
|
Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol 2011; 44:449-64. [PMID: 22076606 DOI: 10.1007/s12035-011-8214-0] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here, we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied.
Collapse
Affiliation(s)
- M Victoria Puig
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
139
|
Fung MM, Peters K, Redline S, Ziegler MG, Ancoli-Israel S, Barrett-Connor E, Stone KL. Decreased slow wave sleep increases risk of developing hypertension in elderly men. Hypertension 2011; 58:596-603. [PMID: 21876072 PMCID: PMC3176739 DOI: 10.1161/hypertensionaha.111.174409] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of sleep to health and cardiovascular disease has become increasingly apparent. Sleep-disordered breathing, sleep duration, and sleep architecture may all influence metabolism and neurohormonal systems, yet no previous study has evaluated these sleep characteristics concurrently in relation to incident hypertension. Our objective was to determine whether incident hypertension is associated with polysomnography measures of sleep-disordered breathing, sleep duration, and sleep architecture in older men. Participants were 784 community-dwelling, ambulatory men ≥65 years of age (mean age: 75.1±4.9 years) from the Outcomes of Sleep Disorders in Older Men Study who did not have hypertension at the time of their in-home polysomnography sleep studies (2003-2005) and who returned for follow-up (2007-2009). Of 784 older men included in this report, 243 met criteria for incident hypertension after a mean follow-up of 3.4 years. In unadjusted analyses, incident hypertension was associated with increased hypoxemia, increased sleep stages N1 and N2, and decreased stage N3 (slow wave sleep [SWS]). After adjustment for age, nonwhite race, study site, and body mass index, the only sleep index to remain significantly associated with incident hypertension was SWS percentage (odds ratio for lowest to highest quartile of SWS: 1.83 [95% CI: 1.18 to 2.85]). No attenuation of this association was seen after accounting for sleep duration, sleep fragmentation, and indices of sleep-disordered breathing. Percentage time in SWS was inversely associated with incident hypertension, independent of sleep duration and fragmentation, and sleep-disordered breathing. Selective deprivation of SWS may contribute to adverse blood pressure in older men.
Collapse
Affiliation(s)
- Maple M Fung
- San Diego Veterans Affairs Healthcare System, Medicine Service, San Diego, CA 92161, USA.
| | | | | | | | | | | | | |
Collapse
|
140
|
Fucke T, Suchanek D, Nawrot MP, Seamari Y, Heck DH, Aertsen A, Boucsein C. Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex. J Neurophysiol 2011; 106:3035-44. [PMID: 21849616 DOI: 10.1152/jn.00811.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alternating epochs of activity and silence are a characteristic feature of neocortical networks during certain sleep cycles and deep states of anesthesia. The mechanism and functional role of these slow oscillations (<1 Hz) have not yet been fully characterized. Experimental and theoretical studies show that slow-wave oscillations can be generated autonomously by neocortical tissue but become more regular through a thalamo-cortical feedback loop. Evidence for a functional role of slow-wave activity comes from EEG recordings in humans during sleep, which show that activity travels as stereotypical waves over the entire brain, thought to play a role in memory consolidation. We used an animal model to investigate activity wave propagation on a smaller scale, namely within the rat somatosensory cortex. Signals from multiple extracellular microelectrodes in combination with one intracellular recording in the anesthetized animal in vivo were utilized to monitor the spreading of activity. We found that activity propagation in most animals showed a clear preferred direction, suggesting that it often originated from a similar location in the cortex. In addition, the breakdown of active states followed a similar pattern with slightly weaker direction preference but a clear correlation to the direction of activity spreading, supporting the notion of a wave-like phenomenon similar to that observed after strong sensory stimulation in sensory areas. Taken together, our findings support the idea that activity waves during slow-wave sleep do not occur spontaneously at random locations within the network, as was suggested previously, but follow preferred synaptic pathways on a small spatial scale.
Collapse
Affiliation(s)
- Thomas Fucke
- Neurobiology and Biophysics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
141
|
Landsness EC, Goldstein MR, Peterson MJ, Tononi G, Benca RM. Antidepressant effects of selective slow wave sleep deprivation in major depression: a high-density EEG investigation. J Psychiatr Res 2011; 45:1019-26. [PMID: 21397252 PMCID: PMC3119746 DOI: 10.1016/j.jpsychires.2011.02.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/05/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Sleep deprivation can acutely reverse depressive symptoms in some patients with major depression. Because abnormalities in slow wave sleep are one of the most consistent biological markers of depression, it is plausible that the antidepressant effects of sleep deprivation are due to the effects on slow wave homeostasis. This study tested the prediction that selectively reducing slow waves during sleep (slow wave deprivation; SWD), without disrupting total sleep time, will lead to an acute reduction in depressive symptomatology. As part of a multi-night, cross-over design study, participants with major depression (non-medicated; n = 17) underwent baseline, SWD, and recovery sleep sessions, and were recorded with high-density EEG (hdEEG). During SWD, acoustic stimuli were played to suppress subsequent slow waves, without waking up the participant. The effects of SWD on depressive symptoms were assessed with both self-rated and researcher-administered scales. Participants experienced a significant decrease in depressive symptoms according to both self-rated (p = .007) and researcher-administered (p = .010) scales, while vigilance was unaffected. The reduction in depressive symptoms correlated with the overnight dissipation of fronto-central slow wave activity (SWA) on baseline sleep, the rebound in right frontal all-night SWA on recovery sleep, and the amount of REM sleep on the SWD night. In addition to highlighting the benefits of hdEEG in detecting regional changes in brain activity, these findings suggest that SWD may help to better understand the pathophysiology of depression and may be a useful tool for the neuromodulatory reversal of depressive symptomatology.
Collapse
|
142
|
Landsness E, Bruno MA, Noirhomme Q, Riedner B, Gosseries O, Schnakers C, Massimini M, Laureys S, Tononi G, Boly M. Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state. Brain 2011; 134:2222-32. [PMID: 21841201 PMCID: PMC3155704 DOI: 10.1093/brain/awr152] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 04/03/2011] [Accepted: 05/06/2011] [Indexed: 11/12/2022] Open
Abstract
The existence of normal sleep in patients in a vegetative state is still a matter of debate. Previous electrophysiological sleep studies in patients with disorders of consciousness did not differentiate patients in a vegetative state from patients in a minimally conscious state. Using high-density electroencephalographic sleep recordings, 11 patients with disorders of consciousness (six in a minimally conscious state, five in a vegetative state) were studied to correlate the electrophysiological changes associated with sleep to behavioural changes in vigilance (sustained eye closure and muscle inactivity). All minimally conscious patients showed clear electroencephalographic changes associated with decreases in behavioural vigilance. In the five minimally conscious patients showing sustained behavioural sleep periods, we identified several electrophysiological characteristics typical of normal sleep. In particular, all minimally conscious patients showed an alternating non-rapid eye movement/rapid eye movement sleep pattern and a homoeostatic decline of electroencephalographic slow wave activity through the night. In contrast, for most patients in a vegetative state, while preserved behavioural sleep was observed, the electroencephalographic patterns remained virtually unchanged during periods with the eyes closed compared to periods of behavioural wakefulness (eyes open and muscle activity). No slow wave sleep or rapid eye movement sleep stages could be identified and no homoeostatic regulation of sleep-related slow wave activity was observed over the night-time period. In conclusion, we observed behavioural, but no electrophysiological, sleep wake patterns in patients in a vegetative state, while there were near-to-normal patterns of sleep in patients in a minimally conscious state. These results shed light on the relationship between sleep electrophysiology and the level of consciousness in severely brain-damaged patients. We suggest that the study of sleep and homoeostatic regulation of slow wave activity may provide a complementary tool for the assessment of brain function in minimally conscious state and vegetative state patients.
Collapse
Affiliation(s)
- Eric Landsness
- 1 Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and Centre Hospitalier Universitaire du Sart-Tilman, Liège, Belgium
- 2 Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Marie-Aurélie Bruno
- 1 Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and Centre Hospitalier Universitaire du Sart-Tilman, Liège, Belgium
| | - Quentin Noirhomme
- 1 Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and Centre Hospitalier Universitaire du Sart-Tilman, Liège, Belgium
| | - Brady Riedner
- 2 Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Olivia Gosseries
- 1 Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and Centre Hospitalier Universitaire du Sart-Tilman, Liège, Belgium
| | - Caroline Schnakers
- 1 Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and Centre Hospitalier Universitaire du Sart-Tilman, Liège, Belgium
| | - Marcello Massimini
- 3 Department of Clinical Sciences, ‘Luigi Sacco’, University of Milan, Milan, Italy
| | - Steven Laureys
- 1 Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and Centre Hospitalier Universitaire du Sart-Tilman, Liège, Belgium
| | - Giulio Tononi
- 2 Department of Psychiatry, University of Wisconsin - Madison, Madison, WI, USA
| | - Mélanie Boly
- 1 Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and Centre Hospitalier Universitaire du Sart-Tilman, Liège, Belgium
| |
Collapse
|
143
|
Bachmann V, Klaus F, Bodenmann S, Schäfer N, Brugger P, Huber S, Berger W, Landolt HP. Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. ACTA ACUST UNITED AC 2011; 22:962-70. [PMID: 21734253 DOI: 10.1093/cercor/bhr173] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Homeostatically regulated slow-wave oscillations in non-rapid eye movement (REM) sleep may reflect synaptic changes across the sleep-wake continuum and the restorative function of sleep. The nonsynonymous c.22G>A polymorphism (rs73598374) of adenosine deaminase (ADA) reduces the conversion of adenosine to inosine and predicts baseline differences in sleep slow-wave oscillations. We hypothesized that this polymorphism affects cognitive functions, and investigated whether it modulates electroencephalogram (EEG), behavioral, subjective, and biochemical responses to sleep deprivation. Attention, learning, memory, and executive functioning were quantified in healthy adults. Right-handed carriers of the variant allele (G/A genotype, n = 29) performed worse on the d2 attention task than G/G homozygotes (n = 191). To test whether this difference reflects elevated homeostatic sleep pressure, sleep and sleep EEG before and after sleep deprivation were studied in 2 prospectively matched groups of G/A and G/G genotype subjects. Deep sleep and EEG 0.75- to 1.5-Hz oscillations in non-REM sleep were significantly higher in G/A than in G/G genotype. Moreover, attention and vigor were reduced, whereas waking EEG alpha activity (8.5-12 Hz), sleepiness, fatigue, and α-amylase in saliva were enhanced. These convergent data demonstrate that genetic reduction of ADA activity elevates sleep pressure and plays a key role in sleep and waking quality in humans.
Collapse
Affiliation(s)
- Valérie Bachmann
- Institute of Pharmacology and Toxicology University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Landsness EC, Ferrarelli F, Sarasso S, Goldstein MR, Riedner BA, Cirelli C, Perfetti B, Moisello C, Ghilardi MF, Tononi G. Electrophysiological traces of visuomotor learning and their renormalization after sleep. Clin Neurophysiol 2011; 122:2418-25. [PMID: 21652261 DOI: 10.1016/j.clinph.2011.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/16/2011] [Accepted: 05/04/2011] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Adapting movements to a visual rotation involves the activation of right posterior parietal areas. Further performance improvement requires an increase of slow wave activity in subsequent sleep in the same areas. Here we ascertained whether a post-learning trace is present in wake EEG and whether such a trace is influenced by sleep slow waves. METHODS In two separate sessions, we recorded high-density EEG in 17 healthy subjects before and after a visuomotor rotation task, which was performed both before and after sleep. High-density EEG was recorded also during sleep. One session aimed to suppress sleep slow waves, while the other session served as a control. RESULTS After learning, we found a trace in the eyes-open wake EEG as a local, parietal decrease in alpha power. After the control night, this trace returned to baseline levels, but it failed to do so after slow wave deprivation. The overnight change of the trace correlated with the dissipation of low frequency (<8 Hz) NREM sleep activity only in the control session. CONCLUSIONS Visuomotor learning leaves a trace in the wake EEG alpha power that appears to be renormalized by sleep slow waves. SIGNIFICANCE These findings link visuomotor learning to regional changes in wake EEG and sleep homeostasis.
Collapse
Affiliation(s)
- E C Landsness
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G. Regional slow waves and spindles in human sleep. Neuron 2011; 70:153-69. [PMID: 21482364 DOI: 10.1016/j.neuron.2011.02.043] [Citation(s) in RCA: 641] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2011] [Indexed: 11/20/2022]
Abstract
The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions--are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions.
Collapse
Affiliation(s)
- Yuval Nir
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Nelson AB, Faraguna U, Tononi G, Cirelli C. Effects of anesthesia on the response to sleep deprivation. Sleep 2011; 33:1659-67. [PMID: 21120128 DOI: 10.1093/sleep/33.12.1659] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVE Slow wave activity (SWA) during NREM sleep is the best characterized marker of sleep homeostasis, and the occurrence of sleep slow waves is necessary to reduce sleep need. Recent evidence suggests that sleep slow waves may mediate several beneficial effects of sleep on performance, from the prevention of cognitive impairments to memory consolidation. However, slow waves are also triggered by low doses of many anesthetics, but very few reports have examined whether anesthesia-mediated slow waves affect the homeostatic regulation of sleep. Moreover, no study has examined how sleep is affected by higher doses of anesthetics, which lead to a predominantly "isoelectric" EEG tracing without slow waves. DESIGN We studied in rats whether 1 hour of a dose of isoflurane or desflurane able to induce almost continuous slow waves (ISO-sw, DES-sw), and of a dose of desflurane resulting in a predominantly isoelectric EEG (DES-iso) reduces the sleep pressure caused by 4 h of sleep deprivation. Anesthesia was compared to a mock condition in which rats were only anesthetized for 2-3 min. SETTING Basic sleep research laboratory. PATIENTS OR PARTICIPANTS Male WKY rats (n=31). INTERVENTIONS Total sleep deprivation by exposure to novel objects starting at light onset, followed by one hour of anesthesia or mock anesthesia. MEASUREMENTS AND RESULTS One hour of anesthesia (sw or iso) did not affect either sleep duration or the overall sleep pattern. Anesthesia with ISO-sw or DES-sw, both associated with the occurrence of almost continuous slow waves, reduced the SWA rebound expected following 4 h of sleep deprivation. One hour of anesthesia with DES-iso, associated with isoelectric EEG and few slow waves, also reduced the SWA rebound after sleep deprivation, and did so to an extent similar to that observed after DES-sw. However, in contrast to DES-sw, SWA after DES-iso remained chronically lower than in baseline, resulting in reduced slow wave energy (SWE, SWA × time) for at least 2 days. CONCLUSION The blunted SWA rebound after ISO-sw and DES-sw suggests that anesthesia slow waves may substitute for sleep slow waves. The reduced SWA rebound after DES-iso may reflect a pathological condition that results in a chronic decrease in SWA, or may suggest that anesthesia slow waves are not an absolute requirement to discharge sleep pressure.
Collapse
Affiliation(s)
- Aaron B Nelson
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| | | | | | | |
Collapse
|
147
|
Odor fear conditioning modifies piriform cortex local field potentials both during conditioning and during post-conditioning sleep. PLoS One 2011; 6:e18130. [PMID: 21448432 PMCID: PMC3063180 DOI: 10.1371/journal.pone.0018130] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/22/2011] [Indexed: 12/02/2022] Open
Abstract
Background Sleep plays an active role in memory consolidation. Sleep structure (REM/Slow wave activity [SWS]) can be modified after learning, and in some cortical circuits, sleep is associated with replay of the learned experience. While the majority of this work has focused on neocortical and hippocampal circuits, the olfactory system may offer unique advantages as a model system for exploring sleep and memory, given the short, non-thalamic pathway from nose to primary olfactory (piriform cortex), and rapid cortex-dependent odor learning. Methodology/Principal Findings We examined piriform cortical odor responses using local field potentials (LFPs) from freely behaving Long-Evans hooded rats over the sleep-wake cycle, and the neuronal modifications that occurred within the piriform cortex both during and after odor-fear conditioning. We also recorded LFPs from naïve animals to characterize sleep activity in the piriform cortex and to analyze transient odor-evoked cortical responses during different sleep stages. Naïve rats in their home cages spent 40% of their time in SWS, during which the piriform cortex was significantly hypo-responsive to odor stimulation compared to awake and REM sleep states. Rats trained in the paired odor-shock conditioning paradigm developed enhanced conditioned odor evoked gamma frequency activity in the piriform cortex over the course of training compared to pseudo-conditioned rats. Furthermore, conditioned rats spent significantly more time in SWS immediately post-training both compared to pre-training days and compared to pseudo-conditioned rats. The increase in SWS immediately after training significantly correlated with the duration of odor-evoked freezing the following day. Conclusions/Significance The rat piriform cortex is hypo-responsive to odors during SWS which accounts for nearly 40% of each 24 hour period. The duration of slow-wave activity in the piriform cortex is enhanced immediately post-conditioning, and this increase is significantly correlated with subsequent memory performance. Together, these results suggest the piriform cortex may go offline during SWS to facilitate consolidation of learned odors with reduced external interference.
Collapse
|
148
|
Hulse BK, Landsness EC, Sarasso S, Ferrarelli F, Guokas JJ, Wanger T, Tononi G. A postsleep decline in auditory evoked potential amplitude reflects sleep homeostasis. Clin Neurophysiol 2011; 122:1549-55. [PMID: 21420904 DOI: 10.1016/j.clinph.2011.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/11/2010] [Accepted: 01/18/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It has been hypothesized that slow wave activity, a well established measure of sleep homeostasis that increases after waking and decreases after sleep, may reflect changes in cortical synaptic strength. If so, the amplitude of sensory evoked responses should also vary as a function of time awake and asleep in a way that reflects sleep homeostasis. METHODS Using 256-channel, high-density electroencephalography (EEG) in 12 subjects, auditory evoked potentials (AEP) and spontaneous waking data were collected during wakefulness before and after sleep. RESULTS The amplitudes of the N1 and P2 waves of the AEP were reduced after a night of sleep. In addition, the decline in N1 amplitude correlated with low-frequency EEG power during non-rapid eye movement sleep and spontaneous wakefulness, both homeostatically regulated measures of sleep need. CONCLUSIONS The decline in AEP amplitude after a night of sleep may reflect a homeostatic reduction in synaptic strength. SIGNIFICANCE These findings provide further evidence for a connection between synaptic plasticity and sleep homeostasis.
Collapse
Affiliation(s)
- Brad K Hulse
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q, Landsness EC, Brichant JF, Phillips C, Massimini M, Laureys S, Tononi G, Boly M. Propofol anesthesia and sleep: a high-density EEG study. Sleep 2011; 34:283-91A. [PMID: 21358845 DOI: 10.1093/sleep/34.3.283] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
STUDY OBJECTIVES The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. DESIGN 256-channel EEG recordings in humans during propofol anesthesia. SETTING Hospital operating room. PATIENTS OR PARTICIPANTS 8 healthy subjects (4 males). INTERVENTIONS N/A. MEASUREMENTS AND RESULTS Initially, propofol induced increases in EEG power from 12-25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25-40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. CONCLUSIONS Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity.
Collapse
Affiliation(s)
- Michael Murphy
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53719, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Geiger A, Achermann P, Jenni OG. Sleep, intelligence and cognition in a developmental context: differentiation between traits and state-dependent aspects. PROGRESS IN BRAIN RESEARCH 2011; 185:167-79. [PMID: 21075239 DOI: 10.1016/b978-0-444-53702-7.00010-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article addresses associations between sleep, cognition and intelligence in a developmental context and clarifies the terminology. Research must differentiate between aspects related to general underlying traits and those aspects that are characterized by state-dependent fluctuations.
Collapse
Affiliation(s)
- Anja Geiger
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
| | | | | |
Collapse
|