101
|
Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem 2014; 290:3106-20. [PMID: 25505185 DOI: 10.1074/jbc.m114.593707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
102
|
Zielezinski A, Karlowski WM. Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs. ACTA ACUST UNITED AC 2014; 31:332-9. [PMID: 25304778 DOI: 10.1093/bioinformatics/btu666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MOTIVATION Argonaute-interacting WG/GW proteins are characterized by the presence of repeated sequence motifs containing glycine (G) and tryptophan (W). The motifs seem to be remarkably adaptive to amino acid substitutions and their sequences show non-contiguity. Our previous approach to the detection of GW domains, based on scoring their gross amino acid composition, allowed annotation of several novel proteins involved in gene silencing. The accumulation of new experimental data and more advanced applications revealed some deficiency of the algorithm in prediction selectivity. Additionally, W-motifs, though critical in gene regulation, have not yet been annotated in any available online resources. RESULTS We present an improved set of computational tools allowing efficient management and annotation of W-based motifs involved in gene silencing. The new prediction algorithms provide novel functionalities by annotation of the W-containing domains at the local sequence motif level rather than by overall compositional properties. This approach represents a significant improvement over the previous method in terms of prediction sensitivity and selectivity. Application of the algorithm allowed annotation of a comprehensive list of putative Argonaute-interacting proteins across eukaryotes. An in-depth characterization of the domains' properties indicates its intrinsic disordered character. In addition, we created a knowledge-based portal (whub) that provides access to tools and information on RNAi-related tryptophan-containing motifs. AVAILABILITY AND IMPLEMENTATION The web portal and tools are freely available at http://www.comgen.pl/whub. CONTACT wmk@amu.edu.pl SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Wojciech M Karlowski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
103
|
Functional diversification of maize RNA polymerase IV and V subtypes via alternative catalytic subunits. Cell Rep 2014; 9:378-390. [PMID: 25284785 DOI: 10.1016/j.celrep.2014.08.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/09/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two subtypes of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.
Collapse
|
104
|
Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends Biochem Sci 2014; 39:420-31. [DOI: 10.1016/j.tibs.2014.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
|
105
|
Karran RA, Sanfaçon H. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:933-43. [PMID: 24804809 DOI: 10.1094/mpmi-04-14-0099-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA silencing regulates plant gene expression and antiviral defenses and functions by cleaving target RNAs or repressing translation. As a counter defense, many plant viruses encode suppressor proteins that sequester small RNAs or inactivate Argonaute (AGO) proteins. All known plant virus silencing suppressor activities eventually inhibit the degradation of target mRNAs. Using a transiently expressed green fluorescent protein (GFP) reporter gene, we show that Tomato ringspot virus (ToRSV) coat protein (CP) is a suppressor of RNA silencing that enhances GFP expression but does not prevent the degradation of the GFP mRNA or the accumulation of GFP small interfering RNAs (siRNAs). Coexpression of the CP with GFP resulted in increased association of residual GFP mRNAs with polysome fractions and reduced association of GFP siRNAs with monosome fractions. AGO1 was co-immunoprecipitated with the CP and CP expression destabilized AGO1. A WG motif within the CP was critical for the enhanced GFP expression, AGO1 interaction, and AGO1 destabilization, suggesting that the ToRSV CP acts as an AGO-hook protein and competes for AGO binding with a plant cellular GW/WG protein involved in translation repression.
Collapse
|
106
|
He XJ, Ma ZY, Liu ZW. Non-coding RNA transcription and RNA-directed DNA methylation in Arabidopsis. MOLECULAR PLANT 2014; 7:1406-1414. [PMID: 24966349 DOI: 10.1093/mp/ssu075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA-directed DNA methylation (RdDM) is responsible for transcriptional silencing of endogenous transposable elements and introduced transgenes. This process requires non-coding RNAs produced by DNA-dependent RNA polymerases IV and V (Pol IV and Pol V). Pol IV-produced non-coding RNAs are precursors of 24-nt small interfering RNAs, whereas Pol V-produced ncRNAs directly act as scaffold RNAs. In this review, we summarize recent advances in the understanding of RdDM. In particular, we focus on the mechanisms underlying the recruitment of Pol IV and Pol V to chromatin and the targeting of RdDM.
Collapse
Affiliation(s)
- Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.
| | - Ze-Yang Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhang-Wei Liu
- National Institute of Biological Sciences, Beijing 102206, China
| |
Collapse
|
107
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|
108
|
Connecting the dots of RNA-directed DNA methylation in Arabidopsis thaliana. Chromosome Res 2014; 22:225-40. [PMID: 24846724 DOI: 10.1007/s10577-014-9425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Noncoding RNAs are the rising stars of genome regulation and are crucial to an organism's metabolism, development, and defense. One of their most notable functions is its ability to direct epigenetic modifications through small RNA molecules to specific genomic regions, ensuring transcriptional regulation, proper genome organization, and maintenance of genome integrity. Here, we review the current knowledge of the spatial organization of the Arabidopsis thaliana RNA-directed DNA methylation pathway within the cell nucleus, which, while known to be essential for the proper establishment of epigenetic modifications, remains poorly understood. We will also discuss possible future cytological approaches that have the potential of unveiling functional insights into how small RNA-directed epigenetics is regulated through the spatiotemporal regulation of its major components within the cell.
Collapse
|
109
|
Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht AA, Chory J, Wohlschlegel JA, Patel DJ, Jacobsen SE. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 2014; 157:1050-60. [PMID: 24855943 PMCID: PMC4123750 DOI: 10.1016/j.cell.2014.03.056] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/20/2014] [Accepted: 03/17/2014] [Indexed: 01/01/2023]
Abstract
DNA methylation is a conserved epigenetic gene-regulation mechanism. DOMAINS REARRANGED METHYLTRANSFERASE (DRM) is a key de novo methyltransferase in plants, but how DRM acts mechanistically is poorly understood. Here, we report the crystal structure of the methyltransferase domain of tobacco DRM (NtDRM) and reveal a molecular basis for its rearranged structure. NtDRM forms a functional homodimer critical for catalytic activity. We also show that Arabidopsis DRM2 exists in complex with the small interfering RNA (siRNA) effector ARGONAUTE4 (AGO4) and preferentially methylates one DNA strand, likely the strand acting as the template for RNA polymerase V-mediated noncoding RNA transcripts. This strand-biased DNA methylation is also positively correlated with strand-biased siRNA accumulation. These data suggest a model in which DRM2 is guided to target loci by AGO4-siRNA and involves base-pairing of associated siRNAs with nascent RNA transcripts.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiamu Du
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher J Hale
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suhua Feng
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joanne Chory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
110
|
Huang CF, Zhu JK. RNA Splicing Factors and RNA-Directed DNA Methylation. BIOLOGY 2014; 3:243-54. [PMID: 24833507 PMCID: PMC4085605 DOI: 10.3390/biology3020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 11/16/2022]
Abstract
RNA-directed histone and/or DNA modification is a conserved mechanism for the establishment of epigenetic marks from yeasts and plants to mammals. The heterochromation formation in yeast is mediated by RNAi-directed silencing mechanism, while the establishment of DNA methylation in plants is through the RNA-directed DNA methylation (RdDM) pathway. Recently, splicing factors are reported to be involved in both RNAi-directed heterochromatin formation in yeast and the RdDM pathway in plants. In yeast, splicing factors may provide a platform for facilitating the siRNA generation through an interaction with RDRC and thereby affect the heterochromatin formation, whereas in plants, various splicing factors seem to act at different steps in the RdDM pathway.
Collapse
Affiliation(s)
- Chao-Feng Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
111
|
Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, Zhong X, Marson G, Pellegrini M, Segal DJ, Patel DJ, Jacobsen SE. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 2014; 507:124-128. [PMID: 24463519 PMCID: PMC3963826 DOI: 10.1038/nature12931] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022]
Abstract
RNA-directed DNA methylation in Arabidopsis thaliana depends on the upstream synthesis of 24-nucleotide small interfering RNAs (siRNAs) by RNA POLYMERASE IV (Pol IV) and downstream synthesis of non-coding transcripts by Pol V. Pol V transcripts are thought to interact with siRNAs which then recruit DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) to methylate DNA. The SU(VAR)3-9 homologues SUVH2 and SUVH9 act in this downstream step but the mechanism of their action is unknown. Here we show that genome-wide Pol V association with chromatin redundantly requires SUVH2 and SUVH9. Although SUVH2 and SUVH9 resemble histone methyltransferases, a crystal structure reveals that SUVH9 lacks a peptide-substrate binding cleft and lacks a properly formed S-adenosyl methionine (SAM)-binding pocket necessary for normal catalysis, consistent with a lack of methyltransferase activity for these proteins. SUVH2 and SUVH9 both contain SRA (SET- and RING-ASSOCIATED) domains capable of binding methylated DNA, suggesting that they function to recruit Pol V through DNA methylation. Consistent with this model, mutation of DNA METHYLTRANSFERASE 1 (MET1) causes loss of DNA methylation, a nearly complete loss of Pol V at its normal locations, and redistribution of Pol V to sites that become hypermethylated. Furthermore, tethering SUVH9 [corrected] with a zinc finger to an unmethylated site is sufficient to recruit Pol V and establish DNA methylation and gene silencing. These results indicate that Pol V is recruited to DNA methylation through the methyl-DNA binding SUVH2 and SUVH9 proteins, and our mechanistic findings suggest a means for selectively targeting regions of plant genomes for epigenetic silencing.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Binding Sites/genetics
- Biocatalysis
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- Crystallography, X-Ray
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Flowers/growth & development
- Gene Expression Regulation, Plant
- Gene Silencing
- Genome, Plant/genetics
- Histone-Lysine N-Methyltransferase/chemistry
- Histone-Lysine N-Methyltransferase/metabolism
- Models, Molecular
- Mutation/genetics
- Phenotype
- Protein Structure, Tertiary
- Protein Transport
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcription, Genetic
- Zinc Fingers
Collapse
Affiliation(s)
- Lianna M. Johnson
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jiamu Du
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Christopher J. Hale
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ramakrishna K. Chodavarapu
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xuehua Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Giuseppe Marson
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - David J. Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
112
|
Au PCK, Helliwell C, Wang MB. Characterizing RNA-protein interaction using cross-linking and metabolite supplemented nuclear RNA-immunoprecipitation. Mol Biol Rep 2014; 41:2971-7. [PMID: 24493449 DOI: 10.1007/s11033-014-3154-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 01/13/2014] [Indexed: 12/29/2022]
Abstract
RNA-immunoprecipitation (RNA-IP) is a method used to isolate and identify RNA molecules specifically associated with an RNA-binding protein. Non-coding RNAs are emerging as key regulators of many biological and developmental pathways and RNA-IP has become an important tool in studying their function(s). While RNA-IP is successfully used to determine protein-RNA interaction, specific details regarding the level of this association and the metabolic requirement of this interaction which can influence the success of RNA-IP remain unclear. Here, we investigate the conditions required for efficient nuclear RNA-IP using Arabidopsis AGO4 (Argonaute 4) and siRNA binding as the study model. We showed that formaldehyde cross-linking, but not UV cross-linking, allowed for efficient pull-down of 24-nt siRNAs, suggesting that AGO4-siRNA interaction involves other protein(s). We also showed that, while formaldehyde cross-linking could also be performed on purified nuclei, ATP supplementation to the nuclei isolation buffer was needed to efficiently pull down 24-nt siRNAs. This result indicates that ATP is required for efficient siRNA loading onto AGO4. As most of the known RNA-mediated regulatory processes occur in the nucleus, our findings on cross-linking conditions and metabolite requirement for successful AGO4 nuclear RNA-IP provide a valuable insight and future consideration when studying the function of protein-RNA interactions in plants.
Collapse
Affiliation(s)
- Phil Chi Khang Au
- Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Plant Industry, GPO 1600, Canberra, ACT, 2601, Australia
| | | | | |
Collapse
|
113
|
Liu X, Lu T, Dou Y, Yu B, Zhang C. Identification of RNA silencing components in soybean and sorghum. BMC Bioinformatics 2014; 15:4. [PMID: 24387046 PMCID: PMC3882329 DOI: 10.1186/1471-2105-15-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/30/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND RNA silencing is a process triggered by 21-24 small RNAs to repress gene expression. Many organisms including plants use RNA silencing to regulate development and physiology, and to maintain genome stability. Plants possess two classes of small RNAs: microRNAs (miRNAs) and small interfering RNAs (siRNAs). The frameworks of miRNA and siRNA pathways have been established in the model plant, Arabidopsis thaliana (Arabidopsis). RESULTS Here we report the identification of putative genes that are required for the generation and function of miRNAs and siRNAs in soybean and sorghum, based on knowledge obtained from Arabidopsis. The gene families, including DCL, HEN1, SE, HYL1, HST, RDR, NRPD1, NRPD2/NRPE2, NRPE1, and AGO, were analyzed for gene structures, phylogenetic relationships, and protein motifs. The gene expression was validated using RNA-seq, expressed sequence tags (EST), and reverse transcription PCR (RT-PCR). CONCLUSIONS The identification of these components could provide not only insight into RNA silencing mechanism in soybean and sorghum but also basis for further investigation. All data are available at http://sysbio.unl.edu/.
Collapse
Affiliation(s)
- Xiang Liu
- School of Biological Sciences & Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences (CAS), Shanghai Chenshan Botanic Garden, 3888 Chenhua Road, Songjiang, Shanghai 201602, China
| | - Tao Lu
- School of Biological Sciences & Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Yongchao Dou
- School of Biological Sciences & Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Chi Zhang
- School of Biological Sciences & Center for Plant Science and Innovation, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
114
|
Chaudhary A, Mukherjee SK. The role of small RNAs in vaccination. Methods Mol Biol 2014; 1184:479-501. [PMID: 25048141 DOI: 10.1007/978-1-4939-1115-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The concept of vaccination came to light following Edward Jenner's classical observation on milkmaids who were protected against smallpox. However, plants lack the cellular based immunity system and thus it was not appreciated earlier that plants can also be protected from their pathogens. But phenomena like cross-protection, pathogen derived resistance (PDR), viral recovery, etc. in plants suggested that plants have also evolved immunity against their pathogens. The further advances in the field revealed that an endogenous defense system could have multiple prongs. With the advent of RNAi, it was clear that the antiviral immune responses are related to the induction of specific small RNAs. The detection of virus specific small RNAs (vsiRNA) in immunized plants confirmed their roles in the immunity against pathogens. Although many issues related to antiviral mechanisms are yet to be addressed, the existing tools of RNAi can be efficiently used to control the invading viruses in transgenic plants. It is also possible that the microRNA(s) induced in infected plants impart immunity against viral pathogens. So the small RNA molecules play a vital role in defense system and these can be engineered to enhance the immunity against specific viral pathogens.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | | |
Collapse
|
115
|
Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:473-503. [PMID: 24579988 DOI: 10.1146/annurev-arplant-050213-035728] [Citation(s) in RCA: 391] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In eukaryotic RNA silencing, RNase-III classes of enzymes in the Dicer family process double-stranded RNA of cellular or exogenous origin into small-RNA (sRNA) molecules. sRNAs are then loaded into effector proteins known as ARGONAUTEs (AGOs), which, as part of RNA-induced silencing complexes, target complementary RNA or DNA for silencing. Plants have evolved a large variety of pathways over the Dicer-AGO consortium, which most likely underpins part of their phenotypic plasticity. Dicer-like proteins produce all known classes of plant silencing sRNAs, which are invariably stabilized via 2'-O-methylation mediated by HUA ENHANCER 1 (HEN1), potentially amplified by the action of several RNA-dependent RNA polymerases, and function through a variety of AGO proteins. Here, we review the known characteristics and biochemical properties of the core silencing factors found in the model plant Arabidopsis thaliana. We also describe how interactions between these core factors and more specialized proteins allow the production of a plethora of silencing sRNAs involved in a large array of biological functions. We emphasize in particular the biogenesis and activities of silencing sRNAs of endogenous origin.
Collapse
Affiliation(s)
- Nicolas G Bologna
- Department of Biology, Swiss Federal Institute of Technology (ETH-Z), 8093 Zurich, Switzerland;
| | | |
Collapse
|
116
|
A phylogeographical study of the cauliflower mosaic virus population in mid-Eurasia Iran using complete genome analysis. Arch Virol 2013; 159:1329-40. [PMID: 24343265 DOI: 10.1007/s00705-013-1910-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/26/2013] [Indexed: 10/25/2022]
Abstract
The full-length sequences of 34 Iranian cauliflower mosaic virus (CaMV) isolates were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic variability and patterns of genetic exchange in CaMV isolates from Iran. Based on the severity of symptoms and their ability to infect Brassica oleracea var. capitata, Iranian CaMV isolates were grouped into two distinct biotypes: latent/mild mottle (LI/MMo) and severe (S) infection. Recombination breakpoints were detected between the large intergenic region (LIR) and open reading frame (ORF) V (event 2); between ORF VII and ORF II (event 3), between ORF I and ORF III (event 4), and within ORF VI (event 1). Phylogenetic analysis indicated that Iranian CaMV isolates clustered into two subgroups belonging to group I (GI) that were distinct from North American and European isolates from group II (GII). Northeast Iranian isolates (subgroup B) and CaMV isolates from subgroup A closely corresponded to the S and LI/MMo biological groups, respectively. Genome-wide pairwise identity analysis of the CaMV isolates revealed three regions of pairwise identity representation: 92-94 % for GII and 94-96 % and 98-100 % for subgroups A and B. The within-population diversity was lower than the between-population diversity, suggesting the contribution of a founder effect on diversification of CaMV isolates. Amino acid sequences were conserved, with ω values ranging from 0.074 to 0.717 in different proteins. Thirteen amino acids in the deduced proteins of ORFs I, II, III, VI and VII were under positive selection (ω > 1), whereas purifying selection applied to the proteins encoded by ORFs IV and V. This study suggests that variation in the CaMV population can be explained by host-range differentiation and selection pressure. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of CaMV strains, providing valuable new information for understanding the diversity and evolution of caulimoviruses.
Collapse
|
117
|
Abstract
Argonaute proteins interact with small RNAs and facilitate small RNA-guided gene-silencing processes. Small RNAs guide Argonaute proteins to distinct target sites on mRNAs where Argonaute proteins interact with members of the GW182 protein family (also known as GW proteins). In subsequent steps, GW182 proteins mediate the downstream steps of gene silencing. The present mini-review summarizes and discusses our current knowledge of the molecular basis of Argonaute-GW182 protein interactions.
Collapse
|
118
|
Ando D, Colvin M, Rexach M, Gopinathan A. Physical motif clustering within intrinsically disordered nucleoporin sequences reveals universal functional features. PLoS One 2013; 8:e73831. [PMID: 24066078 PMCID: PMC3774778 DOI: 10.1371/journal.pone.0073831] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/25/2013] [Indexed: 11/24/2022] Open
Abstract
Bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of Nuclear Pore Complex (NPC) FG motif containing proteins (FG nups). The biophysical mechanism by which FG nups regulate nucleocytoplasmic transport has remained elusive. Our analysis revealed a set of highly conserved spatial features in the sequence structure of individual FG nups, such as the separation, localization, and ordering of FG motifs and charged residues along the protein chain. These functionally conserved features provide insight into the particular biophysical mechanisms responsible for regulation of nucleocytoplasmic traffic in the NPC, strongly constraining current models. Additionally this method allows us to identify potentially functionally analogous disordered proteins across distantly related species.
Collapse
Affiliation(s)
- David Ando
- Physics Department, University of California Merced, Merced, California, United States of America
| | - Michael Colvin
- Chemistry and Chemical Biology, University of California Merced, Merced, California, United States of America
| | - Michael Rexach
- Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ajay Gopinathan
- Physics Department, University of California Merced, Merced, California, United States of America
- * E-mail:
| |
Collapse
|
119
|
Huang CF, Miki D, Tang K, Zhou HR, Zheng Z, Chen W, Ma ZY, Yang L, Zhang H, Liu R, He XJ, Zhu JK. A Pre-mRNA-splicing factor is required for RNA-directed DNA methylation in Arabidopsis. PLoS Genet 2013; 9:e1003779. [PMID: 24068953 PMCID: PMC3772050 DOI: 10.1371/journal.pgen.1003779] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/25/2013] [Indexed: 12/16/2022] Open
Abstract
Cytosine DNA methylation is a stable epigenetic mark that is frequently associated with the silencing of genes and transposable elements (TEs). In Arabidopsis, the establishment of DNA methylation is through the RNA-directed DNA methylation (RdDM) pathway. Here, we report the identification and characterization of RDM16, a new factor in the RdDM pathway. Mutation of RDM16 reduced the DNA methylation levels and partially released the silencing of a reporter gene as well as some endogenous genomic loci in the DNA demethylase ros1-1 mutant background. The rdm16 mutant had morphological defects and was hypersensitive to salt stress and abscisic acid (ABA). Map-based cloning and complementation test led to the identification of RDM16, which encodes a pre-mRNA-splicing factor 3, a component of the U4/U6 snRNP. RNA-seq analysis showed that 308 intron retention events occurred in rdm16, confirming that RDM16 is involved in pre-mRNA splicing in planta. RNA-seq and mRNA expression analysis also revealed that the RDM16 mutation did not affect the pre-mRNA splicing of known RdDM genes, suggesting that RDM16 might be directly involved in RdDM. Small RNA expression analysis on loci showing RDM16-dependent DNA methylation suggested that unlike the previously reported putative splicing factor mutants, rdm16 did not affect small RNA levels; instead, the rdm16 mutation caused a decrease in the levels of Pol V transcripts. ChIP assays revealed that RDM16 was enriched at some Pol V target loci. Our results suggest that RDM16 regulates DNA methylation through influencing Pol V transcript levels. Finally, our genome-wide DNA methylation analysis indicated that RDM16 regulates the overall methylation of TEs and gene-surrounding regions, and preferentially targets Pol IV-dependent DNA methylation loci and the ROS1 target loci. Our work thus contributes to the understanding of RdDM and its interactions with active DNA demethylation. Both plants and animals utilize cytosine DNA methylation as an important epigenetic mark to suppress transposable elements (TEs), repeat sequences and genes, which is crucial for the genome integrity and development. In plants, de novo DNA methylation can be mediated by the RNA-directed DNA methylation (RdDM) pathway. Plants have also evolved a pathway for active DNA demethylation that is initiated by the ROS1 subfamily of 5-methylcytosine DNA glycosylases, to counteract the RdDM pathway to prevent undesirable silencing. In this study, we identified RDM16, a new factor in the RdDM pathway. We show that RDM16 is a pre-mRNA splicing factor and its function in the regulation of DNA methylation and gene silencing is not through influencing siRNA levels or the expression or splicing of genes encoding known RdDM components, but likely through affecting Pol V transcripts. We also show that RDM16 preferentially affects ROS1 target loci. Together, our findings contribute to the understanding of RdDM and its interactions with ROS1-mediated DNA demethylation.
Collapse
Affiliation(s)
- Chao-Feng Huang
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hao-Ran Zhou
- National Institute of Biological Sciences, Beijing, China
| | - Zhimin Zheng
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ze-Yang Ma
- National Institute of Biological Sciences, Beijing, China
| | - Lan Yang
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Renyi Liu
- Department of Botany and Plant Sciences, University of California, Riverside, California, United States of America
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
120
|
De Novo Methyltransferase, OsDRM2, Interacts with the ATP-Dependent RNA Helicase, OseIF4A, in Rice. J Mol Biol 2013; 425:2853-66. [DOI: 10.1016/j.jmb.2013.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022]
|
121
|
Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Epigenetic mechanisms of plant stress responses and adaptation. PLANT CELL REPORTS 2013; 32:1151-9. [PMID: 23719757 DOI: 10.1007/s00299-013-1462-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 05/20/2023]
Abstract
Epigenetics has become one of the hottest topics of research in plant functional genomics since it appears promising in deciphering and imparting stress-adaptive potential in crops and other plant species. Recently, numerous studies have provided new insights into the epigenetic control of stress adaptation. Epigenetic control of stress-induced phenotypic response of plants involves gene regulation. Growing evidence suggest that methylation of DNA in response to stress leads to the variation in phenotype. Transposon mobility, siRNA-mediated methylation and host methyltransferase activation have been implicated in this process. This review presents the current status of epigenetics of plant stress responses with a view to use this knowledge towards engineering plants for stress tolerance.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | | | | | | | | |
Collapse
|
122
|
Incarbone M, Dunoyer P. RNA silencing and its suppression: novel insights from in planta analyses. TRENDS IN PLANT SCIENCE 2013; 18:382-92. [PMID: 23684690 DOI: 10.1016/j.tplants.2013.04.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/25/2013] [Accepted: 04/04/2013] [Indexed: 05/19/2023]
Abstract
Plants employ multiple layers of innate immunity to fight pathogens. For both RNA and DNA viruses, RNA silencing plays a critical role in plant resistance. To escape this antiviral silencing-based immune response, viruses have evolved various counterdefense strategies, the most widespread being production of viral suppressors of RNA silencing (VSRs) that target various stages of the silencing mechanisms. Recent findings from in planta analyses have provided new insights into the mode of action of VSRs and revealed that plants react to the perturbation of the silencing pathways brought by viral infection by deploying a battery of counter-counterdefense measures. As well as discussing which experimental approaches have been most effective in delivering clear and unambiguous results, this review provides a detailed account of the surprising variety of offensive and defensive strategies set forth by both viruses and hosts in their struggle for survival.
Collapse
Affiliation(s)
- Marco Incarbone
- IBMP-CNRS, 12 rue du General Zimmer, 67084 Strasbourg Cedex, France
| | | |
Collapse
|
123
|
Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. THE PLANT CELL 2013; 25:2383-99. [PMID: 23881412 PMCID: PMC3753372 DOI: 10.1105/tpc.113.113159] [Citation(s) in RCA: 587] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 04/25/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that control gene expression through silencing of target mRNAs. Mature miRNAs are processed from primary miRNA transcripts by the endonuclease activity of the DICER-LIKE1 (DCL1) protein complex. Mechanisms exist that allow the DCL1 complex to precisely excise the miRNA from its precursor. Our understanding of miRNA biogenesis, particularly its intersection with transcription and other aspects of RNA metabolism such as splicing, is still evolving. Mature miRNAs are incorporated into an ARGONAUTE (AGO) effector complex competent for target gene silencing but are also subjected to turnover through a degradation mechanism that is beginning to be understood. The mechanisms of miRNA target silencing in plants are no longer limited to AGO-catalyzed slicing, and the contribution of translational inhibition is increasingly appreciated. Here, we review the mechanisms underlying the biogenesis, turnover, and activities of plant miRNAs.
Collapse
Affiliation(s)
- Kestrel Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- Howard Hughes Medical Institute, University of California, Riverside, California 92521
| |
Collapse
|
124
|
Xu L, Yang BF, Ai J. MicroRNA transport: a new way in cell communication. J Cell Physiol 2013; 228:1713-9. [PMID: 23460497 DOI: 10.1002/jcp.24344] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/04/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) can efficiently regulate gene expression by targeting mRNA to cause mRNA cleavage or translational repression. Growing evidence indicates that miRNAs exist not only in cells but also in a variety of body fluids, which stimulates substantial interest in the transport mechanism and regulating process of extracellular miRNAs. This article reviews the basic biogenesis of miRNAs in detail to explore the origin of extracellular miRNAs. Different miRNA transporters have been summarized (e.g., exosomes, microvesicles, apoptosis bodies, and RNA-binding proteins). In addition, we discuss the regulators affecting miRNA transport (e.g., ATP and ceramide) and the selection mechanism for different miRNA transporters. Studies about miRNA transporters and the transport mechanism are new and developing. With the progress of the research, new functions of extracellular miRNAs may be uncovered in the future.
Collapse
Affiliation(s)
- Ling Xu
- Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, Heilongjiang Province, China
| | | | | |
Collapse
|
125
|
Tan EH, Blevins T, Ream TS, Pikaard CS. Functional consequences of subunit diversity in RNA polymerases II and V. Cell Rep 2013; 1:208-14. [PMID: 22550619 DOI: 10.1016/j.celrep.2012.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved as specialized forms of Pol II that mediate RNA-directed DNA methylation (RdDM) and transcriptional silencing of transposons, viruses, and endogenous repeats in plants. Among the subunits common to Arabidopsis thaliana Pols II, IV, and V are 93% identical alternative ninth subunits, NRP(B/D/E)9a and NRP(B/D/E)9b. The 9a and 9b subunit variants are incompletely redundant with respect to Pol II; whereas double mutants are embryo lethal, single mutants are viable, yet phenotypically distinct. Likewise, 9a or 9b can associate with Pols IV or V but RNA-directed DNA methylation is impaired only in 9b mutants. Based on genetic and molecular tests, we attribute the defect in RdDM to impaired Pol V function. Collectively, our results reveal a role for the ninth subunit in RNA silencing and demonstrate that subunit diversity generates functionally distinct subtypes of RNA polymerases II and V.
Collapse
Affiliation(s)
- Ek Han Tan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
126
|
Rowley MJ, Böhmdorfer G, Wierzbicki AT. Analysis of long non-coding RNAs produced by a specialized RNA polymerase in Arabidopsis thaliana. Methods 2013; 63:160-9. [PMID: 23707621 DOI: 10.1016/j.ymeth.2013.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in several processes including control of gene expression. In Arabidopsis thaliana, a class of lncRNAs is produced by a specialized RNA Polymerase V (Pol V), which is involved in controlling genome activity by transcriptional gene silencing. lncRNAs produced by Pol V have been proposed to serve as scaffolds for binding of several silencing factors which further mediate the establishment of repressive chromatin modifications. We present methods for discovery and characterization of lncRNAs produced by Pol V. Chromatin Immunoprecipitation coupled with deep sequencing (ChIP-seq) allows discovery of genomic regions bound by proteins in a manner dependent on either Pol V or transcripts produced by Pol V. RNA Immunoprecipitation (RIP) allows testing lncRNA-protein interactions at identified loci. Finally, real-time RT-PCR allows detection of low abundance Pol V transcripts from total RNA. These methods may be more broadly applied to discovery and characterization of RNAs produced by distinct RNA Polymerases.
Collapse
Affiliation(s)
- M Jordan Rowley
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
127
|
Castel SE, Martienssen RA. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 2013; 14:100-12. [PMID: 23329111 DOI: 10.1038/nrg3355] [Citation(s) in RCA: 683] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability.
Collapse
Affiliation(s)
- Stephane E Castel
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
128
|
Rogers K, Chen X. microRNA biogenesis and turnover in plants. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 77:183-94. [PMID: 23439913 DOI: 10.1101/sqb.2013.77.014530] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are short RNAs that regulate gene expression in eukaryotes. The biogenesis and turnover of miRNAs determine their spatiotemporal accumulation within tissues. miRNA biogenesis is a multistep process that entails transcription, processing, nuclear export, and formation of the miRNA-ARGONAUTE complex. Factors that perform each of these steps have been identified. Generation of mature miRNAs from primary transcripts, i.e., miRNA processing, is a key step in miRNA biogenesis. Our understanding of miRNA processing has expanded beyond the enzyme that performs the reactions, as more and more additional factors that impact the efficiency and accuracy of miRNA processing are uncovered. In contrast to miRNA biogenesis, miRNA turnover is an important but poorly understood process that contributes to the steady-state levels of miRNAs. Enzymes responsible for miRNA degradation have only recently been identified. This review describes the processes of miRNA maturation and degradation in plants.
Collapse
Affiliation(s)
- K Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
129
|
Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR, Bartel DP, Madhani HD. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 2013; 152:957-68. [PMID: 23415457 DOI: 10.1016/j.cell.2013.01.046] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/13/2012] [Accepted: 01/17/2013] [Indexed: 11/29/2022]
Abstract
Using the yeast Cryptococcus neoformans, we describe a mechanism by which transposons are initially targeted for RNAi-mediated genome defense. We show that intron-containing mRNA precursors template siRNA synthesis. We identify a Spliceosome-Coupled And Nuclear RNAi (SCANR) complex required for siRNA synthesis and demonstrate that it physically associates with the spliceosome. We find that RNAi target transcripts are distinguished by suboptimal introns and abnormally high occupancy on spliceosomes. Functional investigations demonstrate that the stalling of mRNA precursors on spliceosomes is required for siRNA accumulation. Lariat debranching enzyme is also necessary for siRNA production, suggesting a requirement for processing of stalled splicing intermediates. We propose that recognition of mRNA precursors by the SCANR complex is in kinetic competition with splicing, thereby promoting siRNA production from transposon transcripts stalled on spliceosomes. Disparity in the strength of expression signals encoded by transposons versus host genes offers an avenue for the evolution of genome defense.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Szittya G, Burgyán J. RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. Curr Top Microbiol Immunol 2013; 371:153-81. [DOI: 10.1007/978-3-642-37765-5_6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
131
|
Braun JE, Huntzinger E, Izaurralde E. The role of GW182 proteins in miRNA-mediated gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:147-63. [PMID: 23224969 DOI: 10.1007/978-1-4614-5107-5_9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets.
Collapse
Affiliation(s)
- Joerg E Braun
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | | | | |
Collapse
|
132
|
Poulsen C, Vaucheret H, Brodersen P. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures. THE PLANT CELL 2013; 25:22-37. [PMID: 23303917 PMCID: PMC3584537 DOI: 10.1105/tpc.112.105643] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 05/18/2023]
Abstract
RNA silencing refers to a collection of gene regulatory mechanisms that use small RNAs for sequence specific repression. These mechanisms rely on ARGONAUTE (AGO) proteins that directly bind small RNAs and thereby constitute the central component of the RNA-induced silencing complex (RISC). AGO protein function has been probed extensively by mutational analyses, particularly in plants where large allelic series of several AGO proteins have been isolated. Structures of entire human and yeast AGO proteins have only very recently been obtained, and they allow more precise analyses of functional consequences of mutations obtained by forward genetics. To a large extent, these analyses support current models of regions of particular functional importance of AGO proteins. Interestingly, they also identify previously unrecognized parts of AGO proteins with profound structural and functional importance and provide the first hints at structural elements that have important functions specific to individual AGO family members. A particularly important outcome of the analysis concerns the evidence for existence of Gly-Trp (GW) repeat interactors of AGO proteins acting in the plant microRNA pathway. The parallel analysis of AGO structures and plant AGO mutations also suggests that such interactions with GW proteins may be a determinant of whether an endonucleolytically competent RISC is formed.
Collapse
Affiliation(s)
- Christian Poulsen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, F-78000 Versailles, France
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Address correspondence to
| |
Collapse
|
133
|
Yao B, Li S, Chan EKL. Function of GW182 and GW bodies in siRNA and miRNA pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:71-96. [PMID: 23224966 DOI: 10.1007/978-1-4614-5107-5_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
GW182 is an 182 kDa protein with multiple glycine/tryptophan repeats (GW or WG) playing a central role in siRNA- and miRNA-mediated gene silencing. GW182 interacts with its functional partner Argonaute proteins (AGO) via multiple domains to exert its silencing activity in both pathways. In siRNA-mediated silencing, knockdown either GW182 or Ago2 causes loss of silencing activity correlating with the disassembly of GWBs. In contrast, GW182 and its longer isoform TNGW1 appear to be downstream repressors that function independent of Ago2, whereas the Ago2-GW182 interaction is critical for the localization of Ago2 in the cytoplasmic foci and its repression function. GW182 contains two non-overlapping repression domains that can trigger translational repression with mild effect on mRNA decay. Collectively, GW182 plays a critical role in miRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
134
|
Xie M, Ren G, Zhang C, Yu B. The DNA- and RNA-binding protein FACTOR of DNA METHYLATION 1 requires XH domain-mediated complex formation for its function in RNA-directed DNA methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:491-500. [PMID: 22757778 DOI: 10.1111/j.1365-313x.2012.05092.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies have identified a sub-group of SGS3-LIKE proteins including FDM1-5 and IDN2 as key components of RNA-directed DNA methylation pathway (RdDM). Although FDM1 and IDN2 bind RNAs with 5' overhangs, their functions in the RdDM pathway remain to be examined. Here we show that FDM1 interacts with itself and with IDN2. Gel filtration suggests that FDM1 may exist as a homodimer in a heterotetramer complex in vivo. The XH domain of FDM1 mediates the FDM1-FDM1 and FDM1-IDN2 interactions. Deletion of the XH domain disrupts FDM1 complex formation and results in loss-of-function of FDM1. These results demonstrate that XH domain-mediated complex formation of FDM1 is required for its function in RdDM. In addition, FDM1 binds unmethylated but not methylated DNAs through its coiled-coil domain. RNAs with 5' overhangs does not compete with DNA for binding by FDM1, indicating that FDM1 may bind DNA and RNA simultaneously. These results provide insight into how FDM1 functions in RdDM.
Collapse
Affiliation(s)
- Meng Xie
- Center for Plant Science Innovation & School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0660, USA
| | | | | | | |
Collapse
|
135
|
Wierzbicki AT. The role of long non-coding RNA in transcriptional gene silencing. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:517-22. [PMID: 22960034 DOI: 10.1016/j.pbi.2012.08.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/16/2012] [Indexed: 05/03/2023]
Abstract
Transcriptional gene silencing controls the activity of transposable elements and expression of protein-coding genes. It requires non-coding transcription, which in plants is performed by RNA Polymerases IV and V (Pol IV and Pol V). Pol IV produces precursors for siRNA biogenesis while Pol V produces scaffold transcripts required for siRNAs and associated proteins to recognize their target loci. In this review I discuss the mechanisms used by Pol IV and Pol V to mediate repressive chromatin modifications. I further discuss the mechanisms controlling non-coding transcription and their role in regulation of genome activity.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI 48109, USA.
| |
Collapse
|
136
|
Zhang H, Zhu JK. Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation. Genes Dev 2012; 26:1769-73. [PMID: 22895250 DOI: 10.1101/gad.200410.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Genes & Development, Wierzbicki and colleagues (pp. 1825-1836) examine the current model of RNA-directed DNA methylation (RdDM) by determining genome-wide distributions of RNA polymerase V (Pol V) occupancy, siRNAs, and DNA methylation. Their data support the key role of base-pairing between Pol V transcripts and siRNAs in targeting de novo DNA methylation. Importantly, the study also reveals unexpected complexity and provides a global view of the RdDM pathway.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
137
|
Contreras-Cubas C, Palomar M, Arteaga-Vázquez M, Reyes JL, Covarrubias AA. Non-coding RNAs in the plant response to abiotic stress. PLANTA 2012; 236:943-958. [PMID: 22761008 DOI: 10.1007/s00425-012-1693-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/07/2012] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants have to cope with the ever-changing environment as well as with numerous forms of stress. To react to these external cues, plants have evolved a suite of response mechanisms operating at many different levels, ranging from physiological to molecular processes that provide the organism with a wide phenotypic plasticity, allowing for fine tuning of the reactions to these adverse circumstances. During the past decade, non-coding RNAs (ncRNAs) have emerged as key regulatory molecules, which contribute to a significant portion of the transcriptome in eukaryotes and are involved in the control of transcriptional and post-transcriptional gene regulatory pathways. Although accumulated evidence supports an important role for ncRNAs in plant response and adaptation to abiotic stress, their mechanism(s) of action still remains obscure and a functional characterization of the ncRNA repertoire in plants is still needed. Moreover, common features in the biogenesis of different small ncRNAs, and in some cases, cross talk between different gene regulatory pathways may add to the complexity of these pathways and could play important roles in modulating stress responses. Here we review the various ncRNAs that have been reported to participate in the response to abiotic stress in plants, focusing on their importance in plant adaptation and evolution. Understanding how ncRNAs work may reveal novel mechanisms involved in the plant responses to the environment.
Collapse
Affiliation(s)
- Cecilia Contreras-Cubas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, 62250 Cuernavaca, Mor, Mexico
| | | | | | | | | |
Collapse
|
138
|
Pontier D, Picart C, Roudier F, Garcia D, Lahmy S, Azevedo J, Alart E, Laudié M, Karlowski WM, Cooke R, Colot V, Voinnet O, Lagrange T. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol Cell 2012; 48:121-32. [PMID: 22940247 DOI: 10.1016/j.molcel.2012.07.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/21/2012] [Accepted: 07/05/2012] [Indexed: 12/31/2022]
Abstract
In Arabidopsis, transcriptional gene silencing (TGS) can be triggered by 24 nt small-interfering RNAs (siRNAs) through the RNA-directed DNA methylation (RdDM) pathway. By functional analysis of NERD, a GW repeat- and PHD finger-containing protein, we demonstrate that Arabidopsis harbors a second siRNA-dependent DNA methylation pathway targeting a subset of nonconserved genomic loci. The activity of the NERD-dependent pathway differs from RdDM by the fact that it relies both on silencing-related factors previously implicated only in posttranscriptional gene silencing (PTGS), including RNA-DEPENDENT RNA POLYMERASE1/6 and ARGONAUTE2, and most likely on 21 nt siRNAs. A central role for NERD in integrating RNA silencing and chromatin signals in transcriptional silencing is supported by data showing that it binds both to histone H3 and AGO2 proteins and contributes to siRNA accumulation at a NERD-targeted locus. Our results unravel the existence of a conserved chromatin-based RNA silencing pathway encompassing both PTGS and TGS components in plants.
Collapse
Affiliation(s)
- Dominique Pontier
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique/Université de Perpignan via Domitia, UMR5096, Perpignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons. Nat Struct Mol Biol 2012; 19:870-5. [PMID: 22864289 PMCID: PMC3443314 DOI: 10.1038/nsmb.2354] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
Abstract
The plant-specific DNA-dependent RNA polymerase V (Pol V) evolved from Pol II to function in an RNA-directed DNA methylation pathway. Here, we have identified targets of Pol V in Arabidopsis thaliana on a genome-wide scale using ChIP-seq of NRPE1, the largest catalytic subunit of Pol V. We found that Pol V is enriched at promoters and evolutionarily recent transposons. This localization pattern is highly correlated with Pol V-dependent DNA methylation and small RNA accumulation. We also show that genome-wide chromatin association of Pol V is dependent on all members of a putative chromatin-remodeling complex termed DDR. Our study presents the first genome-wide view of Pol V occupancy and sheds light on the mechanistic basis of Pol V localization. Furthermore, these findings suggest a role for Pol V and RNA-directed DNA methylation in genome surveillance and in responding to genome evolution.
Collapse
|
140
|
Wierzbicki AT, Cocklin R, Mayampurath A, Lister R, Rowley MJ, Gregory BD, Ecker JR, Tang H, Pikaard CS. Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev 2012; 26:1825-36. [PMID: 22855789 DOI: 10.1101/gad.197772.112] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sites of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.
Collapse
Affiliation(s)
- Andrzej T Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing. EUKARYOTIC CELL 2012; 11:1119-31. [PMID: 22798390 DOI: 10.1128/ec.00175-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.
Collapse
|
142
|
Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 2012; 19:586-93. [PMID: 22664986 DOI: 10.1038/nsmb.2296] [Citation(s) in RCA: 750] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Since their discovery almost two decades ago, microRNAs (miRNAs) have been shown to function by post-transcriptionally regulating protein accumulation. Understanding how miRNAs silence targeted mRNAs has been the focus of intensive research. Multiple models have been proposed, with few mechanistic details having been worked out. However, the past few years have witnessed a quantum leap forward in our understanding of the molecular mechanics of miRNA-mediated gene silencing. In this review we describe recent discoveries, with an emphasis on how miRISC post-transcriptionally controls gene expression by inhibiting translation and/or initiating mRNA decay, and how trans-acting factors control miRNA action.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
143
|
Abstract
Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.
Collapse
Affiliation(s)
- Nicole T. Schirle
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J. MacRae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
144
|
Switching on RNA silencing suppressor activity by restoring argonaute binding to a viral protein. J Virol 2012; 86:8324-7. [PMID: 22623784 DOI: 10.1128/jvi.00627-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that Sweet potato feathery mottle virus (SPFMV) P1, a close homologue of Sweet potato mild mottle virus P1, did not have any silencing suppressor activity. Remodeling the Argonaute (AGO) binding domain of SPFMV P1 by the introduction of two additional WG/GW motifs converted it to a silencing suppressor with AGO binding capacity. To our knowledge, this is the first instance of the transformation of a viral protein of unknown function to a functional silencing suppressor.
Collapse
|
145
|
IDN2 and its paralogs form a complex required for RNA-directed DNA methylation. PLoS Genet 2012; 8:e1002693. [PMID: 22570638 PMCID: PMC3342958 DOI: 10.1371/journal.pgen.1002693] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/21/2012] [Indexed: 01/13/2023] Open
Abstract
IDN2/RDM12 has been previously identified as a component of the RNA-directed DNA methylation (RdDM) machinery in Arabidopsis thaliana, but how it functions in RdDM remains unknown. By affinity purification of IDN2, we co-purified two IDN2 paralogs IDP1 and IDP2 (IDN2 PARALOG 1 and 2). The coiled-coil domain between the XS and XH domains of IDN2 is essential for IDN2 homodimerization, whereas the IDN2 C-terminal XH domain but not the coiled-coil domain is required for IDN2 interaction with IDP1 and IDP2. By introducing the wild-type IDN2 sequence and its mutated derivatives into the idn2 mutant for complementation testing, we demonstrated that the previously uncharacterized IDN2 XH domain is required for the IDN2-IDP1/IDP2 complex formation as well as for IDN2 function. IDP1 is required for de novo DNA methylation, siRNA accumulation, and transcriptional gene silencing, whereas IDP2 has partially overlapping roles with IDP1. Unlike IDN2, IDP1 and IDP2 are incapable of binding double-stranded RNA, suggesting that the roles of IDP1 and IDP2 are different from those of IDN2 in the IDN2-IDP1/IDP2 complex and that IDP1 and IDP2 are essential for the functioning of the complex in RdDM.
Collapse
|
146
|
Saze H, Tsugane K, Kanno T, Nishimura T. DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. PLANT & CELL PHYSIOLOGY 2012; 53:766-84. [PMID: 22302712 DOI: 10.1093/pcp/pcs008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DNA methylation is a type of epigenetic marking that strongly influences chromatin structure and gene expression in plants and mammals. Over the past decade, DNA methylation has been intensively investigated in order to elucidate its control mechanisms. These studies have shown that small RNAs are involved in the induction of DNA methylation, that there is a relationship between DNA methylation and histone methylation, and that the base excision repair pathway has an important role in DNA demethylation. Some aspects of DNA methylation have also been shown to be shared with mammals, suggesting that the regulatory pathways are, in part at least, evolutionarily conserved. Considerable progress has been made in elucidating the mechanisms that control DNA methylation; however, many aspects of the mechanisms that read the information encoded by DNA methylation and mediate this into downstream regulation remain uncertain, although some candidate proteins have been identified. DNA methylation has a vital role in the inactivation of transposons, suggesting that DNA methylation is a key factor in the evolution and adaptation of plants.
Collapse
Affiliation(s)
- Hidetoshi Saze
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | | | | | | |
Collapse
|
147
|
Coyne RS, Lhuillier-Akakpo M, Duharcourt S. RNA-guided DNA rearrangements in ciliates: is the best genome defence a good offence? Biol Cell 2012; 104:309-25. [PMID: 22352444 DOI: 10.1111/boc.201100057] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/15/2012] [Indexed: 12/13/2022]
Abstract
Genomes, like crazy patchwork quilts, are stitched together over evolutionary time from diverse elements, including some unwelcome invaders. To deal with parasitic mobile elements, most eukaryotes employ a genome self-defensive manoeuvre to recognise and silence such elements by homology-dependent interactions with RNA-protein complexes that alter chromatin. Ciliated protozoa employ more 'offensive' tactics by actually unstitching and reassembling their somatic genomes at every sexual generation to eliminate transposons and their remnants, using as patterns the maternal genomes that were rearranged in the previous cycle. Genetic and genomic studies of the distant relatives Paramecium and Tetrahymena have begun to reveal how such events are carried out with remarkable precision. Whole genome, non-coding transcripts from the maternal genome are compared with transcripts from the zygotic genome that are processed through an RNA interference (RNAi)-related process. Sequences found only in the latter are targeted for elimination by the resulting short 'scanRNAs' in many thousand DNA splicing reactions initiated by a domesticated transposase. The involvement of widely conserved mechanisms and protein factors clearly shows the relatedness of these phenomena to RNAi-mediated heterochromatic gene silencing. Such malleability of the genome on a generational time scale also has profound evolutionary implications, possibly including the epigenetic inheritance of acquired adaptive traits.
Collapse
|
148
|
Human prion protein binds Argonaute and promotes accumulation of microRNA effector complexes. Nat Struct Mol Biol 2012; 19:517-24, S1. [PMID: 22484317 DOI: 10.1038/nsmb.2273] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
Despite intense research in the context of neurodegenerative diseases associated with its misfolding, the endogenous human prion protein PrP(C) (or PRNP) has poorly understood physiological functions. Whereas most PrP(C) is exposed to the extracellular environment, conserved domains result in transmembrane forms of PrP(C) that traffic in the endolysosomal system and are linked to inherited and infectious neuropathologies. One transmembrane PrP(C) variant orients the N-terminal 'octarepeat' domain into the cytoplasm. Here we demonstrate that the octarepeat domain of human PrP(C) contains GW/WG motifs that bind Argonaute (AGO) proteins, the essential components of microRNA (miRNA)-induced silencing complexes (miRISCs). Transmembrane PrP(C) preferentially binds AGO, and PrP(C) promotes formation or stability of miRISC effector complexes containing the trinucleotide repeat-containing gene 6 proteins (TNRC6) and miRNA-repressed mRNA. Accordingly, effective repression of several miRNA targets requires PrP(C). We propose that dynamic interactions between PrP(C)-enriched endosomes and subcellular foci of AGO underpin these effects.
Collapse
|
149
|
Viral suppression of RNA silencing. SCIENCE CHINA-LIFE SCIENCES 2012; 55:109-18. [DOI: 10.1007/s11427-012-4279-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 01/28/2023]
|
150
|
Kuzuoglu-Öztürk D, Huntzinger E, Schmidt S, Izaurralde E. The Caenorhabditis elegans GW182 protein AIN-1 interacts with PAB-1 and subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. Nucleic Acids Res 2012; 40:5651-65. [PMID: 22402495 PMCID: PMC3384334 DOI: 10.1093/nar/gks218] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
GW182 family proteins are essential for miRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets via interactions with Argonaute proteins and then promote translational repression and degradation of the miRNA targets. The human and Drosophila melanogaster GW182 proteins share a similar domain organization and interact with PABPC1 as well as with subunits of the PAN2-PAN3 and CCR4-NOT deadenylase complexes. The homologous proteins in Caenorhabditis elegans, AIN-1 and AIN-2, lack most of the domains present in the vertebrate and insect proteins, raising the question as to how AIN-1 and AIN-2 contribute to silencing. Here, we show that both AIN-1 and AIN-2 interact with Argonaute proteins through GW repeats in the middle region of the AIN proteins. However, only AIN-1 interacts with C. elegans and D. melanogaster PABPC1, PAN3, NOT1 and NOT2, suggesting that AIN-1 and AIN-2 are functionally distinct. Our findings reveal a surprising evolutionary plasticity of the GW182 protein interaction network and demonstrate that binding to PABPC1 and deadenylase complexes has been maintained throughout evolution, highlighting the significance of these interactions for silencing.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|