101
|
Vimalraj S, Subramanian R, Dhanasekaran A. LncRNA MALAT1 Promotes Tumor Angiogenesis by Regulating MicroRNA-150-5p/VEGFA Signaling in Osteosarcoma: In-Vitro and In-Vivo Analyses. Front Oncol 2021; 11:742789. [PMID: 34692524 PMCID: PMC8529043 DOI: 10.3389/fonc.2021.742789] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
The present study aims to analyze the expression of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in human osteosarcoma (OS) cells and to investigate its role in OS-induced angiogenesis. MALAT1 expression in OS cells was significantly higher than in normal osteoblasts. The functional analysis indicated that MALAT1 appears to enhance OS-induced angiogenesis, in vitro and in vivo analyses, endothelial cell proliferation and migration, chick embryo angiogenesis assay, and zebrafish xenograft model. Mechanistically, silencing MALAT1 downregulated vascular endothelial growth factor A (VEGFA) expression and upregulated miR-150-5p expression in OS cells, and MALAT1-mediated angiogenic induction by VEGFA in OS microenvironment. Moreover, MALAT1 directly targeted miR-150-5p and miR-150-5p directly target VEGFA in OS. Overexpression of miR-150-5p downregulates VEGFA expression in OS. More notably, we showed that MALAT1 induced angiogenesis in OS microenvironment by upregulating the expression of VEGFA via targeting miR-150-5p. Overall, our findings suggest that MALAT1 promotes angiogenesis by regulating the miR-150-5p/VEGFA signaling in OS microenvironment. The findings of the molecular mechanisms of MALAT1 in tumor angiogenesis offer a new viewpoint on OS treatment.
Collapse
Affiliation(s)
| | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | | |
Collapse
|
102
|
Tang Y, Jia C, Wang Y, Wan W, Li H, Huang G, Zhang X. Lactate Consumption via Cascaded Enzymes Combined VEGF siRNA for Synergistic Anti-Proliferation and Anti-Angiogenesis Therapy of Tumors. Adv Healthc Mater 2021; 10:e2100799. [PMID: 34310079 DOI: 10.1002/adhm.202100799] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Lactate, as the most abundant component with concentrations of 4-40 mm in tumors, contributes to the regulation of metabolic pathways, angiogenesis, and immunosuppression, exhibiting remarkable potential in cancer treatment. Therefore, a codelivery strategy that combined the cascaded enzymes Lactate oxidase/Catalase (LOx/CAT) and vascular endothelial growth factor (VEGF) siRNA (siVEGF) to suppress tumor proliferation and angiogenesis synergistically is creatively proposed. In brief, the cationic liposomes (LIP) encapsulated with LOx/CAT and siVEGF via hydrophilic interaction and electrostatic adsorption followed by coating with PEGylated phenylboronic acid (PP) is established (PPL@[LOX+CAT]). Moreover, a simple 3-aminophenylboronic acid (PBA)-shielded strategy via fructose (Fru) is applied to further enhance the targeting efficiency in the tumor site. The obtained co-encapsulated nanoparticles (NPs) can simultaneous intracellular release of LOx/CAT and siVEGF, and the collaborative use of LOx and CAT can promote lactate consumption even under a hypoxic tumor microenvironment (TME) without producing systemic toxicity. The combined application of lactate depletion and VEGF silencing demonstrated the efficient migration suppression of 4T1 cells in vitro and superior antitumor and antimetastatic properties in vivo. This work offers a promising tumor treatment strategy via integrating cascaded enzymes and gene therapy, and explores a promising therapy regimen for 4T1 triple-negative breast cancer.
Collapse
Affiliation(s)
- Yan Tang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Changhao Jia
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yu Wang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Wenjun Wan
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Hui Li
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Gui Huang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Xuenong Zhang
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
103
|
Basu P, Kim JH, Saeed S, Martins-Green M. Using systems biology approaches to identify signalling pathways activated during chronic wound initiation. Wound Repair Regen 2021; 29:881-898. [PMID: 34536049 DOI: 10.1111/wrr.12963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Chronic wounds are a significant health problem worldwide. However, nothing is known about how chronic wounds initiate and develop. Here we use a chronic wound model in diabetic mice and a Systems Biology Approach using nanoString nCounter technology and weighted gene correlation network analysis (WGCNA), with tissues collected at 6, 12, 24 and 48 h post-wounding, to identify metabolic signalling pathways involved in initiation of chronicity. Normalized counts obtained from the nanoString nCounter Mouse Metabolic Panel were used for the WGCNA, which groups genes into co-expression modules to visualize the correlation network. Genes with significant module membership and gene trait significance (p < 0.05) were used to identify signalling pathways that are important for the development of chronicity. The pathway analysis using the Reactome database showed stabilization of PTEN, which down-regulates PI3K/AKT1, which in turn down-regulates Nrf2, as shown by ELISA, thus disabling antioxidant production, resulting in high oxidative stress levels. We find that pathways involved in inflammation, including those that generate pro-inflammatory lipids derived from arachidonic acid metabolism, IFNγ and catecholamines, occur. Moreover, HIF3α is over-expressed, potentially blocking Hif1α and preventing activation of growth factors and cytokines that promote granulation tissue formation. We also find that FGF1 is under-expressed, while thrombospondin-1 is over-expressed, resulting in decreased angiogenesis, a process that is critical for healing. Finally, enzymes involved in glycolysis are down-regulated, resulting in decreased production of pyruvate, a molecule critical for ATP production, leading to extensive cell death and wound paralysis. These findings offer new avenues of study that may lead to the development of novel treatments of CW to be administered right after debridement.
Collapse
Affiliation(s)
- Proma Basu
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Jane Hannah Kim
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | - Shayan Saeed
- Department of Molecular, Cell and Systems Biology, UC, Riverside, California, USA
| | | |
Collapse
|
104
|
Involvement of Angiogenesis in the Pathogenesis of Coronary Aneurysms. Biomedicines 2021; 9:biomedicines9091269. [PMID: 34572455 PMCID: PMC8469881 DOI: 10.3390/biomedicines9091269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to evaluate the plasma concentration of pro and antiangiogenic factors and their role in the pathogenesis of coronary artery abnormal dilation (CAAD). We measured the plasma concentration of matrix metalloproteinase-8 (MMP-8), transforming growth factor beta 1 (TGF-β1), Angiopoietin-2, vascular endothelial growth factor (VEGF), and fibroblast growth factor (FGF) using a sandwich ELISA technique in the plasma of patients with coronary artery abnormal dilation (CAAD, Group 1), coronary artery disease (CAD, Group 2), and normal coronary arteries (NCA, Group 3). Patients suffering from CAAD showed significantly higher plasma concentrations of VEGF (p = 0.002) than those from the control group. Both pathological angiogenesis and inflammation appear to be crucial in the pathogenesis of aneurysmal dilatation of the coronary arteries.
Collapse
|
105
|
Ji L, Chen S, Gu G, Wang W, Ren J, Xu F, Li F, Wu J, Yang D, Zheng Y. Discovery of potential biomarkers for human atherosclerotic abdominal aortic aneurysm through untargeted metabolomics and transcriptomics. J Zhejiang Univ Sci B 2021; 22:733-745. [PMID: 34514753 DOI: 10.1631/jzus.b2000713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abdominal aortic aneurysm (AAA) and atherosclerosis (AS) have considerable similarities in clinical risk factors and molecular pathogenesis. The aim of our study was to investigate the differences between AAA and AS from the perspective of metabolomics, and to explore the potential mechanisms of differential metabolites via integration analysis with transcriptomics. Plasma samples from 32 AAA and 32 AS patients were applied to characterize the metabolite profiles using untargeted liquid chromatography-mass spectrometry (LC-MS). A total of 18 remarkably different metabolites were identified, and a combination of seven metabolites could potentially serve as a biomarker to distinguish AAA and AS, with an area under the curve (AUC) of 0.93. Subsequently, we analyzed both the metabolomics and transcriptomics data and found that seven metabolites, especially 2'-deoxy-D-ribose (2dDR), were significantly correlated with differentially expressed genes. In conclusion, our study presents a comprehensive landscape of plasma metabolites in AAA and AS patients, and provides a research direction for pathogenetic mechanisms in atherosclerotic AAA.
Collapse
Affiliation(s)
- Lei Ji
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siliang Chen
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Guangchao Gu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinrui Ren
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fang Xu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
106
|
de Melo Bisneto AV, Fernandes AS, Velozo Sá VDS, Véras JH, Soares ETS, da Silva Santos AF, Cardoso CG, Silveira-Lacerda EDP, Carneiro CC, Chen-Chen L. Anti-angiogenic activity of azathioprine. Microvasc Res 2021; 138:104234. [PMID: 34478745 DOI: 10.1016/j.mvr.2021.104234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Azathioprine (AZA) is the main drug used in immunomodulatory therapy in post-transplant patients or with autoimmune diseases. However, no study has evaluated the AZA angiogenic response. Therefore, this study investigated the effects of AZA on the angiogenic process through macroscopic, histological, and immunohistochemical analyses in chick embryo chorioallantoic membrane (CAM). Our results showed potent anti-angiogenic activity of AZA at the higher concentrations tested in the CAM assay. The histological analysis of CAM confirmed this effect, since AZA induced a significant reduction in all parameters evaluated. In addition, immunohistochemical evaluation of CAM revealed that AZA decreased TGF-β and VEGF levels, important cytokines involved in the angiogenic process. Therefore, the AZA anti-angiogenic effect identified in our study provides new information for the possible application of this drug in anticancer treatment.
Collapse
Affiliation(s)
- Abel Vieira de Melo Bisneto
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil
| | - Amanda Silva Fernandes
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil
| | - Vivianne de Souza Velozo Sá
- Laboratory of Molecular Genetics and Cytogenetics, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil
| | - Jefferson Hollanda Véras
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil
| | - Estéfane Thaíne Sodré Soares
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil
| | | | - Clever Gomes Cardoso
- Department of Morphology of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Laboratory of Molecular Genetics and Cytogenetics, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil
| | - Cristiene Costa Carneiro
- Institute of Health Sciences, Universidade Paulista - Campus Flamboyant, 74845-090 Goiânia, Brazil
| | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Department of Genetics of Institute of Biological Sciences, Federal University of Goiás, 74690-900 Goiânia, Brazil.
| |
Collapse
|
107
|
Normalizing Tumor Vasculature to Reduce Hypoxia, Enhance Perfusion, and Optimize Therapy Uptake. Cancers (Basel) 2021; 13:cancers13174444. [PMID: 34503254 PMCID: PMC8431369 DOI: 10.3390/cancers13174444] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In order for solid tumors to grow, they need to develop new blood vessels in order to support their increasing metabolic requirements. To facilitate the novel vessel formation, the tumor initiates an aggressive pro-angiogenic program. As a result of the aggressive angiogenesis, blood vessels form very rapidly and are often malformed and dysfunctional. There is a reduction in perfusion to the tumor, and often the tumors exhibit significant areas of tumor hypoxia. This review paper discusses the pro-tumorigenic environment induced by tumor hypoxia and how this can be targeted through normalization of the tumor vasculature. Here, we review tumor angiogenesis, the development of a hypoxic phenotype, and how this contributes to sustained tumorigenesis and resistance to therapy. We further discuss the potential of vascular normalization to reduce tumor hypoxia and facilitate uptake and efficacy of a variety of therapies. Abstract A basic requirement of tumorigenesis is the development of a vascular network to support the metabolic requirements of tumor growth and metastasis. Tumor vascular formation is regulated by a balance between promoters and inhibitors of angiogenesis. Typically, the pro-angiogenic environment created by the tumor is extremely aggressive, resulting in the rapid vessel formation with abnormal, dysfunctional morphology. The altered morphology and function of tumor blood and lymphatic vessels has numerous implications including poor perfusion, tissue hypoxia, and reduced therapy uptake. Targeting tumor angiogenesis as a therapeutic approach has been pursued in a host of different cancers. Although some preclinical success was seen, there has been a general lack of clinical success with traditional anti-angiogenic therapeutics as single agents. Typically, following anti-angiogenic therapy, there is remodeling of the tumor microenvironment and widespread tumor hypoxia, which is associated with development of therapy resistance. A more comprehensive understanding of the biology of tumor angiogenesis and insights into new clinical approaches, including combinations with immunotherapy, are needed to advance vascular targeting as a therapeutic area.
Collapse
|
108
|
Murray H, Qiu B, Ho SY, Wang X. Complement Factor B Mediates Ocular Angiogenesis through Regulating the VEGF Signaling Pathway. Int J Mol Sci 2021; 22:ijms22179580. [PMID: 34502486 PMCID: PMC8431595 DOI: 10.3390/ijms22179580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Complement factor B (CFB), a 95-kDa protein, is a crucial catalytic element of the alternative pathway (AP) of complement. After binding of CFB to C3b, activation of the AP depends on the proteolytic cleavage of CFB by factor D to generate the C3 convertase (C3bBb). The C3 convertase contains the catalytic subunit of CFB (Bb), the enzymatic site for the cleavage of a new molecule of C3 into C3b. In addition to its role in activating the AP, CFB has been implicated in pathological ocular neovascularization, a common feature of several blinding eye diseases, however, with somewhat conflicting results. The focus of this study was to investigate the direct impact of CFB on ocular neovascularization in a tightly controlled environment. Using mouse models of laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), our study demonstrated an increase in CFB expression during pathological angiogenesis. Results from several in vitro and ex vivo functionality assays indicated a promoting effect of CFB in angiogenesis. Mechanistically, CFB exerts this pro-angiogenic effect by mediating the vascular endothelial growth factor (VEGF) signaling pathway. In summary, we demonstrate compelling evidence for the role of CFB in driving ocular angiogenesis in a VEGF-dependent manner. This work provides a framework for a more in-depth exploration of CFB-mediated effects in ocular angiogenesis in the future.
Collapse
Affiliation(s)
- Hannah Murray
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Proteos, 61 Biopolis Dr., Singapore 138673, Singapore;
| | - Beiying Qiu
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (S.Y.H.)
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
| | - Sze Yuan Ho
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (S.Y.H.)
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Xiaomeng Wang
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Proteos, 61 Biopolis Dr., Singapore 138673, Singapore;
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (S.Y.H.)
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856, Singapore
- Correspondence: ; Tel.: +65-6576-7248
| |
Collapse
|
109
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
110
|
Fitzpatrick V, Martín-Moldes Z, Deck A, Torres-Sanchez R, Valat A, Cairns D, Li C, Kaplan DL. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization. Biomaterials 2021; 276:120995. [PMID: 34256231 PMCID: PMC8408341 DOI: 10.1016/j.biomaterials.2021.120995] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Our goal was to generate functionalized 3D-printed scaffolds for bone regeneration using silk-hydroxyapatite bone cements and osteoinductive, proangiogenic and neurotrophic growth factors or morphogens for accelerated bone formation. 3D printing was utilized to generate macroporous scaffolds with controlled geometries and architectures that promote osseointegration. We build on the knowledge that the osteoinductive factor Bone Morphogenetic Protein-2 (BMP2) can also positively impact vascularization, Vascular Endothelial Growth Factor (VEGF) can impact osteoblastic differentiation, and that Neural Growth Factor (NGF)-mediated signaling can influence bone regeneration. We assessed functions on the 3D printed construct via the osteogenic differentiation of human mesenchymal stem cells; migration and proliferation of human umbilical vein endothelial cells; and proliferation of human induced neural stem cells. The scaffolds provided mechanical properties suitable for bone and the materials were cytocompatible, osteoconductive and maintained the activity of the morphogens and cytokines. Synergistic outcomes between BMP-2, VEGF and NGF in terms of osteoblastic differentiation in vitro were identified, based on the upregulation of genes associated with osteoblastic differentiation (Runt-related transcription factor-2, Osteopontin, Bone Sialoprotein). Additional studies will be required to assess these scaffold designs in vivo. These results are expected to have a strong impact in bone regeneration in dental, oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Anna Deck
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - Anne Valat
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dana Cairns
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
111
|
Qiu B, Tan A, Tan YZ, Chen QY, Luesch H, Wang X. Largazole Inhibits Ocular Angiogenesis by Modulating the Expression of VEGFR2 and p21. Mar Drugs 2021; 19:471. [PMID: 34436310 PMCID: PMC8401058 DOI: 10.3390/md19080471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Ocular angiogenic diseases, characterized by abnormal blood vessel formation in the eye, are the leading cause of blindness. Although Anti-VEGF therapy is the first-line treatment in the market, a substantial number of patients are refractory to it or may develop resistance over time. As uncontrolled proliferation of vascular endothelial cells is one of the characteristic features of pathological neovascularization, we aimed to investigate the role of the class I histone deacetylase (HDAC) inhibitor Largazole, a cyclodepsipeptide from a marine cyanobacterium, in ocular angiogenesis. Our study showed that Largazole strongly inhibits retinal vascular endothelial cell viability, proliferation, and the ability to form tube-like structures. Largazole strongly inhibits the vessel outgrowth from choroidal explants in choroid sprouting assay while it does not affect the quiescent choroidal vasculature. Largazole also inhibits vessel outgrowth from metatarsal bones in metatarsal sprouting assay without affecting pericytes coverage. We further demonstrated a cooperative effect between Largazole and an approved anti-VEGF drug, Alflibercept. Mechanistically, Largazole strongly inhibits the expression of VEGFR2 and leads to an increased expression of cell cycle inhibitor, p21. Taken together, our study provides compelling evidence on the anti-angiogenic role of Largazole that exerts its function through mediating different signaling pathways.
Collapse
Affiliation(s)
- Beiying Qiu
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (A.T.)
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Alison Tan
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (A.T.)
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
| | - Yu Zhi Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore;
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA;
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA;
| | - Xiaomeng Wang
- Centre for Vision Research, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore; (B.Q.); (A.T.)
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Level 6 Discovery Tower, Singapore 169856, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Dr, Singapore 138673, Singapore
| |
Collapse
|
112
|
Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, Chai Y, Xu J, Zheng X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:415. [PMID: 34294121 PMCID: PMC8296592 DOI: 10.1186/s13287-021-02487-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02487-3.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
113
|
Nguyen H, Koh JY, Li H, Islas-Robles A, Meda Venkata SP, Wang JM, Monks TJ. A novel imidazolinone metformin-methylglyoxal metabolite promotes endothelial cell angiogenesis via the eNOS/HIF-1α pathway. FASEB J 2021; 35:e21645. [PMID: 34105824 PMCID: PMC8237315 DOI: 10.1096/fj.202002674rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Peripheral arterial disease (PAD) is one of the major complications of diabetes due to an impairment in angiogenesis. Since there is currently no drug with satisfactory efficacy to enhance blood vessel formation, discovering therapies to improve angiogenesis is critical. An imidazolinone metabolite of the metformin‐methylglyoxal scavenging reaction, (E)‐1,1‐dimethyl‐2‐(5‐methyl‐4‐oxo‐4,5‐dihydro‐1H‐imidazol‐2‐yl) guanidine (IMZ), was recently characterized and identified in the urine of type‐2 diabetic patients. Here, we report the pro‐angiogenesis effect of IMZ (increased aortic sprouting, cell migration, network formation, and upregulated multiple pro‐angiogenic factors) in human umbilical vein endothelial cells. Using genetic and pharmacological approaches, we showed that IMZ augmented angiogenesis by activating the endothelial nitric oxide synthase (eNOS)/hypoxia‐inducible factor‐1 alpha (HIF‐1α) pathway. Furthermore, IMZ significantly promoted capillary density in the in vivo Matrigel plug angiogenesis model. Finally, the role of IMZ in post‐ischemic angiogenesis was examined in a chronic hyperglycemia mouse model subjected to hind limb ischemia. We observed improved blood perfusion, increased capillary density, and reduced tissue necrosis in mice receiving IMZ compared to control mice. Our data demonstrate the pro‐angiogenic effects of IMZ, its underlying mechanism, and provides a structural basis for the development of potential pro‐angiogenic agents for the treatment of PAD.
Collapse
Affiliation(s)
- Huong Nguyen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jia Yi Koh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Hainan Li
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | | | - Sai Pranathi Meda Venkata
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,Centers for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Terrence J Monks
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
114
|
Onak Pulat G, Gökmen O, Çevik ZBY, Karaman O. Role of functionalized self-assembled peptide hydrogels in in vitro vasculogenesis. SOFT MATTER 2021; 17:6616-6626. [PMID: 34143171 DOI: 10.1039/d1sm00680k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabrication of vascularized tissue constructs plays an integral role in creating clinically relevant tissues. Scaffold materials should be sufficiently vascularized to mimic functional and complex native tissues. Herein, we report the development of bioactive and biomimetic self-assembled peptide (SAP) hydrogels that allow the rapid formation of a vascular structure in vitro. The KLDLKLDLKLDL (KLD peptide) SAP was functionalized with laminin derived peptides IKVAV (V1) and YIGSR (V2) through direct coupling to mimic the natural extracellular matrix (ECM) and human umbilical endothelial cells (HUVECs) and mesenchymal stem cells (MSCs) cultured in 0.5% and 1% SAP hydrogels organized into vascularized structures. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images proved the molecular integration of the nanofibrous structure in SAP hydrogels. The stability of SAP hydrogels was confirmed by rheological and degradation measurements. Bioactive peptide scaffolds enhanced significantly HUVEC/hMSC proliferation depicted by MTT analysis compared to KLD. Furthermore, the real time quantitative polymerase chain reaction (rt-PCR) was performed to analyse vascular gene expressions such as platelet/endothelial cell adhesion molecule-1 (PECAM-1), von Willebrand factor (vWF), and vascular endothelial cadherin (VE-cadherin). The results indicated that the KLD-V2 hydrogel significantly induced vasculogenesis in hMSC/HUVEC co-culture compared to KLD-V1, Biogelx and KLD because YIGSR in KLD-V2 promoted cell population and ECM secretion by the interaction with cells and increased vasculogenesis. Overall, the designed SAP hydrogel represents an effective scaffold for vascularization of tissue constructs with useful tissue engineering applications.
Collapse
Affiliation(s)
- Günnur Onak Pulat
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
| | - Oğuzhan Gökmen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
| | - Ziyşan Buse Yaralı Çevik
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey.
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, 35620, Turkey. and Bonegraft Biomaterials Co., Ege University Technopolis, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
115
|
Tarantul VZ, Gavrilenko AV. Gene therapy for critical limb ischemia: Per aspera ad astra. Curr Gene Ther 2021; 22:214-227. [PMID: 34254916 DOI: 10.2174/1566523221666210712185742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
Peripheral artery diseases remain a serious public health problem. Although there are many traditional methods for their treatment using conservative therapeutic techniques and surgery, gene therapy is an alternative and potentially more effective treatment option especially for "no option" patients. This review treats the results of many years of research and application of gene therapy as an example of treatment of patients with critical limb ischemia. Data on successful and unsuccessful attempts to use this technology for treating this disease are presented. Trends in changing the paradigm of approaches to therapeutic angiogenesis are noted: from viral vectors to non-viral vectors, from gene transfer to the whole organism to targeted transfer to cells and tissues, from single gene use to combination of genes; from DNA therapy to RNA therapy, from in vivo therapy to ex vivo therapy.
Collapse
Affiliation(s)
- Vyacheslav Z Tarantul
- National Research Center "Kurchatov Institute", Institute of Molecular Genetics, Moscow 123182, Russian Federation
| | - Alexander V Gavrilenko
- A.V.¬ Petrovsky Russian Scientific Center for Surgery, Moscow 119991, Russian Federation
| |
Collapse
|
116
|
Karanth SS, Sun S, Bi H, Ye K, Jin S. Angiopoietins stimulate pancreatic islet development from stem cells. Sci Rep 2021; 11:13558. [PMID: 34193893 PMCID: PMC8245566 DOI: 10.1038/s41598-021-92922-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
In vitro differentiation of human induced pluripotent stem cells (iPSCs) into functional islets holds immense potential to create an unlimited source of islets for diabetes research and treatment. A continuous challenge in this field is to generate glucose-responsive mature islets. We herein report a previously undiscovered angiopoietin signal for in vitro islet development. We revealed, for the first time, that angiopoietins, including angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) permit the generation of islets from iPSCs with elevated glucose responsiveness, a hallmark of mature islets. Angiopoietin-stimulated islets exhibited glucose synchronized calcium ion influx in repetitive glucose challenges. Moreover, Ang2 augmented the expression of all islet hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide; and β cell transcription factors, including NKX6.1, MAFA, UCN3, and PDX1. Furthermore, we showed that the Ang2 stimulated islets were able to regulate insulin exocytosis through actin-filament polymerization and depolymerization upon glucose challenge, presumably through the CDC42-RAC1-gelsolin mediated insulin secretion signaling pathway. We also discovered the formation of endothelium within the islets under Ang2 stimulation. These results strongly suggest that angiopoietin acts as a signaling molecule to endorse in vitro islet development from iPSCs.
Collapse
Affiliation(s)
- Soujanya S Karanth
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA
| | - Shuofei Sun
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA
| | - Huanjing Bi
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA.,Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA. .,Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902, USA.
| |
Collapse
|
117
|
Simulation of angiogenesis in three dimensions: Application to cerebral cortex. PLoS Comput Biol 2021; 17:e1009164. [PMID: 34170925 PMCID: PMC8266096 DOI: 10.1371/journal.pcbi.1009164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/08/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The vasculature is a dynamic structure, growing and regressing in response to embryonic development, growth, changing physiological demands, wound healing, tumor growth and other stimuli. At the microvascular level, network geometry is not predetermined, but emerges as a result of biological responses of each vessel to the stimuli that it receives. These responses may be summarized as angiogenesis, remodeling and pruning. Previous theoretical simulations have shown how two-dimensional vascular patterns generated by these processes in the mesentery are consistent with experimental observations. During early development of the brain, a mesh-like network of vessels is formed on the surface of the cerebral cortex. This network then forms branches into the cortex, forming a three-dimensional network throughout its thickness. Here, a theoretical model is presented for this process, based on known or hypothesized vascular response mechanisms together with experimentally obtained information on the structure and hemodynamics of the mouse cerebral cortex. According to this model, essential components of the system include sensing of oxygen levels in the midrange of partial pressures and conducted responses in vessel walls that propagate information about metabolic needs of the tissue to upstream segments of the network. The model provides insights into the effects of deficits in vascular response mechanisms, and can be used to generate physiologically realistic microvascular network structures.
Collapse
|
118
|
Frimpong A, Amponsah J, Agyemang D, Adjokatseh AS, Eyiah-Ampah S, Ennuson NA, Obiri D, Amoah LE, Kusi KA. Elevated Levels of the Endothelial Molecules ICAM-1, VEGF-A, and VEGFR2 in Microscopic Asymptomatic Malaria. Open Forum Infect Dis 2021; 8:ofab302. [PMID: 34277886 PMCID: PMC8279097 DOI: 10.1093/ofid/ofab302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background In malaria, clinical disease has been associated with increased levels of endothelial activation due to the sequestration of infected erythrocytes. However, the levels and impact of endothelial activation and pro-angiogenic molecules such as vascular endothelial growth factor (VEGF)–A and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) in asymptomatic malaria have not been well characterized. Methods Blood samples were obtained from community children for malaria diagnosis using microscopy and polymerase chain reaction. A multiplex immunoassay was used to determine the levels of intracellular adhesion molecule (ICAM)–1, vascular endothelial growth factor (VEGF)–A, and VEGFR2 in the plasma of children with microscopic or submicroscopic asymptomatic parasitemia and compared with levels in uninfected controls. Results Levels of ICAM-1, VEGF-A, and VEGFR2 were significantly increased in children with microscopic asymptomatic parasitemia compared with uninfected controls. Also, levels of VEGF-A were found to be inversely associated with age. Additionally, a receiver operating characteristic analysis revealed that plasma levels of ICAM-1 (area under the curve [AUC], 0.72) showed a moderate potential in discriminating between children with microscopic malaria from uninfected controls when compared with VEGF-A (AUC, 0.67) and VEGFR2 (AUC, 0.69). Conclusions These data imply that endothelial activation and pro-angiogenic growth factors could be one of the early host responders during microscopic asymptomatic malaria and may play a significant role in disease pathogenesis.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jones Amponsah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorothy Agyemang
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences,University of Ghana, Accra, Ghana
| | - Abigail Sena Adjokatseh
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences,University of Ghana, Accra, Ghana
| | - Sophia Eyiah-Ampah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nana Aba Ennuson
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dorotheah Obiri
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences,University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
119
|
Soltan MM, Abd-Alla HI, Hassan AZ, Hanna AG. In vitro chemotherapeutic and antiangiogenic properties of cardenolides from Acokanthera oblongifolia (Hochst.) Codd. ACTA ACUST UNITED AC 2021; 76:337-346. [PMID: 34058797 DOI: 10.1515/znc-2020-0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Acovenoside A (Acov-A) and acobioside A (Acob-A) were isolated from Acokanthera oblongifolia. Their anticancer properties were explored regarding, antiproliferative and antiangiogenic activities. The study included screening phase against six cancer cell lines followed by mechanistic investigation against HepG2 cancer cell line. The sulforhodamine-B (SRB) was used to determine their growth inhibitory power. In the other hand, flow cytometry techniques were recorded the cell death type and cell cycle analysis. The clonogenic (colony formation) and wound healing assays, enzyme-linked immunosorbent assay (ELISA) and molecular docking, were performed to evaluate the antiangiogenesis capability. Both compounds were strongly, inhibited four cancer cell lines at GI50 less than 100 nM. The in vitro mechanistic investigation against HepG2 resulted in cell accumulations at G2M phase and induction of apoptosis upon treating cells separately, with 400 nM Acov-A and 200 nM Acob-A. Interestingly, the same concentrations were able to activate caspase-3 by 7.2 and 4.8-fold, respectively. Suppressing the clonogenic capacity of HepG2 cells (20 and 40 nM) and inhibiting the migration of the colon Caco-2 cancer cells were provoke the results of vascular endothelial growth factor receptor2 (VEGFR2) kinase enzyme inactivation. The docked study was highly supportive, to the antiangiogenic approach of both cardenolides. The isolated cardenolides could orchestrate pivotal events in fighting cancer.
Collapse
Affiliation(s)
- Maha M Soltan
- Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, Chemistry of Medicinal Plants Department, National Research Centre, El Buhouth St. 33Dokki-Giza12622, Egypt
| | - Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El Buhouth St. 33, Dokki-Giza12622, Egypt
| | - Amal Z Hassan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El Buhouth St. 33, Dokki-Giza12622, Egypt
| | - Atef G Hanna
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El Buhouth St. 33, Dokki-Giza12622, Egypt
| |
Collapse
|
120
|
Rosanto YB, Hasan CY, Rahardjo R, Pangestiningsih TW. Effect of snail mucus on angiogenesis during wound healing. F1000Res 2021; 10:181. [PMID: 38912381 PMCID: PMC11190653 DOI: 10.12688/f1000research.51297.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 06/25/2024] Open
Abstract
Background: Angiogenesis is the process through which new blood vessels are formed from existing ones. This process plays an important role in supplying the oxygen and nutrients needed for cellular metabolism and eliminating cell debris during wound healing. Snail mucus can bind to several factors that stimulate angiogenesis, including vascular endothelial growth factor, platelet-derived growth factor, and fibroblast growth factor. The aim of this study is to observe changes in angiogenesis during the healing of wounds topically applied with snail mucus. Methods: Punch biopsy was performed on the back of male Wistar rats to obtain four wounds, and different concentrations of snail mucus were applied to each of these wounds. The animals were sacrificed on days 2, 4, and 7 to observe the extent of angiogenesis during wound healing by microscopy. Results: Two-way ANOVA showed differences in number of blood vessels formed (p = 0.00) and day of observation (p = 0.00) between groups. Post hoc Tukey's HSD test showed that 24% snail mucus treatment does not significantly affect wound healing (p = 0.488); by contrast, treatment with 48% and 96% snail mucus demonstrated significant effects on angiogenesis (p = 0.01). Spearman's test showed interactive effects between snail mucus concentration and day of observation on the extent of angiogenesis (p = 0.001, R = 0.946). Conclusion: Topical application of snail mucus gel can increase angiogenesis during wound healing in Wistar rat skin.
Collapse
Affiliation(s)
- Yosaphat Bayu Rosanto
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Cahya Yustisia Hasan
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Rahardjo Rahardjo
- Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| | - Tri Wahyu Pangestiningsih
- Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, 55281, Indonesia
| |
Collapse
|
121
|
Spronk E, Sykes G, Falcione S, Munsterman D, Joy T, Kamtchum-Tatuene J, Jickling GC. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front Neurol 2021; 12:661955. [PMID: 34054705 PMCID: PMC8160112 DOI: 10.3389/fneur.2021.661955] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Hemorrhagic transformation (HT) is a common complication in patients with acute ischemic stroke. It occurs when peripheral blood extravasates across a disrupted blood brain barrier (BBB) into the brain following ischemic stroke. Preventing HT is important as it worsens stroke outcome and increases mortality. Factors associated with increased risk of HT include stroke severity, reperfusion therapy (thrombolysis and thrombectomy), hypertension, hyperglycemia, and age. Inflammation and the immune system are important contributors to BBB disruption and HT and are associated with many of the risk factors for HT. In this review, we present the relationship of inflammation and immune activation to HT in the context of reperfusion therapy, hypertension, hyperglycemia, and age. Differences in inflammatory pathways relating to HT are discussed. The role of inflammation to stratify the risk of HT and therapies targeting the immune system to reduce the risk of HT are presented.
Collapse
Affiliation(s)
- Elena Spronk
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gina Sykes
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sarina Falcione
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Danielle Munsterman
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Twinkle Joy
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Joseph Kamtchum-Tatuene
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Glen C Jickling
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
122
|
Hakami NY, Dusting GJ, Chan EC, Shah MH, Peshavariya HM. Wound Healing After Alkali Burn Injury of the Cornea Involves Nox4-Type NADPH Oxidase. Invest Ophthalmol Vis Sci 2021; 61:20. [PMID: 33079994 PMCID: PMC7585390 DOI: 10.1167/iovs.61.12.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Corneal injury that occurs after burning with alkali initiates wound-healing processes, including inflammation, neovascularization, and fibrosis. Excessive reactions to injury can reduce corneal transparency and thereby compromise vision. The NADPH oxidase (Nox) enzyme complex is known to be involved in cell signaling for wound-healing angiogenesis, but its role in corneal neovascularization has been little studied. Methods The center corneas of wild-type and Nox4 knockout (KO) mice were injured with 3 µL 1 M NaOH, while the contralateral corneas remained untouched. On day 7, mRNA expression levels of NADPH oxidase isoforms, the proangiogenic factors VEGF-A and TGFβ1, and proinflammatory genes ICAM-1 and VCAM-1 were determined. Corneal neovascularization and fibrosis were visualized using PECAM-1 antibody and picrosirius red staining, respectively, on the same day. Results Expressions of both Nox2 and Nox4 gene isoforms as well as the above genes were markedly increased in the injured corneas at 7 days. Injured corneas showed neovascularization and fibrosis as well as an increase in clinical opacity score. All responses stimulated by alkali burn were abrogated in Nox4 KO mice. Conclusions Nox4 could be a new target to treat pathologic corneal wound-healing responses and such targeting might prevent blindness caused by burn injuries.
Collapse
Affiliation(s)
- Nora Y Hakami
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia.,Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Gregory J Dusting
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Hitesh M Peshavariya
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| |
Collapse
|
123
|
Mesenchymal Stem Cell Transplantation for Ischemic Diseases: Mechanisms and Challenges. Tissue Eng Regen Med 2021; 18:587-611. [PMID: 33884577 DOI: 10.1007/s13770-021-00334-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic diseases are conditions associated with the restriction or blockage of blood supply to specific tissues. These conditions can cause moderate to severe complications in patients, and can lead to permanent disabilities. Since they are blood vessel-related diseases, ischemic diseases are usually treated with endothelial cells or endothelial progenitor cells that can regenerate new blood vessels. However, in recent years, mesenchymal stem cells (MSCs) have shown potent bioeffects on angiogenesis, thus playing a role in blood regeneration. Indeed, MSCs can trigger angiogenesis at ischemic sites by several mechanisms related to their trans-differentiation potential. These mechanisms include inhibition of apoptosis, stimulation of angiogenesis via angiogenic growth factors, and regulation of immune responses, as well as regulation of scarring to suppress blood vessel regeneration when needed. However, preclinical and clinical trials of MSC transplantation in ischemic diseases have shown some limitations in terms of treatment efficacy. Such studies have emphasized the current challenges of MSC-based therapies. Treatment efficacy could be enhanced if the limitations were better understood and potentially resolved. This review will summarize some of the strategies by which MSCs have been utilized for ischemic disease treatment, and will highlight some challenges of those applications as well as suggesting some strategies to improve treatment efficacy.
Collapse
|
124
|
Naidoo N, Moodley J, Naicker T. Maternal endothelial dysfunction in HIV-associated preeclampsia comorbid with COVID-19: a review. Hypertens Res 2021; 44:386-398. [PMID: 33469197 PMCID: PMC7815501 DOI: 10.1038/s41440-020-00604-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/07/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
This review assesses markers of endothelial dysfunction (ED) associated with the maternal syndrome of preeclampsia (PE). We evaluate the role of antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected preeclamptic women. Furthermore, we briefly discuss the potential of lopinavir/ritonavir (LPV/r), dolutegravir (DTG) and remdesivir (RDV) in drug repurposing and their safety in pregnancy complicated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In HIV infection, the trans-activator of transcription protein, which has homology with vascular endothelial growth factor, impairs angiogenesis, leading to endothelial injury and possible PE development despite neutralization of their opposing immune states. Markers of ED show strong evidence supporting the adverse role of ART in PE development and mortality compared to treatment-naïve pregnancies. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, exploits angiotensin-converting enzyme 2 (ACE 2) to induce ED and hypertension, thereby mimicking angiotensin II-mediated PE in severe cases of infection. Upregulated ACE 2 in pregnancy is a possible risk factor for SARS-CoV-2 infection and subsequent PE development. The potential effectiveness of LPV/r against COVID-19 is inconclusive; however, defective decidualization, along with elevated markers of ED, was observed. Therefore, the safety of these drugs in HIV-positive pregnancies complicated by COVID-19 requires attention. Despite the observed endothelial protective properties of DTG, there is a lack of evidence of its effects on pregnancy and COVID-19 therapeutics. Understanding RDV-ART interactions and the inclusion of pregnant women in antiviral drug repurposing trials is essential. This review provides a platform for further research on PE in the HIV-COVID-19 syndemic.
Collapse
Affiliation(s)
- Nitalia Naidoo
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, Department of Obstetrics and Gynecology, School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
125
|
Wound Healing Promotion by Hyaluronic Acid: Effect of Molecular Weight on Gene Expression and In Vivo Wound Closure. Pharmaceuticals (Basel) 2021; 14:ph14040301. [PMID: 33800588 PMCID: PMC8065935 DOI: 10.3390/ph14040301] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.
Collapse
|
126
|
Pericytes Regulate Cerebral Perfusion through VEGFR1 in Ischemic Stroke. Cell Mol Neurobiol 2021; 42:1897-1908. [PMID: 33712886 DOI: 10.1007/s10571-021-01071-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Neurons in the penumbra (the area surrounding ischemic tissue that consists of still viable tissue but with reduced blood flow and oxygen transport) may be rescued following stroke if adequate perfusion is restored in time. It has been speculated that post-stroke angiogenesis in the penumbra can reduce damage caused by ischemia. However, the mechanism for neovasculature formation in the brain remains unclear and vascular-targeted therapies for brain ischemia remain suboptimal. Here, we show that VEGFR1 was highly upregulated in pericytes after stroke. Knockdown of VEGFR1 in pericytes led to increased infarct area and compromised post-ischemia vessel formation. Furthermore, in vitro studies confirmed a critical role for pericyte-derived VEGFR1 in both endothelial tube formation and pericyte migration. Interestingly, our results show that pericyte-derived VEGFR1 has opposite effects on Akt activity in endothelial cells and pericytes. Collectively, these results indicate that pericyte-specific expression of VEGFR1 modulates ischemia-induced vessel formation and vascular integrity in the brain.
Collapse
|
127
|
Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021; 10:641. [PMID: 33805763 PMCID: PMC7999733 DOI: 10.3390/cells10030641] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death worldwide. Coronary artery occlusion, or myocardial infarction (MI) causes massive loss of cardiomyocytes. The ischemia area is eventually replaced by a fibrotic scar. From the mechanical dysfunctions of the scar in electronic transduction, contraction and compliance, pathological cardiac dilation and heart failure develops. Once end-stage heart failure occurs, the only option is to perform heart transplantation. The sequential changes are termed cardiac remodeling, and are due to the lack of endogenous regenerative actions in the adult human heart. Regenerative medicine and biomedical engineering strategies have been pursued to repair the damaged heart and to restore normal cardiac function. Such strategies include both cellular and acellular products, in combination with biomaterials. In addition, substantial progress has been made to elucidate the molecular and cellular mechanisms underlying heart repair and regeneration. In this review, we summarize and discuss current therapeutic approaches for cardiac repair and provide a perspective on novel strategies that holding potential opportunities for future research and clinical translation.
Collapse
Affiliation(s)
- Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
128
|
Galeano-Otero I, Del Toro R, Khatib AM, Rosado JA, Ordóñez-Fernández A, Smani T. SARAF and Orai1 Contribute to Endothelial Cell Activation and Angiogenesis. Front Cell Dev Biol 2021; 9:639952. [PMID: 33748129 PMCID: PMC7970240 DOI: 10.3389/fcell.2021.639952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is a multistep process that controls endothelial cells (ECs) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promote signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated calcium entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor, and Orai1, the pore-forming subunit of the store-operated calcium channel (SOCC), in angiogenesis. Here, we show that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as human umbilical vein endothelial cell (HUVEC) tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice, since it reduces vessel length and the number of junctions, while it increases lacunarity. Moreover, we find that SARAF and Orai1 are involved in VEGF-mediated [Ca2+]i increase, and their knockdown using siRNA impairs HUVEC tube formation, proliferation, and migration. Finally, immunostaining and in situ proximity ligation assays indicate that SARAF likely interacts with Orai1 in HUVECs. Therefore, these findings show for the first time a functional interaction between SARAF and Orai1 in ECs and highlight their essential role in different steps of the angiogenesis process.
Collapse
Affiliation(s)
- Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | - Raquel Del Toro
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| | | | | | - Antonio Ordóñez-Fernández
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain.,Department of Surgery, University of Seville, Seville, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
129
|
Shen Z, Tsao H, LaRue S, Liu R, Kirkpatrick TC, Souza LCD, Letra A, Silva RM. Vascular Endothelial Growth Factor and/or Nerve Growth Factor Treatment Induces Expression of Dentinogenic, Neuronal, and Healing Markers in Stem Cells of the Apical Papilla. J Endod 2021; 47:924-931. [PMID: 33652017 DOI: 10.1016/j.joen.2021.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The goal of regenerative endodontic procedures is to preserve and stimulate stem cells from the apical papilla (SCAPs) to develop the pulp-dentin complex using various growth factors and scaffolds. We hypothesized that the treatment of SCAPs with vascular endothelial growth factor (VEGF) or nerve growth factor (NGF) may impact the expression of osteogenic and dentinogenic markers. METHODS The optimum concentration of VEGF and NGF on SCAP viability was assessed and introduced to SCAPs for 6-24 hours. SCAPs were also challenged with Escherichia coli lipopolysaccharide (LPS). Messenger RNA (mRNA) expression of DSPP, DMP1, TGFB1, OCN, SP7, and TWIST1 was examined via quantitative reverse transcription polymerase chain reaction. Immunohistochemistry was used to verify protein expression. In addition, total RNA from NGF-treated SCAPs in the presence or absence of LPS was extracted for RNA sequencing. RESULTS Compared with untreated cells, NGF-treated SCAPs showed markedly higher levels of DSPP, DMP1, and TGFB1 mRNAs (>9-fold change, P < .05), and SCAPs treated with both VEGF and NGF showed a significant increase of DSPP and TGFB1 mRNAs (P < .05). In addition, in LPS-challenged SCAPs, treatment with these growth factors also exhibited increased expression of DSPP, DMP1, and TGFB1 mRNAs, with the most significant change induced by VEGF (P < .05). Immunohistochemistry confirmed increased dentin sialophosphoprotein, dentin matrix acidic phosphoprotein 1, and transforming growth factor beta 1 protein expression in treated SCAPs. RNA sequencing revealed multiple pathways regulated by NGF, including TGF-β and neurogenic pathways. CONCLUSIONS VEGF- and NGF-induced dentinogenic/neuronal/healing marker expression in SCAPs indicates the potential value of applying these growth factors in regenerative endodontic procedures.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Helen Tsao
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Sean LaRue
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Richard Liu
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Timothy C Kirkpatrick
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Letícia Chaves de Souza
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas
| | - Renato M Silva
- Department of Endodontics, University of Texas School of Dentistry at Houston, Houston, Texas; Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, Texas.
| |
Collapse
|
130
|
Nensat C, Songjang W, Tohtong R, Suthiphongchai T, Phimsen S, Rattanasinganchan P, Metheenukul P, Kumphune S, Jiraviriyakul A. Porcine placenta extract improves high-glucose-induced angiogenesis impairment. BMC Complement Med Ther 2021; 21:66. [PMID: 33602182 PMCID: PMC7893890 DOI: 10.1186/s12906-021-03243-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background High glucose (HG)-induced reactive oxygen species (ROS) overproduction impairs angiogenesis that is one pivotal factor of wound healing process. Angiogenesis impairment induces delayed wound healing, whereby it eventually leads to amputation in cases of poorly controlled diabetes with diabetic ulceration. Porcine placenta extract (PPE) is a natural waste product that comprises plenty of bioactive agents including growth factors and antioxidants. It was reported as an effective compound that prevents ROS generation. The goal of this study was to investigate the in vitro effect of PPE on HG-induced ROS-mediated angiogenesis impairment. Methods Primary endothelial cells (HUVECs) and endothelial cell line (EA.hy926) were treated with HG in the presence of PPE. The endothelial cells (ECs) viability, intracellular ROS generation, migration, and angiogenesis were determined by MTT assay, DCFDA reagent, wound healing assay, and tube formation assay, respectively. Additionally, the molecular mechanism of PPE on HG-induced angiogenesis impairment was investigated by Western blot. The angiogenic growth factor secretion was also investigated by the sandwich ELISA technique. Results HG in the presence of PPE significantly decreased intracellular ROS overproduction compared to HG alone. HG in the presence of PPE significantly increased ECs viability, migration, and angiogenesis compared to HG alone by showing recovery of PI3K/Akt/ERK1/2 activation. HG in the presence of PPE also decreased ECs apoptosis compared to HG alone by decreasing p53/Bax/cleaved caspase 9/cleaved caspase 3 levels and increasing Bcl 2 level. Conclusion PPE attenuated HG-induced intracellular ROS overproduction that improved ECs viability, proliferation, migration, and angiogenesis by showing recovery of PI3K/Akt/ERK1/2 activation and inhibition of ECs apoptosis. This study suggests PPE ameliorated HG-induced ROS-mediated angiogenesis impairment, whereby it potentially provides an alternative treatment for diabetic wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03243-z.
Collapse
Affiliation(s)
- Chatchai Nensat
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Pornphimon Metheenukul
- Department of Veterinary Technology, Faculty of Veterinery Technology, Kasetsart University, Bangkok, 10900, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand. .,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
131
|
Phua QH, Han HA, Soh BS. Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J Transl Med 2021; 19:83. [PMID: 33602284 PMCID: PMC7891016 DOI: 10.1186/s12967-021-02752-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
The skin is made up of a plethora of cells arranged in multiple layers with complex and intricate vascular networks, creating a dynamic microenvironment of cells-to-matrix interactions. With limited donor sites, engineered skin substitute has been in high demand for many therapeutic purposes. Over the years, remarkable progress has occurred in the skin tissue-engineering field to develop skin grafts highly similar to native tissue. However, the major hurdle to successful engraftment is the incorporation of functional vasculature to provide essential nutrients and oxygen supply to the embedded cells. Limitations of traditional tissue engineering have driven the rapid development of vascularized skin tissue production, leading to new technologies such as 3D bioprinting, nano-fabrication and micro-patterning using hydrogel based-scaffold. In particular, the key hope to bioprinting would be the generation of interconnected functional vessels, coupled with the addition of specific cell types to mimic the biological and architectural complexity of the native skin environment. Additionally, stem cells have been gaining interest due to their highly regenerative potential and participation in wound healing. This review briefly summarizes the current cell therapies used in skin regeneration with a focus on the importance of vascularization and recent progress in 3D fabrication approaches to generate vascularized network in the skin tissue graft.
Collapse
Affiliation(s)
- Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Hua Alexander Han
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
132
|
Sun Z, Cao Y, Xing Y, Wu M, Shao X, Huang Q, Bai L, Wang L, Zhao Y, Wu Y. Antiangiogenic effect of arsenic trioxide in HUVECs by FoxO3a-regulated autophagy. J Biochem Mol Toxicol 2021; 35:e22728. [PMID: 33592126 DOI: 10.1002/jbt.22728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/06/2022]
Abstract
Arsenic trioxide (ATO) has been shown to have antitumor effect in different tumors, although the underlying mechanisms are not fully understood. Autophagy plays a critical role in tumorigenesis and cancer therapy and has been found to be activated by ATO in different cells. However, the role of autophagy in the antitumor effect of ATO has not yet been elucidated. In this study, we investigated the role of autophagy in the antiangiogenic effect of ATO in human umbilical vein endothelial cells (HUVECs) in vitro and its underlying mechanism. Our data showed that ATO suppresses angiogenesis and induces autophagy in HUVECs through upregulation of forkhead box protein O3 (FoxO3a). Co-incubated with autophagy inhibitor or knockdown of FoxO3a effectively inhibited ATO-induced autophagy and reversed the antiangiogenic effect of ATO, indicating that ATO-induced autophagy plays an antiangiogenic role in HUVECs. Our results highlight the importance of autophagy in the antiangiogenic effect of ATO and provide an improved understanding of the function of ATO.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yidan Cao
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yueping Xing
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Muyu Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Xiaotong Shao
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Qingli Huang
- Research Facility Center for Morphology of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Lu Bai
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Li Wang
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yaxian Zhao
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Yongping Wu
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
133
|
Tie-2, G-CSF, and Leptin as Promising Diagnostic Biomarkers for Endometrial Cancer: A Pilot Study. J Clin Med 2021; 10:jcm10040765. [PMID: 33671851 PMCID: PMC7918088 DOI: 10.3390/jcm10040765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
Preoperative determination of the extent of endometrial cancer (EC) would avoid the complications associated with radical surgery. Screening of patients' plasma biomarkers might enable a more precise diagnosis of EC and a tailored treatment approach. This prospective case-control monocentric pilot study included 76 postmenopausal women (38 endometrioid EC patients and 38 control patients with benign gynecological conditions), and 37 angiogenic factors (AFs) were investigated as potential biomarkers for EC. AF concentrations in preoperative plasma samples were measured using Luminex xMAP™ multiplexing technology. The plasma levels of sTie-2 and G-CSF were significantly lower in EC compared to control patients, whereas the plasma levels of leptin were significantly higher in EC patients. Neuropilin-1 plasma levels were significantly higher in patients with type 2 EC (grade 3) compared to patients with lower grade cancer or controls. Follistatin levels were significantly higher in patients with lymphovascular invasion, and IL-8 plasma levels were significantly higher in patients with metastases. If validated, the plasma concentrations of the indicated AFs could represent an important additional diagnostic tool for the early detection and characterization of EC. This could guide the decision-making on the extent of surgery. Further studies with larger patient numbers are currently ongoing.
Collapse
|
134
|
Khurana N, Pulsipher A, Ghandehari H, Alt JA. Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. J Control Release 2021; 330:878-888. [PMID: 33144181 PMCID: PMC7906912 DOI: 10.1016/j.jconrel.2020.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic inflammation is known to cause alterations in vascular homeostasis that directly affects blood vessel morphogenesis, angiogenesis, and tissue permeability. These phenomena have been investigated and exploited for targeted drug delivery applications in the context of cancers and other disease processes. Vascular pathophysiology and its associated genes and signaling pathways, however, have not been systematically investigated in patients with chronic rhinosinusitis (CRS). Understanding the interplay between key vascular signaling pathways and top biomarkers associated with CRS may facilitate the development of new targeted delivery strategies and treatment paradigms. Herein, we report findings from a gene meta-analysis to identify key vascular pathways and top genes involved in CRS. METHODS Proprietary software (Illumina BaseSpace Correlation Engine) and open-access data sets were used to perform a gene meta-analysis to systematically determine significant differences between key vascular biomarkers and vascular signaling pathways expressed in sinonasal tissue biopsies of controls and patients with CRS. RESULTS Thirteen studies were initially identified, and then reduced to five after applying exclusion principle algorithms. Genes associated with vasculature development and blood vessel morphogenesis signaling pathways were identified to be overexpressed among the top 15 signaling pathways. Out of many significantly upregulated genes, the levels of pro angiogenic genes such as early growth response (EGR3), platelet endothelial cell adhesion molecule (PECAM1) and L-selectin (SELL) were particularly significant in patients with CRS compared to controls. DISCUSSION Key vascular biomarkers and signaling pathways were significantly overexpressed in patients with CRS compared to controls, suggesting a contribution of vascular dysfunction in CRS pathophysiology. Vascular dysregulation and permeability may afford opportunities to develop drug delivery systems to improve efficacy and reduce toxicity of CRS treatment.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
135
|
Jochums A, Volk J, Perduns R, Plum M, Schertl P, Bakopoulou A, Geurtsen W. Influence of 2-hydroxyethyl methacrylate (HEMA) exposure on angiogenic differentiation of dental pulp stem cells (DPSCs). Dent Mater 2021; 37:534-546. [PMID: 33579530 DOI: 10.1016/j.dental.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/13/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The angiogenic differentiation of dental pulp stem cells (DPSCs) is important for tissue homeostasis and wound healing. In this study the influence of 2-hydroxyethyl methacrylate (HEMA) on angiogenic differentiation was investigated. METHODS To evaluate HEMA effects on angiogenic differentiation, DPSCs were cultivated in angiogenic differentiation medium (ADM) in the presence or absence of non-toxic HEMA concentrations (0.1 mM and 0.5 mM). Subsequently, angiogenic differentiation was analyzed on the molecular level by qRT-PCR and protein profiler analyzes of angiogenic markers and flow cytometry of PECAM1. The influence of HEMA on angiogenic phenotypes was analyzed by cell migration and sprouting assays. RESULTS Treatment with 0.5 mM HEMA during differentiation can lead to a slight reduction of angiogenic markers on mRNA level. HEMA also seems to slightly reduce the quantity of angiogenic cytokines (not significant). However, these HEMA concentrations have no detectable influence on cell migration, the abundance of PECAM1 and the formation of capillaries. Higher concentrations caused primary cytotoxic effects in angiogenic differentiation experiments conducted for longer periods than 72 h. SIGNIFICANCE Non-cytotoxic HEMA concentrations seem to have a minor impact on the expression of angiogenic markers, essentially on the mRNA level, without affecting the angiogenic differentiation process itself on a detectable level.
Collapse
Affiliation(s)
- André Jochums
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Renke Perduns
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Melanie Plum
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Peter Schertl
- Department of Cell Biology and Biophysics, Leibniz University Hannover, D-30419 Hannover, Germany
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), Greece.
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
136
|
Mukherjee T, Behl T, Sehgal A, Bhatia S, Singh H, Bungau S. Exploring the molecular role of endostatin in diabetic neuropathy. Mol Biol Rep 2021; 48:1819-1836. [PMID: 33559819 DOI: 10.1007/s11033-021-06205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
For over a decade, diabetic neuropathy has exhibited great emergence in diabetic patients. Though there are numerous impediments in understanding the underlying pathology it is not that enough to conclude. Initially, there was no intricate protocol for diagnosis as its symptoms mimic most of the neurodegenerative disorders and demyelinating diseases. Continuous research on this, reveals many pathological correlates which are also detectable clinically. The most important pathologic manifestation is imbalanced angiogenesis/neo-vascularization. This review is completely focused on established pathogenesis and anti-angiogenic agents which are physiological signal molecules by the origin. Those agents can also be used externally to inhibit those pathogenic pathways. Pathologically DN demonstrates the misbalanced expression of many knotty factors like VEGF, FGF2, TGFb, NF-kb, TNF-a, MMP, TIMP, and many minor factors. Their pathway towards the incidence of DN is quite interrelated. Many anti-angiogenic agents inhibit neovascularization to many extents, but out of them predominantly inhibition of angiogenic activity is shared by endostatin which is now in clinical trial phase II. It inhibits almost all angiogenic factors and it is possible because they share interrelated pathogenesis towards imbalanced angiogenesis. Endostatin is a physiological signal molecule produced by the proteolytic cleavage of collagen XVIII. It has also a broad research profile in the field of medical research and further investigation can show promising therapeutic effects for benefit of mankind.
Collapse
Affiliation(s)
- Tuhin Mukherjee
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
137
|
Ma Y, Dong S, Li X, Kim BYS, Yang Z, Jiang W. Extracellular Vesicles: An Emerging Nanoplatform for Cancer Therapy. Front Oncol 2021; 10:606906. [PMID: 33628730 PMCID: PMC7897670 DOI: 10.3389/fonc.2020.606906] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane particles that represent an endogenous mechanism for cell-to-cell communication. Since discovering that EVs have multiple advantages over currently available delivery platforms, such as their ability to overcome natural barriers, intrinsic cell targeting properties, and circulation stability, the potential use of EVs as therapeutic nanoplatforms for cancer studies has attracted considerable interest. To fully elucidate EVs' therapeutic function for treating cancer, all current knowledge about cellular uptake and trafficking of EVs will be initially reviewed. In order to further improve EVs as anticancer therapeutics, engineering strategies for cancer therapy have been widely explored in the last decade, along with other cancer therapies. However, therapeutic applications of EVs as drug delivery systems have been limited because of immunological concerns, lack of methods to scale EV production, and efficient drug loading. We will review and discuss recent progress and remaining challenges in developing EVs as a delivery nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Shiyan Dong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xuefeng Li
- Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Wen Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
138
|
Skin Immunomodulation during Regeneration: Emerging New Targets. J Pers Med 2021; 11:jpm11020085. [PMID: 33573342 PMCID: PMC7911085 DOI: 10.3390/jpm11020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
Adipose-Derived Stem Cells (ADSC) are present within the hypodermis and are also expected to play a pivotal role in wound healing, immunomodulation, and rejuvenation activities. They orchestrate, through their exosome, the mechanisms associated to cell differentiation, proliferation, and cell migration by upregulating genes implicated in different functions including skin barrier, immunomodulation, cell proliferation, and epidermal regeneration. ADSCs directly interact with their microenvironment and specifically the immune cells, including macrophages and T and B cells, resulting in differential inflammatory and anti-inflammatory mechanisms impacting, in return, ADSCs microenvironment and thus skin function. These useful features of ADSCs are involved in tissue repair, where the required cell proliferation, angiogenesis, and anti-inflammatory responses should occur rapidly in damaged sites. Different pathways involved have been reported such as Growth Differentiation Factor-11 (GDF11), Tumor Growth Factor (TGF)-β, Metalloproteinase (MMP), microRNA, and inflammatory cytokines that might serve as specific biomarkers of their immunomodulating capacity. In this review, we try to highlight ADSCs’ network and explore the potential indicators of their immunomodulatory effect in skin regeneration and aging. Assessment of these biomarkers might be useful and should be considered when designing new clinical therapies using ADSCs or their specific exosomes focusing on their immunomodulation activity.
Collapse
|
139
|
Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials 2021; 269:120645. [PMID: 33453633 DOI: 10.1016/j.biomaterials.2020.120645] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
In cancer, angiogenesis is a critical phenomenon of nascent blood vessel development to facilitate the oxygen and nutrient supply prerequisite for tumor progression. Therefore, targeting tumors at the angiogenesis step may be significant to prevent their advanced progression and metastasis. Although angiogenesis inhibitors can limit the further growth of tumors, complete eradication of tumors may not be possible by monotherapy alone. Therefore, a therapeutic regimen targeting both tumor growth and its vasculature is essential. Because reactive oxygen species (ROS) are fundamental to both angiogenesis and tumor growth, the use of antioxidants may be an effective dual approach to inhibit tumors. We previously confirmed that our original antioxidant nitroxide radical-containing nanoparticles (RNPs) such as pH-sensitive RNPN, and pH-insensitive RNPO, effectively attenuates the tumorigenic and metastasis potentials of triple-negative breast cancer. In this study, we further investigated the efficacy of RNPs to limit the tumor progression by inhibiting the ROS-regulated cancer angiogenesis in a triple-negative breast cancer model. Here, we confirmed that RNPs significantly inhibited in vitro angiogenesis, attributed to the downregulation of the ROS-regulated angiogenesis inducer, vascular endothelial growth factor (VEGF) in the breast cancer cell line (MDA-MB231) and human umbilical vein endothelial cells (HUVEC), which was consistent with decreased cellular ROS. TEMPOL, a low-molecular-weight (LMW) control antioxidant, exhibited anti-angiogenic effects accompanied by cytotoxicity to the endothelial cells. In an in vivo xenograft model for breast cancer, RNPs exerted significant anti-tumor effect due to the decreased expression of tumor VEGF, which prevented accumulation of the endothelial cells. It should be noted that such efficacy of RNPs was obtained with negligible off-target effects. On the other hand, TEMPOL, because of its size, exerted anti-angiogenesis effect accompanied with injuries to the kidneys, which corroborated with previous reports. Our findings imply that RNPs are more potential antioxidants than their LMW counterparts, such as TEMPOL, for the management of breast cancers.
Collapse
|
140
|
Silva H, Francisco R, Saraiva A, Francisco S, Carrascosa C, Raposo A. The Cardiovascular Therapeutic Potential of Propolis-A Comprehensive Review. BIOLOGY 2021; 10:biology10010027. [PMID: 33406745 PMCID: PMC7823408 DOI: 10.3390/biology10010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Simple Summary Propolis, also described as bee glue, is a natural component made up of a resinous mixture of honeybee compounds from multiple botanical sources. The literature has demonstrated a variety of medicinal properties attributed to propolis due to its chemical complexity. However, the positive effects of propolis on cardiovascular health have gained little coverage. Therefore, we aimed to provide an accurate and up-to-date review of the main cardiovascular health benefits of propolis. In particular, we intend to establish the key varieties of propolis and pharmacological compounds with the therapeutic effects that are most encouraging, as well as the physiological processes by which those advantages are accomplished. The Brazilian green and red varieties reveal the greatest number of beneficial activities among the varieties of propolis studied. While much of the cardiovascular beneficial effects appear to derive from the cumulative actions of several compounds working via multiple signaling mechanisms, some individual compounds that may enhance the existing therapeutic arsenal have also shown significant results. It is also worth exploring the prospect of using propolis as food supplements. Abstract Owing to its chemical richness, propolis has a myriad of therapeutic properties. To the authors’ knowledge, this is the first comprehensive review paper on propolis to focus exclusively on its major effects for cardiovascular health. The propolis compound varieties with the most promising therapeutic benefits and their respective physiological mechanisms will be discussed. Propolis displays an anti-atherosclerotic activity, attained through modulation of the plasma lipid profile and through stabilization of the fatty plaque by inhibiting macrophage apoptosis, vascular smooth muscle proliferation and metalloproteinase activity. The antihypertensive effects of propolis probably arise through the combination of several mechanisms, including the suppression of catecholamine synthesis, stimulation of endothelium-dependent vasorelaxation and vascular anti-inflammatory activity. The anti-hemostatic activity of propolis is attributed to the inhibition of platelet plug formation and antifibrinolytic activity. By inhibiting the secretion of proangiogenic factors, propolis suppresses endothelial cell migration and tubulogenesis, exerting antiangiogenic activity. The antioxidant and anti-inflammatory activities are responsible for protection against vascular endothelial and cardiomyocyte dysfunction, mostly by the prevention of oxidative stress. Among the reviewed propolis varieties, the Brazilian green and red varieties show the largest number of beneficial activities. Further research, especially preclinical, should be conducted to assess the cardiovascular benefits of the given varieties with different compositions.
Collapse
Affiliation(s)
- Henrique Silva
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Correspondence: (H.S.); (A.R.)
| | - Rafaela Francisco
- Pharmacological Sciences Department, Faculty of Pharmacy, Universidade de Lisboa, Av Prof Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Simone Francisco
- Faculty of Medicine, Nutrition Lab—Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
- Correspondence: (H.S.); (A.R.)
| |
Collapse
|
141
|
Extracellular Vesicles Regulate Cancer Metastasis. Subcell Biochem 2021; 97:275-296. [PMID: 33779921 DOI: 10.1007/978-3-030-67171-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metastatic cancer is a complex disease associated with poor prognosis and accounts for the majority of cancer related deaths. To date, many of the molecular mechanisms driving metastatic disease remain elusive and require further investigation for the development of effective treatment strategies. Recent studies have shown that extracellular vesicles (EVs) can be exploited by tumors to assist in cancer cell growth, proliferation, migration, invasion and metastasis. Cancer cells have proven efficient in educating fibroblasts, within their microenvironment, to secrete EVs as communicative vessels for mediating phenotypic changes in recipient cells. Using this vesicular delivery system, cancer cells can establish a new metastatic niche within distant sites, away from the primary tumor, thus favoring cancer progression. These findings demonstrate the availability of a new route for therapeutic intervention in the inhibition of cancer dissemination. Although, several approaches to target cancer cell secretion of EVs are detailed in the literature, there is still no defined way to currently apply them in clinical settings. Hence, further studies are required to unravel the molecular mechanisms of metastasis - governed by the establishment and release of cancer associated EVs.
Collapse
|
142
|
Masgutov R, Zeinalova A, Bogov A, Masgutova G, Salafutdinov I, Garanina E, Syromiatnikova V, Idrisova K, Mullakhmetova A, Andreeva D, Mukhametova L, Kadyrov A, Pankov I, Rizvanov A. Angiogenesis and nerve regeneration induced by local administration of plasmid pBud-coVEGF165-coFGF2 into the intact rat sciatic nerve. Neural Regen Res 2021; 16:1882-1889. [PMID: 33510097 PMCID: PMC8328758 DOI: 10.4103/1673-5374.306090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) are well-known growth factors involved in the regeneration of various tissues and organs, including peripheral nerve system. In the present study, we elucidated the local and systemic effects of plasmid construct рBud-coVEGF165-coFGF2 injected into the epineurium of intact rat sciatic nerve. Results of histological examination of sciatic nerve and multiplex immunoassays of serum showed the absence of immunogenicity and biosafety of plasmid рBud-coVEGF165-coFGF2. Moreover, local administration of plasmid DNA construct resulted in significantly decreased levels of pro-inflammatory cytokines in the peripheral blood, including tumor necrosis factor α (TNFα) and interleukin-12, and significantly increased levels of cytokines and chemokines including Regulated upon Activation, Normal T Cell Expressed and Presumably Secrete (RANTES), epidermal growth factor, interleukin-2, and monocyte chemoattractant protein 1. These changes in the peripheral blood on day 7 after injection of plasmid construct рBud-coVEGF165-coFGF2 show that the plasmid construct has systemic effects and may modulate immune response. At the same time, reverse transcription-polymerase chain reaction revealed transient expression of coFGF2, coVEGF165, ratFGF2 and ratVEGFA with direct transport of transcripts from distal part to proximal part of the sciatic nerve. Immunohistochemical staining revealed prolonged presence of VEGFA in sciatic nerve till 14 days post-injection. These findings suggest that local administration of plasmid construct рBud-coVEGF165-coFGF2 at a concentration of 30 ng/µL results in the formation of pro-angiogenic stimuli and, and the plasmid construct, used as a drug for gene therapy, might potentially facilitate regeneration of the sciatic nerve. The study was approved by the Animal Ethics Committee of Kazan Federal University, procedures were approved by the Local Ethics Committee (approval No. 5) on May 27, 2014.
Collapse
Affiliation(s)
- Ruslan Masgutov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University; Republican Clinical Hospital, Kazan, Russia
| | - Alina Zeinalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Galina Masgutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ilnur Salafutdinov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Garanina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriia Syromiatnikova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kamilla Idrisova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya Mullakhmetova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dina Andreeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Liliya Mukhametova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adilet Kadyrov
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | - Igor Pankov
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | - Albert Rizvanov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
143
|
El-Fiqi A, Mandakhbayar N, Jo SB, Knowles JC, Lee JH, Kim HW. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioact Mater 2021; 6:123-136. [PMID: 32817919 PMCID: PMC7426491 DOI: 10.1016/j.bioactmat.2020.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Therapeutic options are quite limited in clinics for the successful repair of infected/degenerated tissues. Although the prevalent treatment is the complete removal of the whole infected tissue, this leads to a loss of tissue function and serious complications. Herein the dental pulp infection, as one of the most common dental problems, was selected as a clinically relevant case to regenerate using a multifunctional nanotherapeutic approach. For this, a mesoporous bioactive glass nano-delivery system incorporating silicate, calcium, and copper as well as loading epidermal growth factor (EGF) was designed to provide antibacterial/pro-angiogenic and osteo/odontogenic multiple therapeutic effects. Amine-functionalized Cu-doped bioactive glass nanospheres (Cu-BGn) were prepared to be 50-60 nm in size, mesoporous, positive-charged and bone-bioactive. The Cu-BGn could release bioactive ions (copper, calcium and silicate ions) with therapeutically-effective doses. The Cu-BGn treatment to human umbilical vein endothelial cells (HUVEC) led to significant enhancement of the migration, tubule formation and expression of angiogenic gene (e.g. vascular endothelial growth factor, VEGF). Furthermore, the EGF-loaded Cu-BGn (EGF@Cu-BGn) showed pro-angiogenic effects with antibacterial activity against E. faecalis, a pathogen commonly involved in the pulp infection. Of note, under the co-culture condition of HUVEC with E. faecalis, the secretion of VEGF was up-regulated. In addition, the osteo/odontogenic stimulation of the EGF@Cu-BGn was evidenced with human dental pulp stem cells. The local administration of the EGF@Cu-BGn in a rat molar tooth defect infected with E. faecalis revealed significant in vivo regenerative capacity, highlighting the nanotherapeutic uses of the multifunctional nanoparticles for regenerating infected/damaged hard tissues.
Collapse
Affiliation(s)
- Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Glass Research Department, National Research Centre, Cairo, 12622, Egypt
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Jonathan C. Knowles
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Road, London, WC1X 8LD, UK
- The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
144
|
Abstract
Advanced metastatic melanoma, one of the most aggressive skin malignancies, is currently without reliable therapy. The process of angiogenesis is crucial for progression and metastasis of the majority of solid tumors including melanomas. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone which exerts many pharmacological activities against cancer-inflammation. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we demonstrate that mangiferin interferes with inflammation, lipid and calcium signaling which selectively inhibits multiple NFkB target genes including interleukin-6, tumor necrosis factor, interferon gamma, vascular endothelial growth factor receptor 2, plasminogen activator urokinase, matrix metalloprotease 19, C-C Motif Chemokine Ligand 2 and placental growth factor. This abrogates angiogenic and invasive processes and capillary tube formation of metastatic melanoma cells as well as human placental blood vessel explants in-vitro and blocks angiogenesis characteristic of the chicken egg chorioallantoic membrane assay and in melanoma syngeneic studies in vivo. The results obtained in this research illustrate promising anti-angiogenic effects of the natural glucosylxanthone mangiferin for further (pre)clinical studies in melanoma cancer patients.
Collapse
|
145
|
Rother S, Ruiz-Gómez G, Balamurugan K, Koehler L, Fiebig KM, Galiazzo VD, Hempel U, Moeller S, Schnabelrauch M, Waltenberger J, Pisabarro MT, Scharnweber D, Hintze V. Hyaluronan/Collagen Hydrogels with Sulfated Glycosaminoglycans Maintain VEGF165 Activity and Fine-Tune Endothelial Cell Response. ACS APPLIED BIO MATERIALS 2020; 4:494-506. [DOI: 10.1021/acsabm.0c01001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | | | - Linda Koehler
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Karen M. Fiebig
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Vanessa D. Galiazzo
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Fiedlerstraße 42, 01307 Dresden, Germany
| | - Stephanie Moeller
- Biomaterials Department, INNOVENT e.V., Prüssingstr. 27B, 07745 Jena, Germany
| | | | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg 47-51, Dresden 01307, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, Budapester Str. 27, 01069 Dresden, Germany
| |
Collapse
|
146
|
Capillary Rarefaction in Obesity and Metabolic Diseases-Organ-Specificity and Possible Mechanisms. Cells 2020; 9:cells9122683. [PMID: 33327460 PMCID: PMC7764934 DOI: 10.3390/cells9122683] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its comorbidities like diabetes, hypertension and other cardiovascular disorders are the leading causes of death and disability worldwide. Metabolic diseases cause vascular dysfunction and loss of capillaries termed capillary rarefaction. Interestingly, obesity seems to affect capillary beds in an organ-specific manner, causing morphological and functional changes in some tissues but not in others. Accordingly, treatment strategies targeting capillary rarefaction result in distinct outcomes depending on the organ. In recent years, organ-specific vasculature and endothelial heterogeneity have been in the spotlight in the field of vascular biology since specialized vascular systems have been shown to contribute to organ function by secreting varying autocrine and paracrine factors and by providing niches for stem cells. This review summarizes the recent literature covering studies on organ-specific capillary rarefaction observed in obesity and metabolic diseases and explores the underlying mechanisms, with multiple modes of action proposed. It also provides a glimpse of the reported therapeutic perspectives targeting capillary rarefaction. Further studies should address the reasons for such organ-specificity of capillary rarefaction, investigate strategies for its prevention and reversibility and examine potential signaling pathways that can be exploited to target it.
Collapse
|
147
|
Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Sci Rep 2020; 10:20945. [PMID: 33262368 PMCID: PMC7708627 DOI: 10.1038/s41598-020-77991-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
Orthosiphon aristatus (Blume) Miq. of the Lamiaceae family, called as kumis kucing in Indonesia, is a valuable medicinal plant for their pharmacological properties. The present study comprised of fifteen genotypes of O. aristatus was undertaken to evaluate the genotypes based on phytochemical content and pharmacological activities of leaves ethanol extract. Chemometric analysis (correlation and principal component analysis) was also used to investigate the genetic variability based on phytochemical content and pharmacological activities of O. aristatus genotypes. Results of phytochemical characterization showed that total phenolic ranged from 1.48 to 36.08 (maximum in A15) mg GAE/g DW, total flavonoid ranged from 0.10 to 3.07 (maximum in A15) mg QE/g DW, sinensetin ranged from 0.36 to 4.02 (maximum in A11) mg/g DW, and rosmarinic acid ranged 0.06 to 7.25 (maximum in A7) mg/g DW. Antioxidant activity was tested using DPPH and FRAP assay. Antioxidant results showed that DPPH ranged from 1.68 to 15.55 (maximum in A15) μmol TE/g DW and FRAP ranged from 0.07 to 1.60 (maximum in A1 and A7) μmol TE/g DW. The genotype A8 showed the highest cytotoxic activities against HeLa (66.25%) and MCF-7 (61.79%) cell lines. Maximum α-glucosidase inhibitory activity was recorded in genotype A2 with the value of 62.84%. The genotypes A1, A2, A7, A11, and A15 were identified as superior based on their phytochemicals content and pharmacological activities coupled with chemometric analysis. This finding is important for breeding studies and also the pharmaceutical perspective of O. aristatus.
Collapse
|
148
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
149
|
Aventurado CA, Billones JB, Vasquez RD, Castillo AL. In Ovo and In Silico Evaluation of the Anti-Angiogenic Potential of Syringin. Drug Des Devel Ther 2020; 14:5189-5204. [PMID: 33268982 PMCID: PMC7701684 DOI: 10.2147/dddt.s271952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Cancer is considered as one of the deadliest human diseases today. Angiogenesis, the propagation of new blood vessels from pre-existing vasculature, is a critical step in the progression of cancer as it is essential in the growth and metastasis of tumors. Hence, suppression of angiogenesis is a promising approach in cancer therapy. Syringin, a phenylpropanoid glycoside with a molecular formula of C17H24O9, has been found to exhibit chemopreventive effects. However, its anti-angiogenic activity and the underlying mechanism of action are still unknown. METHODS In this work, in ovo chorioallantoic membrane (CAM) assay has been conducted to evaluate the effect of syringin on neovascularization. Additionally, reverse molecular docking studies have been performed in order to identify the probable enzyme targets in the angiogenesis pathway. RESULTS Treatment with syringin showed significant dose-dependent inhibition of blood vessel length and junctions in the CAM of duck eggs; the anti-angiogenic activity of syringin at 100 µM and 200 µM is comparable with 200 µM of the positive control celecoxib. The results of reverse docking studies indicate that syringin binds the strongest to dihydrofolate reductase (DHFR) and, to some extent, with transforming growth factor-beta receptor type 1 (TGF-βR1), vascular endothelial growth factor receptor 2 (VEGFR2), and matrix metalloproteinase-2 (MMP-2). Furthermore, ADMET models revealed that syringin potentially possesses excellent pharmacokinetic and toxicity profiles. CONCLUSION This study demonstrates the potential of syringin as an anti-angiogenic agent and elicits further investigations to establish its application in cancer suppression.
Collapse
Affiliation(s)
| | - Junie B Billones
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Ross D Vasquez
- The Graduate School, University of Santo Tomas, Manila1015, Philippines
- Faculty of Pharmacy, University of Santo Tomas, Manila1015, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila1015, Philippines
| | - Agnes L Castillo
- The Graduate School, University of Santo Tomas, Manila1015, Philippines
- Faculty of Pharmacy, University of Santo Tomas, Manila1015, Philippines
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila1015, Philippines
| |
Collapse
|
150
|
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther 2020; 11:489. [PMID: 33208173 PMCID: PMC7672862 DOI: 10.1186/s13287-020-02018-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hunter Noren
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Richard Jove
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Karl-Henrik Grinnemo
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Akademiska sjukhuset, ingång 50, 4 tr, 751 85, Uppsala, Sweden.
| |
Collapse
|