101
|
Luo X, Qiu Y, Dinesh P, Gong W, Jiang L, Feng X, Li J, Jiang Y, Lei YL, Chen Q. The functions of autophagy at the tumour-immune interface. J Cell Mol Med 2021; 25:2333-2341. [PMID: 33605033 PMCID: PMC7933948 DOI: 10.1111/jcmm.16331] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Autophagy is frequently induced in the hypoxic tumour microenvironment. Accumulating evidence reveals important functions of autophagy at the tumour-immune interface. Herein, we propose an update on the roles of autophagy in modulating tumour immunity. Autophagy promotes adaptive resistance of established tumours to the cytotoxic effects of natural killer cells (NKs), macrophages and effector T cells. Increased autophagic flux in tumours dampen their immunogenicity and inhibits the expansion of cytotoxic T lymphocytes (CTLs) by suppressing the activation of STING type I interferon signalling (IFN-I) innate immune sensing pathway. Autophagy in suppressive tumour-infiltrating immune subsets maintains their survival through metabolic remodelling. On the other hand, autophagy is involved in the antigen processing and presentation process, which is essential for anti-tumour immune responses. Genetic deletion of autophagy induces spontaneous tumours in some models. Thus, the role of autophagy is context-dependent. In summary, our review has revealed the dichotomous roles of autophagy in modulating tumour immunity. Broad targeting of autophagy may not yield maximal benefits. The characterization of specific genes regulating tumour immunogenicity and innovation in targeted delivery of autophagy inhibitors into certain tumours are among the most urgent tasks to sensitize cold cancers to immunotherapy.
Collapse
Affiliation(s)
- Xiaobo Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Palani Dinesh
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Wang Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu L Lei
- Department of Periodontics and Oral Medicine, Department of Otolaryngology-Head and Neck Surgery, Rogel Cancer Center, the University of Michigan, Ann Arbor, MI, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
102
|
Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatroodi SA, Alsahli MA, Rahmani AH, Almatroudi A, Dev K. Autophagy Paradox of Cancer: Role, Regulation, and Duality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832541. [PMID: 33628386 PMCID: PMC7892237 DOI: 10.1155/2021/8832541] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institutes of Medical Sciences, New Delhi, India
| | - Sanjeev Ranjan
- Institute of Biomedicine, Cell and Tissue Imaging Unit, Finland
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
103
|
Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F. Autophagy in the cancer-immunity dialogue. Adv Drug Deliv Rev 2021; 169:40-50. [PMID: 33301821 DOI: 10.1016/j.addr.2020.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is quintessential for the maintenance of cellular homeostasis in all eukaryotic cells, explaining why both normal and malignant cells benefit from proficient autophagic responses. Moreover, autophagy is intimately involved in the immunological control of malignant transformation, tumor progression and response to therapy. However, the net effect of autophagy activation or inhibition on the natural growth or therapeutic response of tumors evolving in immunocompetent hosts exhibits a considerable degree of context dependency. Here, we discuss the complex cross-talk between autophagy and immuno-oncology as delineated by genetic and pharmacological approaches in mouse models of cancer.
Collapse
|
104
|
Sencan S, Tanriover M, Ulasli M, Karakas D, Ozpolat B. UV radiation resistance-associated gene (UVRAG) promotes cell proliferation, migration, invasion by regulating cyclin-dependent kinases (CDK) and integrin-β/Src signaling in breast cancer cells. Mol Cell Biochem 2021; 476:2075-2084. [PMID: 33515382 DOI: 10.1007/s11010-021-04063-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Breast cancer is a highly heterogeneous group of human cancer with distinct genetic, biological and clinicopathological features. Triple-negative breast cancer (TNBC) is the most aggressive and metastatic type of breast cancer and associated with poor patient survival. However, the role of UV Radiation Resistance-Associated Gene (UVRAG) in TNBC remains unknown. Here, we report that UVRAG is highly upregulated in all TNBC cells and its knockdown leads to the inhibition of cell proliferation, colony formation and progression of cell cycle, which is associated with and reduced expression of cell cycle related protein expression, including Cyclin A2, B1, D1, cdc2 and cdk6 in TNBC cells. Inhibition of UVRAG also suppressed cell motility, migration and invasion of TNBC cells by inhibition of Integrin β1 and β3 and Src activity. Our findings suggest for the first time that UVRAG expression contributes to proliferation, cell cycle progression, motility/migration and invasion of TNBC cells. Thus, targeting UVRAG could be a potential strategy in breast cancer especially against TNBC.
Collapse
Affiliation(s)
- Sevide Sencan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA.,Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mine Tanriover
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Mustafa Ulasli
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Didem Karakas
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX, 77030, USA. .,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
105
|
Abstract
Autophagy is deregulated in many cancers and represents an attractive target for therapeutic intervention. However, the precise contributions of autophagy to metastatic progression, the principle cause of cancer-related mortality, is only now being uncovered. While autophagy promotes primary tumor growth, metabolic adaptation and resistance to therapy, recent studies have unexpectedly revealed that autophagy suppresses the proliferative outgrowth of disseminated tumor cells into overt and lethal macrometastases. These studies suggest autophagy plays unexpected and complex roles in the initiation and progression of metastases, which will undoubtedly impact therapeutic approaches for cancer treatment. Here, we discuss the intricacies of autophagy in metastatic progression, highlighting and integrating the pleiotropic roles of autophagy on diverse cell biological processes involved in metastasis.
Collapse
Affiliation(s)
- Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115 USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
106
|
Hao M, Yeo SK, Turner K, Harold A, Yang Y, Zhang X, Guan JL. Autophagy Blockade Limits HER2+ Breast Cancer Tumorigenesis by Perturbing HER2 Trafficking and Promoting Release Via Small Extracellular Vesicles. Dev Cell 2021; 56:341-355.e5. [PMID: 33472043 DOI: 10.1016/j.devcel.2020.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023]
Abstract
Autophagy modulation is an emerging strategy for cancer therapy. By deleting an essential autophagy gene or disrupting its autophagy function, we determined a mechanism of HER2+ breast cancer tumorigenesis by directly regulating the oncogenic driver. Disruption of FIP200-mediated autophagy reduced HER2 expression on the tumor cell surface and abolished mammary tumorigenesis in MMTV-Neu mice. Decreased HER2 surface expression was due to trafficking from the Golgi to the endocytic pathways instead of the plasma membrane. Autophagy inhibition led to HER2 accumulation in early and late endosomes associated with intraluminal vesicles and released from tumor cells in small extracellular vesicles (sEVs). Increased HER2 release from sEVs correlated with reduced tumor cell surface levels. Blocking sEVs secretion rescued HER2 levels in tumor cells. Our results demonstrate a role for autophagy to promote tumorigenesis in HER2+ breast cancer. This suggests that blocking autophagy could supplement current anti-HER2 agents for treating the disease.
Collapse
Affiliation(s)
- Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kevin Turner
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alexis Harold
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yongguang Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
107
|
Chen M, Gowd V, Wang M, Chen F, Cheng KW. The apple dihydrochalcone phloretin suppresses growth and improves chemosensitivity of breast cancer cells via inhibition of cytoprotective autophagy. Food Funct 2021; 12:177-190. [PMID: 33291138 DOI: 10.1039/d0fo02362k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inhibitory effect and mechanism of the apple dihydrochalcone, phloretin, on breast cancer cell growth were evaluated in in vitro conditions simulating complete nutrition and glucose-restriction, respectively. In two breast cancer cell lines with different histological backgrounds, phloretin consistently exhibited much stronger activity against cell growth in glucose-limiting than in full media. RNA-seq analysis showed that key autophagy-related genes were downregulated upon phloretin treatment in both estrogen-receptor-positive MCF7 and triple-negative MDA-MB-231 cells. Immunoblotting verified significantly decreased expression of LC3B-II by phloretin in low-glucose and glucose-free media, but not in full medium. Together with the use of two pharmacological autophagy inhibitors, chloroquine and 3-methyladenine, and confocal microscopy of breast cancer cell lines transfected with GFP-LC3B, phloretin demonstrated a strong capability to suppress autophagic flux, which was likely mediated through downregulation of mTOR/ULK1 signaling, whereas the expression of canonical autophagy regulators ATG5 and ATG7 was not significantly affected. Phloretin also reversed tamoxifen- and doxorubicin-induced cytoprotective autophagy in the breast cancer cell lines, and this was manifested in its synergistic growth inhibitory effect with these chemotherapeutic agents. Furthermore, it was able to restore or enhance the chemosensitivity of a tamoxifen-resistant cell line. Taken together, our study has, for the first time, revealed that phloretin could effectively suppress glucose-starvation- and chemotherapeutic-induced cytoprotective autophagy in breast cancer cell lines likely through downregulation of mTOR/ULK1 signaling.
Collapse
Affiliation(s)
- Ming Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China and Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
108
|
Maiti A, Hait NC. Autophagy-mediated tumor cell survival and progression of breast cancer metastasis to the brain. J Cancer 2021; 12:954-964. [PMID: 33442395 PMCID: PMC7797661 DOI: 10.7150/jca.50137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Brain metastases represent a substantial amount of morbidity and mortality in breast cancer (BC). Metastatic breast tumor cells committed to brain metastases are unique because they escape immune surveillance, can penetrate the blood-brain barrier, and also adapt to the brain tissue microenvironment (TME) for colonization and outgrowth. In addition, dynamic intracellular interactions between metastatic cancer cells and neighboring astrocytes in the brain are thought to play essential roles in brain tumor progression. A better understanding of the above mechanisms will lead to developing more effective therapies for brain metastases. Growing literature suggests autophagy, a conserved lysosomal degradation pathway involved in cellular homeostasis under stressful conditions, plays essential roles in breast tumor metastatic transformation and brain metastases. Cancer cells must adapt under various microenvironmental stresses, such as hypoxia, and nutrient (glucose) deprivation, in order to survive and progress. Clinical studies reveal that tumoral expression of autophagy-related proteins is higher in brain metastasis compared to primary breast tumors. In this review, we outline the molecular mechanisms underlying autophagy-mediated BC cell survival and metastasis to the brain.
Collapse
Affiliation(s)
- Aparna Maiti
- Division of Breast Surgery and Department of Surgical Oncology, Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Nitai C. Hait
- Division of Breast Surgery and Department of Surgical Oncology, Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| |
Collapse
|
109
|
Ferraresi A, Girone C, Esposito A, Vidoni C, Vallino L, Secomandi E, Dhanasekaran DN, Isidoro C. How Autophagy Shapes the Tumor Microenvironment in Ovarian Cancer. Front Oncol 2020; 10:599915. [PMID: 33364196 PMCID: PMC7753622 DOI: 10.3389/fonc.2020.599915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Girone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
110
|
Jin KT, Lu ZB, Lv JQ, Zhang JG. The role of long non-coding RNAs in mediating chemoresistance by modulating autophagy in cancer. RNA Biol 2020; 17:1727-1740. [PMID: 32129701 PMCID: PMC7714480 DOI: 10.1080/15476286.2020.1737787] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex process in which protein-coding and non-coding genes play essential roles. Long noncoding RNAs (lncRNAs), as a subclass of noncoding genes, are implicated in various cancer processes including growth, proliferation, metastasis, and angiogenesis. Due to presence in body fluids such as blood and urine, lncRNAs have become novel biomarkers in cancer detection, diagnosis, progression, and therapy response. Remarkably, increasing evidence has verified that lncRNAs play essential roles in chemoresistance by targeting different signalling pathways. Autophagy, a highly conserved process in response to environmental stresses such as starvation and hypoxia, plays a paradoxical role in inducing resistance or sensitivity to chemotherapy agents. In this regard, we reviewed chemoresistance, the role of lncRNAs in cancer, and the role of lncRNAs in chemoresistance by modulating autophagy.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Ze-Bei Lu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| | - Jie-Qing Lv
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
111
|
The Role of Autophagy in Liver Cancer: Crosstalk in Signaling Pathways and Potential Therapeutic Targets. Pharmaceuticals (Basel) 2020; 13:ph13120432. [PMID: 33260729 PMCID: PMC7760785 DOI: 10.3390/ph13120432] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal-dependent pathway for degrading cytoplasmic proteins, macromolecules, and organelles. Autophagy-related genes (Atgs) are the core molecular machinery in the control of autophagy, and several major functional groups of Atgs coordinate the entire autophagic process. Autophagy plays a dual role in liver cancer development via several critical signaling pathways, including the PI3K-AKT-mTOR, AMPK-mTOR, EGF, MAPK, Wnt/β-catenin, p53, and NF-κB pathways. Here, we review the signaling pathways involved in the cross-talk between autophagy and hepatocellular carcinoma (HCC) and analyze the status of the development of novel HCC therapy by targeting the core molecular machinery of autophagy as well as the key signaling pathways. The induction or the inhibition of autophagy by the modulation of signaling pathways can confer therapeutic benefits to patients. Understanding the molecular mechanisms underlying the cross-link of autophagy and HCC may extend to translational studies that may ultimately lead to novel therapy and regimen formation in HCC treatment.
Collapse
|
112
|
Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D, Wagatsuma K, Itoi T, Nakase H. Autophagy and Autophagy-Related Diseases: A Review. Int J Mol Sci 2020; 21:ijms21238974. [PMID: 33255983 PMCID: PMC7729615 DOI: 10.3390/ijms21238974] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy refers to the process involving the decomposition of intracellular components via lysosomes. Autophagy plays an important role in maintaining and regulating cell homeostasis by degrading intracellular components and providing degradation products to cells. In vivo, autophagy has been shown to be involved in the starvation response, intracellular quality control, early development, and cell differentiation. Recent studies have revealed that autophagy dysfunction is implicated in neurodegenerative diseases and tumorigenesis. In addition to the discovery of certain disease-causing autophagy-related mutations and elucidation of the pathogenesis of conditions resulting from the abnormal degradation of selective autophagy substrates, the activation of autophagy is essential for prolonging life and suppressing aging. This article provides a comprehensive review of the role of autophagy in health, physiological function, and autophagy-related disease.
Collapse
Affiliation(s)
- Tadashi Ichimiya
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo 160-0023, Japan;
| | - Tsukasa Yamakawa
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Daisuke Hirayama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Kohei Wagatsuma
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo 160-0023, Japan;
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan; (T.I.); (T.Y.); (T.H.); (Y.Y.); (Y.H.); (D.H.); (K.W.)
- Correspondence: ; Tel.: +81-11-611-2111
| |
Collapse
|
113
|
Lim J, Murthy A. Targeting Autophagy to Treat Cancer: Challenges and Opportunities. Front Pharmacol 2020; 11:590344. [PMID: 33381037 PMCID: PMC7768823 DOI: 10.3389/fphar.2020.590344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a catabolic process that targets its cargo for lysosomal degradation. In addition to its function in maintaining tissue homeostasis, autophagy is recognized to play a context-dependent role in cancer. Autophagy may inhibit tumor initiation under specific contexts; however, a growing body of evidence supports a pro-tumorigenic role of this pathway in established disease. In this setting, autophagy drives treatment resistance, metabolic changes, and immunosuppression both in a tumor-intrinsic and extrinsic manner. This observation has prompted renewed interest in targeting autophagy for cancer therapy. Novel genetic models have proven especially insightful, revealing unique and overlapping roles of individual autophagy-related genes in tumor progression. Despite identification of pharmacologically actionable nodes in the pathway, fundamental challenges still exist for successful therapeutic inhibition of autophagy. Here we summarize the current understanding of autophagy as a driver of resistance against targeted and immuno-therapies and highlight knowledge gaps that, if addressed, may provide meaningful advances in the treatment of cancer.
Collapse
Affiliation(s)
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, United States
| |
Collapse
|
114
|
Lefort S, Balani S, Pellacani D, Guyot B, Gorski SM, Maguer-Satta V, Eaves CJ. Single-cell analysis of autophagy activity in normal and de novo transformed human mammary cells. Sci Rep 2020; 10:20266. [PMID: 33219251 PMCID: PMC7679376 DOI: 10.1038/s41598-020-77347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Assessment of autophagy activity has historically been limited to investigations of fixed tissue or bulk cell populations. To address questions of heterogeneity and relate measurements to functional properties of viable cells isolated from primary tissue, we created a lentiviral (RFP-GFP-MAP1LC3B) vector that allows the autophagosome and autolysosome content of transduced cells to be monitored at the single-cell level. Use of this strategy to analyze purified subsets of normal human mammary cells showed that both the luminal progenitor-containing (LP) subset and the basal cells (BCs) display highly variable but overall similar autophagic flux activity despite differences suggested by measurements of the proteins responsible (i.e., LC3B, ATG7 and BECLIN1) in bulk lysates. Autophagosome content was also highly variable in the clonogenic cells within both the LPs and BCs, but the proliferative response of the BCs was more sensitive to autophagy inhibition. In addition, use of this vector showed cells with the lowest autophagosome content elicited the fastest tumor growth in 2 different models of human mammary tumorigenesis. These results illustrate the utility of this vector to define differences in the autophagy properties of individual cells in primary tissue and couple these with their responses to proliferative and oncogenic stimuli.
Collapse
Affiliation(s)
- Sylvain Lefort
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada. .,Centre de Recherche en Cancérologie de LyonInserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France.
| | - Sneha Balani
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Boris Guyot
- Centre de Recherche en Cancérologie de LyonInserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Véronique Maguer-Satta
- Centre de Recherche en Cancérologie de LyonInserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| |
Collapse
|
115
|
Farhan M, Silva M, Li S, Yan F, Fang J, Peng T, Hu J, Tsao M, Little P, Zheng W. The role of FOXOs and autophagy in cancer and metastasis-Implications in therapeutic development. Med Res Rev 2020; 40:2089-2113. [PMID: 32474970 PMCID: PMC7586888 DOI: 10.1002/med.21695] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 04/21/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Autophagy is a highly conserved intracellular degradation process that plays a crucial role in cell survival and stress reactions as well as in cancer development and metastasis. Autophagy process involves several steps including sequestration, fusion of autophagosomes with lysosomes and degradation. Forkhead box O (FOXO) transcription factors regulate the expression of genes involved in cellular metabolic activity and signaling pathways of cancer growth and metastasis. Recent evidence suggests that FOXO proteins are also involved in autophagy regulation. The relationship among FOXOs, autophagy, and cancer has been drawing attention of many who work in the field. This study summarizes the role of FOXO proteins and autophagy in cancer growth and metastasis and analyzes their potential roles in cancer disease management.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Marta Silva
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Shuai Li
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Fengxia Yan
- Department of MedicineJinan UniversityGuangzhouChina
| | - Jiankang Fang
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Tangming Peng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| | - Jim Hu
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Ming‐Sound Tsao
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Peter Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of QueenslandWoolloongabbaQueenslandAustralia
| | - Wenhua Zheng
- Faculty of Health SciencesCentre of Reproduction, Development and Aging, Institute of Translational Medicine, University of MacauTaipaMacau SARChina
| |
Collapse
|
116
|
Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. ACTA ACUST UNITED AC 2020; 1:923-934. [PMID: 34476408 DOI: 10.1038/s43018-020-00110-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macroautophagy (hereafter autophagy) degrades and recycles intracellular components to sustain metabolism and survival during starvation. Host autophagy promotes tumor growth by providing essential tumor nutrients. Autophagy also regulates immune cell homeostasis and function and suppresses inflammation. Although host autophagy does not promote a T-cell anti-tumor immune response in tumors with low tumor mutational burden (TMB), whether this was the case in tumors with high TMB was not known. Here we show that autophagy, especially in the liver, promotes tumor immune tolerance by enabling regulatory T-cell function and limiting stimulator of interferon genes, T-cell response and interferon-γ, which enables growth of high-TMB tumors. We have designated this as hepatic autophagy immune tolerance. Autophagy thereby promotes tumor growth through both metabolic and immune mechanisms depending on mutational load and autophagy inhibition is an effective means to promote an antitumor T-cell response in high-TMB tumors.
Collapse
|
117
|
Tumors Responsive to Autophagy-Inhibition: Identification and Biomarkers. Cancers (Basel) 2020; 12:cancers12092463. [PMID: 32878084 PMCID: PMC7563256 DOI: 10.3390/cancers12092463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although the principle of personalized medicine has been the focus of attention, many cancer therapies are still based on a one-size-fits-all approach. The same holds true for targeting cancer cell survival mechanism that allows cancer cells to recycle their constituents (autophagy). In the past several indicators of elevated dependence of cancer cells on autophagy have been described. Addition of autophagy-inhibiting agents could be beneficial in treatment of these tumors. The biomarkers and mechanisms that lead to elevated dependence on autophagy are reviewed in the current manuscript. Abstract Recent advances in cancer treatment modalities reveal the limitations of the prevalent “one-size-fits-all” therapies and emphasize the necessity to develop personalized approaches. In this perspective, identification of predictive biomarkers and intrinsic vulnerabilities are an important advancement for further therapeutic strategies. Autophagy is an important lysosomal degradation and recycling pathway that provides energy and macromolecular precursors to maintain cellular homeostasis. Although all cells require autophagy, several genetic and/or cellular changes elevate the dependence of cancer cells on autophagy for their survival and indicates that autophagy inhibition in these tumors could provide a favorable addition to current therapies. In this context, we review the current literature on tumor (sub)types with elevated dependence on autophagy for their survival and highlight an exploitable vulnerability. We provide an inventory of microenvironmental factors, genetic alterations and therapies that may be exploited with autophagy-targeted approaches to improve efficacy of conventional anti-tumor therapies.
Collapse
|
118
|
Yeo SK, Wang C, Guan JL. Role of FIP200 in inflammatory processes beyond its canonical autophagy function. Biochem Soc Trans 2020; 48:1599-1607. [PMID: 32662824 DOI: 10.1042/bst20191156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
FIP200 (RB1CC1) is a critical regulator of canonical macroautophagy and has also emerged as a crucial regulator of selective autophagy as well as inflammatory processes. The illumination of FIP200's role in autophagy at the molecular level has been accompanied by studies demonstrating the importance of its autophagy function in physiological processes in mammals and pathological contexts such as cancer. However, there is an increasing appreciation that most, if not all of the autophagy genes, also play a role in other processes such as LC3-associated phagocytosis, vesicle trafficking and protein secretion. Consequently, this has led to efforts in generating specific mutants of autophagy genes that are more amenable to dissecting their autophagy versus non-autophagy functions. In this aspect, we have generated a FIP200 knock-in mouse allele that is defective for canonical macroautophagy. This has revealed a canonical-autophagy-independent function of FIP200 that is responsible for limiting pro-inflammatory signaling. In this review, we will discuss FIP200's role in this process, the implications with regards to cancer immunotherapy and highlight key prospective avenues to specifically dissect the distinct functions of FIP200.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
119
|
Yeo SK, Zhu X, Okamoto T, Hao M, Wang C, Lu P, Lu LJ, Guan JL. Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer. eLife 2020; 9:e58810. [PMID: 32840210 PMCID: PMC7447441 DOI: 10.7554/elife.58810] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer stem cells (BCSCs) contribute to intra-tumoral heterogeneity and therapeutic resistance. However, the binary concept of universal BCSCs co-existing with bulk tumor cells is over-simplified. Through single-cell RNA-sequencing, we found that Neu, PyMT and BRCA1-null mammary tumors each corresponded to a spectrum of minimally overlapping cell differentiation states without a universal BCSC population. Instead, our analyses revealed that these tumors contained distinct lineage-specific tumor propagating cells (TPCs) and this is reflective of the self-sustaining capabilities of lineage-specific stem/progenitor cells in the mammary epithelial hierarchy. By understanding the respective tumor hierarchies, we were able to identify CD14 as a TPC marker in the Neu tumor. Additionally, single-cell breast cancer subtype stratification revealed the co-existence of multiple breast cancer subtypes within tumors. Collectively, our findings emphasize the need to account for lineage-specific TPCs and the hierarchical composition within breast tumors, as these heterogenous sub-populations can have differential therapeutic susceptibilities.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
- Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied ScienceCincinnatiUnited States
| | - Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Cailian Wang
- School of Information Management, Wuhan UniversityWuhanChina
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
- School of Information Management, Wuhan UniversityWuhanChina
| | - Long Jason Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Research FoundationCincinnatiUnited States
- Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied ScienceCincinnatiUnited States
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
120
|
Arensman MD, Yang XS, Zhong W, Bisulco S, Upeslacis E, Rosfjord EC, Deng S, Abraham RT, Eng CH. Anti-tumor immunity influences cancer cell reliance upon ATG7. Oncoimmunology 2020; 9:1800162. [PMID: 32923161 PMCID: PMC7458662 DOI: 10.1080/2162402x.2020.1800162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Macroautophagy (autophagy) is an essential cellular catabolic process required for survival under conditions of starvation. The role of autophagy in cancer is complex, context-dependent and at times contradictory, as it has been shown to inhibit, promote or be dispensable for tumor progression. In this study, we evaluated the contribution of the immune system to the reliance of tumors on autophagy by depleting autophagy-related 7 (ATG7) in murine tumor cells and grafting into immunocompetent versus immunodeficient hosts. Although loss of ATG7 did not affect tumor growth in vitro or in immunodeficient mice, our studies revealed that cancer cell reliance on autophagy was influenced by anti-tumor immune responses, including those mediated by CD8+ T cells. Furthermore, we provide insights into possible mechanisms by which autophagy disruption can enhance anti-tumor immune responses and suggest that autophagy disruption may further benefit patients with immunoreactive tumors.
Collapse
Affiliation(s)
| | - Xiaoran S. Yang
- Pfizer, Oncology Research & Development, Pearl River, NY, USA
| | - Wenyan Zhong
- Pfizer, Oncology Research & Development, Pearl River, NY, USA
| | | | - Erik Upeslacis
- Pfizer, Oncology Research & Development, Pearl River, NY, USA
| | | | - Shibing Deng
- Pfizer, Oncology Research & Development, San Diego, CA, USA
| | | | | |
Collapse
|
121
|
Kang HJ, Yoo EJ, Lee HH, An SM, Park H, Lee-Kwon W, Choi SY, Kwon HM. TonEBP Promotes β-Cell Survival under ER Stress by Enhancing Autophagy. Cells 2020; 9:cells9091928. [PMID: 32825390 PMCID: PMC7563687 DOI: 10.3390/cells9091928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) stress response and autophagy are important cellular responses that determine cell fate and whose dysregulation is implicated in the perturbation of homeostasis and diseases. Tonicity-responsive enhancer-binding protein (TonEBP, also called NFAT5) is a pleiotropic stress protein that mediates both protective and pathological cellular responses. Here, we examined the role of TonEBP in β-cell survival under ER stress. We found that TonEBP increases β-cell survival under ER stress by enhancing autophagy. The level of TonEBP protein increased under ER stress due to a reduction in its degradation via the ubiquitin–proteasome pathway. In response to ER stress, TonEBP increased autophagosome formations and suppressed the accumulation of protein aggregates and β-cell death. The Rel-homology domain of TonEBP interacted with FIP200, which is essential for the initiation of autophagy, and was required for autophagy and cell survival upon exposure to ER stress. Mice in which TonEBP was specifically deleted in pancreatic endocrine progenitor cells exhibited defective glucose homeostasis and a loss of islet mass. Taken together, these findings demonstrate that TonEBP protects against ER stress-induced β-cell death by enhancing autophagy.
Collapse
|
122
|
Molecular mechanisms of interplay between autophagy and metabolism in cancer. Life Sci 2020; 259:118184. [PMID: 32763290 DOI: 10.1016/j.lfs.2020.118184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022]
Abstract
Autophagy is an essential mechanism of cellular degradation, a way to protect the cells under stress conditions, such as deprivation of nutrients, growth factors and cellular damage. However, in normal physiology autophagy plays a significant role in cancer cells. Current research is in progress to understand how autophagy and cancer cells go hand in hand to support cancer cell progression. The important aspect in cancer and autophagy is the interdependence of autophagy in the survival and progression of cancer cells. Autophagy is known to be a major cause of chemotherapeutic resistance in various cancer cell types. Therefore, inhibition of autophagy as an effective therapeutic approach is being actively studied and tested in clinical studies. Multiple metabolic pathways are linked with autophagy that could potentially be a significant target for chemotherapeutic strategy. The comprehension of the interconnection of autophagy with cancer metabolism can pave a novel findings for effective combinatorial therapeutic strategies.
Collapse
|
123
|
Sharma P, Dando I, Strippoli R, Kumar S, Somoza A, Cordani M, Tafani M. Nanomaterials for Autophagy-Related miRNA-34a Delivery in Cancer Treatment. Front Pharmacol 2020; 11:1141. [PMID: 32792960 PMCID: PMC7393066 DOI: 10.3389/fphar.2020.01141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
Autophagy is an evolutionary conserved physiological process with a fundamental role during development, differentiation, and survival of eukaryotic cells. On the other hand, autophagy dysregulation is observed in many pathological conditions, including cancer. In particular, tumor growth and progression are accompanied and promoted by increased autophagy that allows cancer cells to escape apoptosis and to proliferate also in harsh microenvironments. It is, therefore, clear that the impairment of the autophagic process may represent a valid strategy to inhibit or reduce cancer growth and progression. Among the plethora of molecular players controlling cancer growth, a group of small endogenous noncoding RNAs called microRNAs (miRNAs) has recently emerged. In fact, miRNAs can act as either oncogenes or oncosuppressors depending on their target genes. Moreover, among miRNAs, miRNA-34a has been connected with both tumor repression and autophagy regulation, and its expression is frequently lost in many cancers. Therefore, enforced expression of miRNA-34a in cancer cells may represent a valid strategy to reduce cancer growth. However, such strategy is limited by the fast biodegradation and short half-life of miRNA-34a and by the lack of an efficient intracellular delivery system. The following review describes the autophagic process and its role in cancer as well as the role of miRNAs in general and miRNA-34a in particular in regulating tumor growth by modulating autophagy. Finally, we describe the use of nanoparticles as a promising strategy to selectively deliver miRNA-34a to tumor cells for therapeutic and diagnostic purposes.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Ilaria Dando
- Section of Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Rome, Italy
| | - Suresh Kumar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | | | | | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
124
|
Camuzard O, Santucci-Darmanin S, Carle GF, Pierrefite-Carle V. Autophagy in the crosstalk between tumor and microenvironment. Cancer Lett 2020; 490:143-153. [PMID: 32634449 DOI: 10.1016/j.canlet.2020.06.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/31/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is the major catabolic process in eukaryotic cells for the degradation and recycling of damaged macromolecules and organelles. It plays a crucial role in cell quality control and nutrient supply under stress conditions. Although autophagy is classically described as a degradative mechanism, it can also be involved in some secretion pathways, leading to the extracellular release of proteins, aggregates, or organelles. The role of autophagy in cancer is complex and depends on tumor development stage. While autophagy limits cancer development in the early stages of tumorigenesis, it can also have a protumoral role in more advanced cancers, promoting primary tumor growth and metastatic spread. In addition to its pro-survival role in established tumors, autophagy recently emerged as an active player in the crosstalk between tumor and stromal cells. The aim of this review is to analyze the impact of tumoral autophagy on the microenvironment and conversely the effect of stromal cell autophagy on tumor cells.
Collapse
Affiliation(s)
- Olivier Camuzard
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France; Service de Chirurgie Réparatrice et de la Main, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/Institut des sciences du vivant Frédéric Joliot, Université Côte d'Azur, Faculté de Médecine, Nice, France.
| |
Collapse
|
125
|
Okamoto T, Yeo SK, Hao M, Copley MR, Haas MA, Chen S, Guan JL. FIP200 Suppresses Immune Checkpoint Therapy Responses in Breast Cancers by Limiting AZI2/TBK1/IRF Signaling Independent of Its Canonical Autophagy Function. Cancer Res 2020; 80:3580-3592. [PMID: 32580962 DOI: 10.1158/0008-5472.can-20-0519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Immune checkpoint inhibitors (ICI) have the potential to induce durable therapeutic responses, yet response rates in breast cancer are modest and limited to particular subtypes. To expand the applicability of ICI, we examined the role of an essential autophagy gene, FIP200, which has been shown to be important for tumor progression in mammary tumors. Specific disruption of the autophagy function of FIP200 or complete ablation of FIP200 in genetic mouse models revealed that FIP200 autophagy function was required for progression of PyMT-driven mammary tumors. However, a noncanonical autophagy function of FIP200 was responsible for limiting T-cell recruitment and activation of the TBK1-IFN signaling axis. FIP200 also interacted with the TBK1 adaptor protein, AZI2, which was crucial for activation of TBK1 following FIP200 ablation. Accordingly, disrupting the noncanonical autophagy function of FIP200 in combination with ICI therapy led to superior, durable responses in immune-competent models of breast cancer. Collectively, these insights could guide future development of therapeutic agents against FIP200 for combinatorial ICI therapies in nonresponsive breast cancers. SIGNIFICANCE: These findings show that deletion of FIP200 enhances immune checkpoint inhibitor efficacy in nonresponsive breast cancer.
Collapse
Affiliation(s)
- Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary Rose Copley
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael A Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
126
|
DeVorkin L, Pavey N, Carleton G, Comber A, Ho C, Lim J, McNamara E, Huang H, Kim P, Zacharias LG, Mizushima N, Saitoh T, Akira S, Beckham W, Lorzadeh A, Moksa M, Cao Q, Murthy A, Hirst M, DeBerardinis RJ, Lum JJ. Autophagy Regulation of Metabolism Is Required for CD8 + T Cell Anti-tumor Immunity. Cell Rep 2020; 27:502-513.e5. [PMID: 30970253 DOI: 10.1016/j.celrep.2019.03.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a cell survival process essential for the regulation of immune responses to infections. However, the role of T cell autophagy in anti-tumor immunity is less clear. Here, we demonstrate a cell-autonomous role for autophagy in the regulation of CD8+ T-cell-mediated control of tumors. Mice deficient for the essential autophagy genes Atg5, Atg14, or Atg16L1 display a dramatic impairment in the growth of syngeneic tumors. Moreover, T cells lacking Atg5 have a profound shift to an effector memory phenotype and produce greater amounts of interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α). Mechanistically, Atg5-/- CD8+ T cells exhibit enhanced glucose metabolism that results in alterations in histone methylation, increases in H3K4me3 density, and transcriptional upregulation of both metabolic and effector target genes. Nonetheless, glucose restriction is sufficient to suppress Atg5-dependent increases in effector function. Thus, autophagy-dependent changes in CD8+ T cell metabolism directly regulate anti-tumor immunity.
Collapse
Affiliation(s)
- Lindsay DeVorkin
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Nils Pavey
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Gillian Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alexandra Comber
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Cally Ho
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Erin McNamara
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Haochu Huang
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Paul Kim
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Saitoh
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Shizuo Akira
- Department of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Wayne Beckham
- BC Cancer-Vancouver Island Centre, Medical Physics, Victoria, BC, Canada; Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Qi Cao
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Martin Hirst
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, Canada
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, Department of Pediatrics and McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
127
|
Meng Q, Zhang Y, Hu LG. Targeting Autophagy Facilitates T Lymphocyte Migration by Inducing the Expression of CXCL10 in Gastric Cancer Cell Lines. Front Oncol 2020; 10:886. [PMID: 32582551 PMCID: PMC7280490 DOI: 10.3389/fonc.2020.00886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a type of cellular catabolic degradation process that occurs in response to nutrient starvation or metabolic stress, and is a valuable resource for highly proliferating cancer cells. Autophagy also facilitates the resistance of cancer cells to antitumor therapies. However, the involvement of autophagy in regulating CXCL10 expression in gastric cancer (GC) cells and T lymphocyte migration remains unclear. In this study, we aimed to investigate the effect of autophagy inhibition on CXCL10 expression and T lymphocyte infiltration in GC and elucidate the underlying mechanism. Analysis of public databases revealed a positive correlation between CXCL10 expression and both prognosis of patients with GC and the expression profile of T lymphocyte markers in the GCs. Chemotaxis and spheroid infiltration assays revealed that CXCL10 induced T lymphocyte migration and infiltration into GC spheroids, an in vitro three-dimensional cell culture model. In addition, in vitro autophagy inhibition in GC cells increased CXCL10 expression under both normal and hypoxic culture conditions. Further investigation on the underlying mechanism showed that in vitro autophagy inhibition suppressed the JNK signaling pathway and further enhanced CXCL10 expression in GC cells. Collectively, our results provide novel insights for understanding the role of autophagy in regulation of intra-tumor immunity.
Collapse
Affiliation(s)
- Qingyuan Meng
- Department of Comparative Biology and Safety Science, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, China
| | - Yihong Zhang
- Department of Comparative Biology and Safety Science, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, China
| | - Liangbiao George Hu
- Department of Comparative Biology and Safety Science, Amgen Biopharmaceutical R&D (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
128
|
Yang F, Sun S, Wang C, Haas M, Yeo S, Guan JL. Targeted therapy for mTORC1-driven tumours through HDAC inhibition by exploiting innate vulnerability of mTORC1 hyper-activation. Br J Cancer 2020; 122:1791-1802. [PMID: 32336756 PMCID: PMC7283252 DOI: 10.1038/s41416-020-0839-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGOUND The mechanistic target of rapamycin complex 1 (mTORC1) is important in the development and progression of many cancers. Targeted cancer therapy using mTORC1 inhibitors is used for treatment of cancers; however, their clinical efficacies are still limited. METHODS We recently created a new mouse model for human lymphangiosarcoma by deleting Tsc1 in endothelial cells and consequent hyper-activation of mTORC1. Using Tsc1iΔEC tumour cells from this mouse model, we assessed the efficacies of histone deacetylase (HDAC) inhibitors as anti-tumour agents for mTORC1-driven tumours. RESULTS Unlike the cytostatic effect of mTORC1 inhibitors, HDAC inhibitors induced Tsc1iΔEC tumour cell death in vitro and their growth in vivo. Analysis of several HDAC inhibitors suggested stronger anti-tumour activity of class I HDAC inhibitor than class IIa or class IIb inhibitors, but these or pan HDAC inhibitor SAHA did not affect mTORC1 activation in these cells. Moreover, HDAC inhibitor-induced cell death required elevated autophagy, but was not affected by disrupting caspase-dependent apoptosis pathways. We also observed increased reactive oxygen species and endoplasmic reticulum stress in SAHA-treated tumour cells, suggesting their contribution to autophagic cell death, which were dependent on mTORC1 hyper-activation. CONCLUSION These studies suggest a potential new treatment strategy for mTORC1-driven cancers like lymphangiosarcoma through an alternative mechanism.
Collapse
Affiliation(s)
- Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Shaogang Sun
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Syn Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
129
|
Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ 2020; 27:858-871. [PMID: 31900427 PMCID: PMC7206137 DOI: 10.1038/s41418-019-0480-9] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a process in which intracellular components and dysfunctional organelles are delivered to the lysosome for degradation and recycling. Autophagy has various connections to a large number of human diseases, as its functions are essential for cell survival, bioenergetic homeostasis, organism development, and cell death regulation. In the past two decades, substantial effort has been made to identify the roles of autophagy in tumor suppression and promotion, neurodegenerative disorders, and other pathophysiologies. This review summarizes the current advances and discusses the unanswered questions in understanding the involvement of autophagy in pathogenic mechanisms of disease, primarily focusing on cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying Yang
- Department of Molecular, Cellular, and Developmental Biology, and the Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, and the Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
130
|
Marsh T, Kenific CM, Suresh D, Gonzalez H, Shamir ER, Mei W, Tankka A, Leidal AM, Kalavacherla S, Woo K, Werb Z, Debnath J. Autophagic Degradation of NBR1 Restricts Metastatic Outgrowth during Mammary Tumor Progression. Dev Cell 2020; 52:591-604.e6. [PMID: 32084360 DOI: 10.1016/j.devcel.2020.01.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/25/2019] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Although autophagy is being pursued as a therapeutic target in clinical oncology trials, its effects on metastasis, the principal cause of cancer mortality, remain unclear. Here, we utilize mammary cancer models to temporally delete essential autophagy regulators during carcinoma progression. Though genetic ablation of autophagy strongly attenuates primary mammary tumor growth, impaired autophagy promotes spontaneous metastasis and enables the outgrowth of disseminated tumor cells into overt macro-metastases. Transcriptomic analysis reveals that autophagy deficiency elicits a subpopulation of otherwise luminal tumor cells exhibiting basal differentiation traits, which is reversed upon preventing accumulation of the autophagy cargo receptor, Neighbor to BRCA1 (NBR1). Furthermore, pharmacological and genetic induction of autophagy suppresses pro-metastatic differentiation and metastatic outgrowth. Analysis of human breast cancer data reveal that autophagy gene expression inversely correlates with pro-metastatic differentiation signatures and predicts overall and distant metastasis-free survival. Overall, these findings highlight autophagy-dependent control of NBR1 as a key determinant of metastatic progression.
Collapse
Affiliation(s)
- Timothy Marsh
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Candia M Kenific
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepthisri Suresh
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hugo Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eliah R Shamir
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wenbin Mei
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexandra Tankka
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew M Leidal
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sandhya Kalavacherla
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kimberly Woo
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zena Werb
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
131
|
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19:12. [PMID: 31969156 PMCID: PMC6975070 DOI: 10.1186/s12943-020-1138-4] [Citation(s) in RCA: 1015] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, as a type II programmed cell death, plays crucial roles with autophagy-related (ATG) proteins in cancer. Up to now, the dual role of autophagy both in cancer progression and inhibition remains controversial, in which the numerous ATG proteins and their core complexes including ULK1/2 kinase core complex, autophagy-specific class III PI3K complex, ATG9A trafficking system, ATG12 and LC3 ubiquitin-like conjugation systems, give multiple activities of autophagy pathway and are involved in autophagy initiation, nucleation, elongation, maturation, fusion and degradation. Autophagy plays a dynamic tumor-suppressive or tumor-promoting role in different contexts and stages of cancer development. In the early tumorigenesis, autophagy, as a survival pathway and quality-control mechanism, prevents tumor initiation and suppresses cancer progression. Once the tumors progress to late stage and are established and subjected to the environmental stresses, autophagy, as a dynamic degradation and recycling system, contributes to the survival and growth of the established tumors and promotes aggressiveness of the cancers by facilitating metastasis. This indicates that regulation of autophagy can be used as effective interventional strategies for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shikun He
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, 100044, China.,Department of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Binyun Ma
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
132
|
Lee JS, Jang EH, Woo HA, Lee K. Regulation of Autophagy Is a Novel Tumorigenesis-Related Activity of Multifunctional Translationally Controlled Tumor Protein. Cells 2020; 9:cells9010257. [PMID: 31968668 PMCID: PMC7017196 DOI: 10.3390/cells9010257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is highly conserved in eukaryotic organisms and plays multiple roles regulating cellular growth and homeostasis. Because of its anti-apoptotic activity and its role in the regulation of cancer metastasis, TCTP has become a promising target for cancer therapy. Moreover, growing evidence points to its clinical role in cancer prognosis. How TCTP regulates cellular growth in cancer has been widely studied, but how it regulates cellular homeostasis has received relatively little attention. This review discusses how TCTP is related to cancer and its potential as a target in cancer therapeutics, including its novel role in the regulation of autophagy. Regulation of autophagy is essential for cell recycling and scavenging cellular materials to sustain cell survival under the metabolic stress that cancer cells undergo during their aggressive proliferation.
Collapse
|
133
|
Wu M, Zhang P. EGFR-mediated autophagy in tumourigenesis and therapeutic resistance. Cancer Lett 2020; 469:207-216. [DOI: 10.1016/j.canlet.2019.10.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
|
134
|
Autophagy in the Immunosuppressive Perivascular Microenvironment of Glioblastoma. Cancers (Basel) 2019; 12:cancers12010102. [PMID: 31906065 PMCID: PMC7016956 DOI: 10.3390/cancers12010102] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GB) has been shown to up-regulate autophagy with anti- or pro-oncogenic effects. Recently, our group has shown how GB cells aberrantly up-regulate chaperone-mediated autophagy (CMA) in pericytes of peritumoral areas to modulate their immune function through cell-cell interaction and in the tumor’s own benefit. Thus, to understand GB progression, the effect that GB cells could have on autophagy of immune cells that surround the tumor needs to be deeply explored. In this review, we summarize all the latest evidence of several molecular and cellular immunosuppressive mechanisms in the perivascular tumor microenvironment. This immunosuppression has been reported to facilitate GB progression and may be differently modulated by several types of autophagy as a critical point to be considered for therapeutic interventions.
Collapse
|
135
|
Mesquita A, Pereira J, Jenny A. Streamlined particle quantification (SParQ) plug-in is an automated fluorescent vesicle quantification plug-in for particle quantification in Fiji/ImageJ. Autophagy 2019; 16:1711-1717. [PMID: 31752589 DOI: 10.1080/15548627.2019.1695400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The endolysosomal system is critical for protein homeostasis in cells. A common way of studying protein transport and degradation (e.g. via autophagy) is by labeling vesicular structures such as endosomes, autophagosomes, lysosomes, or model substrates with fluorescent tags or by fluorescent antibody staining. Detailed analyses require quantification of hundreds of structures under various conditions. Typically, the images are analyzed individually with software such as the widely available Fiji/ImageJ (https://imagej.net/Fiji/Downloads), adjusting and thresholding each image and channel independently, which is a very labor intensive and fastidious task. To streamline the process, we developed a plug-in that, integrated into Fiji, enables the automated quantification of vesicular (i.e. punctate) structures. Importantly, the process still allows the operator to evaluate and have control over all the phases of quantification process. ABBREVIATIONS CMA: chaperone-mediated autophagy; CSV: comma separated values; eMI: endosomal microautophagy; Fiji: Fiji is just ImageJ; MA: macroautophagy; SParQ: Streamlined Particle Quantification.
Collapse
Affiliation(s)
- Ana Mesquita
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine , New York, NY, USA
| | - Joao Pereira
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine , New York, NY, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine , New York, NY, USA
| |
Collapse
|
136
|
Wang C, Haas MA, Yang F, Yeo S, Okamoto T, Chen S, Wen J, Sarma P, Plas DR, Guan JL. Autophagic lipid metabolism sustains mTORC1 activity in TSC-deficient neural stem cells. Nat Metab 2019; 1:1127-1140. [PMID: 32577608 PMCID: PMC7311104 DOI: 10.1038/s42255-019-0137-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigenesis, and the formation of the neurodevelopmental lesion of Tuberous Sclerosis Complex (TSC). Analysing mice that lack Tsc1 and the essential autophagy gene Fip200 in NSCs we find that TSC-deficient cells require autophagy to maintain mTORC1 hyperactivation under energy stress conditions, likely to provide lipids via lipophagy to serve as an alternative energy source for OXPHOS. In vivo, inhibition of lipophagy or its downstream catabolic pathway reverses defective phenotypes caused by Tsc1-null NSCs and reduces tumorigenesis in mouse models. These results reveal a cooperative function of selective autophagy in coupling energy availability with TSC pathogenesis and suggest a potential new therapeutic strategy to treat TSC patients.
Collapse
Affiliation(s)
- Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Michael A Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fuchun Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Syn Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jian Wen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Breast Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pranjal Sarma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
137
|
苑 敏, 董 淑, 姚 言, 门 运, 毛 凯, 童 旭. [Inhibitory effect of connexin43 protein on autophagy in cisplatin-resistant testicular cancer I-10 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1089-1093. [PMID: 31640960 PMCID: PMC6881733 DOI: 10.12122/j.issn.1673-4254.2019.09.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of connexin43 (Cx43) protein on autophagy in cisplatin (DDP)-resistant testicular cancer I-10 cells. METHODS The expression of Cx43 proteins in testicular cancer I-10 cells and I-10/DDP cells were detected with Western blotting. I-10/DDP cells were transfected with a full- length mouse Cx43 vector (mCx43) via Lipofectamine2000, the empty vector or Lipofectamine2000 (blank control group), and the changes in the expressions of LC3 and p62 proteins were determined with Western blotting. mCherry-GFP-LC3B transfection and transmission electron microscopy were used to analyze the changes in autophagy of the cells with Cx43 overexpression. RESULTS Cx43 was significantly decreased in I-10/DDP cells compared with I-10 cells (P < 0.01). Transfection of the I-10/DDP cells with mCx43 vector resulted in significantly increased Cx43 expression in the cells (P < 0.01) and caused significantly decreased expression of LC3-Ⅱ (P < 0.01) and increased expression of p62 (P < 0.05) as compared with the negative control cells. Both transmission electron microscopy and mCherry-GFP-LC3B transfection showed that the number of autophagosomes was obviously reduced in mCx43-transfected cells as compared with the negative control cells. CONCLUSIONS Cx43 inhibits autophagy in cisplatin-resistant testicular cancer I-10 /DDP cells.
Collapse
Affiliation(s)
- 敏 苑
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 淑英 董
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 言雪 姚
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 运政 门
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 凯锦 毛
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 旭辉 童
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
138
|
Rojas-Sanchez G, Cotzomi-Ortega I, Pazos-Salazar NG, Reyes-Leyva J, Maycotte P. Autophagy and Its Relationship to Epithelial to Mesenchymal Transition: When Autophagy Inhibition for Cancer Therapy Turns Counterproductive. BIOLOGY 2019; 8:biology8040071. [PMID: 31554173 PMCID: PMC6956138 DOI: 10.3390/biology8040071] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
The manipulation of autophagy for cancer therapy has gained recent interest in clinical settings. Although inhibition of autophagy is currently being used in clinical trials for the treatment of several malignancies, autophagy has been shown to have diverse implications for normal cell homeostasis, cancer cell survival, and signaling to cells in the tumor microenvironment. Among these implications and of relevance for cancer therapy, the autophagic process is known to be involved in the regulation of protein secretion, in tumor cell immunogenicity, and in the regulation of epithelial-to-mesenchymal transition (EMT), a critical step in the process of cancer cell invasion. In this work, we have reviewed recent evidence linking autophagy to the regulation of EMT in cancer and normal epithelial cells, and have discussed important implications for the manipulation of autophagy during cancer therapy.
Collapse
Affiliation(s)
- Guadalupe Rojas-Sanchez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico.
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| | - Israel Cotzomi-Ortega
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico.
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| | - Nidia G Pazos-Salazar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico.
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| | - Paola Maycotte
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-CIBIOR, IMSS, Puebla 74360, Mexico.
| |
Collapse
|
139
|
Thakur B, Kumar Y, Bhatia A. Programmed necrosis and its role in management of breast cancer. Pathol Res Pract 2019; 215:152652. [PMID: 31570277 DOI: 10.1016/j.prp.2019.152652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the major causes of cancer related deaths in women worldwide. A major factor responsible for treatment failure in breast cancer is the development of resistance to commonly used chemotherapeutic drugs leading to disease relapse. Several studies have shown dysregulation of molecular machinery of apoptosis, the major programmed cell death pathway in breast malignancies. Thus, there is an unmet need to search for an alternative cell death pathway which can work when apoptosis is compromised. Necroptosis or programmed necrosis is a relatively recently described entity which has attracted attention in this context. Classically, even in physiological conditions necroptosis is found to act if apoptosis is not functional due to some reason. Recently, more and more studies are being conducted in different malignancies to explore the possibility and utility of inducing cell death by necroptosis. The present review describes the key molecular players involved in necroptotic pathway and their status in breast cancer. In addition, the research done to utilize this pathway for treatment of breast cancer has also been highlighted.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
140
|
Abstract
Macroautophagy (referred to here as autophagy) degrades and recycles cytoplasmic constituents to sustain cellular and mammalian metabolism and survival during starvation. Deregulation of autophagy is involved in numerous diseases, such as cancer. Cancers up-regulate autophagy and depend on it for survival, growth, and malignancy in a tumor cell-autonomous fashion. Recently, it has become apparent that autophagy in host tissues as well as the tumor cells themselves contribute to tumor growth. Understanding how autophagy regulates metabolism and tumor growth has revealed new essential tumor nutrients, where they come from, and how they are supplied and used, which can now be targeted for cancer therapy.
Collapse
Affiliation(s)
- Laura Poillet-Perez
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
141
|
Amaravadi RK, Kimmelman AC, Debnath J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov 2019; 9:1167-1181. [PMID: 31434711 DOI: 10.1158/2159-8290.cd-19-0292] [Citation(s) in RCA: 634] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/31/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, a multistep lysosomal degradation pathway that supports nutrient recycling and metabolic adaptation, has been implicated as a process that regulates cancer. Although autophagy induction may limit the development of tumors, evidence in mouse models demonstrates that autophagy inhibition can limit the growth of established tumors and improve response to cancer therapeutics. Certain cancer genotypes may be especially prone to autophagy inhibition. Different strategies for autophagy modulation may be needed depending on the cancer context. Here, we review new advances in the molecular control of autophagy, the role of selective autophagy in cancer, and the role of autophagy within the tumor microenvironment and tumor immunity. We also highlight clinical efforts to repurpose lysosomal inhibitors, such as hydroxychloroquine, as anticancer agents that block autophagy, as well as the development of more potent and specific autophagy inhibitors for cancer treatment, and review future directions for autophagy research. SIGNIFICANCE: Autophagy plays a complex role in cancer, but autophagy inhibition may be an effective therapeutic strategy in advanced cancer. A deeper understanding of autophagy within the tumor microenvironment has enabled the development of novel inhibitors and clinical trial strategies. Challenges and opportunities remain to identify patients most likely to benefit from this approach.
Collapse
Affiliation(s)
- Ravi K Amaravadi
- Abramson Cancer Center and the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, California
| |
Collapse
|
142
|
Das CK, Banerjee I, Mandal M. Pro-survival autophagy: An emerging candidate of tumor progression through maintaining hallmarks of cancer. Semin Cancer Biol 2019; 66:59-74. [PMID: 31430557 DOI: 10.1016/j.semcancer.2019.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Autophagy is an evolutionary conserved catabolic process that regulates the cellular homeostasis by targeting damaged cellular contents and organelles for lysosomal degradation and sustains genomic integrity, cellular metabolism, and cell survival during diverse stress and adverse conditions. Recently, the role of autophagy is extremely debated in the regulation of cancer initiation and progression. Although autophagy has a dichotomous role in the regulation of cancer, growing numbers of studies largely indicate the pro-survival role of autophagy in cancer progression and metastasis. In this review, we discuss the detailed mechanisms of autophagy, the role of pro-survival autophagy that positively drives several classical as well as emerging hallmarks of cancer for tumorigenic progression, and also we address various autophagy inhibitors that could be harnessed against pro-survival autophagy for effective cancer therapeutics. Finally, we highlight some outstanding problems that need to be deciphered extensively in the future to unravel the role of autophagy in tumor progression.
Collapse
Affiliation(s)
- Chandan Kanta Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
143
|
Anderson CM, Macleod KF. Autophagy and cancer cell metabolism. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:145-190. [PMID: 31451213 PMCID: PMC8211395 DOI: 10.1016/bs.ircmb.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is an ancient catabolic process used by cells to clear excess or dysfunctional organelles and large subcellular structures and thus performs an important housekeeping role for the cell. Autophagy is acutely sensitive to nutrient availability and is upregulated at a transcriptional and posttranslational level in response to nutrient deprivation. This serves to promote turnover of cellular content and recycling of nutrients for continued growth and survival. While important for most normal tissues, tumor cells appear to be particularly dependent on autophagy for survival under ischemic or therapeutic stress, and in response to loss of matrix attachment; autophagy is upregulated markedly in cancers as they progress to malignancy. Ras-driven tumors appear to be particularly dependent on autophagy and thus inhibition of autophagy is being pursued as a productive clinical approach for such cancers. However, this enthusiasm needs to be offset against possible negative effects of autophagy inhibition on normal tissue function and on limiting antitumor immune responses. In addressing all of these topics, we focus in on understanding how autophagy is induced by nutrient stress, its role in recycling metabolites for growing tumors, how selective forms of autophagy, such as mitophagy and ribophagy contribute specifically to tumorigenesis, how autophagy in the tumor microenvironment and throughout the animal affects access of the tumor to nutrients, and finally how different oncogenic pathways may determine which tumors respond to autophagy inhibition and which ones will not.
Collapse
Affiliation(s)
- Cara M Anderson
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States
| | - Kay F Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, The University of Chicago, Chicago, IL, United States; The Committee on Molecular Metabolism & Nutrition, The University of Chicago, Chicago, IL, United States; The Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
144
|
Piperine: role in prevention and progression of cancer. Mol Biol Rep 2019; 46:5617-5629. [PMID: 31273611 DOI: 10.1007/s11033-019-04927-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022]
Abstract
Cancer is among the leading causes of death worldwide. Several pharmacological protocols have been developed in order to block tumor progression often showing partial efficacy and severe counterproductive effects. It is now conceived that a healthy lifestyle coupled with the consumption of certain phytochemicals can play a protective role against tumor development and progression. According to this vision, it has been introduced the concept of "chemoprevention". This term refers to natural agents with the capability to interfere with the tumorigenesis and metastasis, or at least, attenuate the cancer-related symptoms. Piperine (1-Piperoylpiperidine), a main extract of Piper longum and Piper nigrum, is an alkaloid with a long history of medicinal use. In fact, it exhibits a variety of biochemical and pharmaceutical properties, including chemopreventive activities without significant cytotoxic effects on normal cells, at least at doses < of 250 µg/ml. The aim of this review is to discuss the relevant molecular and cellular mechanisms underlying the chemopreventive action of this natural alkaloid.
Collapse
|
145
|
Targeting ATG4 in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11050649. [PMID: 31083460 PMCID: PMC6562779 DOI: 10.3390/cancers11050649] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a lysosome-mediated degradation pathway that enables the degradation and recycling of cytoplasmic components to sustain metabolic homoeostasis. Recently, autophagy has been reported to have an astonishing number of connections to cancer, as tumor cells require proficient autophagy in response to metabolic and therapeutic stresses to sustain cell proliferation. Autophagy-related gene 4 (ATG4) is essential for autophagy by affecting autophagosome formation through processing full-length microtubule-associated protein 1A/1B-light chain 3 (pro-LC3) and lipidated LC3. An increasing amount of evidence suggests that ATG4B expression is elevated in certain types of cancer, implying that ATG4B is a potential anticancer target. In this review, we address the central roles of ATG4B in the autophagy machinery and in targeted cancer therapy. Specifically, we discuss how pharmacologically inhibiting ATG4B can benefit cancer therapies.
Collapse
|
146
|
Dong XL, Liu ZW. [Clinical importance of microtubule-associated protein 1 light chain 3 and mammalian target of rapamycin expression in oral leukoplakia and oral squamous cell carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 36:613-618. [PMID: 30593105 DOI: 10.7518/hxkq.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression and relationship of microtubule-associated protein 1 light chain 3 (LC3) and mammalian target of rapamycin (mTOR) in normal oral mucosa, oral leukoplakia (OLK), and oral squamous cell carcinoma (OSCC). This work also analyzed the relationship between expression levels and clinical factors. This study evaluated the clinical value of LC3B and mTOR as indices to determine the carcinogenic potential of OLK. METHODS Immunohistochemistry was used to detect the expression of LC3B and mTOR in 20 cases of normal oral mucosa, 120 cases of OLK, and 30 cases of OSCC. The clinical data of 120 patients with OLK were analyzed. The relationships between expression levels and clinical factors were investigated. RESULTS In normal oral mucosa, OLK and OSCC, the positive rates of LC3B expression were 85.0%, 65.8% and 33.3% (P<0.05), whereas the positive rates of mTOR expression were 20.0%, 48.3% and 76.7% (P<0.05). The expression levels of LC3B and mTOR were correlated and related to clinical typing of OLK (P<0.05). CONCLUSIONS LC3B and mTOR can be used as molecular biomarkers for early detection of OLK.
Collapse
Affiliation(s)
- Xiao-Lin Dong
- Stomatological Center, Xiangya Second Hospital of Central South University, Changsha 410011, China
| | - Zhi-Wen Liu
- Stomatological Center, Xiangya Second Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
147
|
Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab 2019; 29:803-826. [PMID: 30943392 PMCID: PMC6450419 DOI: 10.1016/j.cmet.2019.03.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved lysosome- or vacuole-dependent catabolic pathway in eukaryotes. Autophagy functions basally for cellular quality control and is induced to act as an alternative source of basic metabolites during nutrient deprivation. These functions of autophagy are intimately connected to the regulation of metabolism, and the metabolic status of the cell in turn controls the nature and extent of autophagic induction. Here, we highlight the co-regulation of autophagy and metabolism with a special focus on selective autophagy that, along with bulk autophagy, plays a central role in regulating and rewiring metabolic circuits. We outline the metabolic signals that activate these pathways, the mechanisms involved, and the downstream effects and implications while recognizing yet unanswered questions. We also discuss the role of autophagy in the development and maintenance of adipose tissue, an emerging player in systemic metabolic homeostasis, and describe what is currently known about the complex relationship between autophagy and cancer.
Collapse
|
148
|
Che J, Wang W, Huang Y, Zhang L, Zhao J, Zhang P, Yuan X. miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog 2019; 58:1234-1247. [PMID: 30883936 DOI: 10.1002/mc.23006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a highly conserved lysosome-mediated protective cellular process in which cytosolic components, including damaged organelles and long-lived proteins, are cleared. Many studies have shown that autophagy was upregulated in hypoxic regions. However, the precise molecular mechanism of hypoxia-induced autophagy in colorectal cancer (CRC) is still elusive. In this study, we found that miR-20a was significantly downregulated under hypoxia in colon cancer cells, and overexpression of miR-20a alleviated hypoxia-induced autophagy. Moreover, miR-20a inhibits the hypoxia-induced autophagic flux by targeting multiple key regulators of autophagy, including ATG5 and FIP200. Furthermore, by dual-luciferase assay we demonstrated that miR-20a directly targeted the 3'-untranslated region of ATG5 and FIP200, regulating their messenger RNA and protein levels. In addition, reintroduction of exogenous ATG5 or FIP200 partially reversed miR-20a-mediated autophagy inhibition under hypoxia. A negative correlation between miR-20a and its target genes is observed in the hypoxic region of colon cancer tissues. Taken together, our findings suggest that hypoxia-mediated autophagy was regulated by miR-20a/ATG5/FI200 signaling pathway in CRC. miR-20a-mediated autophagy defect that might play an important role in hypoxia-induced autophagy during colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jing Che
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenshan Wang
- Department of Cell and Developmental Biology, Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
149
|
Mirza-Aghazadeh-Attari M, Mohammadzadeh A, Adib A, Darband SG, Sadighparvar S, Mihanfar A, Majidinia M, Yousefi B. Melatonin-mediated regulation of autophagy: Making sense of double-edged sword in cancer. J Cell Physiol 2019; 234:17011-17022. [PMID: 30859580 DOI: 10.1002/jcp.28435] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Much research has been conducted to discover novel techniques to reverse the process of tumorigenesis and, cure already stablished malignancies. One well-stablished approach has been the use of organic compounds and naturally found agents such as melatonin whose anticancer effects have been shown in multiple studies, signaling a unique opportunity regarding cancer prevention and treatment. Various agents use a variety of methods to exert their anticancer effects. Two of the most important of these methods are interfering with cell signaling pathways and changing cellular functions, such as autophagy, which is essential in maintaining cellular stability against multiple exogenous and endogenous sources of stress, and is a major tool to evade early cell death. In this study, the importance of melatonin and autophagy are discussed, and the effects of melatonin on autophagy, and its contribution in the process of tumorigenesis are then noted.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mohammadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adib
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
150
|
Perera RM, Di Malta C, Ballabio A. MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:203-222. [PMID: 31650096 PMCID: PMC6812561 DOI: 10.1146/annurev-cancerbio-030518-055835] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells have an increased demand for energy sources to support accelerated rates of growth. When nutrients become limiting, cancer cells may switch to nonconventional energy sources that are mobilized through nutrient scavenging pathways involving autophagy and the lysosome. Thus, several cancers are highly reliant on constitutive activation of these pathways to degrade and recycle cellular materials. Here, we focus on the MiT/TFE family of transcription factors, which control transcriptional programs for autophagy and lysosome biogenesis and have emerged as regulators of energy metabolism in cancer. These new findings complement earlier reports that chromosomal translocations and amplifications involving the MiT/TFE genes contribute to the etiology and pathophysiology of renal cell carcinoma, melanoma, and sarcoma, suggesting pleiotropic roles for these factors in a wider array of cancers. Understanding the interplay between the oncogenic and stress-adaptive roles of MiT/TFE factors could shed light on fundamental mechanisms of cellular homeostasis and point to new strategies for cancer treatment.
Collapse
Affiliation(s)
- Rushika M Perera
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138Naples, Italy
- Department of Molecular and Human Genetics and Neurological Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|