101
|
Peralta XG, Toyama Y, Kiehart DP, Edwards GS. Emergent properties during dorsal closure in Drosophila morphogenesis. Phys Biol 2008; 5:015004. [PMID: 18403825 DOI: 10.1088/1478-3975/5/1/015004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dorsal closure is an essential stage of Drosophila development that is a model system for research in morphogenesis and biological physics. Dorsal closure involves an orchestrated interplay between gene expression and cell activities that produce shape changes, exert forces and mediate tissue dynamics. We investigate the dynamics of dorsal closure based on confocal microscopic measurements of cell shortening in living embryos. During the mid-stages of dorsal closure we find that there are fluctuations in the width of the leading edge cells but the time-averaged analysis of measurements indicate that there is essentially no net shortening of cells in the bulk of the leading edge, that contraction predominantly occurs at the canthi as part of the process for zipping together the two leading edges of epidermis and that the rate constant for zipping correlates with the rate of movement of the leading edges. We characterize emergent properties that regulate dorsal closure, i.e., a velocity governor and the coordination and synchronization of tissue dynamics.
Collapse
Affiliation(s)
- X G Peralta
- Sandia National Laboratories, Albuquerque, NM, USA
| | | | | | | |
Collapse
|
102
|
Sun L, Yu MC, Kong L, Zhuang ZH, Hu JH, Ge BX. Molecular identification and functional characterization of a Drosophila dual-specificity phosphatase DMKP-4 which is involved in PGN-induced activation of the JNK pathway. Cell Signal 2008; 20:1329-37. [PMID: 18456458 DOI: 10.1016/j.cellsig.2008.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
Abstract
MAP (Mitogen-activated protein) kinases play an important role in regulating many critical cellular processes. The inactivation of MAP kinases is always accomplished by a family of dual-specificity phosphatases, termed MAPK phosphatases (MKPs). Here, we have identified a novel MKP-like protein, designated DMKP-4, from the Drosophila genome. DMKP-4 is a protein of 387 amino acids, with a dual-specificity phosphatase (DSP) catalytic domain. Recombinant protein DMKP-4 retains intrinsic phosphatase activity against chromogenic substrate pNPP. Overexpression of DMKP-4 inhibited the activation of ERK, JNK and p38 by H(2)O(2), sorbitol and heat shock in HEK293-T cells, and JNK activation in Drosophila S2 cells under PGN stimuli. "Knockdown" of DMKP-4 expression by RNAi significantly enhanced the PGN-stimulated activation of JNK, but not ERK nor p38. Further study revealed that DMKP-4 interacted specifically with JNK via its DSP domain. Mutation of Cys-126 to serine in the DSP domain of DMKP-4 not only eliminated its interaction with JNK, but also markedly reduced its phosphatase activity. Thus, DMKP-4 is a Drosophila homologue of mammalian MKPs, and may play important roles in the regulation of various developmental processes.
Collapse
Affiliation(s)
- Lei Sun
- Laboratory of Signal Transduction, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao-Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
103
|
Yoshioka Y, Suyari O, Yamaguchi M. Transcription factor NF-Y is involved in regulation of the JNK pathway during Drosophila thorax development. Genes Cells 2008; 13:117-30. [PMID: 18233955 DOI: 10.1111/j.1365-2443.2007.01155.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The CCAAT motif-binding factor, nuclear factor Y (NF-Y) consists of three different subunits, NF-YA, NF-YB and NF-YC. Knockdown of Drosophila NF-YA (dNF-YA) in the notum compartment of wing discs by a pannir-GAL4 and UAS-dNF-YAIR mainly resulted in a thorax disclosed phenotype. Reduction of the Drosophila c-Jun N-terminal kinase (JNK) basket (bsk) gene dose enhanced the knockdown of dNF-YA-induced phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc)-LacZ enhancer trap line revealed reduction in the level of the JNK reporter, puc-LacZ signals, in dNF-YA RNAi clones. In addition, expression of wild-type Bsk effectively suppressed the phenotype induced by knockdown of dNF-YA. The bsk gene promoter contains a CCAAT motif and this motif plays a positive role in the promoter activity. We performed chromatin immunoprecipitation (ChIP) assays in S2 cells with anti-dNF-YA IgG and quantitative real-time PCR. The bsk gene promoter region containing the CCAAT boxes was effectively amplified in the immunoprecipitates by PCR. However, this region was not amplified in the immunoprecipitates from dNF-YA knockdown cells. Furthermore, the level of endogenous bsk mRNA is reduced in the dNF-YA knockdown larvae. These results suggest that dNF-Y is necessary for proper bsk expression and activity of JNK pathway during thorax development.
Collapse
Affiliation(s)
- Yasuhide Yoshioka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | |
Collapse
|
104
|
Montrasio S, Mlodzik M, Fanto M. A new allele uncovers the role of echinus in the control of ommatidial rotation in the Drosophila eye. Dev Dyn 2008; 236:2936-42. [PMID: 17879315 DOI: 10.1002/dvdy.21328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The precise orientation of the ommatidia in the Drosophila eye is achieved through a specialized process of cell migration taking place in the third-instar eye imaginal disc when ommatidial clusters rotate by 90 degrees. This process is strictly coordinated with the establishment of planar cell polarity (PCP), but it relies on a specific set of genes that control its mechanism independently from PCP signaling. Recently, the epidermal growth factor receptor (EGFR) pathway has been implicated in determining ommatidial rotation. We have isolated a new allele of echinus, a gene known to control the patterning and number of interommatidial cells. We show that echinus displays defects in the rotation of ommatidia that are not evident until mid-pupal stages, and we propose that echinus action is that of opposing EGFR by an unknown mechanism and that this can explain both its influence in ommatidial rotation and lattice programmed cell death (PCD).
Collapse
Affiliation(s)
- Silvia Montrasio
- Dulbecco Telethon Institute, DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
105
|
Xue L, Igaki T, Kuranaga E, Kanda H, Miura M, Xu T. Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev Cell 2007; 13:446-54. [PMID: 17765686 DOI: 10.1016/j.devcel.2007.07.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 06/13/2007] [Accepted: 07/18/2007] [Indexed: 12/14/2022]
Abstract
CYLD encodes a tumor suppressor that is mutated in familial cylindromatosis. Despite biochemical and cell culture studies, the physiological functions of CYLD in animal development and tumorigenesis remain poorly understood. To address these questions, we generated Drosophila CYLD (dCYLD) mutant and transgenic flies expressing wild-type and mutant dCYLD proteins. Here we show that dCYLD is essential for JNK-dependent oxidative stress resistance and normal lifespan. Furthermore, dCYLD regulates TNF-induced JNK activation and cell death through dTRAF2, which acts downstream of the TNF receptor Wengen and upstream of the JNKK kinase dTAK1. We show that dCYLD encodes a deubiquitinating enzyme that deubiquitinates dTRAF2 and prevents dTRAF2 from ubiquitin-mediated proteolytic degradation. These data provide a molecular mechanism for the tumor suppressor function of this evolutionary conserved molecule by indicating that dCYLD plays a critical role in modulating TNF-JNK-mediated cell death.
Collapse
Affiliation(s)
- Lei Xue
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | |
Collapse
|
106
|
Chitnis NS, D'Costa SM, Paul ER, Bilimoria SL. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase. Virology 2007; 370:333-42. [PMID: 17942133 PMCID: PMC7103334 DOI: 10.1016/j.virol.2007.09.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/04/2007] [Accepted: 09/10/2007] [Indexed: 01/17/2023]
Abstract
Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIVXS; 400 μg/ml), UV-irradiated virus (CIVUV; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIVUV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIVUV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIVUV, CIVXS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and endocytosis of virions or virion proteins, (ii) is inhibited under conditions permitting early viral expression, and (iii) requires the JNK signaling pathway. This is the first report of JNK signal requirement during apoptosis induction by an insect virus.
Collapse
Affiliation(s)
- Nilesh S Chitnis
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | | | | | | |
Collapse
|
107
|
Taniguchi K, Hozumi S, Maeda R, Ooike M, Sasamura T, Aigaki T, Matsuno K. D-JNK signaling in visceral muscle cells controls the laterality of the Drosophila gut. Dev Biol 2007; 311:251-63. [PMID: 17915206 DOI: 10.1016/j.ydbio.2007.08.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 11/15/2022]
Abstract
Although bilateral animals appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in vertebrates have been extensively studied. However, how each organ develops its LR asymmetric morphology with respect to the LR axis is still unclear. Here, we showed that Drosophila Jun N-terminal kinase (D-JNK) signaling is involved in the LR asymmetric looping of the anterior-midgut (AMG) in Drosophila. Mutant embryos of puckered (puc), which encodes a D-JNK phosphatase, showed random laterality of the AMG. Directional LR looping of the AMG required D-JNK signaling to be down-regulated by puc in the trunk visceral mesoderm. Not only the down-regulation, but also the activation of D-JNK signaling was required for the LR asymmetric looping. We also found that the LR asymmetric cell rearrangement in the circular visceral muscle (CVM) was regulated by D-JNK signaling and required for the LR asymmetric looping of the AMG. Rac1, a Rho family small GTPase, augmented D-JNK signaling in this process. Our results also suggest that a basic mechanism for eliciting LR asymmetric gut looping may be conserved between vertebrates and invertebrates.
Collapse
Affiliation(s)
- Kiichiro Taniguchi
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Lavara-Culebras E, Paricio N. Drosophila DJ-1 mutants are sensitive to oxidative stress and show reduced lifespan and motor deficits. Gene 2007; 400:158-65. [PMID: 17651920 DOI: 10.1016/j.gene.2007.06.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/28/2007] [Accepted: 06/11/2007] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is a progressive movement disorder caused by the selective and massive loss of dopaminergic neurons (DA) in the substantia nigra pars compacta (SNc). DJ-1 loss-of-function mutations are involved in inherited early-onset PD forms and result in dysfunction of the oxidative stress response. In mice models, DJ-1 loss provokes sensitivity to oxidative insults but does not produce neurodegeneration. Similar results have been found when analyzing Drosophila mutants for the DJ-1 orthologous genes, DJ-1alpha and DJ-1beta. Here, we report the analysis of two new mutations for the Drosophila DJ-1 genes. Both ubiquitous induction of DJ-1alpha knockdown by RNAi and loss of function of DJ-1beta caused by an insertional mutation result in increased sensitivity to paraquat insults, reduced lifespan and motor impairments. However these mutations do not lead to DA neuron loss. Besides, we find that targeted inhibition of DJ-1alpha function in DA neuron results in certain DA neurodegeneration. Our results, together with findings in other Drosophila DJ-1 mutants, indicate that both Drosophila DJ-1 genes are implicated in the protection against the chemical induced oxidative stress response, but also in fly survival. The differences observed in DA neurodegeneration suggest that the motor impairments exhibited by the mutants could be caused by different pathways.
Collapse
Affiliation(s)
- Eusebio Lavara-Culebras
- Departamento de Genética, Facultad CC Biológicas, University of Valencia. Doctor Moliner, 50. E-46100 Burjasot, Spain
| | | |
Collapse
|
109
|
Mathieu J, Sung HH, Pugieux C, Soetaert J, Rorth P. A sensitized PiggyBac-based screen for regulators of border cell migration in Drosophila. Genetics 2007; 176:1579-90. [PMID: 17483425 PMCID: PMC1931525 DOI: 10.1534/genetics.107.071282] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Migration of border cells during Drosophila melanogaster oogenesis is a good model system for investigating the genetic requirements for cell migration in vivo. We present a sensitized loss-of-function screen used to identify new genes required in border cells for their migration. Chromosomes bearing FRTs on all four major autosomal arms were mutagenized by insertions of the transposable element PiggyBac, allowing multiple parallel clonal screens and easy identification of the mutated gene. For border cells, we analyzed homozygous mutant clones positively marked with lacZ and sensitized by expression of dominant-negative PVR, the guidance receptor. We identified new alleles of genes already known to be required for border cell migration, including aop/yan, DIAP1, and taiman as well as a conserved Slbo-regulated enhancer downstream of shg/DE-cadherin. Mutations in genes not previously described to be required in border cells were also uncovered: hrp48, vir, rme-8, kismet, and puckered. puckered was unique in that the migration defects were observed only when PVR signaling was reduced. We present evidence that an excess of JNK signaling is deleterious for migration in the absence of PVR activity at least in part through Fos transcriptional activity and possibly through antagonistic effects on DIAP1.
Collapse
|
110
|
Peralta XG, Toyama Y, Hutson MS, Montague R, Venakides S, Kiehart DP, Edwards GS. Upregulation of forces and morphogenic asymmetries in dorsal closure during Drosophila development. Biophys J 2007; 92:2583-96. [PMID: 17218455 PMCID: PMC1864829 DOI: 10.1529/biophysj.106.094110] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue dynamics during dorsal closure, a stage of Drosophila development, provide a model system for cell sheet morphogenesis and wound healing. Dorsal closure is characterized by complex cell sheet movements, driven by multiple tissue specific forces, which are coordinated in space, synchronized in time, and resilient to UV-laser perturbations. The mechanisms responsible for these attributes are not fully understood. We measured spatial, kinematic, and dynamic antero-posterior asymmetries to biophysically characterize both resiliency to laser perturbations and failure of closure in mutant embryos and compared them to natural asymmetries in unperturbed, wild-type closure. We quantified and mathematically modeled two processes that are upregulated to provide resiliency--contractility of the amnioserosa and formation of a seam between advancing epidermal sheets, i.e., zipping. Both processes are spatially removed from the laser-targeted site, indicating they are not a local response to laser-induced wounding and suggesting mechanosensitive and/or chemosensitive mechanisms for upregulation. In mutant embryos, tissue junctions initially fail at the anterior end indicating inhomogeneous mechanical stresses attributable to head involution, another developmental process that occurs concomitant with the end stages of closure. Asymmetries in these mutants are reversed compared to wild-type, and inhomogeneous stresses may cause asymmetries in wild-type closure.
Collapse
Affiliation(s)
- X G Peralta
- Department of Physics, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Dow LE, Humbert PO. Polarity Regulators and the Control of Epithelial Architecture, Cell Migration, and Tumorigenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 262:253-302. [PMID: 17631191 DOI: 10.1016/s0074-7696(07)62006-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A large body of work on Drosophila melanogaster has identified and characterized a number of key polarity regulators, many of which are required for the regulation of multiple other processes including proliferation, migration, invasion, and tumorigenesis. Humans possess either single or multiple homologues of each of the Drosophila polarity proteins, and in most cases, these are highly conserved between species, implying an important and conserved function for each of the polarity complexes. Recent studies in cultured mammalian epithelial cells have shed some light on the requirement for the polarity complexes in the regulation of epithelial cell function, including an unexpected link to the regulation of directed cell migration. However, many questions still remain regarding the molecular mechanisms of polarity regulation and whether disruption of polarity protein function is an important step in the development of human cancers. Here we will review what is currently understood about the regulation of cell polarity, migration, and invasion and the level of functional conservation between Drosophila and mammalian tissues. Particular reference will be made as to how the Scribble and Par polarity complexes may be involved in the regulation of apical-basal polarity, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Lukas E Dow
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, Melbourne, Australia
| | | |
Collapse
|
112
|
Balakireva M, Rossé C, Langevin J, Chien YC, Gho M, Gonzy-Treboul G, Voegeling-Lemaire S, Aresta S, Lepesant JA, Bellaiche Y, White M, Camonis J. The Ral/exocyst effector complex counters c-Jun N-terminal kinase-dependent apoptosis in Drosophila melanogaster. Mol Cell Biol 2006; 26:8953-63. [PMID: 17000765 PMCID: PMC1636832 DOI: 10.1128/mcb.00506-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/08/2006] [Accepted: 09/11/2006] [Indexed: 11/20/2022] Open
Abstract
Ral GTPase activity is a crucial cell-autonomous factor supporting tumor initiation and progression. To decipher pathways impacted by Ral, we have generated null and hypomorph alleles of the Drosophila melanogaster Ral gene. Ral null animals were not viable. Reduced Ral expression in cells of the sensory organ lineage had no effect on cell division but led to postmitotic cell-specific apoptosis. Genetic epistasis and immunofluorescence in differentiating sensory organs suggested that Ral activity suppresses c-Jun N-terminal kinase (JNK) activation and induces p38 mitogen-activated protein (MAP) kinase activation. HPK1/GCK-like kinase (HGK), a MAP kinase kinase kinase kinase that can drive JNK activation, was found as an exocyst-associated protein in vivo. The exocyst is a Ral effector, and the epistasis between mutants of Ral and of msn, the fly ortholog of HGK, suggest the functional relevance of an exocyst/HGK interaction. Genetic analysis also showed that the exocyst is required for the execution of Ral function in apoptosis. We conclude that in Drosophila Ral counters apoptotic programs to support cell fate determination by acting as a negative regulator of JNK activity and a positive activator of p38 MAP kinase. We propose that the exocyst complex is Ral executioner in the JNK pathway and that a cascade from Ral to the exocyst to HGK would be a molecular basis of Ral action on JNK.
Collapse
Affiliation(s)
- Maria Balakireva
- Institut Curie, INSERM U528, Groupe d'Analyse des Réseaux de Transduction (ART), 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Uhlirova M, Bohmann D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J 2006; 25:5294-304. [PMID: 17082773 PMCID: PMC1636619 DOI: 10.1038/sj.emboj.7601401] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 09/26/2006] [Indexed: 01/12/2023] Open
Abstract
Loss of the epithelial polarity gene scribble in clones of Drosophila imaginal disc cells can cooperate with Ras signaling to induce malignant tumors. Such mutant tissue overproliferates, resists apoptosis, leaves its place of origin and invades other organs, ultimately causing lethality. We show that increased Jun N-terminal kinase (JNK) signaling resulting from the loss of scribble promotes the movement of transformed cells to secondary sites. This effect requires Fos-dependent transcriptional activation of a matrix metalloprotease gene mmp1 downstream of JNK. Expression of the Mmp inhibitor Timp or Mmp RNAi knockdown suppresses cell invasiveness. The proinvasive function of the JNK pathway is revealed in a tumor context when active Ras signaling prevents the apoptotic response to JNK activity as it occurs in nontransformed cells. Based on these results, we present a model that explains the oncogenic cooperation between JNK and Ras, and describes how aberrant regulation of cell survival, proliferation and mobilization cooperate to incite malignant tumor formation.
Collapse
Affiliation(s)
- Mirka Uhlirova
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 633, Rochester, NY 14642, USA. Tel.: +1 585 273 1446; Fax: +1 585 273 1450; E-mail:
| |
Collapse
|
114
|
Wada A, Kato K, Uwo MF, Yonemura S, Hayashi S. Specialized extraembryonic cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila. Dev Biol 2006; 301:340-9. [PMID: 17034783 DOI: 10.1016/j.ydbio.2006.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/20/2022]
Abstract
Dorsal closure in Drosophila embryogenesis involves expansion of the dorsal epidermis, followed by closure of the opposite epidermal edges. This process is driven by contractile force generated by an extraembryonic epithelium covering the yolk syncytium known as the amnioserosa. The secreted signaling molecule Dpp is expressed in the leading edge of the dorsal epidermis and is essential for dorsal closure. We found that the outermost row of amnioserosa cells (termed pAS) maintains a tight basolateral cell-cell adhesion interface with the leading edge of dorsal epidermis throughout the dorsal closure process. pAS was subject to altered cell motility in response to Dpp emanating from the dorsal epidermis, and this response was essential for dorsal closure. alphaPS3 and betaPS integrin subunits accumulated in the interface between pAS and dorsal epidermis, and were both required for dorsal closure. Looking at alphaPS3, type I Dpp receptor, and JNK mutants, we found that pAS cell motility was altered and pAS and dorsal epidermis adhesion failed under the mechanical stress of dorsal closure, suggesting that a Dpp-mediated mechanism connects the squamous pAS to the columnar dorsal epidermis to form a single coherent epithelial layer.
Collapse
Affiliation(s)
- Atsushi Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
115
|
Polaski S, Whitney L, Barker BW, Stronach B. Genetic analysis of slipper/mixed lineage kinase reveals requirements in multiple Jun-N-terminal kinase-dependent morphogenetic events during Drosophila development. Genetics 2006; 174:719-33. [PMID: 16888342 PMCID: PMC1602089 DOI: 10.1534/genetics.106.056564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Mixed lineage kinases (MLKs) function as Jun-N-terminal kinase (JNK) kinase kinases to transduce extracellular signals during development and homeostasis in adults. slipper (slpr), which encodes the Drosophila homolog of mammalian MLKs, has previously been implicated in activation of the JNK pathway during embryonic dorsal epidermal closure. To further define the specific functions of SLPR, we analyzed the phenotypic consequences of slpr loss and gain of function throughout development, using a semiviable maternal-effect allele and wild-type or dominant-negative transgenes. From these analyses we confirm that failure of dorsal closure is the null phenotype in slpr germline clones. In addition, there is a functional maternal contribution, which can suffice for embryogenesis in the zygotic null mutant, but rarely suffices for pupal metamorphosis, revealing later functions for slpr as the maternal contribution is depleted. Zygotic null mutants that eclose as adults display an array of morphological defects, many of which are shared by hep mutant animals, deficient in the JNK kinase (JNKK/MKK7) substrate for SLPR, suggesting that the defects observed in slpr mutants primarily reflect loss of hep-dependent JNK activation. Consistent with this, the maternal slpr contribution is sensitive to the dosage of positive and negative JNK pathway regulators, which attenuate or potentiate SLPR-dependent signaling in development. Although SLPR and TAK1, another JNKKK family member, are differentially used in dorsal closure and TNF/Eiger-stimulated apoptosis, respectively, a Tak1 mutant shows dominant genetic interactions with slpr, suggesting potential redundant or combinatorial functions. Finally, we demonstrate that SLPR overexpression can induce ectopic JNK signaling and that the SLPR protein is enriched at the epithelial cell cortex.
Collapse
Affiliation(s)
- Stephanie Polaski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
116
|
Homsy JG, Jasper H, Peralta XG, Wu H, Kiehart DP, Bohmann D. JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev Dyn 2006; 235:427-34. [PMID: 16317725 DOI: 10.1002/dvdy.20649] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial movements are key morphogenetic events in animal development. They are driven by multiple mechanisms, including signal-dependent changes in cytoskeletal organization and in cell adhesion. Such processes must be controlled precisely and coordinated to accurately sculpt the three-dimensional form of the developing organism. By observing the Drosophila epidermis during embryonic development using confocal time-lapse microscopy, we have investigated how signaling through the Jun-N-terminal kinase (JNK) pathway governs the tissue sheet movements that result in dorsal closure (DC). We find that JNK controls the polymerization of actin into a cable at the epidermal leading edge as previously suggested, as well as the joining (zipping) of the contralateral epithelial cell sheets. Here, we show that zipping is mediated by regulation of the integrins myospheroid and scab. Our data demonstrate that JNK signaling regulates a set of target genes that cooperate to facilitate epithelial movement and closure.
Collapse
Affiliation(s)
- Jason G Homsy
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
117
|
Abstract
Embryonic dorsal closure (DC) in Drosophila is a series of morphogenetic movements involving the bilateral dorsal movement of the epidermis (cell stretching) and dorsal suturing of the leading edge (LE) cells to enclose the viscera. The Syk family tyrosine kinase Shark plays a crucial role in this Jun amino-terminal kinase (JNK)-dependent process, where it acts upstream of JNK in LE cells. Using a yeast two-hybrid screen, the unique Drosophila homolog of the downstream of kinase (Dok) family, Ddok,was identified by its ability to bind Shark SH2 domains in a tyrosine phosphorylation-dependent fashion. In cultured S2 embryonic cells, Ddok tyrosine phosphorylation is Src dependent; Shark associates with Ddok and Ddok localizes at the cell cortex, together with a portion of the Shark protein. The embryonic expression pattern of Ddok resembles the expression pattern of Shark. Ddok loss-of-function mutant (DdokPG155)germ-line clones possess DC defects, including the loss of JNK-dependent expression of dpp mRNA in LE cells, and decreased epidermal F-actin staining and LE actin cable formation. Epistatic analysis indicates that Ddok functions upstream of shark to activate JNK signaling during DC. Consistent with these observations, Ddok mutant embryos exhibit decreased levels of tyrosine phosphorylated Shark at the cell periphery of LE and epidermal cells. As there are six mammalian Dok family members that exhibit some functional redundancy, analysis of the regulation of DC by Ddok is expected to provide novel insights into the function of the Dok adapter proteins.
Collapse
Affiliation(s)
- Romi Biswas
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
118
|
Lee JH, Koh H, Kim M, Park J, Lee SY, Lee S, Chung J. JNK pathway mediates apoptotic cell death induced by tumor suppressor LKB1 in Drosophila. Cell Death Differ 2005; 13:1110-22. [PMID: 16273080 DOI: 10.1038/sj.cdd.4401790] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although recent progresses have unveiled the diverse in vivo functions of LKB1, detailed molecular mechanisms governing these processes still remain enigmatic. Here, we showed that Drosophila LKB1 negatively regulates organ growth by caspase-dependent apoptosis, without affecting cell size and cell cycle progression. Through genetic screening for LKB1 modifiers, we discovered the JNK pathway as a novel component of LKB1 signaling; the JNK pathway was activated by LKB1 and mediated the LKB1-dependent apoptosis. Consistently, LKB1-null mutant was defective in embryonic apoptosis and displayed a drastic hyperplasia in the central nervous system; these phenotypes were fully rescued by ectopic JNK activation as well as wild-type LKB1 expression. Furthermore, inhibition of LKB1 resulted in epithelial morphogenesis failure, which was associated with a decrease in JNK activity. Collectively, our studies unprecedentedly elucidate JNK as the downstream mediator of the LKB1-dependent apoptosis, and provide a new paradigm for understanding the diverse LKB1 functions in vivo.
Collapse
Affiliation(s)
- J H Lee
- National Creative Research Initiatives Center for Cell Growth Regulation and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong, Yusong, Taejon, Korea
| | | | | | | | | | | | | |
Collapse
|
119
|
Lee N, Maurange C, Ringrose L, Paro R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 2005; 438:234-7. [PMID: 16281037 DOI: 10.1038/nature04120] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 07/27/2005] [Indexed: 01/08/2023]
Abstract
During the regeneration of Drosophila imaginal discs, cellular identities can switch fate in a process known as transdetermination. For leg-to-wing transdetermination, the underlying mechanism involves morphogens such as Wingless that, when activated outside their normal context, induce ectopic expression of the wing-specific selector gene vestigial. Polycomb group (PcG) proteins maintain cellular fates by controlling the expression patterns of homeotic genes and other developmental regulators. Here we report that transdetermination events are coupled to PcG regulation. We show that the frequency of transdetermination is enhanced in PcG mutant flies. Downregulation of PcG function, as monitored by the reactivation of a silent PcG-regulated reporter gene, is observed in transdetermined cells. This downregulation is directly controlled by the Jun amino-terminal kinase (JNK) signalling pathway, which is activated in cells undergoing regeneration. Accordingly, transdetermination frequency is reduced in a JNK mutant background. This regulatory interaction also occurs in mammalian cells, indicating that the role of this signalling cascade in remodelling cellular fates may be conserved.
Collapse
Affiliation(s)
- Nara Lee
- Centre for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
120
|
Abstract
Recent studies have demonstrated that mitogen-activated protein kinases (MAPKs), including Jun N-terminus kinase (JNK), p38 and Erk, play crucial roles in cell migration. JNK, for example, regulates cell migration by phosphorylating paxillin, DCX, Jun and microtubule-associated proteins. Studies of p38 show that this MAPK modulates migration by phosphorylating MAPK-activated protein kinase 2/3 (MAPKAP 2/3), which appears to be important for directionality of migration. Erk governs cell movement by phosphorylating myosin light chain kinase (MLCK), calpain or FAK. Thus, the different kinases in the MAPK family all seem able to regulate cell migration but by distinct mechanisms.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
121
|
Muñoz-Descalzo S, Terol J, Paricio N. Cabut, a C2H2 zinc finger transcription factor, is required during Drosophila dorsal closure downstream of JNK signaling. Dev Biol 2005; 287:168-79. [PMID: 16198331 DOI: 10.1016/j.ydbio.2005.08.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 11/29/2022]
Abstract
During dorsal closure, the lateral epithelia on each side of the embryo migrate dorsally over the amnioserosa and fuse at the dorsal midline. Detailed genetic studies have revealed that many molecules are involved in this epithelial sheet movement, either with a signaling function or as structural or motor components of the process. Here, we report the characterization of cabut (cbt), a new Drosophila gene involved in dorsal closure. cbt is expressed in the yolk sac nuclei and in the lateral epidermis. The Cbt protein contains three C2H2-type zinc fingers and a serine-rich domain, suggesting that it functions as a transcription factor. cbt mutants die as embryos with dorsal closure defects. Such embryos show defects in the elongation of the dorsal-most epidermal cells as well as in the actomyosin cable assembly at the leading edge. A combination of molecular and genetic analyses demonstrates that cbt expression is dependent on the JNK cascade during dorsal closure, and it functions downstream of Jun regulating dpp expression in the leading edge cells.
Collapse
Affiliation(s)
- Silvia Muñoz-Descalzo
- Departamento de Genética, Facultad CC Biológicas, University of Valencia, Dr. Moliner 50, 46100 Burjasot, Spain
| | | | | |
Collapse
|
122
|
Mizuno N, Kokubu H, Sato M, Nishimura A, Yamauchi J, Kurose H, Itoh H. G protein-coupled receptor signaling through Gq and JNK negatively regulates neural progenitor cell migration. Proc Natl Acad Sci U S A 2005; 102:12365-70. [PMID: 16116085 PMCID: PMC1194958 DOI: 10.1073/pnas.0506101102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the early development of the central nervous system, neural progenitor cells divide in an asymmetric manner and migrate along the radial glia cells. The radial migration is an important process for the proper lamination of the cerebral cortex. Recently, a new mode of the radial migration was found at the intermediate zone where the neural progenitor cells become multipolar and reduce the migration rate. However, the regulatory signals for the radial migration are unknown. Using the migration assay in vitro, we examined how neural progenitor cell migration is regulated. Neural progenitor cells derived from embryonic mouse telencephalon migrated on laminin-coated dishes. Endothelin (ET)-1 inhibited the neural progenitor cell migration. This ET-1 effect was blocked by BQ788, a specific inhibitor of the ETB receptor, and by the expression of a carboxyl-terminal peptide of Galpha q but not Galpha i. The expression of constitutively active mutant of Galpha q, Galpha qR183C, inhibited the migration of neural progenitor cells. Moreover, the inhibitory effect of ET-1 was suppressed by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the expression of the JNK-binding domain of JNK-interacting protein-1, a specific inhibitor of the JNK pathway. Using the slice culture system of embryonic brain, we demonstrated that ET-1 and the constitutively active mutant of Galpha q caused the retention of the neural progenitor cells in the intermediate zone and JNK-binding domain of JNK-interacting protein-1 abrogated the effect of ET-1. These results indicated that G protein-coupled receptor signaling negatively regulates neural progenitor cell migration through Gq and JNK.
Collapse
Affiliation(s)
- Norikazu Mizuno
- Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
123
|
Geuking P, Narasimamurthy R, Basler K. A genetic screen targeting the tumor necrosis factor/Eiger signaling pathway: identification of Drosophila TAB2 as a functionally conserved component. Genetics 2005; 171:1683-94. [PMID: 16079232 PMCID: PMC1456095 DOI: 10.1534/genetics.105.045534] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling by tumor necrosis factors (TNFs) plays a prominent role in mammalian development and disease. To fully understand this complex signaling pathway it is important to identify all regulators and transduction components. A single TNF family member, Eiger, is encoded in the Drosophila genome, offering the possibility of applying genetic approaches for pursuing this goal. Here we present a screen for the isolation of novel genes involved in the TNF/Eiger pathway. On the basis of Eiger's ability to potently activate Jun-N-terminal kinase (JNK) and trigger apoptosis, we used the Drosophila eye to establish an assay for dominant suppressors of this activity. In a large-scale screen the Drosophila homolog of TAB2/3 (dTAB2) was identified as an essential component of the Eiger-JNK pathway. Genetic epistasis and biochemical protein-protein interaction assays assign an adaptor role to dTAB2, linking dTRAF1 to the JNKKK dTAK1, demonstrating a conserved mechanism of TNF signal transduction in mammals and Drosophila. Thus, in contrast to morphogenetic processes, such as dorsal closure of the embryo, in which the JNK pathway is activated by the JNKKK Slipper, Eiger uses the dTAB2-dTAK1 module to induce JNK signaling activity.
Collapse
Affiliation(s)
- Peter Geuking
- Institut für Molekularbiologie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
124
|
McEwen DG, Peifer M. Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis. Development 2005; 132:3935-46. [PMID: 16079158 DOI: 10.1242/dev.01949] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MAPK phosphatases (MKPs) are important negative regulators of MAPKs in vivo, but ascertaining the role of specific MKPs is hindered by functional redundancy in vertebrates. Thus, we characterized MKP function by examining the function of Puckered (Puc), the sole Drosophila Jun N-terminal kinase (JNK)-specific MKP, during embryonic and imaginal disc development. We demonstrate that Puc is a key anti-apoptotic factor that prevents apoptosis in epithelial cells by restraining basal JNK signaling. Furthermore, we demonstrate that JNK signaling plays an important role in gamma-irradiation-induced apoptosis, and examine how JNK signaling fits into the circuitry regulating this process. Radiation upregulates both JNK activity and puc expression in a p53-dependent manner, and apoptosis induced by loss of Puc can be suppressed by p53 inactivation. JNK signaling acts upstream of both Reaper and effector caspases. Finally, we demonstrate that JNK signaling directs normal developmentally regulated apoptotic events. However, if cell death is prevented, JNK activation can trigger tissue overgrowth. Thus, MKPs are key regulators of the delicate balance between proliferation, differentiation and apoptosis during development.
Collapse
Affiliation(s)
- Donald G McEwen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| | | |
Collapse
|
125
|
Johndrow JE, Magie CR, Parkhurst SM. Rho GTPase function in flies: insights from a developmental and organismal perspective. Biochem Cell Biol 2005; 82:643-57. [PMID: 15674432 DOI: 10.1139/o04-118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development.
Collapse
Affiliation(s)
- James E Johndrow
- Division of Basic Sciences, A1-162, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, WA 98109, USA
| | | | | |
Collapse
|
126
|
Sano Y, Akimaru H, Okamura T, Nagao T, Okada M, Ishii S. Drosophila activating transcription factor-2 is involved in stress response via activation by p38, but not c-Jun NH(2)-terminal kinase. Mol Biol Cell 2005; 16:2934-46. [PMID: 15788564 PMCID: PMC1142437 DOI: 10.1091/mbc.e04-11-1008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Activating transcription factor (ATF)-2 is a member of the ATF/cAMP response element-binding protein family of transcription factors, and its trans-activating capacity is enhanced by stress-activated protein kinases such as c-Jun NH(2)-terminal kinase (JNK) and p38. However, little is known about the in vivo roles played by ATF-2. Here, we identified the Drosophila homologue of ATF-2 (dATF-2) consisting of 381 amino acids. In response to UV irradiation and osmotic stress, Drosophila p38 (dp38), but not JNK, phosphorylates dATF-2 and enhances dATF-2-dependent transcription. Consistent with this, injection of dATF-2 double-stranded RNA (dsRNA) into embryos did not induce the dorsal closure defects that are commonly observed in the Drosophila JNK mutant. Furthermore, expression of the dominant-negative dp38 enhanced the aberrant wing phenotype caused by expression of a dominant-negative dATF-2. Similar genetic interactions between dATF-2 and the dMEKK1-dp38 signaling pathway also were observed in the osmotic stress-induced lethality of embryos. Loss of dATF-2 in Drosophila S2 cells by using dsRNA abrogated the induction of 40% of the osmotic stress-induced genes, including multiple immune response-related genes. This indicates that dATF-2 is a major transcriptional factor in stress-induced transcription. Thus, dATF-2 is critical for the p38-mediated stress response.
Collapse
Affiliation(s)
- Yuji Sano
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
127
|
Shen J, Dahmann C. Extrusion of Cells with Inappropriate Dpp Signaling from Drosophila Wing Disc Epithelia. Science 2005; 307:1789-90. [PMID: 15774763 DOI: 10.1126/science.1104784] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Decapentaplegic (Dpp) is a signaling molecule that controls growth and patterning of the developing Drosophila wing. Mutant cells lacking Dpp signal transduction have been shown to activate c-Jun amino-terminal kinase (JNK)-dependent apoptosis and to be lost from the wing disc epithelium. These observations have led to the hypothesis that Dpp promotes cell survival by preventing apoptosis. Here, we show that in the absence of JNK-dependent apoptosis, mutant cells lacking Dpp signal transduction can survive; however, they are still lost from the wing disc epithelium. This loss correlates with extensive cytoskeletal changes followed by basal epithelial extrusion. We propose that Dpp promotes cell survival within disc epithelia by affecting cytoskeletal organization.
Collapse
Affiliation(s)
- Jie Shen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
128
|
Shen J, Dahmann C. The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Dev Biol 2005; 279:31-43. [PMID: 15708556 DOI: 10.1016/j.ydbio.2004.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/29/2004] [Accepted: 11/30/2004] [Indexed: 10/26/2022]
Abstract
The subdivision of the developing Drosophila wing into anterior (A) and posterior (P) compartments is important for its development. The activities of the selector genes engrailed and invected in posterior cells and the transduction of the Hedgehog signal in anterior cells are required for maintaining the A/P boundary. Based on a previous study, it has been proposed that the signaling molecule Decapentaplegic (Dpp) is also important for this function by signaling from anterior to posterior cells. However, it was not known whether and in which cells Dpp signal transduction was required for maintaining the A/P boundary. Here, we have investigated the role of the Dpp signal transduction pathway and the epistatic relationship of Dpp and Hedgehog signaling in maintaining the A/P boundary by clonal analysis. We show that a transcriptional response to Dpp involving the T-box protein Optomotor-blind is required to maintain the A/P boundary. Further, we find that Dpp signal transduction is required in anterior cells, but not in posterior cells, indicating that anterior to posterior signaling by Dpp is not important for maintaining the A/P boundary. Finally, we provide evidence that Dpp signaling acts downstream of or in parallel with Hedgehog signaling to maintain the A/P boundary. We propose that Dpp signaling is required for anterior cells to interpret the Hedgehog signal in order to specify segregation properties important for maintaining the A/P boundary.
Collapse
Affiliation(s)
- Jie Shen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
129
|
Abstract
Specificity in signal transduction is essential to ensure distinct and appropriate cellular responses to extracellular cues. Determining the mechanisms that mediate specificity is key to understanding complex cell behaviors in development, when multiple pathways fire simultaneously and individual pathways are used recurrently. Jun kinase (JNK) signal transduction exemplifies a pathway that is used multiple times in animal development and homeostasis. Indeed, molecular genetic analysis of JNK signaling in Drosophila has shown that a core signaling module consisting of Hep (JNKK), Bsk (JNK), and Jun regulates various processes, including tissue morphogenesis, wound repair, stress response, innate immune response, and others. Six putative JNKK kinase (JNKKK) family members are present in the fly genome, which could activate the core module in response to distinct stimuli. The diversity of kinases at this level of the signaling hierarchy could substantially increase the number of possible signals that feed into activation of the core module. Recent studies have described the distinct phenotypic consequences of mutations in three of the genes, Slpr (dMLK), Tak1, and Mekk1. These data, together with Drosophila cell culture and genomic array analyses support the contention that the choice of JNKKK may contribute to signaling specificity in vivo. Whether this is achieved by individual JNKKKs or by means of a combinatorial mechanism will require a systematic characterization of compound mutants and a toolbox of transcriptional reporters specific for distinct JNK-dependent processes.
Collapse
Affiliation(s)
- Beth Stronach
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15206, USA.
| |
Collapse
|
130
|
Conder R, Yu H, Ricos M, Hing H, Chia W, Lim L, Harden N. dPak is required for integrity of the leading edge cytoskeleton during Drosophila dorsal closure but does not signal through the JNK cascade. Dev Biol 2004; 276:378-90. [PMID: 15581872 DOI: 10.1016/j.ydbio.2004.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/27/2004] [Accepted: 08/30/2004] [Indexed: 12/25/2022]
Abstract
The Pak kinases are effectors for the small GTPases Rac and Cdc42 and are divided into two subfamilies. Group I Paks possess an autoinhibitory domain that can suppress their kinase activity in trans. In Drosophila, two Group I kinases have been identified, dPak and Pak3. Rac and Cdc42 participate in dorsal closure of the embryo, a process in which a hole in the dorsal epidermis is sealed through migration of the epidermal flanks over a tissue called the amnioserosa. Dorsal closure is driven in part by an actomyosin contractile apparatus at the leading edge of the epidermis, and is regulated by a Jun amino terminal kinase (JNK) cascade. Impairment of dPak function using either loss-of-function mutations or expression of a transgene encoding the autoinhibitory domain of dPak led to disruption of the leading edge cytoskeleton and defects in dorsal closure but did not affect the JNK cascade. Group I Pak kinase activity in the amnioserosa is required for correct morphogenesis of the epidermis, and may be a component of the signaling known to occur between these two tissues. We conclude that dorsal closure requires Group I Pak function in both the amnioserosa and the epidermis.
Collapse
Affiliation(s)
- Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | | | |
Collapse
|
131
|
Pastor-Pareja JC, Grawe F, Martín-Blanco E, García-Bellido A. Invasive cell behavior during Drosophila imaginal disc eversion is mediated by the JNK signaling cascade. Dev Cell 2004; 7:387-99. [PMID: 15363413 DOI: 10.1016/j.devcel.2004.07.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/20/2004] [Accepted: 07/12/2004] [Indexed: 01/03/2023]
Abstract
Drosophila imaginal discs are monolayered epithelial invaginations that grow during larval stages and evert at metamorphosis to assemble the adult exoskeleton. They consist of columnar cells, forming the imaginal epithelium, as well as squamous cells, which constitute the peripodial epithelium and stalk (PS). Here, we uncover a new morphogenetic/cellular mechanism for disc eversion. We show that imaginal discs evert by apposing their peripodial side to the larval epidermis and through the invasion of the larval epidermis by PS cells, which undergo a pseudo-epithelial-mesenchymal transition (PEMT). As a consequence, the PS/larval bilayer is perforated and the imaginal epithelia protrude, a process reminiscent of other developmental events, such as epithelial perforation in chordates. When eversion is completed, PS cells localize to the leading front, heading disc expansion. We found that the JNK pathway is necessary for PS/larval cells apposition, the PEMT, and the motile activity of leading front cells.
Collapse
|
132
|
Xia Y, Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol 2004; 14:94-101. [PMID: 15102441 DOI: 10.1016/j.tcb.2003.12.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Originally identified as stress-activated protein kinases that control cell survival and proliferation through transcription factor c-Jun, the Jun N-terminal kinase (JNK) subgroup of MAP kinases (MAPKs) have recently emerged as crucial regulators of cell migration and the morphogenetic movement of epithelial sheets. In Drosophila, a well-orchestrated JNK signaling pathway controls formation of actin stress fibers and cell shape changes, which are required for the sealing of embryonic epidermis in a process known as dorsal closure. The JNK pathway is also involved in morphogenetic processes in mice including closure of the eyelid, neural tube and optic fissure. This article focuses on recent advances in understanding the role of JNK pathway in the regulation of cell migration, cytoskeleton rearrangement and the morphogenesis of epithelial sheets.
Collapse
Affiliation(s)
- Ying Xia
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, 123 East Shields Street, Cincinnati, OH 45267-0056, USA.
| | | |
Collapse
|
133
|
Altan ZM, Fenteany G. c-Jun N-terminal kinase regulates lamellipodial protrusion and cell sheet migration during epithelial wound closure by a gene expression-independent mechanism. Biochem Biophys Res Commun 2004; 322:56-67. [PMID: 15313173 DOI: 10.1016/j.bbrc.2004.07.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Indexed: 02/05/2023]
Abstract
c-Jun N-terminal kinase (JNK) is emerging as an important regulator of cell migration. Perturbing the JNK signaling pathway with three structurally and mechanistically distinct inhibitors that selectively target either JNKs themselves or the upstream mixed-lineage kinases, we found dramatic inhibition of membrane protrusion and cell sheet migration during wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers. Extension of lamellipodia is blocked from the earliest times after wounding in the presence of JNK pathway inhibitors, whereas assembly of non-protrusive actin bundles at the wound margin is unaffected. Inhibitors of the other mitogen-activated protein kinase (MAPK) pathways, the extracellular signal-regulated kinase and p38 MAPK pathways, only have comparatively weak or marginal inhibitory effects on wound closure. Multiple splice variants of both JNK1 and JNK2 are expressed in MDCK cells, and JNK1 and JNK2 are rapidly and transiently activated upon wounding. Phosphorylation of c-Jun does not appear relevant to MDCK wound closure, and membrane protrusion directly after wounding is not affected by inhibitors of RNA or protein synthesis. While most known substrates of JNK are transcription factors or proteins regulating apoptosis, our data indicate that JNK regulates protrusion and migration in a gene expression-independent manner and suggest an important cytoplasmic role for JNK in the control of cell motility.
Collapse
Affiliation(s)
- Z Melis Altan
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
134
|
Abstract
Wound healing involves a coordinated series of tissue movements that bears a striking resemblance to various embryonic morphogenetic episodes. There are several ways in which repair recapitulates morphogenesis. We describe how almost identical cytoskeletal machinery is used to repair an embryonic epithelial wound as is involved during the morphogenetic episodes of dorsal closure in Drosophila and eyelid fusion in the mouse foetus. For both naturally occurring and wound-activated tissue movements, JNK signalling appears to be crucial, as does the tight regulation of associated cell divisions and adhesions. In the embryo, both morphogenesis and repair are achieved with a perfect end result, whereas repair of adult tissues leads to scarring. We discuss whether this may be due to the adult inflammatory response, which is absent in the embryo.
Collapse
Affiliation(s)
- Paul Martin
- Department of Physiology, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
135
|
Morel V, Arias AM. Armadillo/beta-catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 2004; 131:3273-83. [PMID: 15226252 DOI: 10.1242/dev.01217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the end of germband retraction, the dorsal epidermis of the Drosophila embryo exhibits a discontinuity that is covered by the amnioserosa. The process of dorsal closure (DC) involves a coordinated set of cell-shape changes within the epidermis and the amnioserosa that result in epidermal continuity. Polarisation of the dorsal-most epidermal (DME) cells in the plane of the epithelium is an important aspect of DC. The DME cells of embryos mutant for wingless or dishevelled exhibit polarisation defects and fail to close properly. We have investigated the role of the Wingless signalling pathway in the polarisation of the DME cells and DC. We find that the beta-catenin-dependent Wingless signalling pathway is required for polarisation of the DME cells. We further show that although the DME cells are polarised in the plane of the epithelium and present polarised localisation of proteins associated with the process of planar cell polarity (PCP) in the wing, e.g. Flamingo, PCP Wingless signalling is not involved in DC.
Collapse
Affiliation(s)
- Véronique Morel
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
136
|
Galko MJ, Krasnow MA. Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2004; 2:E239. [PMID: 15269788 PMCID: PMC479041 DOI: 10.1371/journal.pbio.0020239] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 05/26/2004] [Indexed: 12/21/2022] Open
Abstract
To establish a genetic system to study postembryonic wound healing, we characterized epidermal wound healing in Drosophila larvae. Following puncture wounding, larvae begin to bleed but within an hour a plug forms in the wound gap. Over the next couple of hours the outer part of the plug melanizes to form a scab, and epidermal cells surrounding the plug orient toward it and then fuse to form a syncytium. Subsequently, more-peripheral cells orient toward and fuse with the central syncytium. During this time, the Jun N-terminal kinase (JNK) pathway is activated in a gradient emanating out from the wound, and the epidermal cells spread along or through the wound plug to reestablish a continuous epithelium and its basal lamina and apical cuticle lining. Inactivation of the JNK pathway inhibits epidermal spreading and reepithelialization but does not affect scab formation or other wound healing responses. Conversely, mutations that block scab formation, and a scabless wounding procedure, provide evidence that the scab stabilizes the wound site but is not required to initiate other wound responses. However, in the absence of a scab, the JNK pathway is hyperinduced, reepithelialization initiates but is not always completed, and a chronic wound ensues. The results demonstrate that the cellular responses of wound healing are under separate genetic control, and that the responses are coordinated by multiple signals emanating from the wound site, including a negative feedback signal between scab formation and the JNK pathway. Cell biological and molecular parallels to vertebrate wound healing lead us to speculate that wound healing is an ancient response that has diversified during evolution.
Collapse
Affiliation(s)
- Michael J Galko
- 1Howard Hughes Medical Institute and Department of BiochemistryStanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Mark A Krasnow
- 1Howard Hughes Medical Institute and Department of BiochemistryStanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
137
|
Park JM, Brady H, Ruocco MG, Sun H, Williams D, Lee SJ, Kato T, Richards N, Chan K, Mercurio F, Karin M, Wasserman SA. Targeting of TAK1 by the NF-kappa B protein Relish regulates the JNK-mediated immune response in Drosophila. Genes Dev 2004; 18:584-94. [PMID: 15037551 PMCID: PMC374239 DOI: 10.1101/gad.1168104] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The molecular circuitry underlying innate immunity is constructed of multiple, evolutionarily conserved signaling modules with distinct regulatory targets. The MAP kinases and the IKK-NF-kappa B molecules play important roles in the initiation of immune effector responses. We have found that the Drosophila NF-kappa B protein Relish plays a crucial role in limiting the duration of JNK activation and output in response to Gram-negative infections. Relish activation is linked to proteasomal degradation of TAK1, the upstream MAP kinase kinase kinase required for JNK activation. Degradation of TAK1 leads to a rapid termination of JNK signaling, resulting in a transient JNK-dependent response that precedes the sustained induction of Relish-dependent innate immune loci. Because the IKK-NF-kappa B module also negatively regulates JNK activation in mammals, thereby controlling inflammation-induced apoptosis, the regulatory cross-talk between the JNK and NF-kappa B pathways appears to be broadly conserved.
Collapse
Affiliation(s)
- Jin Mo Park
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, 92093-0636, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Bogoyevitch MA, Boehm I, Oakley A, Ketterman AJ, Barr RK. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:89-101. [PMID: 15023353 DOI: 10.1016/j.bbapap.2003.11.016] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 11/12/2003] [Indexed: 12/27/2022]
Abstract
The c-Jun N-terminal protein kinases (JNKs) form one subfamily of the mitogen-activated protein kinase (MAPK) group of serine/threonine protein kinases. The JNKs were first identified by their activation in response to a variety of extracellular stresses and their ability to phosphorylate the N-terminal transactivation domain of the transcription factor c-Jun. One approach to study the function of the JNKs has included in vivo gene knockouts of each of the three JNK genes. Whilst loss of either JNK1 or JNK2 alone appears to have no serious consequences, their combined knockout is embryonic lethal. In contrast, the loss of JNK3 is not embryonic lethal, but rather protects the adult brain from glutamate-induced excitotoxicity. This latter example has generated considerable enthusiasm with JNK3, considered an appropriate target for the treatment of diseases in which neuronal death should be prevented (e.g. stroke, Alzheimer's and Parkinson's diseases). More recently, these gene knockout animals have been used to demonstrate that JNK could provide a suitable target for the protection against obesity and diabetes and that JNKs may act as tumour suppressors. Considerable effort is being directed to the development of chemical inhibitors of the activators of JNKs (e.g. CEP-1347, an inhibitor of the MLK family of JNK pathway activators) or of the JNKs themselves (e.g. SP600125, a direct inhibitor of JNK activity). These most commonly used inhibitors have demonstrated efficacy for use in vivo, with the successful intervention to decrease brain damage in animal models (CEP-1347) or to ameliorate some of the symptoms of arthritis in other animal models (SP600125). Alternative peptide-based inhibitors of JNKs are now also in development. The possible identification of allosteric modifiers rather than direct ATP competitors could lead to inhibitors of unprecedented specificity and efficacy.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
139
|
Cha GH, Cho KS, Lee JH, Kim M, Kim E, Park J, Lee SB, Chung J. Discrete functions of TRAF1 and TRAF2 in Drosophila melanogaster mediated by c-Jun N-terminal kinase and NF-kappaB-dependent signaling pathways. Mol Cell Biol 2003; 23:7982-91. [PMID: 14585960 PMCID: PMC262421 DOI: 10.1128/mcb.23.22.7982-7991.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two Drosophila tumor necrosis factor receptor-associated factors (TRAF), DTRAF1 and DTRAF2, are proposed to have similar functions with their mammalian counterparts as a signal mediator of cell surface receptors. However, their in vivo functions and related signaling pathways are not fully understood yet. Here, we show that DTRAF1 is an in vivo regulator of c-Jun N-terminal kinase (JNK) pathway in Drosophila melanogaster. Ectopic expression of DTRAF1 in the developing eye induced apoptosis, thereby causing a rough-eye phenotype. Further genetic interaction analyses revealed that the apoptosis in the eye imaginal disc and the abnormal eye morphogenesis induced by DTRAF1 are dependent on JNK and its upstream kinases, Hep and DTAK1. In support of these results, DTRAF1-null mutant showed a remarkable reduction in JNK activity with an impaired development of imaginal discs and a defective formation of photosensory neuron arrays. In contrast, DTRAF2 was demonstrated as an upstream activator of nuclear factor-kappaB (NF-kappaB). Ectopic expression of DTRAF2 induced nuclear translocation of two Drosophila NF-kappaBs, DIF and Relish, consequently activating the transcription of the antimicrobial peptide genes diptericin, diptericin-like protein, and drosomycin. Consistently, the null mutant of DTRAF2 showed immune deficiencies in which NF-kappaB nuclear translocation and antimicrobial gene transcription against microbial infection were severely impaired. Collectively, our findings demonstrate that DTRAF1 and DTRAF2 play pivotal roles in Drosophila development and innate immunity by differentially regulating the JNK- and the NF-kappaB-dependent signaling pathway, respectively.
Collapse
Affiliation(s)
- Guang-Ho Cha
- National Creative Research Initiatives Center for Cell Growth Regulation, and Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong, Taejon 305-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Tran DH, Berg CA. bullwinkle and shark regulate dorsal-appendage morphogenesis in Drosophila oogenesis. Development 2003; 130:6273-82. [PMID: 14602681 DOI: 10.1242/dev.00854] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
bullwinkle (bwk) regulates embryonic anteroposterior patterning and, through a novel germline-to-soma signal, morphogenesis of the eggshell dorsal appendages. We screened for dominant modifiers of the bullwinkle mooseantler eggshell phenotype and identified shark, which encodes an SH2-domain, ankyrin-repeat tyrosine kinase. At the onset of dorsal-appendage formation, shark is expressed in a punctate pattern in the squamous stretch cells overlying the nurse cells. Confocal microscopy with cell-type-specific markers demonstrates that the stretch cells act as a substrate for the migrating dorsal-appendage-forming cells and extend cellular projections towards them. Mosaic analyses reveal that shark is required in follicle cells for cell migration and chorion deposition. Proper shark RNA expression in the stretch cells requires bwk activity, while restoration of shark expression in the stretch cells suppresses the bwk dorsal-appendage phenotype. These results suggest that shark plays an important downstream role in the bwk-signaling pathway. Candidate testing implicates Src42A in a similar role, suggesting conservation with a vertebrate signaling pathway involving non-receptor tyrosine kinases.
Collapse
Affiliation(s)
- David H Tran
- Department of Genome Sciences, University of Washington, Box 357730, Seattle, WA 98195-7730, USA
| | | |
Collapse
|
141
|
Wei HC, Sanny J, Shu H, Baillie DL, Brill JA, Price JV, Harden N. The Sac1 Lipid Phosphatase Regulates Cell Shape Change and the JNK Cascade during Dorsal Closure in Drosophila. Curr Biol 2003; 13:1882-7. [PMID: 14588244 DOI: 10.1016/j.cub.2003.09.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Sac1 lipid phosphatase dephosphorylates several phosphatidylinositol (PtdIns) phosphates and, in yeast, regulates a diverse range of cellular processes including organization of the actin cytoskeleton and secretion. We have identified mutations in the gene encoding Drosophila Sac1. sac1 mutants die as embryos with defects in dorsal closure (DC). DC involves the migration of the epidermis to close a hole in the dorsal surface of the embryo occupied by the amnioserosa. It requires cell shape change in both the epidermis and amnioserosa and activation of a Jun N-terminal kinase (JNK) MAPK cascade in the leading edge cells of the epidermis [2]. Loss of Sac1 leads to the improper activation of two key events in DC: cell shape change in the amnioserosa and JNK signaling. sac1 interacts genetically with other participants in these two events, and our data suggest that loss of Sac1 leads to upregulation of one or more signals controlling DC. This study is the first report of a role for Sac1 in the development of a multicellular organism.
Collapse
Affiliation(s)
- Ho-Chun Wei
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
142
|
Pantalacci S, Tapon N, Léopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 2003; 5:921-7. [PMID: 14502295 DOI: 10.1038/ncb1051] [Citation(s) in RCA: 464] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 08/27/2003] [Indexed: 11/08/2022]
Abstract
Tissue growth during animal development is tightly controlled so that the organism can develop harmoniously. The salvador (sav) gene, which encodes a scaffold protein, has been shown to restrict cell number by coordinating cell-cycle exit and apoptosis during Drosophila development. Here we identify Hippo (Hpo), the Drosophila orthologue of the mammalian MST1 and MST2 serine/threonine kinases, as a partner of Sav. Loss of hpo function leads to sav-like phenotypes, whereas gain of hpo function results in the opposite phenotype. Whereas Sav and Hpo normally restrict cellular quantities of the Drosophila inhibitor of apoptosis protein DIAP1, overexpression of Hpo destabilizes DIAP1 in cell culture. We show that DIAP1 is phosphorylated in a Hpo-dependent manner in S2 cells and that Hpo can phosphorylate DIAP1 in vitro. Thus, Hpo may promote apoptosis by reducing cellular amounts of DIAP1. In addition, we show that Sav is an unstable protein that is stabilized by Hpo. We propose that Hpo and Sav function together to restrict tissue growth in vivo.
Collapse
Affiliation(s)
- Sophie Pantalacci
- Institute of Signalling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre de Biochimie, Université de Nice, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
143
|
Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 2003; 114:457-67. [PMID: 12941274 DOI: 10.1016/s0092-8674(03)00557-9] [Citation(s) in RCA: 769] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Establishing and maintaining homeostasis is critical to the well-being of an organism and is determined by the balance of cell proliferation and death. Two genes that function together to regulate growth, proliferation, and apoptosis in Drosophila are warts (wts), encoding a serine/threonine kinase, and salvador (sav), encoding a WW domain containing Wts-interacting protein. However, the mechanisms by which sav and wts regulate growth and apoptosis are not well understood. Here, we describe mutations in hippo (hpo), which encodes a protein kinase most related to mammalian Mst1 and Mst2. Like wts and sav, hpo mutations result in increased tissue growth and impaired apoptosis characterized by elevated levels of the cell cycle regulator cyclin E and apoptosis inhibitor DIAP1. Hpo, Sav, and Wts interact physically and functionally, and regulate DIAP1 levels, likely by Hpo-mediated phosphorylation and subsequent degradation. Thus, Hpo links Sav and Wts to a key regulator of apoptosis.
Collapse
Affiliation(s)
- Kieran F Harvey
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
144
|
Rintelen F, Hafen E, Nairz K. The Drosophila dual-specificity ERK phosphatase DMKP3 cooperates with the ERK tyrosine phosphatase PTP-ER. Development 2003; 130:3479-90. [PMID: 12810595 DOI: 10.1242/dev.00568] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ERK MAP kinase plays a key role in relaying extracellular signals to transcriptional regulation. As different activity levels or the different duration of ERK activity can elicit distinct responses in one and the same cell, ERK has to be under strict positive and negative control. Although numerous genes acting positively in the ERK signaling pathway have been recovered in genetic screens, mutations in genes encoding negative ERK regulators appear underrepresented. We therefore sought to genetically characterize the dual-specificity phosphatase DMKP3. First, we established a novel assay to elucidate the substrate preferences of eukaryotic phosphatases in vivo and thereby confirmed the specificity of DMKP3 as an ERK phosphatase. The Dmkp3 overexpression phenotype characterized in this assay permitted us to isolate Dmkp3 null mutations. By genetic analysis we show that DMKP3 and the tyrosine phosphatase PTP-ER perform partially redundant functions on the same substrate, ERK. DMKP3 functions autonomously in a subset of photoreceptor progenitor cells in eye imaginal discs. In addition, DMKP3 function appears to be required in surrounding non-neuronal cells for ommatidial patterning and photoreceptor differentiation.
Collapse
Affiliation(s)
- Felix Rintelen
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
145
|
Huang C, Rajfur Z, Borchers C, Schaller MD, Jacobson K. JNK phosphorylates paxillin and regulates cell migration. Nature 2003; 424:219-23. [PMID: 12853963 DOI: 10.1038/nature01745] [Citation(s) in RCA: 408] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Accepted: 05/13/2003] [Indexed: 11/08/2022]
Abstract
The c-Jun amino-terminal kinase (JNK) is generally thought to be involved in inflammation, proliferation and apoptosis. Accordingly, its substrates are transcription factors and anti-apoptotic proteins. However, JNK has also been shown to be required for Drosophila dorsal closure, and MAP kinase/ERK kinase kinase 1, an upstream kinase in the JNK pathway, has been shown to be essential for cell migration. Both results imply that JNK is important in cell migration. Here we show that JNK1 is required for the rapid movement of both fish keratocytes and rat bladder tumour epithelial cells (NBT-II). Moreover, JNK1 phosphorylates serine 178 on paxillin, a focal adhesion adaptor, both in vitro and in intact cells. NBT-II cells expressing the Ser 178 --> Ala mutant of paxillin (Pax(S178A)) formed focal adhesions and exhibited the limited movement associated with such contacts in both single-cell-migration and wound-healing assays. In contrast, cells expressing wild-type paxillin moved rapidly and retained close contacts as the predominant adhesion. Expression of Pax(S178A) also inhibited the migration of two other cell lines. Thus, phosphorylation of paxillin by JNK seems essential for maintaining the labile adhesions required for rapid cell migration.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina 27599-7090, USA
| | | | | | | | | |
Collapse
|
146
|
Weston CR, Wong A, Hall JP, Goad MEP, Flavell RA, Davis RJ. JNK initiates a cytokine cascade that causes Pax2 expression and closure of the optic fissure. Genes Dev 2003; 17:1271-80. [PMID: 12756228 PMCID: PMC196061 DOI: 10.1101/gad.1087303] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The c-Jun NH(2)-terminal kinase (JNK) group of mitogen-activated protein kinases is stimulated in response to a wide array of cellular stresses and proinflammatory cytokines. Mice lacking individual members of the Jnk family (Jnk1, Jnk2, and Jnk3) are viable and survive without overt structural abnormalities. Here we show that mice with a compound deficiency in Jnk expression can survive to birth, but fail to close the optic fissure (retinal coloboma). We demonstrate that JNK initiates a cytokine cascade of bone morphogenetic protein-4 (BMP4) and sonic hedgehog (Shh) that induces the expression of the paired-like homeobox transcription factor Pax2 and closure of the optic fissure. Interestingly, the role of JNK to regulate BMP4 expression during optic fissure closure is conserved in Drosophila during dorsal closure, a related morphogenetic process that requires JNK-regulated expression of the BMP4 ortholog Decapentaplegic (Dpp).
Collapse
Affiliation(s)
- Claire R Weston
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | |
Collapse
|
147
|
Sathyanarayana P, Barthwal MK, Lane ME, Acevedo SF, Skoulakis EMC, Bergmann A, Rana A. Drosophila mixed lineage kinase/slipper, a missing biochemical link in Drosophila JNK signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:77-84. [PMID: 12676357 DOI: 10.1016/s0167-4889(03)00022-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mixed lineage kinases (MLKs) belong to the family of mitogen activated protein kinase kinase kinase (MAPKKK) and cause neuronal cell death mediated through c-Jun, N-terminal kinase (JNK) pathway. Recently, genetic studies in Drosophila revealed the presence of an MLK termed slipper (slpr). However, its biochemical features like physiological substrate, role in different MAPK pathways and developmental and tissue-specific expression pattern were not reported. Here, we report cDNA cloning, expression analysis and biochemical characterization of a Drosophila mixed lineage kinase (dMLK) that is also known as slipper. The protein structure analysis of dMLK/slipper revealed, in addition to the conserved domains, a stretch of glutamine in the amino terminus and an asparagine-threonine stretch at the carboxy-terminus. In situ hybridization and reverse transcriptase polymerase chain reaction (RT-PCR) analysis revealed that dMLK is expressed in early embryonic stages, adult brain and thorax. Ectopic expression of dMLK either in Drosophila S2 or in mammalian HEK293 cells leads to activation of JNK, p38 and extracellular signal regulated kinase (ERK) pathways. Further, dMLK directly phosphorylates Hep, dMKK4 and also their mammalian counterparts, MKK7 and SEK1, in an in vitro kinase assay. Taken together, our results provide for the first time a comprehensive expression profile and new biochemical insight of dMLK/slipper.
Collapse
Affiliation(s)
- Pradeep Sathyanarayana
- The Division of Molecular Cardiology, Cardiovascular Research Institute, College of Medicine, The Texas A&M University System HSC, 1901 South 1st St. Bldg.162, Temple, TX 76504, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Schneeberger D, Raabe T. Mbt, a Drosophila PAK protein, combines with Cdc42 to regulate photoreceptor cell morphogenesis. Development 2003; 130:427-37. [PMID: 12490550 DOI: 10.1242/dev.00248] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Drosophila gene mushroom bodies tiny (mbt) encodes a putative p21-activated kinase (PAK), a family of proteins that has been implicated in a multitude of cellular processes including regulation of the cytoskeleton, cell polarisation, control of MAPK signalling cascades and apoptosis. The mutant phenotype of mbt is characterised by fewer neurones in the brain and the eye, indicating a role of the protein in cell proliferation, differentiation or survival. We show that mutations in mbt interfere with photoreceptor cell morphogenesis. Mbt specifically localises at adherens junctions of the developing photoreceptor cells. A structure-function analysis of the Mbt protein in vitro and in vivo revealed that the Mbt kinase domain and the GTPase binding domain, which specifically interacts with GTP-loaded Cdc42, are important for Mbt function. Besides regulation of kinase activity, another important function of Cdc42 is to recruit Mbt to adherens junctions. We propose a role for Mbt as a downstream effector of Cdc42 in photoreceptor cell morphogenesis.
Collapse
Affiliation(s)
- Daniela Schneeberger
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Versbacherstr. 5, 97078 Würzburg, Germany
| | | |
Collapse
|
149
|
Abstract
To date, the role of transport and insertion of membrane in the control of membrane remodelling during cell and tissue morphogenesis has received little attention. In contrast, the contributions of cytoskeletal rearrangements and both intercellular and cell-substrate attachments have been the focus of many studies. Here, we review work from many developmental systems that highlights the importance of polarized membrane growth and suggests a general model for the role of endocytic recycling during cell morphogenesis. We also address how the spatio-temporal control of membrane insertion during development can account for various classes of tissue rearrangements. We suggest that tubulogenesis, tissue spreading and cell intercalation stem mostly from a remarkably small number of cell intrinsic surface remodelling events that confer on cells different modes of migratory behaviours.
Collapse
Affiliation(s)
- Thomas Lecuit
- Laboratoire de Génétique et de Physiologie du Developpement, Institut de Biologie du Développement de Marseille, CNRS-Université de la Méditerrannée, Campus de Luminy, Case 907 13288 Marseille Cedex 09, France.
| | | |
Collapse
|
150
|
Chen W, White MA, Cobb MH. Stimulus-specific requirements for MAP3 kinases in activating the JNK pathway. J Biol Chem 2002; 277:49105-10. [PMID: 12351623 DOI: 10.1074/jbc.m204934200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are activated by numerous ligands typically through a protein kinase cascade minimally composed of the MAPK in series with a MAP2 kinase (MAP2K) and a MAP3K. This arrangement is thought to confer specificity and appropriate kinetic properties on the activation of MAPKs in response to physiological stimuli. Surprisingly, more than a dozen MAP3Ks have been identified that activate the c-Jun N-terminal kinases (JNKs) when overexpressed, but there is no clear understanding of which kinases actually mediate JNK activation by ligands. Here, we use double-stranded RNA-mediated interference of gene expression to reveal the explicit participation of discrete MAP3Ks in controlling JNK activity by multiple stimuli. Maximal activation of JNK by lipopolysaccharide requires the MAP3K TAK1. On the other hand, sorbitol requires expression of four MAP3Ks to cause maximal JNK activation. Thus, we demonstrate that specific stimuli use different mechanisms to recruit distinct MAP3Ks to regulate the JNK pathway.
Collapse
Affiliation(s)
- Wei Chen
- Departments of Pharmacology and Cell Biology and Neuroscience, the University of Texas Southwestern Medical Center, 5323 Harry hines Boulevard, Dallas, TX 75390-9041, USA
| | | | | |
Collapse
|