101
|
McGuire SO, Sortwell CE, Shukitt-Hale B, Joseph JA, Hejna MJ, Collier TJ. Dietary supplementation with blueberry extract improves survival of transplanted dopamine neurons. Nutr Neurosci 2013; 9:251-8. [PMID: 17263092 DOI: 10.1080/10284150601086134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The exact mechanisms contributing to poor neuronal survival in cell transplantation paradigms for Parkinson's disease (PD) are unknown. However, transplantation-induced host immune response, inflammation, and subsequent oxidative stress are likely contributors to cell death since dopamine (DA) neurons are exquisitely sensitive to oxidative damage. Multiple studies have attempted to improve cell survival by treating transplant material with antioxidant and antiinflammatory compounds, whereas far fewer studies have attempted to modify the host environment to reduce these threats. Flavonoids, phytochemicals found in fruits and vegetables, have antioxidant, antiinflammatory, and immunomodulatory properties. For example, supplementation with dietary blueberry extract (BBE) prevents oxidative stress-associated impairment of striatal motor function during aging and restores lost motor function in aged rats. We hypothesized that dietary supplementation of rodent diets with BBE would improve the survival of embryonic DA neurons transplanted into the unilaterally DA-depleted striatum. Inclusion of 2% BBE in a custom chow diet significantly increased the survival of implanted DA neurons and ameliorated rotational behavior asymmetries as compared to transplanted animals consuming a standard diet. These findings provide support for the potential of dietary phytochemicals as an easily administered and well-tolerated therapy that can be used to improve the effectiveness of DA neuron replacement.
Collapse
Affiliation(s)
- Susan O McGuire
- Department of Pathology, Loyola University Medical School, Loyola University Chicago, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
102
|
|
103
|
UPLC-Q-TOF/MS for Analysis of the Metabolites of Flavone Glycosides from Scutellaria baicalensis Georgi by Human Fecal Flora in Vitro. Chromatographia 2013. [DOI: 10.1007/s10337-013-2498-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
104
|
Lee KW, Ji HM, Kim DW, Choi SM, Kim S, Yang EJ. Effects of Hominis placenta on LPS-induced cell toxicity in BV2 microglial cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:286-292. [PMID: 23500882 DOI: 10.1016/j.jep.2013.02.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hominis placenta (HP) dried placenta extracted from pregnant women after delivery has been widely used to treat chronic inflammatory diseases. HP has been reported to be effective to alleviate the arthritic symptoms by modulating the expression of inflammatory factors in adjuvant-induced arthritis rats. However, the mechanism of action of HP is unknown. Neuroinflammation has been implicated in the pathogenesis of several neurodegenerative disease, including Alzheimer's disease (AD), Parkinson's disease (PD) and amyotropic lateral sclerosis (ALS). Activated microglia produce large amounts of toxic soluble factors, which can be responsible for the neurodegenerative disease. Chronic microglial activation leads to neuroinflammation, which contributes to neuronal dysfunction, injury and loss in these diseases. Lipopolysaccharide (LPS) is widely used for neuroinflammation caused by microglial activation of immune cells in the central nervous system (CNS) and subsequent release of inflammatory or neurotoxic factors. In the present study, we investigated the effects and signaling pathway of HP in the LPS induced BV2 microglial cells. MATERIALS AND METHOD BV2 microglial cells were pretreated with 50 μM HP for 2h prior to 2 μg/ml LPS for 15 min. Cell viability was determined by MTT assay. The level of protein expression was analyzed by western blot. Immunofluorescence was performed with an anti-COX2 antibody in BV2 cells. RESULTS HP decreased LPS-induced microglial cell death by 24% and inhibited LPS-induced activation of c-Jun N-terminal kinase (JNK) by 23% and p42/44MAP kinase (ERK) by 34% treatment of LPS. In addition, HP attenuated LPS-induced pro-inflammatory proteins such as iNOS and COX2 in microglial cells 34% and 28% respectively. CONCLUSIONS Our data shows that HP has a protective role against LPS stimulation through inhibition of MAPK signaling and suppression of inflammation caused by neurotoxin including LPS. These findings suggest that HP could be a potential therapeutic agent of neurodegenerative diseases which accompanied with microglial activation.
Collapse
Affiliation(s)
- Kang-Woo Lee
- Department of Medical Research, Korea Institute of Oriental Medicine, Expo-ro, Yuseong-gu, Daejeon 305-811, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
105
|
Zhang X, Hong YL, Xu DS, Feng Y, Zhao LJ, Ruan KF, Yang XJ. A Review of Experimental Research on Herbal Compounds in Amyotrophic Lateral Sclerosis. Phytother Res 2013; 28:9-21. [DOI: 10.1002/ptr.4960] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/05/2013] [Accepted: 02/04/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Xue Zhang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
- Engineering Research Center of Modern Preparation Technology of Zhangjiang; Shanghai China
| | - Yan-Long Hong
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
- Engineering Research Center of Modern Preparation Technology of Zhangjiang; Shanghai China
| | - De-Sheng Xu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
- Shuguang Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
- Engineering Research Center of Modern Preparation Technology of Zhangjiang; Shanghai China
| | - Li-Jie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
- Engineering Research Center of Modern Preparation Technology of Zhangjiang; Shanghai China
| | - Ke-Feng Ruan
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
- Engineering Research Center of Modern Preparation Technology of Zhangjiang; Shanghai China
| | - Xiu-Juan Yang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai China
- Engineering Research Center of Modern Preparation Technology of Zhangjiang; Shanghai China
| |
Collapse
|
106
|
Bellik Y, Boukraâ L, Alzahrani HA, Bakhotmah BA, Abdellah F, Hammoudi SM, Iguer-Ouada M. Molecular mechanism underlying anti-inflammatory and anti-allergic activities of phytochemicals: an update. Molecules 2012; 18:322-53. [PMID: 23271469 PMCID: PMC6269762 DOI: 10.3390/molecules18010322] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/06/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022] Open
Abstract
The resort worldwide to edible medicinal plants for medical care has increased significantly during the last few years. Currently, there is a renewed interest in the search for new phytochemicals that could be developed as useful anti-inflammatory and anti-allergic agents to reduce the risk of many diseases. The activation of nuclear transcription factor-kappa B (NF-κB) has now been linked to a variety of inflammatory diseases, while data from numerous studies underline the importance of phytochemicals in inhibiting the pathway that activates this transcription factor. Moreover, the incidence of type I allergic disorders has been increasing worldwide, particularly, the hypersensitivity to food. Thus, a good number of plant products with anti-inflammatory and anti-allergic activity have been documented, but very few of these compounds have reached clinical use and there is scant scientific evidence that could explain their mode of action. Therefore, this paper intends to review the most salient recent reports on the anti-inflammatory and anti-allergic properties of phytochemicals and the molecular mechanisms underlying these properties.
Collapse
Affiliation(s)
- Yuva Bellik
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| | - Laïd Boukraâ
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +213-795-306-930
| | - Hasan A. Alzahrani
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Balkees A. Bakhotmah
- Mohammad Hussein Al Amoudi Chair for Diabetic Foot Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mails: (H.A.A.); (B.A.B.)
- Department of Nutrition Food Sciences, Arts and Design College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatiha Abdellah
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Si M. Hammoudi
- Laboratory of Research on Local Animal Products, Ibn-Khaldoun University of Tiaret, Tiaret 14000, Algeria; E-Mails: (Y.B.); (F.A.); (S.M.H.)
| | - Mokrane Iguer-Ouada
- Faculty of Nature and Life Sciences, Abderrahmane Mira University, Béjaia 06000, Algeria; E-Mail:
| |
Collapse
|
107
|
Kim HG, Ju MS, Ha SK, Lee H, Lee H, Kim SY, Oh MS. Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol Pharm Bull 2012; 35:1287-94. [PMID: 22863927 DOI: 10.1248/bpb.b12-00127] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acacetin (5,7-dihydroxy-4'-methoxyflavone), a constituent of flavone naturally present in plants, has anti-cancer and anti-inflammatory activities. Neuroinflammation is thought to be one of the major pathological mechanisms responsible for Parkinson's disease (PD), and has been a primary target in the development of treatment for PD. In the present study, we evaluated the neuroprotective effect of acacetin in PD induced by 1-methyl-4-phenylpyridine (MPP+)/or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and examined the related pathways in vitro and in vivo. In primary mesencephalic culture, acacetin protected dopaminergic (DA) cells and inhibited production of inflammatory factors such as nitric oxide, prostaglandin E2, and tumor necrosis factor-α against MPP+-induced toxicity in a dose-dependent manner. Then, we confirmed the effect of acacetin (10 mg/kg/d for 3 d, per os (p.o.)) in a mouse model of PD induced by MPTP (30 mg/kg/d for 5 d, intraperitoneally (i.p.)). In the behavioral test (pole test), the acacetin-treated mice showed decreased time of turning and locomotor activity, which were longer in MPTP-only treated mice. In addition, the acacetin-treated group inhibited degeneration of DA neurons and depletion of dopamine level induced by MPTP toxicity in the substantia nigra and striatum of the brain. Moreover, the acacetin-treated group inhibited microglia activation, accompanied by production of inducible nitric oxide synthases and cyclooxygenase-2. These results suggest that acacetin can protect DA neurons against the neurotoxicity involved in PD via its anti-inflammatory action.
Collapse
Affiliation(s)
- Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul 130–701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
108
|
The regulatory effect of veratric acid on NO production in LPS-stimulated RAW264.7 macrophage cells. Cell Immunol 2012; 280:164-70. [DOI: 10.1016/j.cellimm.2012.12.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/10/2012] [Accepted: 12/25/2012] [Indexed: 11/23/2022]
|
109
|
Bi J, Jiang B, Zorn A, Zhao RG, Liu P, An LJ. Catalpol inhibits LPS plus IFN-γ-induced inflammatory response in astrocytes primary cultures. Toxicol In Vitro 2012; 27:543-50. [PMID: 23164921 DOI: 10.1016/j.tiv.2012.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/14/2012] [Accepted: 09/18/2012] [Indexed: 01/01/2023]
Abstract
A large body of evidence suggests that the inflammatory reaction plays an important role in the pathogenesis of neurodegenerative diseases. Our previous studies described the neuroprotective effects of catalpol in lipopolysaccharide (LPS)-induced inflammatory models, in which catalpol was shown to prevent mesencephalic neuron death and ameliorate cognitive ability animals. To further investigate the protective effect and underlying mechanism of catalpol, astrocytes were pretreated with low (0.1mM) and high dose (0.5mM) catalpol for 1h prior to LPS plus interferon-γ stimulation. Biochemical analyses showed that NO and ROS production and iNOS activity were significantly reduced by catalpol. Data at transcriptional level also demonstrated that catalpol potently attenuated gene expressions involved in inflammation, such as iNOS, COX-2 and TLR4. In addition, our exploration further revealed that the suppressive action of catalpol on inflammation was mediated via inhibiting nuclear factor-κB (NF-κB) activation. Collectively, these results suggest that catalpol can exert inhibitory effects on the inflammatory reaction in astrocytes and that inactivation of NF-κB could be the major determinant for its anti-inflammatory mechanism. Therefore, catalpol may potentially be a highly effective therapeutic agent in treating neurodegenerative diseases associated with inflammation.
Collapse
Affiliation(s)
- Jing Bi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | |
Collapse
|
110
|
Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev 2012; 6:81-90. [PMID: 23055633 PMCID: PMC3459459 DOI: 10.4103/0973-7847.99898] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/02/2011] [Accepted: 08/23/2012] [Indexed: 12/11/2022] Open
Abstract
Cognitive dysfunction is a major health problem in the 21st century, and many neuropsychiatric disorders and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's Disease dementia, cerebrovascular impairment, seizure disorders, head injury and Parkinsonism, can be severly functionally debilitating in nature. In course of time, a number of neurotransmitters and signaling molecules have been identified which have been considered as therapeutic targets. Conventional as well newer molecules have been tried against these targets. Phytochemicals from medicinal plants play a vital role in maintaining the brain's chemical balance by influencing the function of receptors for the major inhibitory neurotransmitters. In traditional practice of medicine, several plants have been reported to treat cognitive disorders. In this review paper, we attempt to throw some light on the use of medicinal herbs to treat cognitive disorders. In this review, we briefly deal with some medicinal herbs focusing on their neuroprotective active phytochemical substances like fatty acids, phenols, alkaloids, flavonoids, saponins, terpenes etc. The resistance of neurons to various stressors by activating specific signal transduction pathways and transcription factors are also discussed. It was observed in the review that a number of herbal medicines used in Ayurvedic practices as well Chinese medicines contain multiple compounds and phytochemicals that may have a neuroprotective effect which may prove beneficial in different neuropsychiatric and neurodegenerative disorders. Though the presence of receptors or transporters for polyphenols or other phytochemicals of the herbal preparations, in brain tissues remains to be ascertained, compounds with multiple targets appear as a potential and promising class of therapeutics for the treatment of diseases with a multifactorial etiology.
Collapse
Affiliation(s)
- G Phani Kumar
- Biochemistry and Nutrition Division, Defence Food Research Laboratory, Mysore, India
| | | |
Collapse
|
111
|
Yan BC, Park JH, Ahn JH, Choi JH, Yoo KY, Lee CH, Cho JH, Kim SK, Lee YL, Shin HC, Won MH. Comparison of glial activation in the hippocampal CA1 region between the young and adult gerbils after transient cerebral ischemia. Cell Mol Neurobiol 2012; 32:1127-38. [PMID: 22555669 PMCID: PMC11498410 DOI: 10.1007/s10571-012-9837-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023]
Abstract
It has been reported that young animals are less vulnerable to brain ischemia. In the present study, we compared gliosis in the hippocampal CA1 region of the young gerbil with those in the adult gerbil induced by 5 min of transient cerebral ischemia by immunohistochemistry and western blot for glial cells. We used male gerbils of postnatal month 1 (PM 1) as the young and PM 6 as the adult. Neuronal death in CA1 pyramidal neurons in the adult gerbil occurred at 4 days post-ischemia; the neuronal death in the young gerbil occurred at 7 days post-ischemia. The findings of glial changes in the young gerbil after ischemic damage were distinctively different from those in the adult gerbil. Glial fibrillary acidic protein-immunoreactive astrocytes, ionized calcium-binding adapter molecule (Iba-1), and isolectin B4-immunoreactive microglia in the ischemic CA1 region were activated much later in the young gerbil than in the adult gerbil. In brief, very less gliosis occurred in the hippocampal CA1 region of the young gerbil than in the adult gerbil after transient cerebral ischemia.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Joon Ha Park
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Ji Hyeon Ahn
- Department of Physical Therapy, Laboratory of Neuroscience, College of Rehabilitation Science, Daegu University, Gyenongsan, 712-714 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry and Research institute of Oral Biology, Gangneung-Wonju National University, Gangneung, 210-702 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, and Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Sung Koo Kim
- Department of Pediatrics, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 150-950 South Korea
| | - Yun Lyul Lee
- Department of Physiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Hyung-Cheul Shin
- Department of Physiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon, 200-702 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
112
|
Gresa-Arribas N, Viéitez C, Dentesano G, Serratosa J, Saura J, Solà C. Modelling neuroinflammation in vitro: a tool to test the potential neuroprotective effect of anti-inflammatory agents. PLoS One 2012; 7:e45227. [PMID: 23028862 PMCID: PMC3447933 DOI: 10.1371/journal.pone.0045227] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023] Open
Abstract
Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.
Collapse
Affiliation(s)
- Núria Gresa-Arribas
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Viéitez
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guido Dentesano
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joan Serratosa
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August-Pi i Sunyer (IDIBAPS), Barcelona, Spain
- * E-mail:
| |
Collapse
|
113
|
Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012; 13:9877-9892. [PMID: 22949836 PMCID: PMC3431834 DOI: 10.3390/ijms13089877] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common primary adult brain tumor with poor prognosis because of the ease of spreading tumor cells to other regions of the brain. Cell apoptosis is frequently targeted for developing anti-cancer drugs. In the present study, we have assessed wogonin, a flavonoid compound isolated from Scutellaria baicalensis Georgi, induced ROS generation, endoplasmic reticulum (ER) stress and cell apoptosis. Wogonin induced cell death in two different human glioma cells, such as U251 and U87 cells but not in human primary astrocytes (IC 50 > 100 μM). Wogonin-induced apoptotic cell death in glioma cells was measured by propidine iodine (PI) analysis, Tunnel assay and Annexin V staining methods. Furthermore, wogonin also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Moreover, treatment of wogonin also increased a number of signature ER stress markers glucose-regulated protein (GRP)-78, GRP-94, Calpain I, and phosphorylation of eukaryotic initiation factor-2α (eIF2α). Treatment of human glioma cells with wogonin was found to induce reactive oxygen species (ROS) generation. Wogonin induced ER stress-related protein expression and cell apoptosis was reduced by the ROS inhibitors apocynin and NAC (N-acetylcysteine). The present study provides evidence to support the fact that wogonin induces human glioma cell apoptosis mediated ROS generation, ER stress activation and cell apoptosis.
Collapse
|
114
|
Giunta B, Obregon D, Velisetty R, Sanberg PR, Borlongan CV, Tan J. The immunology of traumatic brain injury: a prime target for Alzheimer's disease prevention. J Neuroinflammation 2012; 9:185. [PMID: 22849382 PMCID: PMC3458981 DOI: 10.1186/1742-2094-9-185] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/09/2012] [Indexed: 01/03/2023] Open
Abstract
A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.
Collapse
Affiliation(s)
- Brian Giunta
- James A. Haley Veterans' Administration Hospital, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
115
|
Caffeic acid ester fraction from Erigeron breviscapus inhibits microglial activation and provides neuroprotection. Chin J Integr Med 2012; 18:437-44. [DOI: 10.1007/s11655-012-1114-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Indexed: 10/28/2022]
|
116
|
Vo TS, Ngo DH, Ta QV, Wijesekara I, Kong CS, Kim SK. Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia. Cell Immunol 2012; 277:14-21. [PMID: 22763270 DOI: 10.1016/j.cellimm.2012.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/15/2012] [Accepted: 06/12/2012] [Indexed: 12/25/2022]
Abstract
Chitin oligosaccharides (NA-COS) of two different molecular weight ranges (below 1 and 1-3 kDa) were examined for their capabilities against lipopolysaccharide-induced inflammatory responses in BV-2 murine microglia. It was found that NA-COS reduced the level of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production by suppressing the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2 without significant cytotoxicity. Furthermore, the inhibitory effects of NA-COS on generation of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were determined. Notably, NA-COS exerted anti-inflammatory activities via blocking degradation of inhibitor of kappaB-alpha (IκB-α), translocation of nuclear factor (NF)-κB, and phosphorylation of mitogen-activated protein kinases (MAPKs) in a dose-dependent manner. These findings provide mechanistic insights into the anti-inflammatory and neuroprotective actions of NA-COS in BV-2 microglia.
Collapse
Affiliation(s)
- Thanh-Sang Vo
- Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | |
Collapse
|
117
|
Nam Y, Choi M, Hwang H, Lee MG, Kwon BM, Lee WH, Suk K. Natural Flavone Jaceosidin is a Neuroinflammation Inhibitor. Phytother Res 2012; 27:404-11. [DOI: 10.1002/ptr.4737] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Youngpyo Nam
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Mijung Choi
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Heehong Hwang
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology; University of Science and Technology; Daejeon Korea
| | - Won-Ha Lee
- Department of Genetic Engineering, School of Life Sciences and Biotechnology; Kyungpook National University; Daegu Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| |
Collapse
|
118
|
Shin JW, Kang HC, Shim J, Sohn NW. Scutellaria baicalensis Attenuates Blood-Brain Barrier Disruption after Intracerebral Hemorrhage in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:85-96. [PMID: 22298450 DOI: 10.1142/s0192415x12500073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disruption of the blood-brain barrier (BBB) contributes to the inflammatory response and edema formation in the brain, exacerbating brain damage. The present study evaluated the effects of Scutellaria baicalensis (SR) water extracts on BBB disruption after intracerebral hemorrhage (ICH) in rats. ICH was induced by stereotaxic intrastriatal injection of bacterial type VII collagenase, and SR was administrated orally three times (50 mg/ml/kg) during the 48 h after ICH onset. SR treatment significantly reduced the degree of (1) hemorrhage volume and edema percentage of the ipsilateral hemisphere, (2) brain water content, (3) MPO-positive neutrophil infiltration in the peri-hematoma, and (4) BBB permeability measured by Evans blue leakage. In addition, expression of matrix metalloproteinase (MMP)-9, MMP-12, and tissue inhibitor of MMPs (TIMP)-1 were investigated with immunohistochemistry. SR treatment reduced MMP-9 and MMP-12 expression in the peri-hematoma after ICH. These results indicate that SR attenuates the BBB disruption through anti-inflammatory effects and suppression of MMP expression. These findings provide a pharmacological basis for the use of SR in the treatment of the BBB disruption following stroke and trauma.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Ho-Chang Kang
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Jaewon Shim
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| | - Nak-Won Sohn
- Department of Oriental Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 446-701, South Korea
| |
Collapse
|
119
|
Kim YT, Yi YJ, Kim MY, Bu Y, Jin ZH, Choi H, Doré S, Kim H. Neuroprotection and Enhancement of Spatial Memory by Herbal Mixture HT008-1 in Rat Global Brain Ischemia Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 36:287-99. [DOI: 10.1142/s0192415x08005771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate whether HT008-1, a prescription used in traditional Korean medicine to treat mental and physical weakness, has a neuroprotective effect on a rat model of global brain ischemia and an enhancing effect against memory deficit following ischemia. Global brain ischemia was induced for 10 min by using 4-vessel occlusion (4-VO). HT008-1 was orally administered at doses of 30, 100, and 300 mg/kg respectively twice at 0 and 90 min after ischemia. The effect on memory deficit was investigated by using a Y-maze neurobehavioral test 4 days after brain ischemia, and the effect on neuronal damage was measured 7 days after ischemia. The mechanism of action was studied immunohistochemically using an anti-CD11b (OX-42) antibody. The oral administration of HT008-1 at 100 and 300 mg/kg significantly reduced hippocampal neuronal cell death by 49% and 53%, respectively, compared with a vehicle-treated group, and also improved spatial memory function in the Y-maze test. Immunohistochemically, HT008-1 inhibited OX-42 expression in the hippocampus. The effects of HT008-1 were more pronounced than those of its individual herb components. The herbal mixture HT008-1 protects the most vulnerable CA1 pyramidal cells of the hippocampus and enhances spatial memory function against global brain ischemia; an anti-inflammatory effect may be one of the mechanisms of action.
Collapse
Affiliation(s)
- Yun Tai Kim
- Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM), Neumed Co. Ltd., Seoul 130-701, Korea
| | - Youn-Ju Yi
- Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Mi-Yeon Kim
- Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM), Neumed Co. Ltd., Seoul 130-701, Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Zhen Hua Jin
- Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Hoyoung Choi
- Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | - Sylvain Doré
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
- Korea Institute of Science and Technology for Eastern Medicine (KISTEM), Neumed Co. Ltd., Seoul 130-701, Korea
| |
Collapse
|
120
|
Acacetin Attenuates Neuroinflammation via Regulation the Response to LPS Stimuli In Vitro and In Vivo. Neurochem Res 2012; 37:1560-7. [DOI: 10.1007/s11064-012-0751-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
121
|
Ha SK, Moon E, Ju MS, Kim DH, Ryu JH, Oh MS, Kim SY. 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 2012; 63:211-23. [PMID: 22465818 DOI: 10.1016/j.neuropharm.2012.03.016] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/13/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Inflammatory processes in the central nervous system play an important role in a number of neurodegenerative diseases mediated by microglial activation, which results in neuronal cell death. Microglia act in immune surveillance and host defense while resting. When activated, they can be deleterious to neurons, even resulting in neurodegeneration. Therefore, the inhibition of microglial activation is considered a useful strategy in searching for neuroprotective agents. In this study, we investigated the effects of 6-shogaol, a pungent agent from Zingiber officinale Roscoe, on microglia activation in BV-2 and primary microglial cell cultures. 6-Shogaol significantly inhibited the release of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). The effect was better than that of 6-gingerol, wogonin, or N-monomethyl-l-arginine, agents previously reported to inhibit nitric oxide. 6-Shogaol exerted its anti-inflammatory effects by inhibiting the production of prostaglandin E(2) (PGE(2)) and proinflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and by downregulating cyclooxygenase-2 (COX-2), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB) expression. In addition, 6-shogaol suppressed the microglial activation induced by LPS both in primary cortical neuron-glia culture and in an in vivo neuroinflammatory model. Moreover, 6-shogaol showed significant neuroprotective effects in vivo in transient global ischemia via the inhibition of microglia. These results suggest that 6-shogaol is an effective therapeutic agent for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sang Keun Ha
- Graduate School of East-West Medical Science, Kyung Hee University Global Campus, #1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
122
|
Neuroprotective Effects of San-Huang-Xie-Xin-Tang in the MPP(+)/MPTP Models of Parkinson's Disease In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:501032. [PMID: 22474505 PMCID: PMC3303814 DOI: 10.1155/2012/501032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/17/2011] [Indexed: 01/08/2023]
Abstract
San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix, and Rhei rhizoma, is a traditional Chinese medicine used for complementary and alternative therapy of cardiovascular and neurodegenerative diseases via its anti-inflammatory and antioxidative effects. The aim of this study is to investigate the protective effects of SHXT in the 1–methyl–4–phenylpyridinium (MPP+)/1–methyl–4–phenyl–1,2,3,6–tetrahydropyridine (MPTP) models of Parkinson's disease. Rat primary mesencephalic neurons and mouse Parkinson disease model were used in this study. Oxidative stress was induced by MPP+ in vitro and MPTP in vivo. In MPP+-treated mesencephalic neuron cultures, SHXT significantly increased the numbers of TH-positive neurons. SHXT reduced apoptotic signals (cytochrome and caspase) and apoptotic death. MPP+-induced gp91phox activation and ROS production were attenuated by SHXT. In addition, SHXT increased the levels of GSH and SOD in MPP+-treated neurons. In MPTP animal model, SHXT markedly increased TH-positive neurons in the substantia nigra pars compacta (SNpc) and improved motor activity of mice. In conclusion, the present results reveal the evidence that SHXT possesses beneficial protection against MPTP-induced neurotoxicity in this model of Parkinson's disease via its antioxidative and antiapoptotic effects. SHXT might be a potentially alternative and complementary medicine for neuroprotection.
Collapse
|
123
|
Islam MN, Chung HJ, Kim DH, Yoo HH. A simple isocratic HPLC method for the simultaneous determination of bioactive components of Scutellariae radix extract. Nat Prod Res 2012; 26:1957-62. [PMID: 22304335 DOI: 10.1080/14786419.2011.631134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Scutellariae Radix, the dried root of Scutellaria baicalensis Georgi, has been widely used in Asian countries for the treatment of dermatitis, diarrhoea, inflammatory disease and hepatic disease. A simple, sensitive and precise reversed-phase liquid chromatographic method with isocratic elution was developed to simultaneously determine four bioactive compounds in Scutellariae Radix: baicalein, baicalin, wogonin and wogonoside. Chromatographic analysis was performed on a YMC Pack Pro C(8) column (150 × 4.6 mm(2), 3 µm), with a mobile phase of 0.1% formic acid : acetonitrile (70 : 30, v/v) at a flow rate of 1.0 mL min(-1), and UV detection at 280 nm. Linear behaviour was observed over the investigated concentration range (0.25-10 µg mL(-1)) for all analytes, with a correlation coefficient of >0.997. The intra- and inter-day precisions were <8.07%, and accuracies were 92.3-102.9%. This method was successfully applied for the analysis of marker compounds for the quality control of Scutellariae Radix extract.
Collapse
Affiliation(s)
- M Nurul Islam
- Doping Control Center, Korea Institute of Science and Technology, Chungryang, Seoul, Korea
| | | | | | | |
Collapse
|
124
|
Spencer JPE, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012; 33:83-97. [PMID: 22107709 DOI: 10.1016/j.mam.2011.10.016] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/14/2011] [Indexed: 01/01/2023]
Abstract
Neuroinflammatory processes are known to contribute to the cascade of events culminating in the neuronal damage that underpins neurodegenerative disorders such as Parkinson's and Alzheimer's disease. Recently, there has been much interest in the potential neuroprotective effects of flavonoids, a group of plant secondary metabolites known to have diverse biological activity in vivo. With respect to the brain, flavonoids, such as those found in cocoa, tea, berries and citrus, have been shown to be highly effective in preventing age-related cognitive decline and neurodegeneration in both animals and humans. Evidence suggests that flavonoids may express such ability through a multitude of physiological functions, including an ability to modulate the brains immune system. This review will highlight the evidence for their potential to inhibit neuroinflammation through an attenuation of microglial activation and associated cytokine release, iNOS expression, nitric oxide production and NADPH oxidase activity. We will also detail the current evidence indicting that their regulation of these immune events appear to be mediated by their actions on intracellular signaling pathways, including the nuclear factor-κB (NF-κB) cascade and mitogen-activated protein kinase (MAPK) pathway. As such, flavonoids represent important precursor molecules in the quest to develop of a new generation of drugs capable of counteracting neuroinflammation and neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|
125
|
Lee S, Jang E, Kim JH, Kim JH, Lee WH, Suk K. Lipocalin-type prostaglandin D2 synthase protein regulates glial cell migration and morphology through myristoylated alanine-rich C-kinase substrate: prostaglandin D2-independent effects. J Biol Chem 2012; 287:9414-28. [PMID: 22275363 DOI: 10.1074/jbc.m111.330662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin D synthase (PGDS) is responsible for the conversion of PGH(2) to PGD(2). Two distinct types of PGDS have been identified: hematopoietic-type PGDS (H-PGDS) and lipocalin-type PGDS (L-PGDS). L-PGDS acts as both a PGD(2)-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. Although L-PGDS is one of the most abundant proteins in the cerebrospinal fluid, little is known about the function of L-PGDS in the central nervous system (CNS). To better understand the role of L-PGDS in the CNS, effects of L-PGDS on the migration and morphology of glial cells were investigated. The L-PGDS protein accelerated the migration of cultured glial cells. Expression of the L-pgds gene was detected in glial cells and neurons. L-PGDS protein also induced morphological changes in glia similar to the characteristic phenotypic changes in reactive gliosis. L-PGDS-induced cell migration was associated with augmented formation of actin filaments and focal adhesion, which was accompanied by activation of AKT, RhoA, and JNK pathways. L-PGDS protein injected into the mouse brain promoted migration and accumulation of astrocytes in vivo. Furthermore, the cell migration-promoting effect of L-PGDS on glial cells was independent of the PGD(2) products. The L-PGDS protein interacted with myristoylated alanine-rich protein kinase C substrate (MARCKS) to promote cell migration. These results demonstrate the critical role of L-PGDS as a secreted lipocalin in the regulation of glial cell migration and morphology. The results also indicate that L-PGDS may participate in reactive gliosis in an autocrine or paracrine manner, and may have pathological implications in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|
126
|
Chung HJ, Lim SY, Kim IS, Bu YM, Kim HC, Kim DH, Yoo HH. Simultaneous Determination of Baicalein, Baicalin, Wogonin, and Wogonoside in Rat Plasma by LC-MS/MS for Studying the Pharmacokinetics of the Standardized Extract of Scutellariae Radix. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.1.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
127
|
Chen CC, Hung TH, Wang YH, Lin CW, Wang PY, Lee CY, Chen SF. Wogonin improves histological and functional outcomes, and reduces activation of TLR4/NF-κB signaling after experimental traumatic brain injury. PLoS One 2012; 7:e30294. [PMID: 22272328 PMCID: PMC3260265 DOI: 10.1371/journal.pone.0030294] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/13/2011] [Indexed: 11/18/2022] Open
Abstract
Background Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear factor kappa B (NF-κB)-related signaling pathways in mice following TBI. Methodology/Principal Findings Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or 50 mg·kg−1) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-κB-related inflammatory mediators were also examined. Treatment with 40 mg·kg−1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-κB translocation to nucleus and its DNA binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1β, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2. Conclusions/Significance Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-κB-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
128
|
Williams RJ, Spencer JPE. Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease. Free Radic Biol Med 2012; 52:35-45. [PMID: 21982844 DOI: 10.1016/j.freeradbiomed.2011.09.010] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023]
Abstract
There is increasing evidence that the consumption of flavonoid-rich foods can beneficially influence normal cognitive function. In addition, a growing number of flavonoids have been shown to inhibit the development of Alzheimer disease (AD)-like pathology and to reverse deficits in cognition in rodent models, suggestive of potential therapeutic utility in dementia. The actions of flavonoid-rich foods (e.g., green tea, blueberry, and cocoa) seem to be mediated by the direct interactions of absorbed flavonoids and their metabolites with a number of cellular and molecular targets. For example, their specific interactions within the ERK and PI3-kinase/Akt signaling pathways, at the level of receptors or kinases, have been shown to increase the expression of neuroprotective and neuromodulatory proteins and increase the number of, and strength of, connections between neurons. Concurrently, their effects on the vascular system may also lead to enhancements in cognitive performance through increased brain blood flow and an ability to initiate neurogenesis in the hippocampus. Additional mechanisms have been suggested for the ability of flavonoids to delay the initiation of and/or slow the progression of AD-like pathology and related neurodegenerative disorders, including a potential to inhibit neuronal apoptosis triggered by neurotoxic species (e.g., oxidative stress and neuroinflammation) or disrupt amyloid β aggregation and effects on amyloid precursor protein processing through the inhibition of β-secretase (BACE-1) and/or activation of α-secretase (ADAM10). Together, these processes act to maintain the number and quality of synaptic connections in key brain regions and thus flavonoids have the potential to prevent the progression of neurodegenerative pathologies and to promote cognitive performance.
Collapse
Affiliation(s)
- Robert J Williams
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | |
Collapse
|
129
|
Wogonin suppresses arrhythmias, inflammatory responses, and apoptosis induced by myocardial ischemia/reperfusion in rats. J Cardiovasc Pharmacol 2011; 58:133-42. [PMID: 21436723 DOI: 10.1097/fjc.0b013e31821a5078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Wogonin is a flavonoid isolated from Scutellaria baicalensis Georgi, a traditional Chinese medicine, and it possesses antioxidant and anti-inflammatory effects. The aim of this study is to investigate the in vivo effect of wogonin on myocardial ischemia/reperfusion injury in an open-chest anesthetized rat model, which was induced by 45-minute left coronary artery occlusion and 2-hour reperfusion. Rats were treated with wogonin (5, 10, and 20 mg/kg, intraperitoneal) 40 minutes before ischemia or treatment with 10 mg/kg of wogonin 15 minutes after occlusion. Pretreatment with 10 mg/kg of wogonin significantly delayed the occurrence of ventricular premature contractions and tachycardia, and it suppressed the incidence of ventricular tachycardia and ventricular fibrillation, and mortality elicited by ischemia when compared with that in the control group, accompanied by reducing the arrhythmia scores. After 2-hour reperfusion, pretreatment and posttreatment with wogonin significantly reduced the infarct size and plasma levels of creatine kinase muscle-brain fraction and lactate dehydrogenase. Wogonin also significantly reduced the elevation of plasma tissue necrosis factor-α and superoxide anion production in the myocardium with ischemia/reperfusion. The expression of monocyte chemoattractant protein-1, phosphorylated p38 mitogen-activated protein kinase, p65 and IκBα, and active caspase-3 in ischemic myocardium pronouncedly increased in the control group; these were significantly attenuated by treatment with wogonin. In conclusion, wogonin demonstrated in vivo cardioprotective effects by the attenuation of the severity of ischemia-induced arrhythmias and irreversible ischemia/reperfusion injury, which is associated with its antioxidant capacity and anti-inflammatory effects. The suppression of nuclear factor-κB and p38 mitogen-activated protein kinase activation and the inhibition of monocyte chemoattractant protein-1 expression contribute to the beneficial effects of wogonin.
Collapse
|
130
|
Kim JH, Lee HW, Hwang J, Kim J, Lee MJ, Han HS, Lee WH, Suk K. Microglia-inhibiting activity of Parkinson's disease drug amantadine. Neurobiol Aging 2011; 33:2145-59. [PMID: 22035588 DOI: 10.1016/j.neurobiolaging.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/28/2011] [Accepted: 08/18/2011] [Indexed: 12/17/2022]
Abstract
Amantadine is currently used as an antiviral and an antiparkinsonian drug. Although the drug is known to bind a viral proton channel protein, the mechanism of action in Parkinson's disease (PD) remains to be determined. This study investigated whether the drug has an inhibitory effect on microglial activation and neuroinflammation, which have been implicated in the progression of neurodegenerative processes. Using cultured microglial cells, it was demonstrated that the drug inhibited inflammatory activation of microglia and a signaling pathway that governs the microglial activation. The drug reduced the expression and production of proinflammatory mediators in bacterial lipopolysaccharide-stimulated microglia cells. The microglia-inhibiting activity of amantadine was also demonstrated in a microglia/neuron coculture and animal models of neuroinflammation and Parkinson's disease. Collectively, our results suggest that amantadine may act on microglia in the central nervous system to inhibit their inflammatory activation, thereby attenuating neuroinflammation. These results provide a molecular basis of the glia-targeted mechanism of action for amantadine.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Petraglia AL, Winkler EA, Bailes JE. Stuck at the bench: Potential natural neuroprotective compounds for concussion. Surg Neurol Int 2011; 2:146. [PMID: 22059141 PMCID: PMC3205506 DOI: 10.4103/2152-7806.85987] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/22/2011] [Indexed: 12/31/2022] Open
Abstract
Background: While numerous laboratory studies have searched for neuroprotective treatment approaches to traumatic brain injury, no therapies have successfully translated from the bench to the bedside. Concussion is a unique form of brain injury, in that the current mainstay of treatment focuses on both physical and cognitive rest. Treatments for concussion are lacking. The concept of neuro-prophylactic compounds or supplements is also an intriguing one, especially as we are learning more about the relationship of numerous sub-concussive blows and/or repetitive concussive impacts and the development of chronic neurodegenerative disease. The use of dietary supplements and herbal remedies has become more common place. Methods: A literature search was conducted with the objective of identifying and reviewing the pre-clinical and clinical studies investigating the neuroprotective properties of a few of the more widely known compounds and supplements. Results: There are an abundance of pre-clinical studies demonstrating the neuroprotective properties of a variety of these compounds and we review some of those here. While there are an increasing number of well-designed studies investigating the therapeutic potential of these nutraceutical preparations, the clinical evidence is still fairly thin. Conclusion: There are encouraging results from laboratory studies demonstrating the multi-mechanistic neuroprotective properties of many naturally occurring compounds. Similarly, there are some intriguing clinical observational studies that potentially suggest both acute and chronic neuroprotective effects. Thus, there is a need for future trials exploring the potential therapeutic benefits of these compounds in the treatment of traumatic brain injury, particularly concussion.
Collapse
Affiliation(s)
- Anthony L Petraglia
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
132
|
Dong P, Zhang Y, Gu J, Wu W, Li M, Yang J, Zhang L, Lu J, Mu J, Chen L, Li S, Wang J, Liu Y. Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1373-1380. [PMID: 21855619 DOI: 10.1016/j.jep.2011.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/19/2011] [Accepted: 08/02/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A traditional Chinese medicine Scutellaria baicalensis is prescribed for the treatment of a variety of inflammatory diseases and tumors in clinic in China. However, the detailed mechanism of anti-metastasis effect of wogonin, a main active ingredient of Scutellaria baicalensis, remains elusive. AIM OF THE STUDY The present study was designed to investigate the action and mechanism of wogonin on the mobility and invasion of human gallbladder carcinoma GBC-SD cells. MATERIALS AND METHODS Viability, apoptosis, mRNA and protein expression of tumor cells were analyzed by MTT, Annexin V staining, real-time PCR and Western blot, respectively. The migration and invasion assay was used to evaluate the anti-metastasis effect of wogonin. Knockdown of maspin was performed by specific small interference RNA. RESULTS Wogonin at the dose of 1-10 μM, which did not induce apoptosis, significantly inhibited the mobility and invasion activity of human gallbladder carcinoma GBC-SD cells. In addition, the expressions of matrix metalloproteinase (MMP)-2, MMP-9 and phosphorylated extracellular regulated protein kinase 1/2 (ERK1/2) but not phosphorylated Akt were dramatically suppressed by wogonin in a concentration-dependent manner. Furthermore, the metastasis suppressor maspin was confirmed as the downstream target of wogonin. Both maspin mRNA and protein were upregulated by wogonin. Interestingly, the knockdown of maspin resulted in almost completely blocking of wogonin-induced inhibition of MMP-2, MMP-9 and phosphorylated ERK1/2 as well as the mobility and invasion activity of GBC-SD cells. CONCLUSIONS These findings suggest that wogonin inhibits cell mobility and invasion by upregulating the metastasis suppressor maspin. Together, these data provide novel insights into the chemoprotective effect of wogonin, a main active ingredient of Chinese medicine Scutellaria baicalensis.
Collapse
Affiliation(s)
- Ping Dong
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Hwang YK, Jinhua M, Choi BR, Cui CA, Jeon WK, Kim H, Kim HY, Han SH, Han JS. Effects of Scutellaria baicalensis on chronic cerebral hypoperfusion-induced memory impairments and chronic lipopolysaccharide infusion-induced memory impairments. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:681-689. [PMID: 21718777 DOI: 10.1016/j.jep.2011.06.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of the roots of Scutellaria baicalensis Georgi (Labiatae) have been widely used to relieve fever related to bacterial infection and inflammatory diseases in traditional Korean medicine and have been reported to be effective in brain diseases. These experiments were conducted to examine the effects of oral administration of Scutellaria baicalensis extracts on the rescue of memory impairments induced by chronic cerebral hypoperfusion or chronic lipopolysaccharide (LPS) infusion. In addition, the underlying mechanisms of these effects were investigated. MATERIALS AND METHODS In the first experiment, chronic cerebral hypoperfusion was induced in male Wister rats by bilateral common carotid artery occlusion (BCCAo). Daily administration of Scutellaria baicalensis extracts was started on 20 day after BCCAo and given for 40 days. A Morris water maze was then used to evaluate the status of the hippocampal-dependent spatial learning and hippocampal mitogen-activated protein kinase (MAPK) signaling was examined in control rats, rats with chronic cerebral hypoperfusion, and rats with chronic cerebral hypoperfusion that was administered Scutellaria baicalensis. In the second experiment, hippocampal microglial activation was induced by chronic infusions of LPS into the fourth ventricle of Fisher-344 rat brains. Daily administration of Scutellaria baicalensis extracts was started on 7 day after the surgery of LPS infusion and given for 32 days. Spatial memory and hippocampal microglial activation was then examined in control rats with an artificial cerebrospinal fluid infusion, rats with chronic LPS infusion, and rats with chronic LPS infusion that were administered Scutellaria baicalensis. RESULTS Rats that received chronic cerebral hypoperfusion or chronic LPS infusion showed spatial memory impairments relative to their control rats; however, these symptoms were reduced by daily administration of Scutellaria baicalensis. Administration of Scutellaria baicalensis mitigated alterations of hippocampal MAPK signaling by chronic cerebral infusion and microglial activation by chronic LPS infusion. CONCLUSIONS These results indicate that Scutellaria baicalensis may possess therapeutic potential for the prevention of Alzheimer's disease and vascular dementia.
Collapse
Affiliation(s)
- Yoo Kyeong Hwang
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Su SY, Hsieh CL. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia. Chin Med 2011; 6:26. [PMID: 21740583 PMCID: PMC3152532 DOI: 10.1186/1749-8546-6-26] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 07/09/2011] [Indexed: 01/30/2023] Open
Abstract
Abstracts Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.
Collapse
Affiliation(s)
- Shan-Yu Su
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
| | | |
Collapse
|
135
|
Gami-Chunghyuldan ameliorates memory impairment and neurodegeneration induced by intrahippocampal Aβ 1-42 oligomer injection. Neurobiol Learn Mem 2011; 96:306-14. [PMID: 21689771 DOI: 10.1016/j.nlm.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 04/21/2011] [Accepted: 06/06/2011] [Indexed: 12/25/2022]
Abstract
Soluble oligomeric forms of amyloid beta (AβO) are regarded as a main cause of synaptic and cognitive dysfunction in Alzheimer's disease (AD) and have been a primary target in the development of drug treatments for AD. The present study utilized a mouse model of AD induced by intrahippocampal injection of AβO (10 μM) to investigate the effects of Gami-Chunghyuldan (GCD), a standardized multi-herbal medicinal formula, on the presentation of memory deficits and neurohistological pathogenesis. GCD (10 and 50mg/kg/day, 5 days, p.o.) improved AβO-induced memory impairment as well as reduced neuronal cell death, astrogliosis, and microgliosis in the hippocampus. In addition, GCD prevented AβO-triggered synaptic disruption and cholinergic fiber loss. These results suggest that GCD may be useful in the prevention and treatment of AD.
Collapse
|
136
|
Kim EJ, Kang D, Han J. Baicalein and wogonin are activators of rat TREK-2 two-pore domain K+ channel. Acta Physiol (Oxf) 2011; 202:185-92. [PMID: 21306568 DOI: 10.1111/j.1748-1716.2011.02263.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Earlier studies have shown that TREK-1 and TREK-2 (TREKs), members of the two-pore domain K(+) (K(2P)) channel family that are highly expressed under pathological conditions, are activated by neuroprotective agents. Baicalein and wogonin, oriental flavonoids originating from the root of the medicinal herb Scutellaria baicalensis, are known to have beneficial effects for neuroprotection. However, little is known about the effects of baicalein and wogonin on ion channels including TREKs. We investigated whether baicalein and wogonin modulate the TREK-2 channel, which has been less studied than TREK-1. METHODS Single-channel recordings were performed in COS-7 cells transfected with rat TREK-2 and analyzed baicalein- or wogonin-induced channel activity. RESULTS We found that baicalein and wogonin activated the TREK-2 current by increasing the opening frequency (channel activity: from 0.05 ± 0.01 to 0.17 ± 0.06 in baicalein treatment and from 0.03 ± 0.01 to 0.29 ± 0.09 in wogonin treatment, P < 0.05), while leaving the single-channel conductance and mean open time unchanged. Baicalein continuously activated TREK-2, whereas wogonin transiently activated TREK-2. Application of baicalein and wogonin activated TREK-2 in both cell attached and excised patches, suggesting that baicalein and wogonin may modulate TREK-2 either directly or indirectly with different mechanisms. CONCLUSION These results suggest that baicalein- and wogonin-induced TREK-2 activation help set the resting membrane potential of cells exposed to pathological conditions and thus may give beneficial effects in neuroprotection.
Collapse
Affiliation(s)
- E-J Kim
- Medical Research Center for Neural Dysfunction, Department of Physiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | |
Collapse
|
137
|
Chang HH, Yi PL, Cheng CH, Lu CY, Hsiao YT, Tsai YF, Li CL, Chang FC. Biphasic effects of baicalin, an active constituent of Scutellaria baicalensis Georgi, in the spontaneous sleep-wake regulation. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:359-368. [PMID: 21419210 DOI: 10.1016/j.jep.2011.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Baicalin is an active compound originating from the root of Scutellaria baicalensis Georgi, which has been used for anti-inflammation, anti-bacteria, anti-hypertension, anti-allergy and sedation since ancient China, though the neuronal mechanisms involved in the sedative effect is still unclear. Baicalin possesses the ability to decrease the expression of pro-inflammatory cytokines and nuclear factor (NF)-κB activity. Furthermore, baicalin has demonstrated an anxiolytic-like effect via activation of γ-aminobutyric acid-A (GABA(A)) receptors. Pro-inflammatory cytokines (e.g. interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α) and the GABAergic system promote sleep. This study was designed to determine whether the GABA(A) receptor activation and/or the suppression of pro-inflammatory cytokines mediate(s) baicalin-induced sleep alterations. MATERIALS AND METHODS Baicalin was intracerebroventricularly (ICV) administered 20 min either prior to the beginning of the light period or before the onset of the dark period. Electroencephalogram (EEG) and gross body movement were acquired for sleep analysis. Pharmacological blockade of IL-1 and GABA(A) receptors were employed to elucidate the involvements of IL-1 and GABA(A) receptors in baicalin-induced sleep alterations. IL-1β concentrations obtained after baicalin administration in several distinct brain regions were determined by ELISA. RESULTS ICV administration of baicalin decreased slow wave sleep (SWS) during the first 2h of the light period. Rapid eye movement sleep (REMS) was not altered. The blockade of IL-1β-induced SWS enhancement by baicalin suggests that the antagonism of IL-1 receptors is involved in baicalin-induced SWS decrement during the light period. However, IL-1β concentrations during the light period were not altered after baicalin administration. In contrast, baicalin increased both SWS and REMS during hours 8-10 of the dark (active) period when baicalin was administered at the beginning of the dark period, and its effects were blocked by the GABA(A) receptor antagonist bicuculline. CONCLUSION Baicalin exhibits biphasic effects on sleep-wake regulation; the decrease of SWS during the light period and increases of SWS and REMS during the dark period. Inhibition of IL-1 action and enhancement of GABA(A) receptor activity may mediate baicalin's effects during the light and dark period, respectively.
Collapse
Affiliation(s)
- Han-Han Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Park NI, Xu H, Li X, Kim SJ, Park SU. Enhancement of flavone levels through overexpression of chalcone isomerase in hairy root cultures of Scutellaria baicalensis. Funct Integr Genomics 2011; 11:491-6. [PMID: 21538138 DOI: 10.1007/s10142-011-0229-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/08/2011] [Accepted: 04/17/2011] [Indexed: 11/25/2022]
Abstract
A complementary DNA (cDNA) encoding Scutellaria baicalensis chalcone isomerase (SbCHI) was isolated using rapid amplification of cDNA ends polymerase chain reaction. After the treatment of wounding or methyl jasmonate, SbCHI transcripts were increased in S. baicalensis cell suspensions. SbCHI-overexpressed and SbCH-silenced transgenic hairy root lines were established by using an Agrobacterium rhizogenes-mediated system. SbCHI-overexpressed hairy root lines not only enhanced SbCHI gene expression but also produced more flavones (i.e., baicalin, baicalein, and wogonin) than the control hairy root line. In contrast, SbCHI-silenced hairy root lines reduced SbCHI transcripts and flavone production compared to those of the control hairy roots. In addition, the amount of wogonin in all hairy root cultures was increased compared to that of wild-type roots of S. baicalensis. Finally, this study showed the importance of CHI in flavone biosynthesis and the efficiency of metabolic engineering in S. baicalensis hairy roots.
Collapse
Affiliation(s)
- Nam Il Park
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Yuseong-gu, Daejeon, South Korea
| | | | | | | | | |
Collapse
|
139
|
Yu JS, Kim AK. Wogonin induces apoptosis by activation of ERK and p38 MAPKs signaling pathways and generation of reactive oxygen species in human breast cancer cells. Mol Cells 2011; 31:327-35. [PMID: 21448585 PMCID: PMC3933962 DOI: 10.1007/s10059-011-0041-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 01/22/2023] Open
Abstract
Wogonin is a one of the bioactive compounds of Scutellaria baicalensi Georgi which has been shown to have antiinflammatory, anticancer, antiviral and neuroprotective effects. However, the underlying mechanisms by which wogonin induces apoptosis in cancer cells still remain speculative. Here we investigated the potential activation of MAPKs and generation of reactive oxygen species (ROS) by wogonin on MCF-7 human breast cancer cells. These results showed that wogonin induced mitochondria and death-receptor-mediated apoptotic cell death, which was characterized by activation of several caspases, induction of PARP cleavage, change of antiapoptotic/proapoptotic Bcl-2 family member ratios and cleavage of Bid. We also found that generation of ROS was an important mediator in wogonin-induced apoptosis. Further investigation revealed that wogonin activated ERK and p38 MAPKs, which was inhibited by N-acetyl cysteine (NAC), a ROS scavenger, indicating that wogonin-induced ROS are associated with MAPKs activation. These data demonstrate that wogonin may be a novel anticancer agent for treatment of breast cancer.
Collapse
Affiliation(s)
| | - An Keun Kim
- Biochemistry Laboratory, College of Pharmacy, Sookmyung Women’s University, Seoul 140-742, Korea
| |
Collapse
|
140
|
Choi DK, Koppula S, Suk K. Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 2011; 16:1021-43. [PMID: 21350391 PMCID: PMC6259841 DOI: 10.3390/molecules16021021] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/02/2011] [Accepted: 01/17/2011] [Indexed: 02/06/2023] Open
Abstract
Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.
Collapse
Affiliation(s)
- Dong Kug Choi
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea
- Authors to whom correspondence should be addressed; E-Mails: (K.S.); (D.K.C.); Tel.: +82-53-420-4835 (K.S.); +82-43-840-3610 (D.K.C.); Fax: +82-53-256-1566 (K.S.); +82-43-852-3616 (D.K.C.)
| | - Sushruta Koppula
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, Daegu 700-422, Korea
- Authors to whom correspondence should be addressed; E-Mails: (K.S.); (D.K.C.); Tel.: +82-53-420-4835 (K.S.); +82-43-840-3610 (D.K.C.); Fax: +82-53-256-1566 (K.S.); +82-43-852-3616 (D.K.C.)
| |
Collapse
|
141
|
Mazzio EA, Close F, Soliman KFA. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. Int J Mol Sci 2011; 12:506-69. [PMID: 21340000 PMCID: PMC3039966 DOI: 10.3390/ijms12010506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA; E-Mails: (E.A.M.); (F.C.)
| | | | | |
Collapse
|
142
|
Shih YT, Chen IJ, Wu YC, Lo YC. San-Huang-Xie-Xin-Tang Protects against Activated Microglia- and 6-OHDA-Induced Toxicity in Neuronal SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:429384. [PMID: 19339484 PMCID: PMC3135633 DOI: 10.1093/ecam/nep025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 03/03/2009] [Indexed: 12/30/2022]
Abstract
San-Huang-Xie-Xin-Tang (SHXT), composed of Coptidis rhizoma, Scutellariae radix and Rhei rhizoma, is a traditional Chinese herbal medicine used to treat gastritis, gastric bleeding and peptic ulcers. This study investigated the neuroprotective effects of SHXT on microglia-mediated neurotoxicity using co-cultured lipopolysaccharide (LPS)-activated microglia-like BV-2 cells with neuroblastoma SH-SY5Y cells. Effects of SHXT on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity were also examined in SH-SY5Y cells. Results indicated SHXT inhibited LPS-induced inflammation of BV-2 cells by downregulation of iNOS, NO, COX-2, PGE2, gp91phox, iROS, TNF-α, IL-1β, inhibition of IκBα degradation and upregulation of HO-1. In addition, SHXT increased cell viability and down regulated nNOS, COX-2 and gp91phox of SH-SY5Y cells co-cultured with LPS activated BV-2 cells. SHXT treatment increased cell viability and mitochondria membrane potential (MMP), decreased expression of nNOS, COX-2, gp91phox and iROS, and inhibited IκBα degradation in 6-OHDA-treated SH-SY5Y cells. SHXT also attenuated LPS activated BV-2 cells- and 6-OHDA-induced cell death in differentiated SH-SY5Y cells with db-cAMP. Furthermore, SHXT-inhibited nuclear translocation of p65 subunit of NF-κB in LPS treated BV-2 cells and 6-OHDA treated SH-SY5Y cells. In conclusion, SHXT showed protection from activated microglia- and 6-OHDA-induced neurotoxicity by attenuating inflammation and oxidative stress.
Collapse
Affiliation(s)
- Yu-Tzu Shih
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | |
Collapse
|
143
|
Abstract
Microglial cells, which are resident macrophages in the central nervous system, are "primed" in the aged brain and are hypersensitive to messages emerging from immune-to-brain signaling pathways. Thus, in elderly individuals who have an infection, microglia overreact to signals from the peripheral immune system and produce excessive levels of cytokines, causing behavioral pathology including serious deficits in cognition. Importantly, recent studies indicate dietary flavonoids have anti-inflammatory properties and are capable of mitigating microglial cells in the brains of aged mice. Thus, dietary or supplemental flavonoids and other bioactive agents have the potential to restore the population of microglial cells in the elderly brain to its youthful state. This review briefly describes the immune-to-brain signaling pathways, consequences of microglial cell priming, and the potential of flavonoids to mitigate brain microglia and cognitive deficits induced by inflammatory cytokines.
Collapse
Affiliation(s)
- Saebyeol Jang
- Integrative Immunology and Behavior Program, Division of Nutritional Sciences, Urbana, Illinois, USA
| | | |
Collapse
|
144
|
Wogonin induces differentiation and neurite outgrowth of neural precursor cells. Biochem Biophys Res Commun 2010; 402:42-7. [DOI: 10.1016/j.bbrc.2010.09.098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/24/2010] [Indexed: 01/04/2023]
|
145
|
Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch Pharm Res 2010; 33:1589-609. [DOI: 10.1007/s12272-010-1010-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 01/27/2023]
|
146
|
Ock J, Hong SH, Suk K. Identification of KT-15073 as an inhibitor of lipopolysaccharide-induced microglial activation. Biol Pharm Bull 2010; 33:461-7. [PMID: 20190410 DOI: 10.1248/bpb.33.461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroinflammation has recently been implicated as an important mechanism responsible for the progression of neurodegenerative diseases. Activated microglia produce various proinflammatory cytokines and nitric oxide (NO) that are toxic to neurons. Thus, inhibition of microglial activation may alleviate neuroinflammatory and neurodegenerative processes. Among several fluorovinyloxyacetamide derivatives that were screened by microglia cell-based assay, a novel synthetic compound KT-15073 was identified to strongly attenuate the microglial production of NO and tumor necrosis factor-alpha (TNF-alpha). This compound also suppressed the gene expression of interleukin-1beta, inducible nitric oxide synthase, and TNF-alpha. KT-15073 inhibited the nuclear translocation and DNA binding of nuclear factor-kappaB as well as phosphorylation of p38 mitogen-activated protein kinase. In addition, KT-15073 reduced the cytotoxicity of lipopolysaccharide (LPS)-stimulated microglia toward B35 neuroblastoma cells in the microglia/neuroblastoma coculture, suggesting that the compound might exhibit the neuroprotective activity. Thus, KT-15073 has an anti-inflammatory activity in microglia, and may have a therapeutic potential for the treatment of neuroinflammatory or neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiyeon Ock
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, CMRI, Kyungpook National University, Daegu,700-412, Korea
| | | | | |
Collapse
|
147
|
Gresa-Arribas N, Serratosa J, Saura J, Solà C. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effects. J Neurochem 2010; 115:526-36. [PMID: 20722966 DOI: 10.1111/j.1471-4159.2010.06952.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of neuroinflammation is a potential target to be considered in the treatment of neurodegenerative diseases. It is therefore important to find anti-inflammatory drugs and study new targets that inhibit neuroinflammation. We designed an experimental model of neuroinflammation in vitro to study the anti-inflammatory and neuroprotective effects of the flavonoid chrysin and the involvement of nuclear factor-κB p65 and CCAAT/enhancer binding proteins (C/EBPs) β and δ transcription factors in its mechanism of action. We used primary cultures of mouse embryonic cortical neurons and cultures of BV2 (murine microglial cell line) or mouse primary microglia. We induced neuronal death in neuronal-BV2/microglial co-cultures using lipopolysaccharide of Escherichia coli and interferon-γ. Chrysin pre-treatment inhibited nitric oxide and tumor necrosis factor-α production, as well as inducible nitric oxide synthase expression in lipopolysaccharide E. coli and interferon-γ-treated microglial cells, but did not affect cyclooxygenase-2 expression. Chrysin pre-treatment also protected neurons against the neurotoxicity induced by reactive microglial cells. These effects were associated to a decrease in C/EBPδ protein level, mRNA expression, and DNA-binding activity, with no effect on C/EBPβ and p65 nuclear protein levels or DNA-binding activity, pointing out C/EBPδ as a possible mediator of chrysin effects. Consequently, C/EBPδ is a possible target to act against neuroinflammation in neurodegenerative processes.
Collapse
Affiliation(s)
- Núria Gresa-Arribas
- Department of Cerebral Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | | | | |
Collapse
|
148
|
Enomoto R, Koshiba C, Suzuki C, Lee E. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects. Cancer Chemother Pharmacol 2010; 67:1063-72. [PMID: 20658136 DOI: 10.1007/s00280-010-1396-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 06/30/2010] [Indexed: 11/28/2022]
Abstract
Wogonin, a flavone in the roots of Scutellaria baicalensis, reduced etoposide-induced apoptotic cell death in normal cells, such as bone marrow cells and thymocytes. On the other hand, wogonin potentiated the proapoptotic or cytotoxic action of etoposide in tumor cells, such as Jurkat, HL-60, A549, and NCI-H226. These contradictory actions of wogonin on apoptosis are distinguished by normal or cancer cell types. Wogonin had no effect on apoptosis induced by other anticancer agents in the tumor cells. Thus, the potentiation effect of wogonin was observed only in etoposide-induced apoptosis in tumor cells. In a functional assay for P-glycoprotein (P-gp), wogonin suppressed excretion of calcein, a substrate for P-gp, in these tumor cells. Moreover, wogonin decreased the excretion of radiolabeled etoposide and accordingly increased intracellular content of this agent in the cells. P-gp inhibitors showed a similar potentiation effect on etoposide-induced apoptosis in these tumor cells. Thus, wogonin is likely to potentiate the anticancer action of etoposide due to P-gp inhibition and accumulation of this agent. These findings suggest that wogonin may be a useful chemotherapeutic adjuvant to potentiate the pharmacological action of etoposide and ameliorate its adverse effects.
Collapse
Affiliation(s)
- Riyo Enomoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3, Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | | | | | |
Collapse
|
149
|
Taylor DL, Pirianov G, Holland S, McGinnity CJ, Norman AL, Reali C, Diemel LT, Gveric D, Yeung D, Mehmet H. Attenuation of proliferation in oligodendrocyte precursor cells by activated microglia. J Neurosci Res 2010; 88:1632-44. [PMID: 20091773 DOI: 10.1002/jnr.22335] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activated microglia can influence the survival of neural cells through the release of cytotoxic factors. Here, we investigated the interaction between Toll-like receptor 4 (TLR4)-activated microglia and oligodendrocytes or their precursor cells (OPC). Primary rat or N9 microglial cells were activated by exposure to TLR4-specifc lipopolysaccharide (LPS), resulting in mitogen-activated protein kinase activation, increased CD68 and inducible nitric oxide synthase expression, and release of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6). Microglial conditioned medium (MGCM) from LPS-activated microglia attenuated primary OPC proliferation without inducing cell death. The microglial-induced inhibition of OPC proliferation was reversed by stimulating group III metabotropic glutamate receptors in microglia with the agonist L-AP4. In contrast to OPC, LPS-activated MGCM enhanced the survival of mature oligodendrocytes. Further investigation suggested that TNF and IL-6 released from TLR4-activated microglia might contribute to the effect of MGCM on OPC proliferation, insofar as TNF depletion of LPS-activated MGCM reduced the inhibition of OPC proliferation, and direct addition of TNF or IL-6 attenuated or increased proliferation, respectively. OPC themselves were also found to express proteins involved in TLR4 signalling, including TLR4, MyD88, and MAL. Although LPS stimulation of OPC did not induce proinflammatory cytokine release or affect their survival, it did trigger JNK phosphorylation, suggesting that TLR4 signalling in these cells is active. These findings suggest that OPC survival may be influenced not only by factors released from endotoxin-activated microglia but also through a direct response to endotoxins. This may have consequences for myelination under conditions in which microglial activation and cerebral infection are both implicated. , Inc.
Collapse
Affiliation(s)
- Deanna L Taylor
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience, Imperial College London, Hammersmith Campus, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Iriti M, Vitalini S, Fico G, Faoro F. Neuroprotective herbs and foods from different traditional medicines and diets. Molecules 2010; 15:3517-55. [PMID: 20657497 PMCID: PMC6263339 DOI: 10.3390/molecules15053517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/31/2010] [Accepted: 05/06/2010] [Indexed: 12/31/2022] Open
Abstract
Plant secondary metabolites include an array of bioactive constituents form both medicinal and food plants able to improve human health. The exposure to these phytochemicals, including phenylpropanoids, isoprenoids and alkaloids, through correct dietary habits, may promote health benefits, protecting against the chronic degenerative disorders mainly seen in Western industrialized countries, such as cancer, cardiovascular and neurodegenerative diseases. In this review, we briefly deal with some plant foods and herbs of traditional medicines and diets, focusing on their neuroprotective active components. Because oxidative stress and neuroinflammation resulting from neuroglial activation, at the level of neurons, microglial cells and astrocytes, are key factors in the etiopathogenesis of both neurodegenerative and neurological diseases, emphasis will be placed on the antioxidant and anti-inflammatory activity exerted by specific molecules present in food plants or in remedies prescribed by herbal medicines.
Collapse
Affiliation(s)
- Marcello Iriti
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Dipartimento Agroalimentare, CNR-IVV, Milano, Italy; E-Mail (F.F.)
| | - Sara Vitalini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Orto Botanico ‘GE Ghirardi’, Università degli Studi di Milano, Toscolano Maderno, Brescia, Italy; E-Mail: (S.V.)
| | - Gelsomina Fico
- Orto Botanico ‘GE Ghirardi’, Università degli Studi di Milano, Toscolano Maderno, Brescia, Italy; E-Mail: (S.V.)
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy; E-Mail: (G.F.)
| | - Franco Faoro
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
- Dipartimento Agroalimentare, CNR-IVV, Milano, Italy; E-Mail (F.F.)
| |
Collapse
|