101
|
Carboxylated Graphene Oxide as a Nanocarrier for Drug Delivery of Quercetin as an Effective Anticancer Agent. IRANIAN BIOMEDICAL JOURNAL 2022; 26:324-9. [PMID: 36000200 PMCID: PMC9432468 DOI: 10.52547/ibj.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Enhancing the therapeutic profile of hydrophobic drugs using the development of biocompatible drug delivery systems is an urgent need. Many types of research have been conducted on graphene derivatives owing to their unique characteristics. Methods: In this survey, QUER, a natural medicine, was loaded on carboxylated GO, and cytotoxicity assay and the uptake of QUER into prostate cancer cells (PC3) were evaluated. Results: The release behavior of QUER was temperature- and pH-sensitive. Although QUER was loaded with high efficiency, the released rate was low (23.25% at pH 5.5 and 42 °C). The toxicity and intensity of fluorescence in the FREE QUER were higher than the loaded form. Conclusion: High-capacity loading and controlled release of GO QUER can be recognized as a proper candidate in treating cancer.
Collapse
|
102
|
Yokomizo S, Henary M, Buabeng ER, Fukuda T, Monaco H, Baek Y, Manganiello S, Wang H, Kubota J, Ulumben AD, Lv X, Wang C, Inoue K, Fukushi M, Kang H, Bao K, Kashiwagi S, Choi HS. Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201416. [PMID: 35567348 PMCID: PMC9286000 DOI: 10.1002/advs.202201416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 05/05/2023]
Abstract
Fluorescence-guided surgery (FGS) aids surgeons with real-time visualization of small cancer foci and borders, which improves surgical and prognostic efficacy of cancer. Despite the steady advances in imaging devices, there is a scarcity of fluorophores available to achieve optimal FGS. Here, 1) a pH-sensitive near-infrared fluorophore that exhibits rapid signal changes in acidic tumor microenvironments (TME) caused by the attenuation of intramolecular quenching, 2) the inherent targeting for cancer based on chemical structure (structure inherent targeting, SIT), and 3) mitochondrial and lysosomal retention are reported. After topical application of PH08 on peritoneal tumor regions in ovarian cancer-bearing mice, a rapid fluorescence increase (< 10 min), and extended preservation of signals (> 4 h post-topical application) are observed, which together allow for the visualization of submillimeter tumors with a high tumor-to-background ratio (TBR > 5.0). In addition, PH08 is preferentially transported to cancer cells via organic anion transporter peptides (OATPs) and colocalizes in the mitochondria and lysosomes due to the positive charges, enabling a long retention time during FGS. PH08 not only has a significant impact on surgical and diagnostic applications but also provides an effective and scalable strategy to design therapeutic agents for a wide array of cancers.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Maged Henary
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Emmanuel R. Buabeng
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Takeshi Fukuda
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Obstetrics and GynecologyOsaka City University Graduate School of Medicine1‐4‐3, AsahimachiAbeno‐kuOsaka545–8585Japan
| | - Hailey Monaco
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Yoonji Baek
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sophia Manganiello
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haoran Wang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jo Kubota
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Amy Daniel Ulumben
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Xiangmin Lv
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Cheng Wang
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Kazumasa Inoue
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Masahiro Fukushi
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Homan Kang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Kai Bao
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hak Soo Choi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
103
|
Rainu S, Parameswaran S, Krishnakumar S, Singh N. Dual-sensitive fluorescent nanoprobes for detection of matrix metalloproteinases and low pH in a 3D tumor microenvironment. J Mater Chem B 2022; 10:5388-5401. [PMID: 35770560 DOI: 10.1039/d2tb00519k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overexpression of matrix metalloproteinases and low extracellular pH are two key physiological parameters involved in cancer initiation, progression, and metastasis. These have been the targets for several cancer detection and imaging modalities. Here, dual-sensitive nanoprobes have been fabricated from carbon nanoparticles decorated with a MMP-9 sensitive peptide sequence. Carbon nanoparticles are known for their intrinsic fluorescence properties and hence used as a pH-sensing moiety in the nanoprobes. In addition to this, selective-cleavage of the peptide sequence by MMP-9 results in the generation of a fluorescence signal due to separation of the quencher molecule from the fluorophore attached onto the MMP-9 sensitive peptide sequence, resulting in its detection. This protease-specific activation of the nanoprobes helps in precise tumor environment detection and imaging. The nanoprobes were thoroughly characterized for their chemical, physical and biological activities. The potential of these dual-sensitive nanoprobes to distinguish tumor-like microenvironments (low pH and elevated MMP-9 levels) from non-cancerous ones was evaluated in vitro in 2D cell culture as well as in 3D microscaffolds. The fluorescence microscopy images obtained in both in vitro systems revealed that low pH and high MMP-9 levels could be successfully visualised using these dual-sensitive nanoprobes. Therefore, these nanoprobes would find potential applications as a non-invasive imaging tool for visualising tumor margins in real-time.
Collapse
Affiliation(s)
- Simran Rainu
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sowmya Parameswaran
- Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, Tamil Nadu, India
| | - Subramanian Krishnakumar
- Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, Tamil Nadu, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. .,Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
104
|
Swanson WB, Durdan M, Eberle M, Woodbury S, Mauser A, Gregory J, Zhang B, Niemann D, Herremans J, Ma PX, Lahann J, Weivoda M, Mishina Y, Greineder CF. A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile in vivo and in vitro applications. RSC Chem Biol 2022; 3:748-764. [PMID: 35755193 PMCID: PMC9175114 DOI: 10.1039/d2cb00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
Acidic pH is critical to the function of the gastrointestinal system, bone-resorbing osteoclasts, and the endolysosomal compartment of nearly every cell in the body. Non-invasive, real-time fluorescence imaging of acidic microenvironments represents a powerful tool for understanding normal cellular biology, defining mechanisms of disease, and monitoring for therapeutic response. While commercially available pH-sensitive fluorescent probes exist, several limitations hinder their widespread use and potential for biologic application. To address this need, we developed a novel library of pH-sensitive probes based on the highly photostable and water-soluble fluorescent molecule, Rhodamine 6G. We demonstrate versatility in terms of both pH sensitivity (i.e., pK a) and chemical functionality, allowing conjugation to small molecules, proteins, nanoparticles, and regenerative biomaterial scaffold matrices. Furthermore, we show preserved pH-sensitive fluorescence following a variety of forms of covalent functionalization and demonstrate three potential applications, both in vitro and in vivo, for intracellular and extracellular pH sensing. Finally, we develop a computation approach for predicting the pH sensitivity of R6G derivatives, which could be used to expand our library and generate probes with novel properties.
Collapse
Affiliation(s)
- W Benton Swanson
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
| | - Margaret Durdan
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Cell and Molecular Biology Program, Medical School, University of Michigan Ann Arbor MI USA
| | - Miranda Eberle
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Seth Woodbury
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Ava Mauser
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
| | - Jason Gregory
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Boya Zhang
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
| | - David Niemann
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Jacob Herremans
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan Ann Arbor MI USA
| | - Peter X Ma
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Materials Science and Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Joerg Lahann
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Chemical Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Department of Materials Science and Engineering, College of Engineering, University of Michigan Ann Arbor MI USA
- Macromolecular Science and Engineering Center, College of Engineering, University of Michigan Ann Arbor MI USA
| | - Megan Weivoda
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan Ann Arbor MI USA
| | - Yuji Mishina
- Department of Biologic and Materials Science, School of Dentistry, University of Michigan 1011 North University Avenue Ann Arbor MI 48109 USA
| | - Colin F Greineder
- Biointerfaces Institute, College of Engineering and Medical School, University of Michigan Ann Arbor MI USA
- Department of Pharmacology, Medical School, University of Michigan Ann Arbor MI USA
- Department of Emergency Medicine, Medical School, University of Michigan NCRC 2800 Plymouth Road, Bldg #26 Ann Arbor MI 48109 USA
| |
Collapse
|
105
|
ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, Balakrishnan D, Show PL. Advances in delivery methods of Arthrospira platensis (spirulina) for enhanced therapeutic outcomes. Bioengineered 2022; 13:14681-14718. [PMID: 35946342 PMCID: PMC9373759 DOI: 10.1080/21655979.2022.2100863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
Collapse
Affiliation(s)
- Omar Ashraf ElFar
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities,Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | | | | | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Malaysia
| |
Collapse
|
106
|
Zhang S, Li W, Chen X, Ren M, Zhang H, Xing D, Qin H. Manganous-manganic oxide nanoparticle as an activatable microwave-induced thermoacoustic probe for deep-located tumor specific imaging in vivo. PHOTOACOUSTICS 2022; 26:100347. [PMID: 35345808 PMCID: PMC8956819 DOI: 10.1016/j.pacs.2022.100347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 05/03/2023]
Abstract
Deep-located tumor specific imaging has broad clinical applications in improving the accuracy of tumor diagnosis. Microwave-induced thermoacoustic imaging (MTAI), combining the high-contrast of microwave imaging with the high-resolution of ultrasound imaging, is a potential candidate for noninvasive tumor detection. Herein, a deep-located tumor specific MTAI method by tumor microenvironment (TME) activated nanoprobe is reported. In principle, manganous-manganic oxide-based nanoprobe can be triggered by TME with overexpressed glutathione and weak acidity, causing to release manganese ions and increase conductivity. With pulsed microwaves, manganese ions move repeatedly in gigahertz alternating electric field, resulting in a transient heating and thermoelastic expansion through the Joule effect, which yields a strong thermoacoustic (TA) wave in tumor site. In vitro and in vivo experiments demonstrate that manganous-manganic oxide-based nanoprobe could high-selectively amplify the TA signal in deep-located tumor. Our proposed tumor-specific MTAI method based on TME activation provides a potential approach for deep-located tumor detection.
Collapse
Key Words
- ATP, Adenosine triphosphate
- CCK-8, Cell counting kit-8
- CLSM, Confocal laser scanning microscopy
- CYS, Cysteine
- DMEM, Dulbecco’s modified Eagle’s medium
- Deep-located tumor specific imaging
- FBS, Fetal bovine serum
- FTIR, Fourier transform infrared spectroscopy
- GSH, Glutathione
- Glutathione
- HEK, Human emborynic kidney
- Hcy, Homocysteine
- MNPs, Mn3O4-PEG-RGD nanoparticles
- MTAI, Microwave-induced thermoacoustic imaging
- Manganous-manganic oxide
- Microwave-induced thermoacoustic imaging
- NMR, Nuclear magnetic resonance
- TA, Thermoacoustic
- TEM, Transmission electron microscope
- TME, Tumor microenvironment
- Tumor microenvironment
Collapse
Affiliation(s)
- Shanxiang Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Mingyang Ren
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huimin Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Corresponding authors at: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Guangzhou Key Lab of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Corresponding authors at: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
107
|
Dubini RA, Korytiaková E, Schinkel T, Heinrichs P, Carell T, Rovó P. 1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives. ACS PHYSICAL CHEMISTRY AU 2022; 2:237-246. [PMID: 35637781 PMCID: PMC9137243 DOI: 10.1021/acsphyschemau.1c00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10-20 kJ mol-1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC's subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.
Collapse
Affiliation(s)
- Romeo
C. A. Dubini
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
| | - Eva Korytiaková
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thea Schinkel
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Pia Heinrichs
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
108
|
Rizzo R, Onesto V, Forciniti S, Chandra A, Prasad S, Iuele H, Colella F, Gigli G, Del Mercato LL. A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. Biosens Bioelectron 2022; 212:114401. [PMID: 35617754 DOI: 10.1016/j.bios.2022.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
The detection of extracellular pH at single cell resolution is challenging and requires advanced sensibility. Sensing pH at high spatial and temporal resolution might provide crucial information in understanding the role of pH and its fluctuations in a wide range of physio-pathological cellular processes, including cancer. Here, a method to embed silica-based fluorescent pH sensors into alginate-based three-dimensional (3D) microgels tumour models, coupled with a computational method for fine data analysis, is presented. By means of confocal laser scanning microscopy, live-cell time-lapse imaging of 3D alginate microgels was performed and the extracellular pH metabolic variations were monitored in both in vitro 3D mono- and 3D co-cultures of tumour and stromal pancreatic cells. The results show that the extracellular pH is cell line-specific and time-dependent. Moreover, differences in pH were also detected between 3D monocultures versus 3D co-cultures, thus suggesting the existence of a metabolic crosstalk between tumour and stromal cells. In conclusion, the system has the potential to image multiple live cell types in a 3D environment and to decipher in real-time their pH metabolic interplay under controlled experimental conditions, thus being also a suitable platform for drug screening and personalized medicine.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Francesco Colella
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
109
|
Yuan Z, Wang B, Teng Y, Ho W, Hu B, Boakye-Yiadom KO, Xu X, Zhang XQ. Rational design of engineered H-ferritin nanoparticles with improved siRNA delivery efficacy across an in vitro model of the mouse BBB. NANOSCALE 2022; 14:6449-6464. [PMID: 35416195 DOI: 10.1039/d1nr07880a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gene therapy holds tremendous potential for the treatment of incurable brain diseases including Alzheimer's disease (AD), stroke, glioma, and Parkinson's disease. The main challenge is the lack of effective gene delivery systems traversing the blood-brain barrier (BBB), due to the complex microvessels present in the brain which restrict substances from the circulating blood passing through. Recently, increasing efforts have been made to develop promising gene carriers for brain-related disease therapies. One such development is the self-assembled heavy chain ferritin (HFn) nanoparticles (NPs). HFn NPs have a unique hollow spherical structure that can encapsulate nucleic acid drugs (NADs) and specifically bind to cancer cells and BBB endothelial cells (BBB ECs) via interactions with the transferrin receptor 1 (TfR1) overexpressed on their surfaces, which increases uptake through the BBB. However, the gene-loading capacity of HFn is restricted by its limited interior volume and negatively charged inner surface; therefore, these drawbacks have prompted the demand for strategies to remould the structure of HFn. In this work, we analyzed the three-dimensional (3D) structure of HFn using Chimera software (v 1.14) and developed a class of internally cationic HFn variants (HFn+ NPs) through arginine mutation on the lumenal surface of HFn. These HFn+ NPs presented powerful electrostatic forces in their cavities, and exhibited higher gene encapsulation efficacy than naive HFn. The top-performing candidate, HFn2, effectively delivered siRNA to glioma cells after traversing the BBB and achieved the highest silencing efficacy among HFn+ NPs. Overall, our findings demonstrate that HFn+ NPs obtained by this genetic engineering method provide critical insights into the future development of nucleic acid delivery carriers with BBB-crossing ability.
Collapse
Affiliation(s)
- Ziwei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Bin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Yilong Teng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - William Ho
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Kofi Oti Boakye-Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
110
|
Sun Y, Gong L, Yin Y, Zhang L, Sun Q, Feng K, Cui Y, Zhang Q, Zhang X, Deng X, You F, Lu D, Lin Z. A Gradient pH-Sensitive Polymer-Based Antiviral Strategy via Viroporin-Induced Membrane Acidification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109580. [PMID: 35229371 DOI: 10.1002/adma.202109580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Lipid-membrane-targeting strategies hold great promise to develop broad-spectrum antivirals. However, it remains a big challenge to identify novel membrane-based targets of viruses and virus-infected cells for development of precision targeted approaches. Here, it is discovered that viroporins, viral-encoded ion channels, which have been reported to mediate release of hydrogen ions, trigger membrane acidification of virus-infected cells. Through development of a fine-scale library of gradient pH-sensitive (GPS) polymeric nanoprobes, the cellular membrane pH transitions are measured from pH 6.8-7.1 (uninfection) to pH 6.5-6.8 (virus-infection). In response to the subtle pH alterations, the GPS polymer with sharp response at pH 6.8 (GPS6.8 ) selectively binds to virus-infected cell membranes or the viral envelope, and even completely disrupts the viral envelope. Accordingly, GPS6.8 treatment exerts suppressive effects on a wide variety of viruses including SARS-CoV-2 through triggering viral-envelope lysis rather than affecting immune pathway or viability of host cells. Murine viral-infection models exhibit that supplementation of GPS6.8 decreases viral titers and ameliorates inflammatory damage. Thus, the gradient pH-sensitive nanotechnology offers a promising strategy for accurate detection of biological pH environments and robust interference with viruses.
Collapse
Affiliation(s)
- Yizhe Sun
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Lidong Gong
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Yin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Lei Zhang
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 65018, P. R. China
| | - Kai Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 65018, P. R. China
| | - Yimin Cui
- Department of Pharmacy Administration and Clinical Pharmacy, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xuehui Zhang
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Dan Lu
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Department of Pathology, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|
111
|
Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer. J Lipid Res 2022; 63:100223. [PMID: 35537528 PMCID: PMC9184569 DOI: 10.1016/j.jlr.2022.100223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/18/2023] Open
Abstract
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.
Collapse
|
112
|
Abstract
OBJECTIVES The aims of the study are to evaluate the feasibility of using pH-sensitive magnetic resonance imaging, chemical exchange saturation transfer (CEST) in pancreatic imaging and to differentiate pancreatic ductal adenocarcinoma (PDAC) with the nontumor pancreas (upstream and downstream) and normal control pancreas. METHODS Sixteen CEST images with PDAC and 12 CEST images with normal volunteers were acquired and magnetization transfer ratio with asymmetric analysis were measured in areas of PDAC, upstream, downstream, and normal control pancreas. One-way analysis of variance and receiver operating characteristic curve were used to differentiate tumor from nontumor pancreas. RESULTS Areas with PDAC showed higher signal intensity than upstream and downstream on CEST images. The mean (standard deviation) values of magnetization transfer ratio with asymmetric analysis were 0.015 (0.034), -0.044 (0.030), -0.019 (0.027), and -0.037 (0.031), respectively, in PDAC area, upstream, downstream, and nontumor area in patient group and -0.008 (0.024) in normal pancreas. Significant differences were found between PDAC and upstream ( P < 0.001), between upstream and normal pancreas ( P = 0.04). Area under curve is 0.857 in differentiating PDAC with nontumor pancreas. CONCLUSIONS pH-sensitive CEST MRI is feasible in pancreatic imaging and can be used to differentiate PDAC from nontumor pancreas. This provides a novel metabolic imaging method in PDAC.
Collapse
|
113
|
Petty HR. Enzyme Trafficking and Co-Clustering Precede and Accurately Predict Human Breast Cancer Recurrences: An Interdisciplinary Review. Am J Physiol Cell Physiol 2022; 322:C991-C1010. [PMID: 35385324 DOI: 10.1152/ajpcell.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although great effort has been expended to understand cancer's origins, less attention has been given to the primary cause of cancer deaths - cancer recurrences and their sequelae. This interdisciplinary review addresses mechanistic features of aggressive cancer by studying metabolic enzyme patterns within ductal carcinoma in situ (DCIS) of the breast lesions. DCIS lesions from patients who did or did not experience a breast cancer recurrence were compared. Several proteins, including phospho-Ser226-glucose transporter type 1, phosphofructokinase type L and phosphofructokinase/fructose 2,6-bisphosphatase type 4 are found in nucleoli of ductal epithelial cells in samples from patients who will not subsequently recur, but traffic to the cell periphery in samples from patients who will experience a cancer recurrence. Large co-clusters of enzymes near plasmalemmata will enhance product formation because enzyme concentrations in clusters are very high while solvent molecules and solutes diffuse through small channels. These structural changes will accelerate aerobic glycolysis. Agglomerations of pentose phosphate pathway and glutathione synthesis enzymes enhance GSH formation. As aggressive cancer lesions are incomplete at early stages, they may be unrecognizable. We have found that machine learning provides superior analyses of tissue images and may be used to identify biomarker patterns associated with recurrent and non-recurrent patients with high accuracy. This suggests a new prognostic test to predict DCIS patients who are likely to recur and those who are at low risk for recurrence. Mechanistic interpretations provide a deeper understanding of anti-cancer drug action and suggest that aggressive metastatic cancer cells are sensitive to reductive chemotherapy.
Collapse
Affiliation(s)
- Howard R Petty
- Dept. of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
114
|
Delahunty I, Li J, Jiang W, Lee C, Yang X, Kumar A, Liu Z, Zhang W, Xie J. 7-Dehydrocholesterol Encapsulated Polymeric Nanoparticles As a Radiation-Responsive Sensitizer for Enhancing Radiation Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200710. [PMID: 35304816 PMCID: PMC9068268 DOI: 10.1002/smll.202200710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Therapeutics that can be activated by radiation in situ to enhance the efficacy of radiotherapy are highly desirable. Herein, 7-Dehydrocholesterol (7-DHC), a biosynthetic precursor of cholesterol, as a radiosensitizer, exploiting its ability to propagate the free radical chain reaction is explored. The studies show that 7-DHC can react with radiation-induced reactive oxygen species and in turn promote lipid peroxidation, double-strand breaks, and mitochondrial damage in cancer cells. For efficient delivery, 7-DHC is encapsulated into poly(lactic-co-glycolic acid) nanoparticles, forming 7-DHC@PLGA NPs. When tested in CT26 tumor bearing mice, 7-DHC@PLGA NPs significantly enhanced the efficacy of radiotherapy, causing complete tumor eradication in 30% of the treated animals. After treatment, 7-DHC is converted to cholesterol, causing no detectable side effects or hypercalcemia. 7-DHC@PLGA NPs represent a radiation-responsive sensitizer with great potential in clinical translation.
Collapse
Affiliation(s)
- Ian Delahunty
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jianwen Li
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Wen Jiang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Anil Kumar
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zhi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
115
|
Smolobochkin AV, Gazizov AS, Yakhshilikova LJ, Bekrenev DD, Burilov AR, Pudovik MA, Lyubina AP, Amerhanova SK, Voloshina AD. Synthesis and Biological Evaluation of Taurine-Derived Diarylmethane and Dibenzoxanthene Derivatives as Possible Cytotoxic and Antimicrobial Agents. Chem Biodivers 2022; 19:e202100970. [PMID: 35262999 DOI: 10.1002/cbdv.202100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
The series of novel taurine-derived diarylmethanes and dibenzoxanthenes was synthesized starting from simple commercially available precursors via modular three-stage approach. All the newly synthesized compounds were screened for in vitro antibacterial and antifungal activity, as well as cytotoxicity towards normal and cancer cell lines. Some of the synthesized compounds exhibited 2-4-fold higher activity against S. aureus, E. faecalis and B. cereus compared with Chloramphenicol. In contrast to Chloramphenicol, the tested compounds also showed bactericidal, rather than bacteriostatic effect, which makes them promising candidates for further studies.
Collapse
Affiliation(s)
- Andrey V Smolobochkin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Almir S Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | | | - Dmitrii D Bekrenev
- Kazan National Research Technological University, Kazan, Russian Federation
| | - Alexander R Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Michail A Pudovik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
116
|
Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022; 20:152. [PMID: 35331246 PMCID: PMC8944113 DOI: 10.1186/s12951-022-01364-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea.
| | - Shweta B Borkar
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sondavid K Nandanwar
- Department of Basic Science Research Institute, Pukyong National University, Busan, 48513, Korea
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, S-75120, Uppsala, Sweden
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
117
|
The Extension of the LeiCNS-PK3.0 Model in Combination with the "Handshake" Approach to Understand Brain Tumor Pathophysiology. Pharm Res 2022; 39:1343-1361. [PMID: 35258766 PMCID: PMC9246813 DOI: 10.1007/s11095-021-03154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
Micrometastatic brain tumor cells, which cause recurrence of malignant brain tumors, are often protected by the intact blood–brain barrier (BBB). Therefore, it is essential to deliver effective drugs across not only the disrupted blood-tumor barrier (BTB) but also the intact BBB to effectively treat malignant brain tumors. Our aim is to predict pharmacokinetic (PK) profiles in brain tumor regions with the disrupted BTB and the intact BBB to support the successful drug development for malignant brain tumors. LeiCNS-PK3.0, a comprehensive central nervous system (CNS) physiologically based pharmacokinetic (PBPK) model, was extended to incorporate brain tumor compartments. Most pathophysiological parameters of brain tumors were obtained from literature and two missing parameters of the BTB, paracellular pore size and expression level of active transporters, were estimated by fitting existing data, like a “handshake”. Simultaneous predictions were made for PK profiles in extracellular fluids (ECF) of brain tumors and normal-appearing brain and validated on existing data for six small molecule anticancer drugs. The LeiCNS-tumor model predicted ECF PK profiles in brain tumor as well as normal-appearing brain in rat brain tumor models and high-grade glioma patients within twofold error for most data points, in combination with estimated paracellular pore size of the BTB and active efflux clearance at the BTB. Our model demonstrated a potential to predict PK profiles of small molecule drugs in brain tumors, for which quantitative information on pathophysiological alterations is available, and contribute to the efficient and successful drug development for malignant brain tumors.
Collapse
|
118
|
de Oliveira VM, Dias MMG, Avelino TM, Videira NB, da Silva FB, Doratioto TR, Whitford PC, Leite VBP, Figueira ACM. pH and the Breast Cancer Recurrent Mutation D538G Affect the Process of Activation of Estrogen Receptor α. Biochemistry 2022; 61:455-463. [PMID: 35238537 DOI: 10.1021/acs.biochem.1c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen receptor α (ERα) is a regulatory protein that can access a set of distinct structural configurations. ERα undergoes extensive remodeling as it interacts with different agonists and antagonists, as well as transcription activation and repression factors. Moreover, breast cancer tumors resistant to hormone therapy have been associated with the imbalance between the active and inactive ERα states. Cancer-activating mutations in ERα play a crucial role in this imbalance and can promote the progression of cancer. However, the rate of this progression can also be increased by dysregulated pH in the tumor microenvironment. Many molecular aspects of the process of activation of ERα that can be affected by these pH changes and mutations are still unclear. Thus, we applied computational and experimental techniques to explore the activation process dynamics of ER for environments with different pHs and in the presence of one of the most recurrent cancer-activating mutations, D538G. Our results indicated that the effect of the pH increase associated with the D538G mutation promoted a robust stabilization of the active state of ER. We were also able to determine the main protein regions that have the most potential to influence the activation process under different pH conditions, which may provide targets of future therapeutics for the treatment of hormone-resistant breast cancer tumors. Finally, the approach used here can be applied for proteins associated with the proliferation of other cancer types, which can also have their function affected by small pH changes.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Marieli M G Dias
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Thayná M Avelino
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Natália B Videira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Fernando B da Silva
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Tábata R Doratioto
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto 01140-070, SP, Brazil
| | - Ana Carolina M Figueira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas 13083-970, SP, Brazil
| |
Collapse
|
119
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
120
|
Jin Z, Yue Q, Duan W, Sui A, Zhao B, Deng Y, Zhai Y, Zhang Y, Sun T, Zhang G, Han L, Mao Y, Yu J, Zhang X, Li C. Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104935. [PMID: 35023300 PMCID: PMC8895125 DOI: 10.1002/advs.202104935] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Surgeons face challenges in intraoperatively defining margin of brain tumors due to its infiltrative nature. Extracellular acidosis caused by metabolic reprogramming of cancer cells is a reliable marker for tumor infiltrative regions. Although the acidic margin-guided surgery shows promise in improving surgical prognosis, its clinical transition is delayed by having the exogenous probes approved by the drug supervision authority. Here, an intelligent surface-enhanced Raman scattering (SERS) navigation system delineating glioma acidic margins without administration of exogenous probes is reported. With assistance of this system, the metabolites at the tumor cutting edges can be nondestructively transferred within a water droplet to a SERS chip with pH sensitivity. Homemade deep learning model automatically processes the Raman spectra collected from the SERS chip and delineates the pH map of tumor resection bed with increased speed. Acidity correlated cancer cell density and proliferation level are demonstrated in tumor cutting edges of animal models and excised tissues from glioma patients. The overall survival of animal models post the SERS system guided surgery is significantly increased in comparison to the conventional strategy used in clinical practice. This SERS system holds the promise in accelerating clinical transition of acidic margin-guided surgery for solid tumors with infiltrative nature.
Collapse
Affiliation(s)
- Ziyi Jin
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Qi Yue
- Department of neurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - An Sui
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Botao Zhao
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Yinhui Deng
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Yuting Zhai
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Guang‐Ping Zhang
- School of Physics and ElectronicsShandong Normal UniversityJinan250358China
| | - Limei Han
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| | - Ying Mao
- Department of neurosurgeryHuashan HospitalFudan UniversityShanghai200040China
| | - Jinhua Yu
- School of Information Science and TechnologyFudan UniversityShanghai200438China
| | - Xiao‐Yong Zhang
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghai200433China
- MOE Key Laboratory of Computational Neuroscience and Brain‐Inspired IntelligenceMOE Frontiers Center for Brain ScienceShanghaiChina
| | - Cong Li
- Key Laboratory of Smart Drug Delivery Ministry of EducationState Key Laboratory of Medical NeurobiologySchool of PharmacyFudan UniversityShanghai201203China
| |
Collapse
|
121
|
Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines. Polymers (Basel) 2022; 14:polym14040687. [PMID: 35215600 PMCID: PMC8874672 DOI: 10.3390/polym14040687] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS)-sensitive drug delivery systems (DDS) specifically responding to altered levels of ROS in the pathological microenvironment have emerged as an effective means to enhance the pharmaceutical efficacy of conventional nanomedicines, while simultaneously reducing side effects. In particular, the use of the biocompatible, biodegradable, and non-toxic ROS-responsive thioketal (TK) functional group in the design of smart DDS has grown exponentially in recent years. In the design of TK-based DDS, different technological uses of TK have been proposed to overcome the major limitations of conventional DDS counterparts including uncontrolled drug release and off-target effects. This review will focus on the different technological uses of TK-based biomaterials in smart nanomedicines by using it as a linker to connect a drug on the surface of nanoparticles, form prodrugs, as a core component of the DDS to directly control its structure, to control the opening of drug-releasing gates or to change the conformation of the nano-systems. A comprehensive view of the various uses of TK may allow researchers to exploit this reactive linker more consciously while designing nanomedicines to be more effective with improved disease-targeting ability, providing novel therapeutic opportunities in the treatment of many diseases.
Collapse
|
122
|
Meng L, Gu G, Bi L. Transient receptor potential channels in multiple myeloma (Review). Oncol Lett 2022; 23:108. [PMID: 35242236 DOI: 10.3892/ol.2022.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/30/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Lingjun Meng
- Department of Hematology and Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guiying Gu
- Department of Hematology and Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lintao Bi
- Department of Hematology and Oncology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
123
|
Silvano A, Menegazzi G, Peppicelli S, Mancini C, Biagioni A, Tubita A, Tusa I, Ruzzolini J, Lulli M, Rovida E, Dello Sbarba P. Lactate maintainsBCR/Abl expression and signalinginChronic Myeloid Leukemia cells under nutrient restriction. Oncol Res 2022; 29:33-46. [PMID: 35131002 PMCID: PMC9110649 DOI: 10.3727/096504022x16442289212164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study was directed to deepen the effects of nutrient shortage on BCR/Ablprotein expression and signaling in chronic myeloid leukemia (CML) cells. The backbone of the study was cell culture in medium lacking glucose, the consumption of which we had previously shown to drive BCR/Ablprotein suppression, and glutamine, the other main nutrient besides glucose. In this context, we focused on the role of lactate, the main by-product of glucose metabolism under conditions of rapid cell growth, in particular as a modulator of the maintenance of CML stem/progenitor cell potential, a crucial determinant of disease course and relapse of disease. The results obtained indicated that lactate is a powerful surrogate of glucose to prevent the suppression of BCR/Abl signaling and is therefore capable to maintain BCR/Abl-dependent CML stem/progenitor cell potential. A number of metabolism-related functional and phenotypical features of CML cells were also determined. Among these, we focused on the effect of lactate on oxygen consumption rate, the dependence of this effect on the cell surface lactate carrier MCT-1, and the relationship of the lactate effect to pyruvate and to the activity of mitochondrial pyruvate carrier.
Collapse
Affiliation(s)
- Angela Silvano
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy.,Department of Health Sciences, Division of Obstetrics and Gynecology, Careggi Hospital,Università degli Studi di Firenze; Florence, Italy
| | - Giulio Menegazzi
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Caterina Mancini
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| | - Persio Dello Sbarba
- Department of Experimental and Clinical Biomedical Sciences"Mario Serio",Careggi Hospital, Università degli Studi di Firenze; Florence, Italy
| |
Collapse
|
124
|
Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep 2022; 12:1959. [PMID: 35121783 PMCID: PMC8816945 DOI: 10.1038/s41598-022-05793-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the usage of nanoparticles in various fields such as drug delivery, attracts the attention of many researchers in the treatment of cancers. Graphene oxide (GO) is one of the novel drug delivery systems which is used broadly owing to its unique features. In this survey, doxorubicin (DOX) was accompanied by natural medicine, curcumin (CUR), to diminish its side effects and enhance its efficiency. Cytotoxicity assay in human gastric cancer (AGS), prostate cancer (PC3), and ovarian cancer (A2780), was evaluated. Also, the uptake of DOX and CUR into cells, was assessed using a fluorescence microscope. Moreover, real-time PCR was applied for the evaluation of the expression of RB1 and CDK2 genes, which were involved in the cell cycle. In both separate and simultaneous forms, DOX and CUR were loaded with high efficiency and the release behavior of both drugs was pH-sensitive. The higher release rate was attained at pH 5.5 and 42 °C for DOX (80.23%) and CUR (13.06), respectively. The intensity of fluorescence in the free form of the drugs, was higher than the loaded form. In the same concentration, the free form of CUR and DOX were more toxic than the loaded form in all cell lines. Also, free drugs showed more impact on the expression of RB1 and CDK2 genes. Co-delivery of CUR and DOX into the mentioned cell lines, was more effective than the free form of CUR and DOX due to its lower toxicity to normal cells.
Collapse
Affiliation(s)
- Fatemeh Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Herbal Medicine Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Fateme Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Department of Advanced Medical Sciences and Technologies, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
125
|
Beaudette K, Li J, Lamarre J, Majeau L, Boudoux C. Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. BIOSENSORS 2022; 12:90. [PMID: 35200350 PMCID: PMC8869713 DOI: 10.3390/bios12020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Optical fibers have been used to probe various tissue properties such as temperature, pH, absorption, and scattering. Combining different sensing and imaging modalities within a single fiber allows for increased sensitivity without compromising the compactness of an optical fiber probe. A double-clad fiber (DCF) can sustain concurrent propagation modes (single-mode, through its core, and multimode, through an inner cladding), making DCFs ideally suited for multimodal approaches. This study provides a technological review of how DCFs are used to combine multiple sensing functionalities and imaging modalities. Specifically, we discuss the working principles of DCF-based sensors and relevant instrumentation as well as fiber probe designs and functionalization schemes. Secondly, we review different applications using a DCF-based probe to perform multifunctional sensing and multimodal bioimaging.
Collapse
Affiliation(s)
- Kathy Beaudette
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Jiawen Li
- Institute for Photonics and Advanced Sensing, School of Electrical Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joseph Lamarre
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Lucas Majeau
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Caroline Boudoux
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
126
|
González-Fernández E, Staderini M, Marland JRK, Gray ME, Uçar A, Dunare C, Blair EO, Sullivan P, Tsiamis A, Greenhalgh SN, Gregson R, Clutton RE, Smith S, Terry JG, Argyle DJ, Walton AJ, Mount AR, Bradley M, Murray AF. In vivo application of an implantable tri-anchored methylene blue-based electrochemical pH sensor. Biosens Bioelectron 2022; 197:113728. [PMID: 34763151 DOI: 10.1016/j.bios.2021.113728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The development of robust implantable sensors is important in the successful advancement of personalised medicine as they have the potential to provide in situ real-time data regarding the status of health and disease and the effectiveness of treatment. Tissue pH is a key physiological parameter and herein, we report the design, fabrication, functionalisation, encapsulation and protection of a miniaturised, self-contained, electrochemical pH sensor system and characterisation of sensor performance. Notably for the first time in this environment the pH sensor was based on a methylene blue redox reporter which showed remarkable robustness, accuracy and sensitivity. This was achieved by encapsulation of a self-assembled monolayer containing methylene blue entrapped within a Nafion layer. Another powerful feature was the incorporation, within the same implanted device, of a fabricated on-chip Ag/AgCl reference electrode - vital in any electrochemical sensor, but often ignored. When utilised in vivo, the sensor allowed accurate tracking of externally induced pH changes within a naturally occurring ovine lung cancer model, and correlated well with single point laboratory measurements made on extracted arterial blood, whilst enabling in vivo time-dependent measurements. The sensors functioned robustly whilst implanted, and maintained in vitro function once extracted and together, these results demonstrate proof-of-concept of the ability to sense real-time intratumoral tissue pH changes in vivo.
Collapse
Affiliation(s)
- Eva González-Fernández
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Matteo Staderini
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Jamie R K Marland
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Mark E Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Ahmet Uçar
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK; School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yildirim Beyazıt University, 06010 Ankara, Turkey
| | - Camelia Dunare
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Ewen O Blair
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Paul Sullivan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK
| | - Andreas Tsiamis
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK
| | - Stephen N Greenhalgh
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Rachael Gregson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Richard Eddie Clutton
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Stewart Smith
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK
| | - Jonathan G Terry
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, UK
| | - Anthony J Walton
- School of Engineering, Institute for Integrated Micro and Nano Systems, University of Edinburgh, Scottish Microelectronics Centre, The King's Buildings, Edinburgh, EH9 3FF, UK
| | - Andrew R Mount
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK.
| | - Mark Bradley
- EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK.
| | - Alan F Murray
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, EH9 3DW, UK.
| |
Collapse
|
127
|
Probing altered enzyme activity in the biochemical characterization of cancer. Biosci Rep 2022; 42:230680. [PMID: 35048115 PMCID: PMC8819661 DOI: 10.1042/bsr20212002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Enzymes have evolved to catalyze their precise reactions at the necessary rates, locations, and time to facilitate our development, to respond to a variety of insults and challenges, and to maintain a healthy, balanced state. Enzymes achieve this extraordinary feat through their unique kinetic parameters, myriad regulatory strategies, and their sensitivity to their surroundings, including substrate concentration and pH. The Cancer Genome Atlas (TCGA) highlights the extraordinary number of ways in which the finely tuned activities of enzymes can be disrupted, contributing to cancer development and progression often due to somatic and/or inherited genetic alterations. Rather than being limited to the domain of enzymologists, kinetic constants such as kcat, Km, and kcat/Km are highly informative parameters that can impact a cancer patient in tangible ways—these parameters can be used to sort tumor driver mutations from passenger mutations, to establish the pathways that cancer cells rely on to drive patients’ tumors, to evaluate the selectivity and efficacy of anti-cancer drugs, to identify mechanisms of resistance to treatment, and more. In this review, we will discuss how changes in enzyme activity, primarily through somatic mutation, can lead to altered kinetic parameters, new activities, or changes in conformation and oligomerization. We will also address how changes in the tumor microenvironment can affect enzymatic activity, and briefly describe how enzymology, when combined with additional powerful tools, and can provide us with tremendous insight into the chemical and molecular mechanisms of cancer.
Collapse
|
128
|
Miyamaru C, Koide M, Kato N, Matsubara S, Higuchi M. Fabrication of CaCO 3-Coated Vesicles by Biomineralization and Their Application as Carriers of Drug Delivery Systems. Int J Mol Sci 2022; 23:789. [PMID: 35054975 PMCID: PMC8775527 DOI: 10.3390/ijms23020789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
We fabricated CaCO3-coated vesicles as drug carriers that release their cargo under a weakly acidic condition. We designed and synthesized a peptide lipid containing the Val-His-Val-Glu-Val-Ser sequence as the hydrophilic part, and with two palmitoyl groups at the N-terminal as the anchor groups of the lipid bilayer membrane. Vesicles embedded with the peptide lipids were prepared. The CaCO3 coating of the vesicle surface was performed by the mineralization induced by the embedded peptide lipid. The peptide lipid produced the mineral source, CO32-, for CaCO3 mineralization through the hydrolysis of urea. We investigated the structure of the obtained CaCO3-coated vesicles using transmission electron microscopy (TEM). The vesicles retained the spherical shapes, even in vacuo. Furthermore, the vesicles had inner spaces that acted as the drug cargo, as observed by the TEM tomographic analysis. The thickness of the CaCO3 shell was estimated as ca. 20 nm. CaCO3-coated vesicles containing hydrophobic or hydrophilic drugs were prepared, and the drug release properties were examined under various pH conditions. The mineralized CaCO3 shell of the vesicle surface was dissolved under a weakly acidic condition, pH 6.0, such as in the neighborhood of cancer tissues. The degradation of the CaCO3 shell induced an effective release of the drugs. Such behavior suggests potential of the CaCO3-coated vesicles as carriers for cancer therapies.
Collapse
Affiliation(s)
| | | | | | | | - Masahiro Higuchi
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Show-ku, Nagoya 4668-555, Japan; (C.M.); (M.K.); (N.K.); (S.M.)
| |
Collapse
|
129
|
Zhou Z, Zhang C, Ma Z, Wang H, Tuo B, Cheng X, Liu X, Li T. Pathophysiological role of ion channels and transporters in HER2-positive breast cancer. Cancer Gene Ther 2022; 29:1097-1104. [PMID: 34997219 DOI: 10.1038/s41417-021-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
The incidence of breast cancer (BC) has been increasing each year, and BC is now the most common malignant tumor in women. Among the numerous BC subtypes, HER2-positive BC can be treated with a variety of strategies based on targeting HER2. Although there has been great progress in the treatment of HER2-positive BC, recurrence, metastasis and drug resistance remain considerable challenges. The dysfunction of ion channels and transporters can affect the development and progression of HER2-positive BC, so these entities are expected to be new therapeutic targets. This review summarizes various ion channels and transporters associated with HER2-positive BC and suggests potential targets for the development of new and effective therapies.
Collapse
Affiliation(s)
- Zhengxing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Chengmin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
130
|
Ji Y, Liansheng F, Suchen Q, Han X. Stimuli-Responsive Delivery Strategies for Controllable Gene Editing in Tumor Therapeutics. J Mater Chem B 2022; 10:7694-7707. [DOI: 10.1039/d2tb01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CRISPR system has attracted significant interest due to its great potential in tumour therapy. Developing effective, precise and safe delivery vectors is a prerequisite for CRISPR applications. Some disease-related biological...
Collapse
|
131
|
Panagiotopoulos AA, Kalyvianaki K, Serifoglou B, Konstantinou E, Notas G, Castanas E, Kampa M. OXER1 mediates testosterone-induced calcium responses in prostate cancer cells. Mol Cell Endocrinol 2022; 539:111487. [PMID: 34634385 DOI: 10.1016/j.mce.2021.111487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
In prostate cancer, calcium homeostasis plays a significant role in the disease's development and progression. Intracellular calcium changes are an important secondary signal, triggered by a variety of extracellular stimuli, that controls many cellular functions. One of the main events affecting calcium is androgen signaling. Indeed, via calcium changes, androgens regulate cell processes like cell growth, differentiation and motility. In the present work we explored the nature of the receptor involved in calcium response induced by membrane-acting testosterone in prostate cancer cells. We report that testosterone, independently of the presence of the classical androgen receptor, can rapidly increase intracellular calcium from calcium stores, through the oxoeicosanoid receptor 1 (OXER1) and a specific signaling cascade that triggers calcium release from the endoplasmic reticulum. These findings reveal for the first time the receptor involved in the rapid calcium changes induced by androgens. Moreover, they further support the notion that androgens, even in the absence of AR, can still exert specific effects that regulate cancer cell fate.
Collapse
Affiliation(s)
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Bourcin Serifoglou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Evangelia Konstantinou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| |
Collapse
|
132
|
Zhou H, Zhao Y, Chen X, Zhang S. Ultrafast Spectroscopic Studies of the pH responsive 9-Acridinecarboxylic Acid as a Ratiometric and Fluorescence Lifetime pH Indicator. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
133
|
Cellot G, Franceschi Biagioni A, Ballerini L. Nanomedicine and graphene-based materials: advanced technologies for potential treatments of diseases in the developing nervous system. Pediatr Res 2022; 92:71-79. [PMID: 34480086 PMCID: PMC9411050 DOI: 10.1038/s41390-021-01681-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
The interest in graphene-based nanomaterials (GBNs) application in nanomedicine, in particular in neurology, steadily increased in the last decades. GBNs peculiar physical-chemical properties allow the design of innovative therapeutic tools able to manipulate biological structures with subcellular resolution. In this review, we report GBNs applications to the central nervous system (CNS) when these nanomaterials are engineered as potential therapeutics to treat brain pathologies, with a focus on those of the pediatric age. We revise the state-of-the art studies addressing the impact of GBNs in the CNS, showing that the design of GBNs with different dimensions and chemical compositions or the use of specific administration routes and doses can limit unwanted side effects, exploiting GBNs efficacy in therapeutic approaches. These features favor the development of GBNs-based multifunctional devices that may find applications in the field of precision medicine for the treatment of disorders in the developing CNS. In this framework, we address the suitability of GBNs to become successful therapeutic tools, such as drug nano-delivery vectors when being chemically decorated with pharmaceutical agents and/or other molecules to obtain a high specific targeting of the diseased area and to achieve a controlled release of active molecules. IMPACT: The translational potential of graphene-based nanomaterials (GBNs) can be used for the design of novel therapeutic approaches to treat pathologies affecting the brain with a focus on the pediatric age. GBNs can be chemically decorated with pharmaceutical agents and molecules to obtain a highly specific targeting of the diseased site and a controlled drug release. The type of GBNs, the selected functionalization, the dose, and the way of administration are factors that should be considered to potentiate the therapeutic efficacy of GBNs, limiting possible side effects. GBNs-based multifunctional devices might find applications in the precision medicine and theranostics fields.
Collapse
Affiliation(s)
- Giada Cellot
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Trieste, Italy.
| | - Audrey Franceschi Biagioni
- grid.5970.b0000 0004 1762 9868Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Trieste, Italy.
| |
Collapse
|
134
|
Rahimi R, Solimannejad M, Soleimannejad M. Two-dimensionalcovalent triazine frameworks as superior nanocarriers for the delivery of thioguanine anti-cancer drugs: a periodic DFT study. NEW J CHEM 2022. [DOI: 10.1039/d2nj02050e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work aims to introduce a superior nanocarrier for thioguanine (TG) anti-cancer drug delivery, drug release, and cancer therapy through computational chemistry.
Collapse
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran
| | | |
Collapse
|
135
|
Extracellular ATP and Macropinocytosis: Their Interactive and Mutually Supportive Roles in Cell Growth, Drug Resistance, and EMT in Cancer. Subcell Biochem 2022; 98:61-83. [PMID: 35378703 PMCID: PMC9825817 DOI: 10.1007/978-3-030-94004-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macropinocytosis is one of the major mechanisms by which cancer cells uptake extracellular nutrients from tumor microenvironment (TME) and plays very important roles in various steps of tumorigenesis. We previously reported the unexpected finding that intratumoral and extracellular ATP (eATP), as one of the major drastically upregulated extracellular nutrients and messengers in tumors, is taken up by cancer cells through macropinocytosis in large quantities and significantly contributing to cancer cell growth, survival, and increased resistance to chemo and target drugs. Inhibition of macropinocytosis substantially reduced eATP uptake by cancer cells and slowed down tumor growth in vivo. More recently, we have found the eATP also plays a very important role in inducing epithelial-to-mesenchymal transition (EMT), and that macropinocytosis is an essential facilitator in the induction. Thus, macropinocytosis and eATP, working in coordination, appear to play some previously unrecognized but very important roles in EMT and metastasis. As a result, they are likely to be interactive and communicative with each other, regulating each other's activity for various needs of host tumor cells. They are also likely to be an integral part of the future new anticancer therapeutic strategies. Moreover, it is undoubted that we have not identified all the important activities coordinated by ATP and macropinocytosis. This review describes our findings in how eATP and macropinocytosis work together to promote cancer cell growth, resistance, and EMT. We also list scientific challenges facing eATP research and propose to target macropinocytosis and eATP to reduce drug resistance and slow down metastasis.
Collapse
|
136
|
Jakubczak W, Haczyk-Więcek M, Pawlak K. Attomole-per Cell Atomic Mass Spectrometry Measurement of Platinum and Gold Drugs in Cultured Lung Cancer Cells. Molecules 2021; 26:7627. [PMID: 34946708 PMCID: PMC8703441 DOI: 10.3390/molecules26247627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we developed a strategy to determine atto- and femtomolar amounts of metal ions in lysates and mineralizates of cells (human non-small-cell lung carcinoma (NSCLC, A549) and normal lung (MRC-5)) exposed to cytotoxic metallo-drugs: cisplatin and auranofin at concentrations close to the half-maximal inhibitory drug concentrations (IC50). The developed strategy combines data obtained using biological and chemical approaches. Cell density was determined using two independent cell staining assays using trypan blue, calcein AM/propidium iodide. Metal concentrations in lysed and mineralized cells were established employing a mass spectrometer with inductively coupled plasma (ICP-MS) and equipped with a cross-flow nebulizer working in aspiration mode. It allowed for detecting of less than 1 fg of metal per cell. To decrease the required amount of sample material (from 1.5 mL to ~100 µL) without loss of sensitivity, the sample was introduced as a narrow band into a constant stream of liquid (flow-injection analysis). It was noticed that the selectivity of cisplatin accumulation by cells depends on the incubation time. This complex is accumulated by cells at a lower efficiency than auranofin and is found primarily in the lysate representing the cytosol. In contrast, auranofin interacts with water-insoluble compounds. Despite their different mechanism of action, both metallo-drugs increased the accumulation of transition metal ions responsible for oxidative stress.
Collapse
Affiliation(s)
| | | | - Katarzyna Pawlak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; (W.J.); (M.H.-W.)
| |
Collapse
|
137
|
Rahimi R, Solimannejad M, Ehsanfar Z. Potential application of XC3 (X = B, N) nanosheets in drug delivery of hydroxyurea anticancer drug: a comparative DFT study. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2014587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | | |
Collapse
|
138
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
139
|
Rychkov GY, Zhou FH, Adams MK, Brierley SM, Ma L, Barritt GJ. Orai1- and Orai2-, but not Orai3-mediated I CRAC is regulated by intracellular pH. J Physiol 2021; 600:623-643. [PMID: 34877682 DOI: 10.1113/jp282502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Three Orai (Orai1, Orai2, and Orai3) and two stromal interaction molecule (STIM1 and STIM2) mammalian protein homologues constitute major components of the store-operated Ca2+ entry mechanism. When co-expressed with STIM1, Orai1, Orai2 and Orai3 form highly selective Ca2+ channels with properties of Ca2+ release-activated Ca2+ (CRAC) channels. Despite the high level of homology between Orai proteins, CRAC channels formed by different Orai isoforms have distinctive properties, particularly with regards to Ca2+ -dependent inactivation, inhibition/potentiation by 2-aminoethyl diphenylborinate and sensitivity to reactive oxygen species. This study characterises and compares the regulation of Orai1, Orai2- and Orai3-mediated CRAC current (ICRAC ) by intracellular pH (pHi ). Using whole-cell patch clamping of HEK293T cells heterologously expressing Orai and STIM1, we show that ICRAC formed by each Orai homologue has a unique sensitivity to changes in pHi . Orai1-mediated ICRAC exhibits a strong dependence on pHi of both current amplitude and the kinetics of Ca2+ -dependent inactivation. In contrast, Orai2 amplitude, but not kinetics, depends on pHi , whereas Orai3 shows no dependence on pHi at all. Investigation of different Orai1-Orai3 chimeras suggests that pHi dependence of Orai1 resides in both the N-terminus and intracellular loop 2, and may also involve pH-dependent interactions with STIM1. KEY POINTS: It has been shown previously that Orai1/stromal interaction molecule 1 (STIM1)-mediated Ca2+ release-activated Ca2+ current (ICRAC ) is inhibited by intracellular acidification and potentiated by intracellular alkalinisation. The present study reveals that CRAC channels formed by each of the Orai homologues Orai1, Orai2 and Orai3 has a unique sensitivity to changes in intracellular pH (pHi ). The amplitude of Orai2 current is affected by the changes in pHi similarly to the amplitude of Orai1. However, unlike Orai1, fast Ca2+ -dependent inactivation of Orai2 is unaffected by acidic pHi . In contrast to both Orai1 and Orai2, Orai3 is not sensitive to pHi changes. Domain swapping between Orai1 and Orai3 identified the N-terminus and intracellular loop 2 as the molecular structures responsible for Orai1 regulation by pHi . Reduction of ICRAC dependence on pHi seen in a STIM1-independent Orai1 mutant suggested that some parts of STIM1 are also involved in ICRAC modulation by pHi .
Collapse
Affiliation(s)
- Grigori Y Rychkov
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Fiona H Zhou
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Melissa K Adams
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart M Brierley
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
| | - Linlin Ma
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Greg J Barritt
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
140
|
Zhang L, Qi ZD, Ye YL, Li XH, Chen JH, Sun WM. DFT study on the adsorption of 5-fluorouracil on B 40, B 39M, and M@B 40 (M = Mg, Al, Si, Mn, Cu, Zn). RSC Adv 2021; 11:39508-39517. [PMID: 35492488 PMCID: PMC9044419 DOI: 10.1039/d1ra08308b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023] Open
Abstract
Based on density functional theory, the adsorption behavior of 5-fluorouracil (5-Fu) on B40 and its derivatives has been explored. It was observed that 5-Fu prefers to combine with the corner boron atom of the B40 cage via one of its oxygen atoms, forming a strong polar covalent B-O bond. The adsorption energy of 5-Fu on B40 was calculated to be -11.15 kcal mol-1, and thus, it can be duly released from B40 by protonation in the slightly acidic environment of tumor tissue, which makes for reducing the toxic and side effects of this drug. Additionally, the substituent and embedding effect of Mg, Al, Si, Mn, Cu, and Zn atoms on the drug delivery performance of B40 have been also considered. We hope this work could offer some implications for the potential application of boron-based nanomaterials, such as B40 in drug delivery.
Collapse
Affiliation(s)
- Li Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Zi-Dan Qi
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Xiang-Hui Li
- The School of Medical Technology and Engineering, Fujian Medical University Fuzhou 350004 Fujian People's Republic of China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University Fuzhou 350007 Fujian People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University Fuzhou 350108 People's Republic of China
| |
Collapse
|
141
|
Singh AK, Nair AV, Singh NDP. Small Two-Photon Organic Fluorogenic Probes: Sensing and Bioimaging of Cancer Relevant Biomarkers. Anal Chem 2021; 94:177-192. [PMID: 34793114 DOI: 10.1021/acs.analchem.1c04306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amit Kumar Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| | - Asha V Nair
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302, West Bengal, India
| |
Collapse
|
142
|
Williamson M, Moustaid-Moussa N, Gollahon L. The Molecular Effects of Dietary Acid Load on Metabolic Disease (The Cellular PasaDoble: The Fast-Paced Dance of pH Regulation). FRONTIERS IN MOLECULAR MEDICINE 2021; 1:777088. [PMID: 39087082 PMCID: PMC11285710 DOI: 10.3389/fmmed.2021.777088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 08/02/2024]
Abstract
Metabolic diseases are becoming more common and more severe in populations adhering to western lifestyle. Since metabolic conditions are highly diet and lifestyle dependent, it is suggested that certain diets are the cause for a wide range of metabolic dysfunctions. Oxidative stress, excess calcium excretion, inflammation, and metabolic acidosis are common features in the origins of most metabolic disease. These primary manifestations of "metabolic syndrome" can lead to insulin resistance, diabetes, obesity, and hypertension. Further complications of the conditions involve kidney disease, cardiovascular disease, osteoporosis, and cancers. Dietary analysis shows that a modern "Western-style" diet may facilitate a disruption in pH homeostasis and drive disease progression through high consumption of exogenous acids. Because so many physiological and cellular functions rely on acid-base reactions and pH equilibrium, prolonged exposure of the body to more acids than can effectively be buffered, by chronic adherence to poor diet, may result in metabolic stress followed by disease. This review addresses relevant molecular pathways in mammalian cells discovered to be sensitive to acid - base equilibria, their cellular effects, and how they can cascade into an organism-level manifestation of Metabolic Syndromes. We will also discuss potential ways to help mitigate this digestive disruption of pH and metabolic homeostasis through dietary change.
Collapse
Affiliation(s)
- Morgan Williamson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Naima Moustaid-Moussa
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Department of Nutrition Sciences, Texas Tech University, Lubbock, TX, United States
- Obesity Research Institute, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
143
|
Gender-Specific Metabolomics Approach to Kidney Cancer. Metabolites 2021; 11:metabo11110767. [PMID: 34822425 PMCID: PMC8624667 DOI: 10.3390/metabo11110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney malignancy. RCC is more common among men with a 2/1 male/female incidence ratio worldwide. Given the underlying epidemiological differences in the RCC incidence between males and females, we explored the gender specific 1H NMR serum metabolic profiles of RCC patients and their matched controls. A number of differential metabolites were shared by male and female RCC patients. These RCC specific changes included lower lactate, threonine, histidine, and choline levels together with increased levels of pyruvate, N-acetylated glycoproteins, beta-hydroxybutyrate, acetoacetate, and lysine. Additionally, serum lactate/pyruvate ratio was a strong predictor of RCC status regardless of gender. Although only moderate changes in metabolic profiles were observed between control males and females there were substantial gender related differences among RCC patients. Gender specific metabolic features associated with RCC status were identified suggesting that different metabolic panels could be leveraged for a more precise diagnostic.
Collapse
|
144
|
Rahimi R, Solimannejad M, Ehsanfar Z. First-principles studies on two-dimensional B 3O 3 adsorbent as a potential drug delivery platform for TEPA anticancer drug. J Mol Model 2021; 27:347. [PMID: 34748097 DOI: 10.1007/s00894-021-04930-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
The remarkable properties of pristine B3O3 nanosheet as a nanocarrier for adsorption and desorption of TEPA anticancer drug for designing potential drug delivery platform were investigated using periodic DFT calculations. We studied the adsorption energy of all stable complexes formed between the drug molecule and B3O3 in gas and aqueous phases along with electronic structure analysis of complexes. Different adsorption configurations were studied for drug/B3O3 complexes, including the interaction of the C atom of the triangular ring, O atom in the TEPA drug with the B atom in B3O3, and indirect drug interaction the middle of the R1 ring cavity of the B3O3 nanosheet. The take-up of TEPA prompts a substantial change of 68.13% in the band gap (Eg) of the B3O3 nanosheet in the most stable complex. The present study results affirmed the application of B3O3 nanosheet as a potential vehicle for TEPA drugs in the treatment of cancerous tissues.
Collapse
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran.,Institute of Nanosciences and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, 38156-8-8349, Arak, Iran. .,Institute of Nanosciences and Nanotechnology, Arak University, 38156-8-8349, Arak, Iran.
| | | |
Collapse
|
145
|
Popova V, Poletaeva Y, Pyshnaya I, Pyshnyi D, Dmitrienko E. Designing pH-Dependent Systems Based on Nanoscale Calcium Carbonate for the Delivery of an Antitumor Drug. NANOMATERIALS 2021; 11:nano11112794. [PMID: 34835558 PMCID: PMC8625994 DOI: 10.3390/nano11112794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022]
Abstract
Materials based on calcium carbonate (CaCO3) are widely used in biomedical research (e.g., as carriers of bioactive substances). The biocompatibility of CaCO3 and dependence of its stability on pH make these materials promising transporters of therapeutic agents to sites with low pH such as a tumor tissue. In this work, we developed an approach to the preparation of nanoscale particles based on CaCO3 (CaNPs) up to 200 nm in size by coprecipitation and analyzed the interaction of the nanoparticles with an anticancer drug: DOXorubicin (DOX). We also showed a prolonged pH-dependent release of DOX from a CaNP nanocarrier and effective inhibition of cancer cell growth by a CaCO3-and-DOX–based composite (CaNP7-DOX) in in vitro models.
Collapse
|
146
|
Hu X, Zhang Q, Dai X, Sun J, Gao F. Dual-Emission Carbonized Polymer Dots for Ratiometric pH Sensing, pH-Dependent Generation of Singlet Oxygen, and Imaging-Guided Dynamics Monitoring of Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:7663-7672. [PMID: 35006696 DOI: 10.1021/acsabm.1c00892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pH environment in cancer cells has been demonstrated to display vital influences on the therapeutic effect of photodynamic therapy (PDT). It is very interesting to develop pH-responsive probes for simultaneous pH sensing and dynamics monitoring of the effects of PDT, and therefore assessing the correlation between them. In this study, a multifunctional fluorescence probe, dual-emission carbonized polymer dot (CPD) in blue and red regions, which uses ethylene imine polymer (PEI) and 4,4',4″,4‴-(porphine-5, 10, 15, 20-tetrayl) tetrakis (benzoic acid) (TCPP) as precursors through a one-step hydrothermal amide reaction, has been designed for ratiometric pH sensing, generating pH-dependent 1O2 for PDT of cancer cells, and investigating the dynamics effects of PDT through pH-guided imaging. The prepared CPDs were successfully used for ratiometric pH response, pH-dependent generation of 1O2, and dynamics monitoring PDT in HeLa cells. This study may provide an alternative strategy to prepare CPD-based theranostic integrated nanoprobes for PDT through the rational design of precursors.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
147
|
Nortunen M, Parkkila S, Saarnio J, Huhta H, Karttunen TJ. Carbonic Anhydrases II and IX in Non-ampullary Duodenal Adenomas and Adenocarcinoma. J Histochem Cytochem 2021; 69:677-690. [PMID: 34636283 DOI: 10.1369/00221554211050133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-ampullary duodenal adenocarcinoma (DAC) is a rare malignancy. Little information is available concerning the histopathological prognostic factors associated with DAC. Carbonic anhydrases (CAs) are metalloenzymes catalyzing the universal reaction of CO2 hydration. Isozymes CAII, CAIX, and CAXII are associated with prognosis in various cancers. Our aim was to analyze the immunohistochemical expressions of CAII, CAIX, and CAXII in normal duodenal epithelium, duodenal adenomas, and adenocarcinoma and their associations with clinicopathological variables and survival. Our retrospective study included all 27 DACs treated in Oulu University Hospital during years 2000-2020. For comparison, samples of 42 non-ampullary adenomas were collected. CAII expression was low in duodenal adenomas and adenocarcinoma. CAIX expression in adenomas and adenocarcinoma was comparable with the high expression of normal duodenal crypts. Expression patterns in carcinomas were largely not related to clinicopathological features. However, low expression of CAII associated with poorer differentiation of the tumor (p=0.049) and low expression of CAIX showed a trend for association with nodal spread, although statistical significance was not reached (p=0.091). CAII and CAIX lost their epithelial polarization and staining intensity in adenomas. CAXII expression was not detected in the studied samples. CAs were not associated with survival. The prognostic value of CAII and CAIX downregulation should be further investigated. Both isozymes may serve as biomarkers of epithelial dysplasia in the duodenum.
Collapse
Affiliation(s)
- Minna Nortunen
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University and Fimlab Ltd, Tampere University Hospital, Tampere, Finland (SP)
| | - Juha Saarnio
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
148
|
Zhang S, Yang Y, Liu S, Dong R, Qian Z. Influence of the Hypercapnic Tumor Microenvironment on the Viability of Hela Cells Screened by a CO 2-Gradient-Generating Device. ACS OMEGA 2021; 6:26773-26781. [PMID: 34661031 PMCID: PMC8515822 DOI: 10.1021/acsomega.1c04422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 05/15/2023]
Abstract
Carbon dioxide (CO2) levels outside of the physiological range are frequently encountered in the tumor microenvironment and laparoscopic pneumoperitoneum during clinical cancer therapy. Controversies exist regarding the biological effects of hypercapnia on tumor proliferation and metastasis concerning time frame, CO2 concentration, and cell type. Traditional control of gaseous microenvironments for cell growth is conducted using culture chambers that allow for a single gas concentration at a time. In the present paper, Hela cells were studied for their response to varying levels of CO2 in an aerogel-based gas gradient-generating apparatus capable of delivering a stable and quantitative linear CO2 profile in spatial and temporal domains. Cells cultured in the standard 96-well plate sandwiched in between the device were interfaced with the gas gradient generator, and the cells in each row were exposed to a known level of CO2 accordingly. Both the ratiometric pH indicator and theoretical modeling have confirmed the efficient mass transport of CO2 through the air-permeable aerogel monolith in a short period of time. Tumor cell behaviors in various hypercapnic microenvironments with gradient CO2 concentrations ranging from 12 to 89% were determined in terms of viability, morphology, and mitochondrial metabolism under acute exposure for 3 h and over a longer cultivation period for up to 72 h. A significant reduction in cell viability was noticed with increasing CO2 concentration and incubation time, which was closely associated with intracellular acidification and elevated cellular level of reactive oxygen species. Our modular device demonstrated full adaptability to the standard culture systems and high-throughput instruments, which provide the potential for simultaneously screening the responses of cells under tunable gaseous microenvironments.
Collapse
|
149
|
Park Y, Jeong J, Seong S, Kim W. In Silico Evaluation of Natural Compounds for an Acidic Extracellular Environment in Human Breast Cancer. Cells 2021; 10:2673. [PMID: 34685653 PMCID: PMC8534855 DOI: 10.3390/cells10102673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/11/2022] Open
Abstract
The survival rates for breast cancer (BC) have improved in recent years, but resistance, metastasis, and recurrence still remain major therapeutic challenges for BC. The acidic tumor microenvironment (TME) has attracted attention because of its association with tumorigenesis, metastasis, drug resistance, and immune surveillance. In this study, we evaluated natural compounds from traditional herbal medicine used to treat cancer that selectively target genes regulated by extracellular acidosis. We integrated four transcriptomic data including BC prognostic data from The Cancer Genome Atlas database, gene expression profiles of MCF-7 cells treated with 102 natural compounds, patterns of gene profiles by acidic condition, and single-cell RNA-sequencing from BC patient samples. Bruceine D (BD) was predicted as having the highest therapeutic potential, having an information gain (IG) score of 0.24, to regulate reprogrammed genes driven by acidosis affecting the survival of BC patients. BD showed the highest IG on EMT (IG score: 0.11) and invasion (IG score: 0.1) compared to the other phenotypes with the CancerSEA database. BD also demonstrated therapeutic potential by interfering with the tumor cell-TME interactions by reducing the amyloid beta precursor protein and CD44 expression. Therefore, BD is a potential candidate to target the acidic TME induced metastatic process in BC.
Collapse
Affiliation(s)
- YoungJoon Park
- Cnh Center for Cancer Research, Cnh Corporation, Gangnam-gu, Seoul 06154, Korea;
| | - Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA;
| | - Shin Seong
- Soram Korean Medicine Hospital, Gangnam-gu, Seoul 06154, Korea;
| | - Wonnam Kim
- Cnh Center for Cancer Research, Cnh Corporation, Gangnam-gu, Seoul 06154, Korea;
| |
Collapse
|
150
|
Yang J, Davis T, Kazerouni AS, Chen YI, Bloom MJ, Yeh HC, Yankeelov TE, Virostko J. Longitudinal FRET Imaging of Glucose and Lactate Dynamics and Response to Therapy in Breast Cancer Cells. Mol Imaging Biol 2021; 24:144-155. [PMID: 34611767 DOI: 10.1007/s11307-021-01639-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The reprogramming of cellular metabolism is a hallmark of cancer. The ability to noninvasively assay glucose and lactate concentrations in cancer cells would improve our understanding of the dynamic changes in metabolic activity accompanying tumor initiation, progression, and response to therapy. Unfortunately, common approaches for measuring these nutrient levels are invasive or interrupt cell growth. This study transfected FRET reporters quantifying glucose and lactate concentration into breast cancer cell lines to study nutrient dynamics and response to therapy. PROCEDURES Two FRET reporters, one assaying glucose concentration and one assaying lactate concentration, were stably transfected into the MDA-MB-231 breast cancer cell line. Correlation between FRET measurements and ligand concentration were measured using a confocal microscope and a cell imaging plate reader. Longitudinal changes in glucose and lactate concentration were measured in response to treatment with CoCl2, cytochalasin B, and phloretin which, respectively, induce hypoxia, block glucose uptake, and block glucose and lactate transport. RESULTS The FRET ratio from the glucose and lactate reporters increased with increasing concentration of the corresponding ligand (p < 0.005 and p < 0.05, respectively). The FRET ratio from both reporters was found to decrease over time for high initial concentrations of the ligand (p < 0.01). Significant differences in the FRET ratio corresponding to metabolic inhibition were found when cells were treated with glucose/lactate transporter inhibitors. CONCLUSIONS FRET reporters can track intracellular glucose and lactate dynamics in cancer cells, providing insight into tumor metabolism and response to therapy over time.
Collapse
Affiliation(s)
- Jianchen Yang
- Department of Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Tessa Davis
- Department of Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Anum S Kazerouni
- Department of Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Meghan J Bloom
- Department of Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
- Texas Materials Institute, The University of Texas At Austin, Austin, TX, 78712, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas At Austin, Austin, TX, 78712, USA
- Department of Diagnostic Medicine, The University of Texas At Austin, 201 E. 24th Street, 1 University Station (C0200), Austin, TX, 78712, USA
- Department of Oncology, The University of Texas At Austin, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas At Austin, Austin, TX, 78712, USA
- Livestrong Cancer Institutes, The University of Texas At Austin, Austin, TX, 78712, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Virostko
- Department of Diagnostic Medicine, The University of Texas At Austin, 201 E. 24th Street, 1 University Station (C0200), Austin, TX, 78712, USA.
- Department of Oncology, The University of Texas At Austin, Austin, TX, 78712, USA.
- Livestrong Cancer Institutes, The University of Texas At Austin, Austin, TX, 78712, USA.
| |
Collapse
|