101
|
Abstract
The development of insulin-producing pancreatic beta (beta)-cells represents the culmination of a complex developmental program. Cells of the posterior foregut assume a pancreatic identity, cells within the expanding pancreatic primordia adopt an endocrine fate, and a subset of these precursors becomes competent to generate beta-cells. Postnatally, beta-cells are primarily maintained by self-duplication rather than new differentiation. Although major gaps in our knowledge still persist, experiments across several organisms have shed increasing light on the steps of beta-cell specification and differentiation. Increasing our understanding of the extrinsic, as well as intrinsic, mechanisms that control these processes should facilitate efforts to regenerate this important cell type in humans.
Collapse
Affiliation(s)
- L Charles Murtaugh
- University of Utah, Department of Human Genetics, Salt Lake City, UT 84112, USA.
| |
Collapse
|
102
|
diIorio P, Alexa K, Choe SK, Etheridge L, Sagerström CG. TALE-family homeodomain proteins regulate endodermal sonic hedgehog expression and pattern the anterior endoderm. Dev Biol 2006; 304:221-31. [PMID: 17289013 PMCID: PMC1868511 DOI: 10.1016/j.ydbio.2006.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 01/29/2023]
Abstract
sonic hedgehog (shh) is expressed in anterior endoderm, where it is required to repress pancreas gene expression and to pattern the endoderm, but the pathway controlling endodermal shh expression is unclear. We find that expression of meis3, a TALE class homeodomain gene, coincides with shh expression in the endoderm of zebrafish embryos. Using a dominant negative construct or anti-sense morpholino oligos (MOs) to disrupt meis3 function, we observe ectopic insulin expression in anterior endoderm. This phenotype is also observed when meis3 MOs are targeted to the endoderm, suggesting that meis3 acts within the endoderm to restrict insulin expression. We also find that meis3 is required for endodermal shh expression, indicating that meis3 acts upstream of shh to restrict insulin expression. Loss of pbx4, a TALE gene encoding a Meis cofactor, produces the same phenotype as loss of meis3, consistent with Meis3 acting in a complex with Pbx4 as reported in other systems. Lastly, we observe a progressive anterior displacement of endoderm-derived organs upon disruption of meis3 or pbx4, apparently as a result of underdevelopment of the pharyngeal region. Our data indicate that meis3 and pbx4 regulate shh expression in anterior endoderm, thereby influencing patterning and growth of the foregut.
Collapse
Affiliation(s)
- Phillip diIorio
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Kristen Alexa
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Seong-Kyu Choe
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Letitiah Etheridge
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
- *To whom correspondence should be addressed: Department of Biochemistry and Molecular Pharmacology, 364 Plantation Street/LRB 822, Worcester, MA 01605, Phone: (506) 856-8006, Fax: (508) 856-8007,
| |
Collapse
|
103
|
Edghill EL, Bingham C, Slingerland AS, Minton JAL, Noordam C, Ellard S, Hattersley AT. Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med 2006; 23:1301-6. [PMID: 17116179 DOI: 10.1111/j.1464-5491.2006.01999.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIM The transcription factor hepatocyte nuclear factor-1beta (HNF-1beta) is expressed in rodent pancreatic progenitor cells, where it is an important member of the genetic hierarchy that regulates the generation of pancreatic endocrine and exocrine cells. The recent description of an HNF-1beta mutation in a patient with neonatal diabetes suggests that HNF-1beta may also play a key role in human pancreatic B-cell development. We aimed to investigate the role of HNF-1beta mutations in neonatal diabetes and also the impact of HNF-1beta mutations on fetal growth. METHODS We sequenced the HNF-1beta gene in 27 patients with neonatal diabetes in whom other known genetic aetiologies had been excluded. Birth weight was investigated in 21 patients with HNF-1beta mutations. RESULTS A heterozygous HNF-1beta mutation, S148L, was identified in one patient with neonatal diabetes diagnosed at 17 days, which rapidly resolved only to relapse at 8 years. This patient had pancreatic atrophy, mild exocrine insufficiency and low birth weight (1.83 kg at 40 weeks' gestation). Intrauterine growth was markedly reduced in patients born to unaffected mothers with a median birth weight of 2.4 kg (range 1.8-3.3) (P = 0.006), median centile weight 3 (0.008-38), and 69% were small for gestational age. CONCLUSION HNF-1beta mutations are a rare cause of neonatal diabetes as well as pancreatic exocrine and endocrine dysfunction. Low birth weight is a common feature of patients with HNF-1beta mutations and is consistent with reduced insulin secretion in utero. These findings support a key role for HNF-1beta in early pancreatic progenitor cells in man.
Collapse
Affiliation(s)
- E L Edghill
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Exeter, UK
| | | | | | | | | | | | | |
Collapse
|
104
|
Song J, Kim HJ, Gong Z, Liu NA, Lin S. Vhnf1 acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish. Dev Biol 2006; 303:561-75. [PMID: 17217944 DOI: 10.1016/j.ydbio.2006.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/14/2006] [Accepted: 11/21/2006] [Indexed: 11/23/2022]
Abstract
Bmp, Fgf, and retinoic acid (RA) signals have been implicated as regulators of pancreas development. However, the integration of these signaling pathways in vivo is not fully understood. Variant hnf1 (Vhnf1) is a transcription factor involved in pancreas, liver, and kidney development and its mutation in zebrafish causes underdeveloped pancreas and liver. We investigated the signaling pathways that regulate vhnf1 expression during pancreas development. First, we showed that Bmp activity is required for vhnf1 expression in the endoderm. In chordin (a Bmp antagonist) morpholino (MO)-injected embryos, vhnf1 expression in endoderm and in endocrine beta cells is expanded. On the other hand, in alk8 (a type I TGFbeta receptor) MO-injected embryos, vhnf1 expression in the endoderm is significantly reduced. Second, we showed that Fgf signaling participates in regulation of pancreas development through the vhnf1 pathway. Third, we demonstrated that RA fails to rescue reduction of insulin expression in vhnf1 mutants, whereas overexpression of vhnf1 restores insulin expression that is repressed by treatment with a RA receptor inhibitor. And finally, we revealed that both Bmp and Fgf signals act genetically upstream of RA in directing pancreas development. Taken together, our data establish that vhnf1 acts downstream of the signaling pathways of RA, Bmp, and Fgf to regulate pancreas development in zebrafish.
Collapse
Affiliation(s)
- Jianbo Song
- Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
105
|
Harries LW. Alternate mRNA processing of the hepatocyte nuclear factor genes and its role in monogenic diabetes. Expert Rev Endocrinol Metab 2006; 1:715-726. [PMID: 30754156 DOI: 10.1586/17446651.1.6.715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Variation in mRNA processing has the capacity to exert fine control over gene expression in most cell types. The hepatic nuclear factor genes, like approximately 74% of the genome, produce multiple transcripts. Hepatic nuclear factor isoforms exhibit both spatial and temporal variation in expression. In this review, the known isoforms of the hepatocyte nuclear factor-1α, hepatocyte nuclear factor-1β and hepatocyte nuclear factor-4α genes are described and their properties are compared. Finally, data are discussed regarding the influence of hepatocyte nuclear factor-1α alternate mRNA processing on the clinical phenotype of maturity-onset diabetes of the young.
Collapse
Affiliation(s)
- Lorna W Harries
- a RCUK Diabetes and Metabolism Academic Fellow, Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
106
|
D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006; 24:1392-401. [PMID: 17053790 DOI: 10.1038/nbt1259] [Citation(s) in RCA: 1379] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/03/2006] [Indexed: 12/13/2022]
Abstract
Of paramount importance for the development of cell therapies to treat diabetes is the production of sufficient numbers of pancreatic endocrine cells that function similarly to primary islets. We have developed a differentiation process that converts human embryonic stem (hES) cells to endocrine cells capable of synthesizing the pancreatic hormones insulin, glucagon, somatostatin, pancreatic polypeptide and ghrelin. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, gut-tube endoderm, pancreatic endoderm and endocrine precursor--en route to cells that express endocrine hormones. The hES cell-derived insulin-expressing cells have an insulin content approaching that of adult islets. Similar to fetal beta-cells, they release C-peptide in response to multiple secretory stimuli, but only minimally to glucose. Production of these hES cell-derived endocrine cells may represent a critical step in the development of a renewable source of cells for diabetes cell therapy.
Collapse
Affiliation(s)
- Kevin A D'Amour
- Novocell Inc., 3550 General Atomics Ct., San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Lecaudey V, Ulloa E, Anselme I, Stedman A, Schneider-Maunoury S, Pujades C. Role of the hindbrain in patterning the otic vesicle: a study of the zebrafish vhnf1 mutant. Dev Biol 2006; 303:134-43. [PMID: 17137573 DOI: 10.1016/j.ydbio.2006.10.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/27/2006] [Accepted: 10/27/2006] [Indexed: 10/24/2022]
Abstract
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.
Collapse
Affiliation(s)
- Virginie Lecaudey
- Unité de Biologie du Développement, CNRS UMR 7622, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
108
|
Maldonado E, Hernandez F, Lozano C, Castro ME, Navarro RE. The zebrafish mutant vps18 as a model for vesicle-traffic related hypopigmentation diseases. ACTA ACUST UNITED AC 2006; 19:315-26. [PMID: 16827750 DOI: 10.1111/j.1600-0749.2006.00320.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypopigmentation is a characteristic of several diseases associated with vesicle traffic defects, like the Hermansky-Pudlak, Chediak-Higashi, and Griscelli syndromes. Hypopigmentation is also a characteristic of the zebrafish mutant vps18(hi2499A), which is affected in the gene vps18, a component of the homotypic fusion and protein sorting complex that is involved in tethering during vesicular traffic. Vps18, as part of this complex, participates in the formation of early endosomes, late endosomes, and lysosomes. Here, we show that Vps18 is also involved in the formation of melanosomes. In the zebrafish mutant vps18(hi2499A) the retroviral insertion located at exon 4 of vps18, leads to the formation of two abnormal splicing variants lacking the coding sequence for the clathrin repeat and the RING finger conserved domains. A deficiency of Vps18 in zebrafish larvae results in hepatomegaly and skin hypopigmentation. We also observed a drastic reduction in the number of melanosomes in the eye's retinal pigmented epithelium along with the accumulation of immature melanosomes. A significant reduction in the vps18(hi2499A) larvae visual system capacity was found using the optokinetic response assay. We propose that the insertional mutant vps18(hi2499A) can be used as a model for studying hypopigmentation diseases in which vesicle traffic problems exist.
Collapse
Affiliation(s)
- Ernesto Maldonado
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico DF, Mexico.
| | | | | | | | | |
Collapse
|
109
|
Cheng W, Guo L, Zhang Z, Soo HM, Wen C, Wu W, Peng J. HNF factors form a network to regulate liver-enriched genes in zebrafish. Dev Biol 2006; 294:482-96. [PMID: 16631158 DOI: 10.1016/j.ydbio.2006.03.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 02/23/2006] [Accepted: 03/15/2006] [Indexed: 12/20/2022]
Abstract
Defects in some of liver-enriched genes in mammals will cause liver- and/or blood-related diseases. However, due to the fact that embryogenesis happens intrauterinally in the mammals, the function of these liver-enriched genes during liver organogenesis is poorly studied. We report here the identification of 129 genuine liver-enriched genes in adult zebrafish and show that, through in situ hybridization, 69 of these genes are also enriched in the embryonic liver. External embryogenesis coupled with the well-established morpholino-mediated gene knock-down technique in zebrafish offers us a unique opportunity to study if this group of genes plays any role during liver organogenesis in the future. As an example, preliminary study using morpholino-mediated gene knock-down method revealed that a novel liver-enriched gene leg1 is crucial for the liver expansion growth. We also report the analysis of promoter regions of 51 liver-enriched genes by searching putative binding sites for Hnf1, Hnf3, Hnf4 and Hnf6, four key transcription factors enriched in the liver. We found that promoter regions of majority of liver-enriched genes contain putative binding sites for more than one HNF factors, suggesting that most of liver-enriched genes are likely co-regulated by different combination of HNF factors. This observation supports the hypothesis that these four liver-enriched transcription factors form a network in controlling the expression of liver-specific or -enriched genes in the liver.
Collapse
Affiliation(s)
- Wei Cheng
- Functional Genomics Lab, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Protesos, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
110
|
Maves L, Kimmel CB. Dynamic and sequential patterning of the zebrafish posterior hindbrain by retinoic acid. Dev Biol 2006; 285:593-605. [PMID: 16102743 DOI: 10.1016/j.ydbio.2005.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/19/2005] [Accepted: 07/15/2005] [Indexed: 11/24/2022]
Abstract
A prominent region of the vertebrate hindbrain is subdivided along the anterior-posterior axis into a series of seven segments, or rhombomeres. The identity of each rhombomere is specified by the expression of conserved transcription factors, including Krox-20, vHnf1, Val (Kreisler, Mafb) and several Hox proteins. Previous work has shown that retinoic acid (RA) signaling plays a critical role in regulating the expression of these factors and that more posterior rhombomeres require higher levels of RA than more anterior rhombomeres. Models to account for RA concentration dependency have proposed either a static RA gradient or increasing time periods of RA exposure. Here, we provide evidence against both of these models. We show that early zebrafish rhombomere-specification genes, including vhnf1 in r5-r6 and hoxd4a in r7, initiate expression sequentially in the hindbrain, each adjacent to the source of RA synthesis in paraxial mesoderm. By knocking down RA signaling, we show that progressively more posterior rhombomeres require increasingly higher levels of RA signaling, and vhnf1 and hoxd4a expression are particularly RA-dependent. RA synthesis is required just at the time of initiation, but not for maintenance, of vhnf1 and hoxd4a expression. Furthermore, a premature RA increase causes premature activation of vhnf1 and hoxd4a expression. Our results support a new model of dynamic RA action in the hindbrain, in which a temporally increasing source of RA is required to sequentially initiate progressively more posterior rhombomere identities.
Collapse
Affiliation(s)
- Lisa Maves
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | | |
Collapse
|
111
|
Chomette D, Frain M, Cereghini S, Charnay P, Ghislain J. Krox20hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements. Development 2006; 133:1253-62. [PMID: 16495311 DOI: 10.1242/dev.02289] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vertebrate hindbrain is subject to a transient segmentation process leading to the formation of seven or eight metameric territories termed rhombomeres (r). This segmentation provides the basis for the subsequent establishment of hindbrain neuronal organization and participates in the patterning of the neural crest involved in craniofacial development. The zinc-finger gene Krox20 is expressed in r3 and r5, and encodes a transcription factor that plays a key role in hindbrain segmentation,coordinating segment formation, specification of odd- and even-numbered rhombomeres, and cell segregation between adjacent segments, through the regulation of numerous downstream genes. In order to further elucidate the genetic network underlying hindbrain segmentation, we have undertaken the analysis of the cis-regulatory sequences governing Krox20 expression. We have found that the control of Krox20 transcription relies on three very long-range (200 kb) enhancer elements (A, B and C) that are conserved between chick, mouse and human genomes. Elements B and C are activated at the earliest stage of Krox20 expression in r5 and r3-r5,respectively, and do not require the Krox20 protein. These elements are likely to function as initiators of Krox20 expression. Element B contains a binding site for the transcription factor vHNF1, the mutation of which abolishes its activity, suggesting that vHNF1 is a direct initiator of Krox20 expression in r5. Element A contains Krox20-binding sites,which are required, together with the Krox20 protein, for its activity. This element therefore allows the establishment of a direct positive autoregulatory loop, which takes the relay of the initiator elements and maintains Krox20 expression. Together, our studies provide a basis for a model of the molecular mechanisms controlling Krox20 expression in the developing hindbrain and neural crest.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Body Patterning
- Chick Embryo
- Conserved Sequence
- Early Growth Response Protein 2/genetics
- Early Growth Response Protein 2/metabolism
- Enhancer Elements, Genetic
- Galactosides/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Genome, Human
- Hepatocyte Nuclear Factor 1-beta/genetics
- Hepatocyte Nuclear Factor 1-beta/metabolism
- Humans
- In Situ Hybridization
- Indoles/metabolism
- Lac Operon
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Promoter Regions, Genetic
- Protein Binding
- Rhombencephalon/embryology
- Rhombencephalon/metabolism
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Initiation Site
Collapse
Affiliation(s)
- Diane Chomette
- INSERM, U784, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
112
|
Chen J, Ruan H, Ng SM, Gao C, Soo HM, Wu W, Zhang Z, Wen Z, Lane DP, Peng J. Loss of function of def selectively up-regulates Delta113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev 2006; 19:2900-11. [PMID: 16322560 PMCID: PMC1315396 DOI: 10.1101/gad.1366405] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription factor p53 forms a network with associated factors to regulate the cell cycle and apoptosis in response to environmental stresses. However, there is currently no direct genetic evidence to show if or how the p53 pathway functions during organogenesis. Here we present evidence to show that the zebrafish def (digestive-organ expansion factor) gene encodes a novel pan-endoderm-specific factor. A loss-of-function mutation in def confers hypoplastic digestive organs and selectively up-regulates the expression of Delta113p53, counterpart to a newly identified isoform of p53 produced by an alternative internal promoter in intron 4 of the p53 gene in human. The increased Delta113p53 expression is limited to within the mutant digestive organs, and this increase selectively induces the expression of p53-responsive genes to trigger the arrest of the cell cycle but not apoptosis, resulting in compromised organ growth in the mutant. Our data demonstrate that, while induction of expression of p53 and/or its isoforms is crucial to suppress abnormal cell growth, Delta113p53 is tightly regulated by an organ/tissue-specific factor Def, especially during organogenesis, to prevent adverse inhibition of organ/tissue growth.
Collapse
Affiliation(s)
- Jun Chen
- Laboratory of Functional Genomics, Laboratory of Molecular and Developmental Immunology, Laboratory of Control of p53 Pathway, Institute of Molecular and Cell Biology, Proteos, Singapore 138673
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kim FA, Sing l A, Kaneko T, Bieman M, Stallwood N, Sadl VS, Cordes SP. The vHNF1 homeodomain protein establishes early rhombomere identity by direct regulation of Kreisler expression. Mech Dev 2005; 122:1300-9. [PMID: 16274963 DOI: 10.1016/j.mod.2005.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/02/2005] [Indexed: 11/21/2022]
Abstract
The early transcriptional hierarchy that subdivides the vertebrate hindbrain into seven to eight segments, the rhombomeres (r1-r8), is largely unknown. The Kreisler (MafB, Krml1, Val) gene is earliest gene expressed in an r5/r6-restricted manner and is essential for r5 and r6 development. We have identified the S5 regulatory element that directs early Kreisler expression in the future r5/r6 domain in 0-10 somite stage embryos. variant Hepatocyte Nuclear Factor 1 (vHNF1/HNF1beta/LF-3B) is transiently expressed in the r5/r6 domain of 0-10 somite stage embryos and a vHNF1binding site within this element is essential but not sufficient for r5/r6-specific expression. Thus, early inductive events that initiate Kreisler expression are clearly distinct from later-acting ones that modulate its expression levels. This site and some of the surrounding sequences are evolutionarily conserved in the genomic DNA upstream of the Kreisler gene among species as divergent as mouse, humans, and chickens. This provides the first evidence of a direct requirement for vHNF1 in initiation of Kreisler expression, suggests that the role of vHNF1 is evolutionarily conserved, and indicates that vHNF1 collaborates with other transcription factors, which independently bind to the S5 regulatory region, to establish the r5/r6 domain.
Collapse
Affiliation(s)
- Florence A Kim
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada
| | | | | | | | | | | | | |
Collapse
|
114
|
Matthews RP, Plumb-Rudewiez N, Lorent K, Gissen P, Johnson CA, Lemaigre F, Pack M. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 2005; 132:5295-306. [PMID: 16284120 DOI: 10.1242/dev.02140] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arthrogryposis-renal dysfunction-cholestasis syndrome (ARC) is a rare cause of cholestasis in infants. Causative mutations in VPS33B, a gene that encodes a Class C vacuolar sorting protein, have recently been reported in individuals with ARC. We have identified a zebrafish vps33b-ortholog that is expressed in developing liver and intestine. Knockdown of vps33b causes bile duct paucity and impairs intestinal lipid absorption, thus phenocopying digestive defects characteristic of ARC. By contrast, neither motor axon nor kidney epithelial defects typically seen in ARC could be identified in vps33b-deficient larvae. Biliary defects in vps33b-deficient zebrafish larvae closely resemble the bile duct paucity associated with knockdown of the onecut transcription factor hnf6. Consistent with this, reduced vps33b expression was evident in hnf6-deficient larvae and in larvae with mutation of vhnf1, a downstream target of hnf6. Zebrafish vhnf1, but not hnf6, increases vps33b expression in zebrafish embryos and in mammalian liver cells. Electrophoretic mobility shift assays suggest that this regulation occurs through direct binding of vHnf1 to the vps33b promoter. These findings identify vps33b as a novel downstream target gene of the hnf6/vhnf1 pathway that regulates bile duct development in zebrafish. Furthermore, they show that tissue-specific roles for genes that regulate trafficking of intracellular proteins have been modified during vertebrate evolution.
Collapse
Affiliation(s)
- Randolph P Matthews
- Division of Gastroenterology and Nutrition, The Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Igarashi P, Shao X, McNally BT, Hiesberger T. Roles of HNF-1β in kidney development and congenital cystic diseases. Kidney Int 2005; 68:1944-7. [PMID: 16221171 DOI: 10.1111/j.1523-1755.2005.00625.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatocyte nuclear factor-1beta (HNF-1beta) is a Pit-1/Oct-1/Unc-86 (POU)/homeodomain-containing transcription factor that regulates tissue-specific gene expression in the kidney, liver, pancreas, and other epithelial organs. Mutations of HNF-1beta produce maturity-onset diabetes of the young type 5 (MODY5) and are associated with congenital cystic abnormalities of the kidney. Transgenic mice expressing mutant HNF-1beta under the control of a kidney-specific promoter develop kidney cysts and renal failure, which is similar to the phenotype of humans with MODY5. Similarly, kidney-specific deletion of HNF-1beta using Cre/loxP recombination results in renal cyst formation. HNF-1beta directly regulates the Pkhd1 promoter. HNF-1beta mutant mice show decreased expression of Pkhd1, the gene that is mutated in humans with autosomal-recessive polycystic kidney disease (ARPKD). These studies demonstrate that HNF-1beta is required for the development of the mammalian kidney. They establish a previously unrecognized link between two renal cystic diseases, MODY5 and ARPKD, and suggest that the mechanism of cyst formation in humans with mutations of HNF-1beta involves down-regulation of PKHD1 gene transcription.
Collapse
Affiliation(s)
- Peter Igarashi
- Department of Internal Medicine and Division of Basic Science, University of Texas Southwestern Medical Center, Dallas, 75390, USA.
| | | | | | | |
Collapse
|
116
|
Riley BB, Chiang MY, Storch EM, Heck R, Buckles GR, Lekven AC. Rhombomere boundaries are Wnt signaling centers that regulate metameric patterning in the zebrafish hindbrain. Dev Dyn 2005; 231:278-91. [PMID: 15366005 DOI: 10.1002/dvdy.20133] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The vertebrate hindbrain develops from a series of segments (rhombomeres) distributed along the anteroposterior axis. We are studying the roles of Wnt and Delta-Notch signaling in maintaining rhombomere boundaries as organizing centers in the zebrafish hindbrain. Several wnt genes (wnt1, wnt3a, wnt8b, and wnt10b) show elevated expression at rhombomere boundaries, whereas several delta genes (dlA, dlB, and dlD) are expressed in transverse stripes flanking rhombomere boundaries. Partial disruption of Wnt signaling by knockdown of multiple wnt genes, or the Wnt mediator tcf3b, ablates boundaries and associated cell types. Expression of dlA is chaotic, and cell types associated with rhombomere centers are disorganized. Similar patterning defects are observed in segmentation mutants spiel-ohne-grenzen (spg) and valentino (val), which fail to form rhombomere boundaries due to faulty interactions between adjacent rhombomeres. Stripes of wnt expression are variably disrupted, with corresponding disturbances in metameric patterning. Mutations in dlA or mind bomb (mib) disrupt Delta-Notch signaling and cause a wide range of patterning defects in the hindbrain. Stripes of wnt1 are initially normal but subsequently dissipate, and metameric patterning becomes increasingly disorganized. Driving wnt1 expression using a heat-shock construct partially rescues metameric patterning in mib mutants. Thus, rhombomere boundaries act as Wnt signaling centers required for precise metameric patterning, and Delta signals from flanking cells provide feedback to maintain wnt expression at boundaries. Similar feedback mechanisms operate in the Drosophila wing disc and vertebrate limb bud, suggesting coaptation of a conserved signaling module that spatially organizes cells in complex organ systems.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas 77843-3258, USA.
| | | | | | | | | | | |
Collapse
|
117
|
Aragón F, Vázquez-Echeverría C, Ulloa E, Reber M, Cereghini S, Alsina B, Giraldez F, Pujades C. vHnf1regulates specification of caudal rhombomere identity in the chick hindbrain. Dev Dyn 2005; 234:567-76. [PMID: 16110512 DOI: 10.1002/dvdy.20528] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The homeobox-containing gene variant hepatocyte nuclear factor-1 (vHnf1) has recently been shown to be involved in zebrafish caudal hindbrain specification, notably in the activation of MafB and Kro x 20 expression. We have explored this regulatory network in the chick by in ovo electroporation in the neural tube. We show that mis-expression of vHnf1 confers caudal identity to more anterior regions of the hindbrain. Ectopic expression of mvHnf1 leads to ectopic activation of MafB and Kro x 20, and downregulation of Hoxb1 in rhombomere 4. Unexpectedly, mvhnf1 strongly upregulates Fgf3 expression throughout the hindbrain, in both a cell-autonomous and a non-cell-autonomous manner. Blockade of FGF signaling correlates with a selective loss of MafB and Kro x 20 expression, without affecting the expression of vHnf1, Fgf3, or Hoxb1. Based on these observations, we propose that in chick, as in zebrafish, vHnf1 acts with FGF to promote caudal hindbrain identity by activating MafB and Kro x 20 expression. However, our data suggest differences in the vHnf1 downstream cascade in different vertebrates.
Collapse
Affiliation(s)
- Ferran Aragón
- Developmental Biology Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Lemaigre F, Zaret KS. Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev 2005; 14:582-90. [PMID: 15380251 DOI: 10.1016/j.gde.2004.08.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The three phases of liver development that are the focus of this review are: the specification of hepatoblasts within the endoderm, the lineage split of hepatoblasts into hepatocytes and biliary cells, and the interaction of these cells with different mesodermal cell derivatives during liver morphogenesis. Advances in these areas include new genes and experimental models for studying liver development, the role of HNF6 and HNF1beta transcription factors and notch signaling in the hepatocyte-biliary cell lineage decision, the identification of genomic targets for HNF4, and HNF4's role in controlling hepatic epithelial structure and the sinusoidal organization of the liver.
Collapse
Affiliation(s)
- Frederic Lemaigre
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université Catholique de Louvain, Avenue Hippocrate 75/7529, B-1200 Brussels, Belgium
| | | |
Collapse
|
119
|
Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci U S A 2005; 102:1490-5. [PMID: 15668393 PMCID: PMC547822 DOI: 10.1073/pnas.0405776102] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heterozygous mutations in the human POU-homeobox TCF2 (vHNF1, HNF1beta) gene are associated with maturity-onset diabetes of the young, type 5, and abnormal urogenital tract development. Recently, pancreas atrophies have been reported in several maturity-onset diabetes of the young type 5 patients, suggesting that TCF2 is required not only for adult pancreas function but also for its normal development. Tcf2-deficient mice die before gastrulation because of defective visceral endoderm formation. To investigate the role of this factor in pancreas development, we rescued this early lethality by tetraploid aggregation. We show that TCF2 has an essential function in the first steps of pancreas development, correlated with its expression domain that demarcates the entire pancreatic buds from the earliest stages. Lack of TCF2 results in pancreas agenesis by embryonic day 13.5. At earlier stages, only a dorsal bud rudiment forms transiently and expresses the transcription factors Ipf1 and Hlxb9 but lacks the key transcription factor involved in the acquisition of a pancreatic fate, Ptf1a, as well as all endocrine precursor cells. Regional specification of the gut also is perturbed in Tcf2-/- embryos as manifested by ectopic expression of Shh and lack of Ihh and Ipf1 in the posterior stomach and duodenum. Our results highlight the requirement of Tcf2 for ensuring both accurate expression of key regulator molecules in the stomach-duodenal epithelium and proper acquisition of the pancreatic fate. This study provides further insights into early molecular events controlling pancreas development and may contribute to the development of cell-replacement strategies for diabetes.
Collapse
Affiliation(s)
- C Haumaitre
- Biologie du Développement, Unité Mixte de Recherche 7622, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, 9 Quai St. Bernard Bāt C, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
120
|
Abstract
Unraveling the molecular pathogenesis of human disease presents many experimental challenges, not the least of which is that experiments on humans are generally frowned upon. Model organisms, including the zebrafish, allow for experimental analysis of gene function and the detailed characterization of disease processes. Zebrafish have matured as a vertebrate model organism now that genetic tools for targeted "knockdowns" and unbiased mutagenesis approaches are in hand. The fish larval pronephros is a relevant kidney in which to pursue many aspects of human kidney development and disease. This short review outlines recent progress in applying the zebrafish pronephros to issues of human health and development.
Collapse
Affiliation(s)
- Iain A Drummond
- Department of Medicine, Harvard Medical School and Renal Unit, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
121
|
Amsterdam A, Becker TS. Transgenes as screening tools to probe and manipulate the zebrafish genome. Dev Dyn 2005; 234:255-68. [PMID: 16127723 DOI: 10.1002/dvdy.20541] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The zebrafish, originally an object of study as an inexpensive and prolific vertebrate embryological model with a plethora of genetic tricks, has over the past decade moved to large-scale chemical mutagenesis and recently came of age as a high throughput transgenic model with a sequenced genome nearing completion. Insertional mutagenesis, gene trapping and enhancer detection are all contributing to the increasing speed with which research in this biomedical model is progressing. We review here some of the recent developments in the emerging field of zebrafish developmental genomics and transgenesis.
Collapse
Affiliation(s)
- Adam Amsterdam
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
122
|
Matthews RP, Lorent K, Russo P, Pack M. The zebrafish onecut gene hnf-6 functions in an evolutionarily conserved genetic pathway that regulates vertebrate biliary development. Dev Biol 2004; 274:245-59. [PMID: 15385156 DOI: 10.1016/j.ydbio.2004.06.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 06/10/2004] [Accepted: 06/11/2004] [Indexed: 11/21/2022]
Abstract
Targeted disruption of the onecut transcription factor, hnf-6, alters mammalian biliary system development. We have identified a related zebrafish cDNA expressed in the developing liver that is a functional ortholog of mammalian hnf-6. Antisense-mediated knockdown of zebrafish hnf-6 perturbs development of the intrahepatic biliary system. Knockdown of zebrafish hnf-6 alters expression of vhnf1 and the zebrafish orthologs of other mammalian genes regulated by hnf-6. Coinjection of mRNA encoding zebrafish vhnf1 rescues the biliary phenotype of hnf-6 morphants. These experiments strongly suggest that hnf-6 and vhnf1 function within an evolutionarily conserved pathway that regulates biliary development. Forced expression of either hnf-6 or vhnf1 also produces biliary phenotypes. Altered bile duct development in both loss- and gain-of-function experiments suggests that zebrafish biliary cells are sensitive to the dosage of hnf-6-mediated gene transcription.
Collapse
Affiliation(s)
- Randolph P Matthews
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, 19104, USA
| | | | | | | |
Collapse
|
123
|
Hernandez RE, Rikhof HA, Bachmann R, Moens CB. vhnf1 integrates global RA patterning and local FGF signals to direct posterior hindbrain development in zebrafish. Development 2004; 131:4511-20. [PMID: 15342476 DOI: 10.1242/dev.01297] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate hindbrain is transiently divided along the anterior-posterior axis into seven morphologically and molecularly distinct segments, or rhombomeres, that correspond to Hox expression domains. The establishment of a proper 'hox code' is required for the development of unique rhombomere identities, including specification of neuronal fates. valentino (val), the zebrafish ortholog of mafB/Kreisler (Kr), encodes a bZip transcription factor that is required cell autonomously for the development of rhombomere (r) 5 and r6 and for activation of Hox group 3 gene expression. Recent work has demonstrated that the expression of val itself depends on three factors: retinoic acid (RA) signals from the paraxial mesoderm; fibroblast growth factor (Fgf) signals from r4; and variant hepatocyte nuclear factor 1 (vhnf1, also known as tcf2), a homeodomain transcription factor expressed posterior to the r4-5 boundary. We have investigated the interactions between these inputs onto val expression in the developing zebrafish hindbrain. We show that RA induces val expression via activation of vhnf1 expression in the hindbrain. Fgf signals from r4, acting through the MapK pathway, then cooperate with Vhnf1 to activate val expression and subsequent r5 and r6 development. Additionally, vhnf1 and val function as part of a multistep process required for the repression of r4 identity in the posterior hindbrain. vhnf1 acts largely independently of val to repress the r4 'hox code' posterior to the r4-5 boundary and therefore to block acquisition of r4-specific neuronal fates in the posterior hindbrain. However, vhnf1 is not able to repress all aspects of r4 identity equivalently. val is required downstream of vhnf1 to repress r4-like cell-surface properties, as determined by an 'Eph-ephrin code', by repressing ephrin-B2a expression in r5 and r6. The different requirements for vhnf1 and val to repress hoxb1a and ephrin-B2a, respectively, demonstrate that not all aspects of an individual rhombomere's identity are regulated coordinately.
Collapse
Affiliation(s)
- Rafael E Hernandez
- Howard Hughes Medical Institute and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, PO Box 19024, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
124
|
Hoyle J, Tang YP, Wiellette EL, Wardle FC, Sive H. nlz gene family is required for hindbrain patterning in the zebrafish. Dev Dyn 2004; 229:835-46. [PMID: 15042707 DOI: 10.1002/dvdy.20001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study describes the conserved nlz gene family whose members encode unusual zinc finger proteins. In the zebrafish neurectoderm, both nlz1 and the newly isolated nlz2 are expressed in the presumptive hindbrain and midbrain/hindbrain boundary, where expression of nlz1 is dependent on pax2a. In addition, nlz2 is uniquely expressed more anteriorly, in the presumptive midbrain and diencephalon. Overexpression of Nlz proteins during gastrula stages inhibits hindbrain development. In particular, ectopically expressed Nlz1 inhibits formation of future rhombomeres 2 and 3 (r2, r3), whereas neighboring r1 and r4 are not affected. Conversely, simultaneous reduction of Nlz1 and Nlz2 protein function by expression of antisense morpholino-modified oligomers leads to expansion of future r3 and r5, with associated loss of r4. These data indicate that one function of the nlz gene family is to specify or maintain r4 identity, and to limit r3 and r5 during hindbrain formation.
Collapse
Affiliation(s)
- Jacqueline Hoyle
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
125
|
Gong HY, Lin CJF, Chen MHC, Hu MC, Lin GH, Zhou Y, Zon LI, Wu JL. Two distinct teleost hepatocyte nuclear factor 1 genes, hnf1alpha/tcf1 and hnf1beta/tcf2, abundantly expressed in liver, pancreas, gut and kidney of zebrafish. Gene 2004; 338:35-46. [PMID: 15302404 DOI: 10.1016/j.gene.2004.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 04/21/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Two distinct forms of zebrafish hepatocyte nuclear factor 1 (hnf1) were identified and referred to as hnf1alpha/tcf1 and hnf1beta/tcf2. Both hnf1 genes were shown to be expressed abundantly in liver, pancreas, gut and kidney. Zebrafish HNF1alpha and HNF1beta proteins contain all HNF1 signature domains including the dimerization domain, POU-like domain and atypical homeodomain. Sequence and phylogenetic analysis reveals that zebrafish hnf1alpha is closer to tetrapodian hnf1alpha than to tetrapodian hnf1beta and zebrafish hnf1beta is highly conserved with tetrapodian hnf1beta. Existences of hnf1alpha and hnf1beta in teleost zebrafish, tilapia and fugu suggest that hnf1 gene duplication might occur before the divergence of teleost and tetrapod ancestors. Zebrafish hnf1alpha and hnf1beta genes were mapped to linkage group LG8 and LG15 in T51 panel by RH mapping and are composed of 10 and 9 exons, respectively. Zebrafish hnf1beta gene with at least 11 genes in LG15 was identified to maintain the conserved synteny with those of human in chromosome 17 and those of mouse in chromosome 11. Our results indicate that distinct hnf1alpha and hnf1beta genes in teleosts had been evolved from the hnf1 ancestor gene of chordate.
Collapse
Affiliation(s)
- Hong-Yi Gong
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
126
|
International Society of Nephrology. Kidney Int 2004. [DOI: 10.1111/j.1523-1755.2004.90664.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
127
|
Choe SK, Sagerström CG. Paralog group 1 hox genes regulate rhombomere 5/6 expression of vhnf1, a repressor of rostral hindbrain fates, in a meis-dependent manner. Dev Biol 2004; 271:350-61. [PMID: 15223339 DOI: 10.1016/j.ydbio.2004.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 04/02/2004] [Accepted: 04/07/2004] [Indexed: 10/26/2022]
Abstract
The vertebrate hindbrain is segmented into an array of rhombomeres (r), but it remains to be fully understood how segmentation is achieved. Here we report that reducing meis function transforms the caudal hindbrain to an r4-like fate, and we exploit this experimental state to explore how r4 versus r5-r6 segments are set aside. We demonstrate that r4 transformation of the caudal hindbrain is mediated by paralog group 1 (PG1) hox genes and can be repressed by vhnf1, a gene expressed in r5-r6. We further find that vhnf1 expression is regulated by PG1 hox genes in a meis-dependent manner. This implies that PG1 hox genes not only induce r4 fates throughout the caudal hindbrain, but also induce expression of vhnf1, which then represses r4 fates in the future r5-r6. Our results further indicate that r4 transformation of the caudal hindbrain occurs at intermediate levels of meis function, while extensive removal of meis function produces a hindbrain completely devoid of segments, suggesting that different hox-dependent processes may have distinct meis requirements. Notably, reductions in the function of another Hox cofactor, pbx, have not been reported to transform the caudal hindbrain, suggesting that Meis and Pbx proteins may also function differently in their roles as Hox cofactors.
Collapse
Affiliation(s)
- Seong-Kyu Choe
- Program in Neuroscience, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
128
|
Wu G, Bohn S, Ryffel GU. The HNF1β transcription factor has several domains involved in nephrogenesis and partially rescues Pax8/lim1-induced kidney malformations. ACTA ACUST UNITED AC 2004; 271:3715-28. [PMID: 15355349 DOI: 10.1111/j.1432-1033.2004.04312.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tissue-specific transcription factors HNF1alpha and HNF1beta are closely related homeodomain proteins conserved in vertebrate evolution. Heterozygous mutations in human HNF1beta but not in HNF1alpha genes are associated with kidney malformations. Overexpression of HNF1beta in Xenopus embryos leads to defective pronephros development, while HNF1alpha has no effect. We have defined the regions responsible for this functional difference between HNF1beta and HNF1alpha in transfected HeLa cells as well as in injected Xenopus embryos. Using domain swapping experiments, we located a nuclear localization signal in the POUH domain of HNF1beta, and showed that the POUS and POUH domains of HNF1beta mediate a high transactivation potential in transfected cells. In injected Xenopus embryos three HNF1beta domains are involved in nephrogenesis. These include the dimerization domain, the 26 amino acid segment specific for splice variant A as well as the POUH domain. As HNF1beta together with Pax8 and lim1 constitute the earliest regulators in the pronephric anlage, it is possible that they cooperate during early nephrogenesis. We have shown here that HNF1beta can overcome the enlargement and the induction of an ectopic pronephros mediated by overexpression of Pax8 and lim1. However, the phenotype induced by Pax8 and lim1 overexpression and characterized by cyst-like structures and thickening of the pronephric tubules was not altered by HNF1beta overexpression. Taken together, HNF1beta acts antagonistically to Pax8 and lim1 in only some processes during nephrogenesis, and a simple antagonistic relationship does not completely describe the functions of these genes. We conclude that HNF1beta has some distinct morphogenetic properties during nephrogenesis.
Collapse
Affiliation(s)
- Guizhi Wu
- Institut für Zellbiologie, Universitätsklinikum Essen, Germany
| | | | | |
Collapse
|
129
|
Wang L, Coffinier C, Thomas MK, Gresh L, Eddu G, Manor T, Levitsky LL, Yaniv M, Rhoads DB. Selective deletion of the Hnf1beta (MODY5) gene in beta-cells leads to altered gene expression and defective insulin release. Endocrinology 2004; 145:3941-9. [PMID: 15142986 DOI: 10.1210/en.2004-0281] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hepatocyte nuclear factor 1alpha (HNF1alpha) and HNF1beta (or vHNF1) are closely related transcription factors expressed in liver, kidney, gut, and pancreatic beta-cells. Many HNF1 target genes are involved in carbohydrate metabolism. Human mutations in HNF1alpha or HNF1beta lead to maturity-onset diabetes of the young (MODY3 and MODY5, respectively), and patients present with impaired glucose-stimulated insulin secretion. The underlying defect in MODY5 is not known. Analysis of HNF1beta deficiency in mice has not been possible because HNF1beta null mice die in utero. To examine the role of HNF1beta in glucose homeostasis, viable mice deleted for HNF1beta selectively in beta-cells (beta/H1beta-KO mice) were generated using a Cre-LoxP strategy. beta/H1beta-KO mice had normal growth, fertility, fed or fasted plasma glucose and insulin levels, pancreatic insulin content, and insulin sensitivity. However, beta/H1beta-KO mice exhibited impaired glucose tolerance with reduced insulin secretion compared with wild-type mice but preserved a normal insulin secretory response to arginine. Moreover, beta/H1beta-KO islets had increased HNF1alpha and Pdx-1, decreased HNF4 mRNA levels, and reduced glucose-stimulated insulin release. These results indicate that HNF1beta is involved in regulating the beta-cell transcription factor network and is necessary for glucose sensing or glycolytic signaling.
Collapse
Affiliation(s)
- Li Wang
- Pediatric Endocrine Unit, MassGeneral Hospital for Children, Boston, Massachusetts 02114-2696, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 2004; 131:4085-93. [PMID: 15269167 DOI: 10.1242/dev.01240] [Citation(s) in RCA: 408] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polycystic kidney disease (PKD) is a common human genetic illness. It is characterized by the formation of multiple kidney cysts that are thought to result from over-proliferation of epithelial cells. Zebrafish larvae can also develop kidney cysts. In an insertional mutagenesis screen in zebrafish, we identified 12 genes that can cause cysts in the glomerular-tubular region when mutated and we cloned 10 of these genes. Two of these genes, vhnf1 (tcf2) and pkd2, are already associated with human cystic kidney diseases. Recently, defects in primary cilia have been linked to PKD. Strikingly, three out of the 10 genes cloned in this screen are homologues of Chlamydomonas genes that encode components of intraflagellar transport (IFT) particles involved in cilia formation. Mutation in a fourth blocks ciliary assembly by an unknown mechanism. These results provide compelling support for the connection between cilia and cystogenesis. Our results also suggest that lesions in genes involved in cilia formation and function are the predominant cause of cystic kidney disease, and that the genes identified here are excellent candidates for novel human PKD genes.
Collapse
Affiliation(s)
- Zhaoxia Sun
- MIT, Center for Cancer Research and Biology Department, Building E17 Room 340, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
131
|
Abstract
Zebrafish have emerged as a useful vertebrate model system in which unbiased large-scale screens have revealed hundreds of mutations affecting vertebrate development. Many zebrafish mutants closely resemble known human disorders, thus providing intriguing prospects for uncovering the genetic basis of human diseases and for the development of pharmacologic agents that inhibit or correct the progression of developmental disorders. The rapid pace of advances in genomic sequencing and map construction, in addition to morpholino targeting and transgenic techniques, have facilitated the identification and analysis of genes associated with zebrafish mutants, thus promoting the development of zebrafish as a model for human disorders. This review aims to illustrate how the zebrafish has been used to identify unknown genes, to assign function to known genes, and to delineate genetic pathways, all contributing valuable leads toward understanding human pathophysiology.
Collapse
Affiliation(s)
- Trista E North
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital of Boston, Enders Research Building, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
132
|
Abstract
Insertional mutagenesis is a method for identifying genes essential for a given biological process by using the integration of DNA as the mutagen, thereby facilitating the cloning of the mutated gene. The use of retrovirus-mediated insertional mutagenesis in zebrafish has led to the mutation and rapid identification of hundreds of genes required for embryonic development and cell viability and growth, revealing the diversity of gene products required for the development of this vertebrate. Here, I will review the methodology of this approach and the results to date, as well as other potential ways to use insertional mutagenesis for genetic screens.
Collapse
Affiliation(s)
- Adam Amsterdam
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
133
|
Zanier R, Briot D, Dugas du Villard JA, Sarasin A, Rosselli F. Fanconi anemia C gene product regulates expression of genes involved in differentiation and inflammation. Oncogene 2004; 23:5004-13. [PMID: 15077170 DOI: 10.1038/sj.onc.1207677] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss of Fanconi anemia (FA) proteins activity by recessive inherited mutations in one of the FA genes leads to a disease characterized by bone marrow failure, myeloid leukemia and DNA damage hypersensitivity. The aim of this work was to improve our understanding of the FA syndrome defining the transcription profile of the FA complementation group C (FANCC)-deficient cells in comparison to their ectopically corrected counterpart using oligonucleotide microarrays. In this way, 49 RNAs have been isolated, which showed a consistent differential pattern of expression among FANCC mutated and corrected cells. The observed specific changes in gene expression suggest that FANCC regulates specifically myeloid differentiation and unmasks a previously unsuspected anti-inflammatory role for the FA proteins. In spite of the DNA damage hypersensitivity of the syndrome, no gene coding for a protein directly involved in DNA repair/damage response was found to be deregulated in our analysis. This observation suggests that FANCC does not directly control genes involved in DNA repair at the transcriptional level, but does not exclude a regulation at the translational or post-translational level, or by protein/protein interactions. The potential role of the differentially expressed genes in FA phenotype as well as a functional- and cellular-based clustering of the identified genes are presented and discussed.
Collapse
Affiliation(s)
- Romina Zanier
- UPR2169 CNRS, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
134
|
Keller ET, Murtha JM. The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:335-41. [PMID: 15533791 DOI: 10.1016/j.cca.2004.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 04/10/2004] [Accepted: 04/13/2004] [Indexed: 11/23/2022]
Abstract
Zebrafish (Danio rerio) have been extensively utilized for understanding mechanisms of development. These studies have led to a wealth of resources including genetic tools, informational databases, and husbandry methods. In spite of all these resources, zebrafish have been underutilized for exploring pathophysiology of disease and the aging process. Zebrafish offer several advantages over mammalian models for these studies, including the ability to perform saturation mutagenesis and the capability to contain thousands of animals in a small space. In this review, we will discuss the use of mature zebrafish as an animal model and provide specific examples to support this novel use of zebrafish. Examples include demonstrating that clinical pathology can be performed in mature zebrafish and that age-associated changes in heat shock response can be observed in zebrafish. These highlights demonstrate the utility of zebrafish as a model for disease and aging.
Collapse
Affiliation(s)
- Evan T Keller
- Department of Urology, University of Michigan School of Medicine, 1500 E. Medical Ctr. Dr., Ann Arbor, MI 48109-0940, USA.
| | | |
Collapse
|
135
|
Lecaudey V, Anselme I, Rosa F, Schneider-Maunoury S. The zebrafish Iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain. Development 2004; 131:3121-31. [PMID: 15175248 DOI: 10.1242/dev.01190] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Early brain regionalisation involves the activation of genes coding for transcription factors in distinct domains of the neural plate. The limits of these domains often prefigure morphological boundaries. In the hindbrain, anteroposterior patterning depends on a segmentation process that leads to the formation of seven bulges called rhombomeres (r). The molecular cues involved in the early subdivision of the hindbrain and in rhombomere formation are not well understood. We show that iro7, a zebrafish gene coding for a transcription factor of the Iroquois family, is expressed at the end of gastrulation in the future midbrain and hindbrain territories up to the prospective r4/r5 boundary. This territory is strictly complementary to the expression domain of another homeobox gene, vhnf1, in the caudal neural plate. We demonstrate that Iro7 represses vhnf1 expression anterior to their common border and that, conversely, vHnf1 represses iro7 expression caudal to it. This suggests that the r4/r5 boundary is positioned by mutual repression between these two transcription factors. In addition, iro7 is involved in the specification of primary neurons in the rostral hindbrain. In particular, it is essential for the formation of the Mauthner neurons in r4. We propose that iro7 has a dual function in the hindbrain of the zebrafish embryo: it is required for the proper positioning of the prospective r4/r5 boundary and it promotes neurogenesis in the anterior hindbrain.
Collapse
Affiliation(s)
- Virginie Lecaudey
- Unité de Biologie Moléculaire du Développement, Unité INSERM 368, Ecole Normale Supérieure, 46, rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
136
|
|
137
|
Hiesberger T, Bai Y, Shao X, McNally BT, Sinclair AM, Tian X, Somlo S, Igarashi P. Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 2004; 113:814-25. [PMID: 15067314 PMCID: PMC362119 DOI: 10.1172/jci20083] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 01/13/2004] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte nuclear factor-1beta (HNF-1beta) is a Pit-1, Oct-1/2, UNC-86 (POU)/homeodomain-containing transcription factor that regulates tissue-specific gene expression in the liver, kidney, and other organs. Humans with autosomal dominant mutations of HNF-1beta develop maturity-onset diabetes of the young type 5 (MODY5) and congenital cystic abnormalities of the kidney. Autosomal recessive polycystic kidney disease (ARPKD) is an inherited cystic disorder that produces renal failure in infants and children and is caused by mutations of PKHD1. The proximal promoter of the mouse Pkhd1 gene contains an evolutionarily conserved HNF-1-binding site that is located near a region of deoxyribonuclease hypersensitivity. HNF-1beta and the structurally related HNF-1alpha bind specifically to the Pkhd1 promoter and stimulate gene transcription. Mutations of the HNF-1 site or expression of a dominant-negative HNF-1beta mutant inhibit Pkhd1 promoter activity in transfected cells. Transgenic mice expressing a dominant-negative HNF-1beta mutant under the control of a kidney-specific promoter develop renal cysts, similarly to humans with MODY5. Pkhd1 transcripts are absent in the cells lining the cysts but are present in morphologically normal surrounding tubules. These studies identify a link between two cystic disease genes, HNF1beta (MODY5) and PKHD1 (ARPKD). HNF-1beta directly regulates the transcription of Pkhd1, and inhibition of PKHD1 gene expression may contribute to the formation of renal cysts in humans with MODY5.
Collapse
Affiliation(s)
- Thomas Hiesberger
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S, Shao X, Hiesberger T, Fiette L, Igarashi P, Yaniv M, Pontoglio M. A transcriptional network in polycystic kidney disease. EMBO J 2004; 23:1657-68. [PMID: 15029248 PMCID: PMC391068 DOI: 10.1038/sj.emboj.7600160] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 02/13/2004] [Indexed: 12/29/2022] Open
Abstract
Mutations in cystic kidney disease genes represent a major genetic cause of end-stage renal disease. However, the molecular cascades controlling the expression of these genes are still poorly understood. Hepatocyte Nuclear Factor 1beta (HNF1beta) is a homeoprotein predominantly expressed in renal, pancreatic and hepatic epithelia. We report here that mice with renal-specific inactivation of HNF1beta develop polycystic kidney disease. We show that renal cyst formation is accompanied by a drastic defect in the transcriptional activation of Umod, Pkhd1 and Pkd2 genes, whose mutations are responsible for distinct cystic kidney syndromes. In vivo chromatin immunoprecipitation experiments demonstrated that HNF1beta binds to several DNA elements in murine Umod, Pkhd1, Pkd2 and Tg737/Polaris genomic sequences. Our results uncover a direct transcriptional hierarchy between HNF1beta and cystic disease genes. Interestingly, most of the identified HNF1beta target gene products colocalize to the primary cilium, a crucial organelle that plays an important role in controlling the proliferation of tubular cells. This may explain the increased proliferation of cystic cells in MODY5 patients carrying autosomal dominant mutations in HNF1beta.
Collapse
Affiliation(s)
- Lionel Gresh
- Unité Expression Génétique et Maladies/CNRS URA 1644, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Evelyne Fischer
- Unité Expression Génétique et Maladies/CNRS URA 1644, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Andreas Reimann
- Unité Expression Génétique et Maladies/CNRS URA 1644, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Myriam Tanguy
- Unité de Recherche et d'Expertise en Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Serge Garbay
- Unité Expression Génétique et Maladies/CNRS URA 1644, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Xinli Shao
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Hiesberger
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurence Fiette
- Unité de Recherche et d'Expertise en Histotechnologie et Pathologie, Institut Pasteur, Paris, France
| | - Peter Igarashi
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Moshe Yaniv
- Unité Expression Génétique et Maladies/CNRS URA 1644, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Marco Pontoglio
- Unité Expression Génétique et Maladies/CNRS URA 1644, Département de Biologie du Développement, Institut Pasteur, Paris, France
- Unité Expression Génétique et Maladies/CNRS URA 1644, Département de Biologie du Développement, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France. Tel.: +33 1 45 68 85 14; Fax: +33 1 40 61 30 33; E-mail:
| |
Collapse
|
139
|
Hiesberger T, Bai Y, Shao X, McNally BT, Sinclair AM, Tian X, Somlo S, Igarashi P. Mutation of hepatocyte nuclear factor–1β inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 2004. [DOI: 10.1172/jci200420083] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
140
|
Abstract
The intensity of research on pancreatic development has increased markedly in the past 5 years, primarily for two reasons: we now know that the insulin-producing beta-cells normally arise from an endodermally derived, pancreas-specified precursor cell, and successful transplants of islet cells have been performed, relieving patients with type I diabetes of symptoms for extended periods after transplantation. Combining in vitro beta-cell formation from a pancreatic biopsy of a diabetic patient or from other stem-cell sources followed by endocrine cell transplantation may be the most beneficial route for a future diabetes therapy. However, to achieve this, a thorough understanding of the genetic components regulating the development of beta-cells is required. The following review discusses our current understanding of the transcription factor networks necessary for pancreatic development and how several genetic interactions coming into play at the earliest stages of endodermal development gradually help to build the pancreatic organ. Developmental Dynamics 229:176-200, 2004.
Collapse
Affiliation(s)
- Jan Jensen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| |
Collapse
|
141
|
Roy NM, Sagerström CG. An early Fgf signal required for gene expression in the zebrafish hindbrain primordium. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 148:27-42. [PMID: 14757516 DOI: 10.1016/j.devbrainres.2003.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have explored the role of fibroblast growth factor (Fgf) signaling in regulating gene expression in the early zebrafish hindbrain primordium. We demonstrate that a dominant negative Fgf receptor (FgfR) construct disrupts gene expression along the entire rostrocaudal axis of the hindbrain primordium and, using an FgfR antagonist, we find that this Fgf signal is required at early gastrula stages. This effect cannot be mimicked by morpholino antisense oligos to Fgf3, Fgf8 or Fgf24--three Fgf family members known to be secreted from signaling centers at the midbrain-hindbrain boundary (MHB), in rhombomere 4 and in caudal mesoderm at gastrula stages. We propose that an Fgf signal is required in the early gastrula to initiate hindbrain gene expression and that this is distinct from the later roles of Fgfs in patterning the hindbrain during late gastrula/early segmentation stages. We also find that blocking either retinoic acid (RA) or Fgf signaling disrupts hindbrain gene expression at gastrula stages, suggesting that both pathways are essential at this stage. However, both pathways must be blocked simultaneously to disrupt hindbrain gene expression at segmentation stages, indicating that these signaling pathways become redundant at later stages. Furthermore, exogenous application of RA or Fgf alone is sufficient to induce hindbrain genes in gastrula stage tissues, suggesting that the two-signal requirement can be overcome under some conditions. Our results demonstrate an early role for Fgf signaling and reveal a dynamic relationship between the RA and Fgf signaling pathways during hindbrain development.
Collapse
MESH Headings
- Animals
- Body Patterning/drug effects
- Body Patterning/physiology
- Cells, Cultured
- Cycloheximide/pharmacology
- DNA-Binding Proteins
- Embryo, Nonmammalian
- Fibroblast Growth Factors/chemistry
- Fibroblast Growth Factors/physiology
- Gastrula/drug effects
- Gastrula/metabolism
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Mesoderm/drug effects
- Mesoderm/metabolism
- Microinjections/methods
- Mitogen-Activated Protein Kinases/metabolism
- Neurons/drug effects
- Neurons/physiology
- Oligonucleotides, Antisense/pharmacology
- Organizers, Embryonic/drug effects
- Organizers, Embryonic/physiology
- Protein Synthesis Inhibitors/pharmacology
- Pyrroles/pharmacology
- RNA, Messenger/biosynthesis
- Receptors, Fibroblast Growth Factor/antagonists & inhibitors
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Retinoic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rhombencephalon/drug effects
- Rhombencephalon/embryology
- Rhombencephalon/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Spinal Cord/cytology
- Spinal Cord/metabolism
- Time Factors
- Tretinoin/pharmacology
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Nicole M Roy
- Department of Biochemistry and Molecular Pharmacology, and Program in Neuroscience, University of Massachusetts Medical School, 364 Plantation Street-LRB 822, Worcester, MA 01605, USA
| | | |
Collapse
|
142
|
Affiliation(s)
- Adam Amsterdam
- Center for Cancer Research and Department of Biology, Massachusetts Institute for Technology, Cambridge, Massachusetts 01239, USA
| | | |
Collapse
|
143
|
Affiliation(s)
- Iain A Drummond
- Department of Medicine, Harvard Medical School and Renal Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
144
|
Affiliation(s)
- Lara Gnügge
- Developmental Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
145
|
Runko AP, Sagerström CG. Nlz belongs to a family of zinc-finger-containing repressors and controls segmental gene expression in the zebrafish hindbrain. Dev Biol 2003; 262:254-67. [PMID: 14550789 DOI: 10.1016/s0012-1606(03)00388-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The zebrafish nlz gene has a rostral expression limit at the presumptive rhombomere (r) 3/r4 boundary during gastrula stages, and its expression progressively expands rostrally to encompass both r3 and r2 by segmentation stages, suggesting a role for nlz in hindbrain development. We find that Nlz is a nuclear protein that associates with the corepressor Groucho, suggesting that Nlz acts to repress transcription. Consistent with a role as a repressor, misexpression of nlz causes a loss of gene expression in the rostral hindbrain, likely due to ectopic nlz acting prematurely in this domain, and this repression is accompanied by a partial expansion in the expression domains of r4-specific genes. To interfere with endogenous nlz function, we generated a form of nlz that lacks the Groucho binding site and demonstrate that this construct has a dominant negative effect. We find that interfering with endogenous Nlz function promotes the expansion of r5 and, to a lesser extent, r3 gene expression into r4, leading to a reduction in the size of r4. We conclude that Nlz is a transcriptional repressor that controls segmental gene expression in the hindbrain. Lastly, we identify additional nlz-related genes, suggesting that Nlz belongs to a family of zinc-finger proteins.
Collapse
Affiliation(s)
- Alexander P Runko
- Department of Biochemistry and Molecular Pharmacology, and Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
146
|
Hostetter CL, Sullivan-Brown JL, Burdine RD. Zebrafish pronephros: A model for understanding cystic kidney disease. Dev Dyn 2003; 228:514-22. [PMID: 14579389 DOI: 10.1002/dvdy.10371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The embryonic kidney of the zebrafish is the pronephros. The ease of genetic analysis and experimentation in zebrafish, coupled with the simplicity of the pronephros, make the zebrafish an ideal model system for studying kidney development and function. Several mutations have been isolated in zebrafish genetic screens that result in cyst formation in the pronephros. Cloning and characterization of these mutations will provide insight into kidney development but may also provide understanding of the molecular basis of cystic kidney diseases. In this review, we focus on the zebrafish as a model for understanding cystic kidney disease and the links between cystic kidney disease and left-right patterning.
Collapse
Affiliation(s)
- Christine L Hostetter
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA
| | | | | |
Collapse
|
147
|
Wiellette EL, Sive H. vhnf1 and Fgf signals synergize to specify rhombomere identity in the zebrafish hindbrain. Development 2003; 130:3821-9. [PMID: 12835397 DOI: 10.1242/dev.00572] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vertebrate hindbrain segmentation is a highly conserved process but the mechanism of rhombomere determination is not well understood. Recent work in the zebrafish has shown a requirement for fibroblast growth factor (Fgf) signaling and for the transcription factor variant hepatocyte nuclear factor 1 (vhnf1) in specification of rhombomeres 5 and 6 (r5+r6). We show here that vhnf1 functions in two ways to subdivide the zebrafish caudal hindbrain domain (r4-r7) into individual rhombomeres. First, vhnf1 promotes r5+r6 identity through an obligate synergy with Fgf signals to activate valentino and krox20 expression. Second, vhnf1 functions independently of Fgf signals to repress hoxb1a expression. Although vhnf1 is expressed in a broad posterior domain during gastrulation, it promotes the specification of individual rhombomeres. This is achieved in part because vhnf1 gives cellular competence to respond to Fgf signals in a caudal hindbrain-specific manner.
Collapse
Affiliation(s)
- Elizabeth L Wiellette
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
148
|
Abstract
The kidney can be thought of as the pairing of two tubes: an epithelial tube (the nephron), carrying filtered blood and engaged in ion and water transport; and endothelial tubes (the blood vessels), delivering blood and carrying away recovered solute. The development of the nephron presents several interesting questions. How does an epithelial tube form and how is it patterned into functionally distinct components and segments? What guides the interaction between the vasculature and kidney epithelia? How are epithelial cell shape and lumen diameter maintained, and what goes wrong when kidney tubules balloon into cysts? Here, I outline the progress that has been made in answering these questions using the zebrafish pronephros as a simple, accessible model of nephron development.
Collapse
Affiliation(s)
- Iain Drummond
- Department of Medicine, Harvard Medical School and Renal Unit, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
149
|
Nissen RM, Yan J, Amsterdam A, Hopkins N, Burgess SM. Zebrafish foxi one modulates cellular responses to Fgf signaling required for the integrity of ear and jaw patterning. Development 2003; 130:2543-54. [PMID: 12702667 DOI: 10.1242/dev.00455] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified four insertional alleles of foxi one (foo), an embryonic lethal mutation in zebrafish that displays defects in both otic placode and the jaw. In foo/foo embryos the otic placode is split into two smaller placodes and mutant embryos show a dorsoventral (DV) cartilage defect manifested as a reduced hyomandibular and reduced third and fourth branchial arches. We identified foxi one (foo), the zebrafish ortholog of Foxi1 (FREAC6, FKHL10, HFH-3, Fkh10) and a member of the forkhead domain transcriptional regulator family, as the gene mutated in foo/foo embryos. foo is expressed in otic placode precursor cells, and foo/foo embryos lack placodal pax8 expression and have disorganized otic expression of pax2.1 and dlx3. Third stream neural crest cell migration, detected by dlx2 and krox20 expression, is aberrant in that it invades the otic placode territory. foo is expressed in pharyngeal pouch endoderm and is required for pouch expression of pax8 and proper patterning of other markers in the pouch such as nkx2.3. In foo/foo embryos, we observed a failure to maintain fgf3 expression in the pouches, followed by apoptosis of neural crest cells in adjacent arches. We conclude that foo expression is essential for pax8 expression probably downstream of Fgf signaling in a conserved pathway jointly required for integrity of patterning in the otic placode and pharyngeal pouches. We propose that correct placement of survival/proliferation cues is essential for shaping the pharyngeal cartilages and that evolutionary links between jaw and ear formation can be traced to Fgf-Foxi1-Pax8 pathways.
Collapse
Affiliation(s)
- Robert M Nissen
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
150
|
Abstract
Although the development of the digestive system of humans and vertebrate model organisms has been well characterized, relatively little is known about how the zebrafish digestive system forms. We define developmental milestones during organogenesis of the zebrafish digestive tract, liver, and pancreas and identify important differences in the way the digestive endoderm of zebrafish and amniotes is organized. Such differences account for the finding that the zebrafish digestive system is assembled from individual organ anlagen, whereas the digestive anlagen of amniotes arise from a primitive gut tube. Despite differences of organ morphogenesis, conserved molecular programs regulate pharynx, esophagus, liver, and pancreas development in teleosts and mammals. Specifically, we show that zebrafish faust/gata-5 is a functional ortholog of gata-4, a gene that is essential for the formation of the mammalian and avian foregut. Further, extraembryonic gata activity is required for this function in zebrafish as has been shown in other vertebrates. We also show that a loss-of-function mutation that perturbs sonic hedgehog causes defects in the development of the esophagus that parallel those associated with targeted disruption of this gene in mammals. Perturbation of sonic hedgehog also affects zebrafish liver and pancreas development, and these effects occur in a reciprocal fashion, as has been described during mammalian liver and ventral pancreas development. Together, these data define aspects of digestive system development necessary for the characterization of zebrafish mutants. Given the similarities of teleost and mammalian digestive physiology and anatomy, these findings have implications for developmental and evolutionary studies as well as research of human diseases, such as diabetes, liver cirrhosis, and cancer.
Collapse
Affiliation(s)
- Kenneth N Wallace
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|