101
|
Wang Y, Berkowitz O, Selinski J, Xu Y, Hartmann A, Whelan J. Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radic Biol Med 2018; 122:28-39. [PMID: 29555593 DOI: 10.1016/j.freeradbiomed.2018.03.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
In the last decade plant mitochondria have emerged as a target, sensor and initiator of signalling cascades to a variety of stress and adverse growth conditions. A combination of various 'omic profiling approaches combined with forward and reverse genetic studies have defined how mitochondria respond to stress and the signalling pathways and regulators of these responses. Reactive oxygen species (ROS)-dependent and -independent pathways, specific metabolites, complex I dysfunction, and the mitochondrial unfolded protein response (UPR) pathway have been proposed to date. These pathways are regulated by kinases (sucrose non-fermenting response like kinase; cyclin dependent protein kinase E 1) and transcription factors from the abscisic acid-related, WRKY and NAC families. A number of independent studies have revealed that these mitochondrial signalling pathways interact with a variety of phytohormone signalling pathways. While this represents significant progress in the last decade there are more pathways to be uncovered. Post-transcriptional/translational regulation is also a likely determinant of the mitochondrial stress response. Unbiased analyses of the expression of genes encoding mitochondrial proteins in a variety of stress conditions reveal a modular network exerting a high degree of anterograde control. As abiotic and biotic stresses have significant impact on the yield of important crops such as rice, wheat and barley we will give an outlook of how knowledge gained in Arabidopsis may help to increase crop production and how emerging technologies may contribute.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Yue Xu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
102
|
Suppression of External NADPH Dehydrogenase-NDB1 in Arabidopsis thaliana Confers Improved Tolerance to Ammonium Toxicity via Efficient Glutathione/Redox Metabolism. Int J Mol Sci 2018; 19:ijms19051412. [PMID: 29747392 PMCID: PMC5983774 DOI: 10.3390/ijms19051412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023] Open
Abstract
Environmental stresses, including ammonium (NH4+) nourishment, can damage key mitochondrial components through the production of surplus reactive oxygen species (ROS) in the mitochondrial electron transport chain. However, alternative electron pathways are significant for efficient reductant dissipation in mitochondria during ammonium nutrition. The aim of this study was to define the role of external NADPH-dehydrogenase (NDB1) during oxidative metabolism of NH4+-fed plants. Most plant species grown with NH4+ as the sole nitrogen source experience a condition known as “ammonium toxicity syndrome”. Surprisingly, transgenic Arabidopsis thaliana plants suppressing NDB1 were more resistant to NH4+ treatment. The NDB1 knock-down line was characterized by milder oxidative stress symptoms in plant tissues when supplied with NH4+. Mitochondrial ROS accumulation, in particular, was attenuated in the NDB1 knock-down plants during NH4+ treatment. Enhanced antioxidant defense, primarily concerning the glutathione pool, may prevent ROS accumulation in NH4+-grown NDB1-suppressing plants. We found that induction of glutathione peroxidase-like enzymes and peroxiredoxins in the NDB1-surpressing line contributed to lower ammonium-toxicity stress. The major conclusion of this study was that NDB1 suppression in plants confers tolerance to changes in redox homeostasis that occur in response to prolonged ammonium nutrition, causing cross tolerance among plants.
Collapse
|
103
|
Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe. Curr Biol 2018; 28:1614-1619.e3. [PMID: 29731304 DOI: 10.1016/j.cub.2018.03.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/01/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Parasitism is a life history strategy found across all domains of life whereby nutrition is obtained from a host. It is often associated with reductive evolution of the genome, including loss of genes from the organellar genomes [1, 2]. In some unicellular parasites, the mitochondrial genome (mitogenome) has been lost entirely, with far-reaching consequences for the physiology of the organism [3, 4]. Recently, mitogenome sequences of several species of the hemiparasitic plant mistletoe (Viscum sp.) have been reported [5, 6], revealing a striking loss of genes not seen in any other multicellular eukaryotes. In particular, the nad genes encoding subunits of respiratory complex I are all absent and other protein-coding genes are also lost or highly diverged in sequence, raising the question what remains of the respiratory complexes and mitochondrial functions. Here we show that oxidative phosphorylation (OXPHOS) in European mistletoe, Viscum album, is highly diminished. Complex I activity and protein subunits of complex I could not be detected. The levels of complex IV and ATP synthase were at least 5-fold lower than in the non-parasitic model plant Arabidopsis thaliana, whereas alternative dehydrogenases and oxidases were higher in abundance. Carbon flux analysis indicates that cytosolic reactions including glycolysis are greater contributors to ATP synthesis than the mitochondrial tricarboxylic acid (TCA) cycle. Our results describe the extreme adjustments in mitochondrial functions of the first reported multicellular eukaryote without complex I.
Collapse
|
104
|
Racca S, Welchen E, Gras DE, Tarkowská D, Turečková V, Maurino VG, Gonzalez DH. Interplay between cytochrome c and gibberellins during Arabidopsis vegetative development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:105-121. [PMID: 29385297 DOI: 10.1111/tpj.13845] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Sofía Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225, Düsseldorf, Germany
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
105
|
CMS-G from Beta vulgaris ssp. maritima is maintained in natural populations despite containing an atypical cytochrome c oxidase. Biochem J 2018; 475:759-773. [PMID: 29358189 DOI: 10.1042/bcj20170655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
Abstract
While mitochondrial mutants of the respiratory machinery are rare and often lethal, cytoplasmic male sterility (CMS), a mitochondrially inherited trait that results in pollen abortion, is frequently encountered in wild populations. It generates a breeding system called gynodioecy. In Beta vulgaris ssp. maritima, a gynodioecious species, we found CMS-G to be widespread across the distribution range of the species. Despite the sequencing of the mitochondrial genome of CMS-G, the mitochondrial sterilizing factor causing CMS-G is still unknown. By characterizing biochemically CMS-G, we found that the expression of several mitochondrial proteins is altered in CMS-G plants. In particular, Cox1, a core subunit of the cytochrome c oxidase (complex IV), is larger but can still assemble into complex IV. However, the CMS-G-specific complex IV was only detected as a stabilized dimer. We did not observe any alteration of the affinity of complex IV for cytochrome c; however, in CMS-G, complex IV capacity is reduced. Our results show that CMS-G is maintained in many natural populations despite being associated with an atypical complex IV. We suggest that the modified complex IV could incur the associated cost predicted by theoretical models to maintain gynodioecy in wild populations.
Collapse
|
106
|
de Oliveira Silva FM, Lichtenstein G, Alseekh S, Rosado-Souza L, Conte M, Suguiyama VF, Lira BS, Fanourakis D, Usadel B, Bhering LL, DaMatta FM, Sulpice R, Araújo WL, Rossi M, de Setta N, Fernie AR, Carrari F, Nunes-Nesi A. The genetic architecture of photosynthesis and plant growth-related traits in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:327-341. [PMID: 29044606 DOI: 10.1111/pce.13084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 05/22/2023]
Abstract
To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement.
Collapse
Affiliation(s)
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | | | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Dimitrios Fanourakis
- Department of Viticulture, Floriculture, Vegetable Crops and Plant Protection, GR, 71307, Heraklion, Greece
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
- Forschungszentrum Jülich, IBG-2 Plant Sciences, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Leonardo Lopes Bhering
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Plant & Agribiosiences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Nathalia de Setta
- Universidade Federal do ABC, 09606070, São Bernardo do Campo, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
107
|
Maize Dek37 Encodes a P-type PPR Protein That Affects cis-Splicing of Mitochondrial nad2 Intron 1 and Seed Development. Genetics 2018; 208:1069-1082. [PMID: 29301905 DOI: 10.1534/genetics.117.300602] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial group II introns require the participation of numerous nucleus-encoded general and specific factors to achieve efficient splicing in vivo Pentatricopeptide repeat (PPR) proteins have been implicated in assisting group II intron splicing. Here, we identified and characterized a new maize seed mutant, defective kernel 37 (dek37), which has significantly delayed endosperm and embryo development. Dek37 encodes a classic P-type PPR protein that targets mitochondria. The dek37 mutation causes no detectable DEK37 protein in mutant seeds. Mitochondrial transcripts analysis indicated that dek37 mutation decreases splicing efficiency of mitochondrial nad2 intron 1, leading to reduced assembly and NADH dehydrogenase activity of complex I. Transmission Electron Microscopy (TEM) revealed severe morphological defects of mitochondria in dek37 Transcriptome analysis of dek37 endosperm indicated enhanced expression in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function. These results indicated that Dek37 is involved in cis-splicing of mitochondrial nad2 intron 1 and is required for complex I assembly, mitochondrial function, and seed development in maize.
Collapse
|
108
|
Analysis of the Roles of the Arabidopsis nMAT2 and PMH2 Proteins Provided with New Insights into the Regulation of Group II Intron Splicing in Land-Plant Mitochondria. Int J Mol Sci 2017; 18:ijms18112428. [PMID: 29149092 PMCID: PMC5713396 DOI: 10.3390/ijms18112428] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Plant mitochondria are remarkable with respect to the presence of numerous group II introns which reside in many essential genes. The removal of the organellar introns from the coding genes they interrupt is essential for respiratory functions, and is facilitated by different enzymes that belong to a diverse set of protein families. These include maturases and RNA helicases related proteins that function in group II intron splicing in different organisms. Previous studies indicate a role for the nMAT2 maturase and the RNA helicase PMH2 in the maturation of different pre-RNAs in Arabidopsis mitochondria. However, the specific roles of these proteins in the splicing activity still need to be resolved. Using transcriptome analyses of Arabidopsis mitochondria, we show that nMAT2 and PMH2 function in the splicing of similar subsets of group II introns. Fractionation of native organellar extracts and pulldown experiments indicate that nMAT2 and PMH2 are associated together with their intron-RNA targets in large ribonucleoprotein particle in vivo. Moreover, the splicing efficiencies of the joint intron targets of nMAT2 and PMH2 are more strongly affected in a double nmat2/pmh2 mutant-line. These results are significant as they may imply that these proteins serve as components of a proto-spliceosomal complex in plant mitochondria.
Collapse
|
109
|
Ren X, Pan Z, Zhao H, Zhao J, Cai M, Li J, Zhang Z, Qiu F. EMPTY PERICARP11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4571-4581. [PMID: 28981788 PMCID: PMC5853838 DOI: 10.1093/jxb/erx212] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/02/2017] [Indexed: 05/20/2023]
Abstract
Group II introns are common in the mitochondrial genome of higher plant species. The splicing of these introns is a complex process involving the synergistic action of multiple factors. However, few of these factors have been characterized in maize. In this study, we found that the Empty pericarp11 (Emp11) gene, which encodes a P-type pentatricopeptide repeat (PPR) protein, is required for the development of maize seeds. The loss of Emp11 function seriously impairs embryo and endosperm development, resulting in empty pericarp seeds in maize, and alteration in Emp11 expression leads to quantitative variation in kernel size and weight. We found that the emp11 mutants showed a failure in nad1 intron splicing, exhibited a severe reduction in complex I assembly and activity, mitochondrial structure disturbances, and an increase in alternative oxidase AOX2 and AOX3 levels. Interestingly, the emp11 phenotype was very severe in the W22 inbred line but could be partially recovered in B73 BC2F2 segregating ears. These results suggest that EMP11 serves as a factor for the splicing of mitochondrial nad1 introns and is required for mitochondrial function to ensure proper seed development in maize.
Collapse
Affiliation(s)
- Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Junli Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Manjun Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
- Correspondence: ,
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P.R. China
- Correspondence: ,
| |
Collapse
|
110
|
Cai M, Li S, Sun F, Sun Q, Zhao H, Ren X, Zhao Y, Tan BC, Zhang Z, Qiu F. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:132-144. [PMID: 28346745 DOI: 10.1111/tpj.13551] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
In higher plants, many mitochondrial genes contain group II-type introns that are removed from RNAs by splicing to produce mature transcripts that are then translated into functional proteins. However, the factors involved in the splicing of mitochondrial introns and their biological functions are not well understood in maize. Here, we isolated an empty pericarp 10 (emp10) mutant and identified the underlying gene by map-based cloning. Emp10 encodes a P-type mitochondria-targeted pentatricopeptide repeat (PPR) protein with 10 PPR motifs. Loss of Emp10 function results in splicing defect of the first intron of nad2, a gene encoding subunit 2 of NADH dehydrogenase (also called complex I). The emp10 mutant has undetectable activity of complex I and has arrested development of embryo and endosperm, and thus defective seeds with empty pericarp. Additionally, the basal endosperm transfer layer cells were severely affected, indicating the deficiency of cell wall ingrowths in the emp10 kernels. Moreover, the alternative respiratory pathway involving alternative oxidase was significantly induced in the emp10 mutant. These results suggest that EMP10 is specifically required for the cis-splicing of mitochondrial nad2 intron 1, embryogenesis and endosperm development in maize.
Collapse
Affiliation(s)
- Manjun Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuzhen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Sun
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanxin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao-Cai Tan
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
111
|
Wang G, Zhong M, Shuai B, Song J, Zhang J, Han L, Ling H, Tang Y, Wang G, Song R. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:1563-1578. [PMID: 28277611 DOI: 10.1111/nph.14507] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/30/2017] [Indexed: 05/02/2023]
Abstract
Mitochondria are semi-autonomous organelles that are the powerhouse of the cells. Plant mitochondrial RNA editing guided by pentatricopeptide repeat (PPR) proteins is essential for energy production. We identify a maize defective kernel mutant dek36, which produces small and collapsed kernels, leading to embryos and/or seedlings lethality. Seed filling in dek36 is drastically impaired, in line with the defects observed in the organization of endosperm transfer tissue. Positional cloning reveals that DEK36, encoding a mitochondria-targeted E+ subgroup PPR protein, is required for mitochondrial RNA editing at atp4-59, nad7-383 and ccmFN -302, thus resulting in decreased activities of mitochondrial complex I, complex III and complex IV in dek36. Loss-of-function of its Arabidopsis ortholog At DEK36 causes arrested embryo and endosperm development, leading to embryo lethality. At_dek36 also has RNA editing defects in atp4, nad7, ccmFN1 and ccmFN2 , but at the nonconserved sites. Importantly, efficiency of all editing sites in ccmFN1 , ccmFN2 and rps12 is severely decreased in At_dek36, probably caused by the impairment of their RNA stabilization. These results suggest that the DEK36 orthologue pair are essential for embryo and endosperm development in both maize and Arabidopsis, but through divergent function in regulating RNA metabolism of their mitochondrial targets.
Collapse
Affiliation(s)
- Gang Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Mingyu Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Bilian Shuai
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiandong Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jie Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liang Han
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Huiling Ling
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Guifeng Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
112
|
Chen X, Feng F, Qi W, Xu L, Yao D, Wang Q, Song R. Dek35 Encodes a PPR Protein that Affects cis-Splicing of Mitochondrial nad4 Intron 1 and Seed Development in Maize. MOLECULAR PLANT 2017; 10:427-441. [PMID: 27596292 DOI: 10.1016/j.molp.2016.08.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/19/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
In higher plants, the splicing of organelle-encoded mRNA involves a complex collaboration with nuclear-encoded proteins. Pentatricopeptide repeat (PPR) proteins have been implicated in these RNA-protein interactions. In this study, we performed the cloning and functional characterization of maize Defective kernel 35 (Dek35). The dek35-ref mutant is a lethal-seed mutant with developmental deficiency. Dek35 was cloned through Mutator tag isolation and further confirmed by four additional independent mutant alleles. Dek35 encodes an P-type PPR protein that targets the mitochondria. The dek35 mutation causes significant reduction in the accumulation of DEK35 proteins and reduced splicing efficiency of mitochondrial nad4 intron 1. Analysis of mitochondrial complex in dek35 immature seeds indicated severe deficiency in the complex I assembly and NADH dehydrogenase activity. Transcriptome analysis of dek35 endosperm revealed enhanced expression of genes involved in the alternative respiratory pathway and extensive differentially expressed genes related to mitochondrial function and activity. Collectively, these results indicate that Dek35 encodes an PPR protein that affects the cis-splicing of mitochondrial nad4 intron 1 and is required for mitochondrial function and seed development.
Collapse
Affiliation(s)
- Xinze Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China; Coordinated Crop Biology Research Center (CBRC), Beijing 100193, China
| | - Liming Xu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dongsheng Yao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qun Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China; Coordinated Crop Biology Research Center (CBRC), Beijing 100193, China.
| |
Collapse
|
113
|
Editing of Mitochondrial Transcripts nad3 and cox2 by Dek10 Is Essential for Mitochondrial Function and Maize Plant Development. Genetics 2017; 205:1489-1501. [PMID: 28213476 DOI: 10.1534/genetics.116.199331] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/02/2017] [Indexed: 11/18/2022] Open
Abstract
Respiration, the core of mitochondrial metabolism, depends on the function of five respiratory complexes. Many respiratory chain-related proteins are encoded by the mitochondrial genome and their RNAs undergo post-transcriptional modifications by nuclear genome-expressed factors, including pentatricopeptide repeat (PPR) proteins. Maize defective kernel 10 (dek10) is a classic mutant with small kernels and delayed development. Through positional cloning, we found that Dek10 encodes an E-subgroup PPR protein localized in mitochondria. Sequencing analysis indicated that Dek10 is responsible for the C-to-U editing at nad3-61, nad3-62, and cox2-550 sites, which are specific editing sites in monocots. The defects of these editing sites result in significant reduction of Nad3 and the loss of Cox2. Interestingly, the assembly of complex I was not reduced, but its NADH dehydrogenase activity was greatly decreased. The assembly of complex IV was significantly reduced. Transcriptome and transmission electron microscopy (TEM) analysis revealed that proper editing of nad3 and cox2 is critical for mitochondrial functions, biogenesis, and morphology. These results indicate that the E-subgroup PPR protein Dek10 is responsible for multiple editing sites in nad3 and cox2, which are essential for mitochondrial functions and plant development in maize.
Collapse
|
114
|
Pétriacq P, de Bont L, Genestout L, Hao J, Laureau C, Florez-Sarasa I, Rzigui T, Queval G, Gilard F, Mauve C, Guérard F, Lamothe-Sibold M, Marion J, Fresneau C, Brown S, Danon A, Krieger-Liszkay A, Berthomé R, Ribas-Carbo M, Tcherkez G, Cornic G, Pineau B, Gakière B, De Paepe R. Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants. PLANT PHYSIOLOGY 2017; 173:434-455. [PMID: 27852950 PMCID: PMC5210746 DOI: 10.1104/pp.16.01484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/16/2016] [Indexed: 05/07/2023]
Abstract
Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit and the previously characterized ndufs4 CI mutant. In the long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Columbia-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher alternative oxidase content/activity, and displayed a growth retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than in ndufs8.1 ndufs8.2 under the short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD compared with the wild type. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the wild type. The typical LD acclimation of carbon and nitrogen assimilation as well as redox-related parameters was not observed in ndufs8.1 ndufs8 Similarly, NAD(H) content, which was higher in the SD condition in both mutants than in Columbia-0, did not adjust under LD We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of CI mutants and photoperiod acclimation in Arabidopsis.
Collapse
Affiliation(s)
- Pierre Pétriacq
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Linda de Bont
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Lucie Genestout
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Jingfang Hao
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Constance Laureau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Igor Florez-Sarasa
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Touhami Rzigui
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Guillaume Queval
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Marlène Lamothe-Sibold
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Jessica Marion
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Chantal Fresneau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Spencer Brown
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Antoine Danon
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Anja Krieger-Liszkay
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Richard Berthomé
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Miquel Ribas-Carbo
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Guillaume Tcherkez
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Gabriel Cornic
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Bernard Pineau
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.);
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.);
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.);
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.);
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.);
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.);
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.);
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| | - Rosine De Paepe
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (P.P., L.d.B., L.G., J.H., G.Q., A.D., B.P., B.G., R.D.P.)
- Ecologie, Systématique et Evolution, Université Paris-Sud, Centre National de la Recherche Scientifique, Université Paris-Saclay, 91405 Orsay cedex, France (C.L., T.R., C.F., G.C.)
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, 7122 Palma de Mallorca, Spain (I.F.-S., M.R.-C.)
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay, France (F.Gi., C.M., F.Gu., M.L.-S., B.G.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Gif, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette cedex, France (J.M., S.B.)
- Institute for Integrative Biology of the Cell, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université Paris-Sud, Université Paris-Saclay, Campus de Saclay, Commissariat à l'Energie Atomique Saclay, 91191 Gif-sur-Yvette cedex, France (A.K.-L.)
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche Institut National de la Recherche Agronomique 441/Centre National de la Recherche Scientifique 2594, 31326 Castanet Tolosan cedex, France (R.B.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 2601, Australia (G.T.); and
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom S10 2TN (P.P.)
| |
Collapse
|
115
|
Lin Z, An J, Wang J, Niu J, Ma C, Wang L, Yuan G, Shi L, Liu L, Zhang J, Zhang Z, Qi J, Lin S. Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:134. [PMID: 28559925 PMCID: PMC5445305 DOI: 10.1186/s13068-017-0820-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/15/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lindera glauca fruit with high quality and quantity of oil has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of carbon flux and energy source for oil biosynthesis in developing fruits is still unknown. To better develop fruit oils of L. glauca as woody biodiesel, a combination of two different sequencing platforms (454 and Illumina) and qRT-PCR analysis was used to define a minimal reference transcriptome of developing L. glauca fruits, and to construct carbon and energy metabolic model for regulation of carbon partitioning and energy supply for FA biosynthesis and oil accumulation. RESULTS We first analyzed the dynamic patterns of growth tendency, oil content, FA compositions, biodiesel properties, and the contents of ATP and pyridine nucleotide of L. glauca fruits from seven different developing stages. Comprehensive characterization of transcriptome of the developing L. glauca fruit was performed using a combination of two different next-generation sequencing platforms, of which three representative fruit samples (50, 125, and 150 DAF) and one mixed sample from seven developing stages were selected for Illumina and 454 sequencing, respectively. The unigenes separately obtained from long and short reads (201, and 259, respectively, in total) were reconciled using TGICL software, resulting in a total of 60,031 unigenes (mean length = 1061.95 bp) to describe a transcriptome for developing L. glauca fruits. Notably, 198 genes were annotated for photosynthesis, sucrose cleavage, carbon allocation, metabolite transport, acetyl-CoA formation, oil synthesis, and energy metabolism, among which some specific transporters, transcription factors, and enzymes were identified to be implicated in carbon partitioning and energy source for oil synthesis by an integrated analysis of transcriptomic sequencing and qRT-PCR. Importantly, the carbon and energy metabolic model was well established for oil biosynthesis of developing L. glauca fruits, which could help to reveal the molecular regulatory mechanism of the increased oil production in developing fruits. CONCLUSIONS This study presents for the first time the application of an integrated two different sequencing analyses (Illumina and 454) and qRT-PCR detection to define a minimal reference transcriptome for developing L. glauca fruits, and to elucidate the molecular regulatory mechanism of carbon flux control and energy provision for oil synthesis. Our results will provide a valuable resource for future fundamental and applied research on the woody biodiesel plants.
Collapse
Affiliation(s)
- Zixin Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jiyong An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jun Niu
- College of Horticulture and Landscape Architecture, Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources, Ministry of Education, Hainan University, Haikou, 570228 China
| | - Chao Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Libing Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091 China
| | - Guanshen Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lingling Shi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Lili Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Jinsong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Zhixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Ji Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| | - Shanzhi Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Biotechnology, College of Nature Conservation, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 10083 China
| |
Collapse
|
116
|
Murcha MW, Kubiszewski-Jakubiak S, Teixeira PF, Gügel IL, Kmiec B, Narsai R, Ivanova A, Megel C, Schock A, Kraus S, Berkowitz O, Glaser E, Philippar K, Maréchal-Drouard L, Soll J, Whelan J. Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. PLANT PHYSIOLOGY 2016; 172:2471-2490. [PMID: 27789739 PMCID: PMC5129730 DOI: 10.1104/pp.16.01519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 05/03/2023]
Abstract
A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Pedro F Teixeira
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Irene L Gügel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Beata Kmiec
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Aneta Ivanova
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Cyrille Megel
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Annette Schock
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Sabrina Kraus
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Elzbieta Glaser
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Katrin Philippar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Laurence Maréchal-Drouard
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - Jürgen Soll
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.)
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.)
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.)
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.)
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.)
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia (M.W.M., S.K.-J., A.I.);
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden (P.F.T., B.K., E.G.);
- Department Biology 1-Botany, Biocenter Ludwig-Maximilians-University Munich, 82152 Planegg, Germany (I.L.G., A.S., S.K., K.P., J.S.);
- Munich Centre for Integrated Protein Science, Ludwig-Maximilians-University Munich, 81377 Munich, Germany (I.L.G., A.S., S.K., J.S.);
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., O.B., J.W.);
- Center for Human and Molecular Biology, Plant Biology, Saarland University, 66123 Saarbruecken, Germany (K.P.); and
- Institut de Biologie Moléculaire des Plantes-Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France (L.M.-D., C.M.)
| |
Collapse
|
117
|
Li L, Kubiszewski-Jakubiak S, Radomiljac J, Wang Y, Law SR, Keech O, Narsai R, Berkowitz O, Duncan O, Murcha MW, Whelan J. Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6061-6075. [PMID: 27811077 PMCID: PMC5100019 DOI: 10.1093/jxb/erw366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In plant cells, mitochondria are major providers of energy and building blocks for growth and development as well as abiotic and biotic stress responses. They are encircled by two lipid membranes containing proteins that control mitochondrial function through the import of macromolecules and metabolites. Characterization of a novel β-barrel protein, OUTER MEMBRANE PROTEIN 47 (OM47), unique to the green lineage and related to the voltage-dependent anion channel (VDAC) protein family, showed that OM47 can complement a VDAC mutant in yeast. Mutation of OM47 in Arabidopsis thaliana by T-DNA insertion had no effect on the import of proteins, such as the β-barrel proteins translocase of the outer membrane 40 (TOM40) or sorting and assembly machinery 50 (SAM50), into mitochondria. Molecular and physiological analyses revealed a delay in chlorophyll breakdown, higher levels of starch, and a delay in the induction of senescence marker genes in the mutant lines. While there was a reduction of >90% in OM47 protein in mitochondria isolated from 3-week-old om47 mutants, in mitochondria isolated from 8-week-old plants OM47 levels were similar to that of the wild type. This recovery was achieved by an up-regulation of OM47 transcript abundance in the mutants. Combined, these results highlight a role in leaf senescence for this plant-specific β-barrel protein, probably mediating the recovery and recycling of chloroplast breakdown products by transporting metabolic intermediates into and out of mitochondria.
Collapse
Affiliation(s)
- Lu Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Jordan Radomiljac
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
118
|
Van Aken O, Ford E, Lister R, Huang S, Millar AH. Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:542-558. [PMID: 27425258 DOI: 10.1111/tpj.13276] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Mitochondria are crucial for plant viability and are able to communicate information on their functional status to the cellular nucleus via retrograde signalling, thereby affecting gene expression. It is currently unclear if retrograde signalling in response to constitutive mitochondrial biogenesis defects is mediated by the same pathways as those triggered during acute mitochondrial dysfunction. Furthermore, it is unknown if retrograde signalling can effectively improve plant performance when mitochondrial function is constitutively impaired. Here we show that retrograde signalling in mutants defective in mitochondrial proteins RNA polymerase rpotmp or prohibitin atphb3 can be suppressed by knocking out the transcription factor ANAC017. Genome-wide RNA-seq expression analysis revealed that ANAC017 is almost solely responsible for the most dramatic transcriptional changes common to rpotmp and atphb3 mutants, regulating classical marker genes such as alternative oxidase 1a (AOX1a) and also previously-uncharacterised DUF295 genes that appear to be new retrograde markers. In contrast, ANAC017 does not regulate intra-mitochondrial gene expression or transcriptional changes unique to either rpotmp or atphb3 genotype, suggesting the existence of currently unknown signalling cascades. The data show that ANAC017 function extends beyond common retrograde transcriptional responses and affects downstream protein abundance and enzyme activity of alternative oxidase, as well as steady-state energy metabolism in atphb3 plants. Furthermore, detailed growth analysis revealed that ANAC017-dependent retrograde signalling provides benefits for growth and productivity in plants with mitochondrial defects. In conclusion, ANAC017 plays a key role in both biogenic and operational mitochondrial retrograde signalling, and improves plant performance when mitochondrial function is constitutively impaired.
Collapse
Affiliation(s)
- Olivier Van Aken
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Ethan Ford
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Ryan Lister
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Shaobai Huang
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - A Harvey Millar
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
119
|
Tarasenko VI, Katyshev AI, Yakovleva TV, Garnik EY, Chernikova VV, Konstantinov YM, Koulintchenko MV. RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5657-5669. [PMID: 27591433 DOI: 10.1093/jxb/erw327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In a number of dicotyledonous plants, including Arabidopsis, the transcription of organellar genes is performed by three nuclear-encoded RNA polymerases, RPOTm, RPOTmp, and RPOTp. RPOTmp is a protein with a dual targeting, which is presumably involved in the control of gene expression in both mitochondria and chloroplasts. A previous study of the Arabidopsis insertion rpotmp mutant showed that it has retarded growth and development, altered leaf morphology, changed expression of mitochondrial and probably some chloroplast genes, and decreased activities of the mitochondrial respiratory complexes. To date, there is no clear evidence as to which of these disorders are associated with a lack of RPOTmp in each of the two organelles. The aim of this study was to elucidate the role that this RNA polymerase specifically plays in mitochondria and chloroplasts. Two sets of Arabidopsis transgenic lines with complementation of RPOTmp function in either mitochondria or chloroplasts were obtained. It was found that the recovery of RPOTmp RNA polymerase activity in chloroplasts, although restoring the transcription from the RPOTmp-specific PC promoter, did not lead to compensation of the mutant growth defects. In contrast, the rpotmp plants expressing RPOTmp with mitochondrial targeting restored the level of mitochondrial transcripts and exhibit a phenotype resembling that of the wild-type plants. We conclude that despite its localization in two cell compartments, Arabidopsis RPOTmp plays an important role in mitochondria, but not in chloroplasts.
Collapse
Affiliation(s)
- Vladislav I Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk, 664033, Russia
| | - Alexander I Katyshev
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk, 664033, Russia
| | - Tatiana V Yakovleva
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk, 664033, Russia
| | - Elena Y Garnik
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk, 664033, Russia
| | - Valentina V Chernikova
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk, 664033, Russia
| | - Yuri M Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk, 664033, Russia Irkutsk State University, 1 Karl Marx St, Irkutsk, 664003, Russia
| | - Milana V Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk, 664033, Russia
| |
Collapse
|
120
|
Xie T, Chen D, Wu J, Huang X, Wang Y, Tang K, Li J, Sun M, Peng X. Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5687-5698. [PMID: 27670716 PMCID: PMC5066490 DOI: 10.1093/jxb/erw331] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most pentatricopeptide repeat (PPR) proteins are involved in organelle post-transcriptional processes, including RNA editing. The PPR proteins include the PLS subfamily, containing characteristic triplets of P, L, and S motifs; however, their editing mechanisms and roles in developmental processes are not fully understood. In this study, we isolated the Arabidopsis thaliana Growing slowly 1 (AtGRS1) gene and showed that it functions in RNA editing and plant development. Arabidopsis null mutants of grs1 exhibit slow growth and sterility. Further analysis showed that cell division activity was reduced dramatically in the roots of grs1 plants. We determined that GRS1 is a nuclear-encoded mitochondria-localized PPR protein, and is a member of the PLS subfamily. GRS1 is responsible for the RNA editing at four specific sites of four mitochondrial mRNAs: nad1-265, nad4L-55, nad6-103, and rps4-377 The first three of these mRNAs encode for the subunits of complex I of the electron transport chain in mitochondria. Thus, the activity of complex I is strongly reduced in grs1 Changes in RPS4 editing in grs1 plants affect mitochondrial ribosome biogenesis. Expression of the alternative respiratory pathway and the abscisic acid response gene ABI5 were up-regulated in grs1 mutant plants Genetic analysis revealed that ABI5 is involved in the short root phenotype of grs1 Taken together, our results indicate that AtGRS1 regulates plant development by controlling RNA editing in Arabidopsis.
Collapse
Affiliation(s)
- Tingting Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaorong Huang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yifan Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Keli Tang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
121
|
Hu Z, Vanderhaeghen R, Cools T, Wang Y, De Clercq I, Leroux O, Nguyen L, Belt K, Millar AH, Audenaert D, Hilson P, Small I, Mouille G, Vernhettes S, Van Breusegem F, Whelan J, Höfte H, De Veylder L. Mitochondrial Defects Confer Tolerance against Cellulose Deficiency. THE PLANT CELL 2016; 28:2276-2290. [PMID: 27543091 PMCID: PMC5059812 DOI: 10.1105/tpc.16.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 05/03/2023]
Abstract
Because the plant cell wall provides the first line of defense against biotic and abiotic assaults, its functional integrity needs to be maintained under stress conditions. Through a phenotype-based compound screening approach, we identified a novel cellulose synthase inhibitor, designated C17. C17 administration depletes cellulose synthase complexes from the plasma membrane in Arabidopsis thaliana, resulting in anisotropic cell elongation and a weak cell wall. Surprisingly, in addition to mutations in CELLULOSE SYNTHASE1 (CESA1) and CESA3, a forward genetic screen identified two independent defective genes encoding pentatricopeptide repeat (PPR)-like proteins (CELL WALL MAINTAINER1 [CWM1] and CWM2) as conferring tolerance to C17. Functional analysis revealed that mutations in these PPR proteins resulted in defective cytochrome c maturation and activation of mitochondrial retrograde signaling, as evidenced by the induction of an alternative oxidase. These mitochondrial perturbations increased tolerance to cell wall damage induced by cellulose deficiency. Likewise, administration of antimycin A, an inhibitor of mitochondrial complex III, resulted in tolerance toward C17. The C17 tolerance of cwm2 was partially lost upon depletion of the mitochondrial retrograde regulator ANAC017, demonstrating that ANAC017 links mitochondrial dysfunction with the cell wall. In view of mitochondria being a major target of a variety of stresses, our data indicate that plant cells might modulate mitochondrial activity to maintain a functional cell wall when subjected to stresses.
Collapse
Affiliation(s)
- Zhubing Hu
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Rudy Vanderhaeghen
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Yan Wang
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Olivier Leroux
- Department of Biology, Ghent University, B-9000 Gent, Belgium
| | - Long Nguyen
- Compound Screening Facility, VIB, B-9052 Gent, Belgium
| | - Katharina Belt
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | | | - Pierre Hilson
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Samantha Vernhettes
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - James Whelan
- Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRA, Centre National pour la Recherche Scientifique, AgroParisTech, Université Paris-Saclay, 78026 Versailles Cedex, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
122
|
Huang S, Van Aken O, Schwarzländer M, Belt K, Millar AH. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. PLANT PHYSIOLOGY 2016; 171:1551-9. [PMID: 27021189 PMCID: PMC4936549 DOI: 10.1104/pp.16.00166] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 05/18/2023]
Abstract
Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.
Collapse
Affiliation(s)
- Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Markus Schwarzländer
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Katharina Belt
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| |
Collapse
|
123
|
Fromm S, Braun HP, Peterhansel C. Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development. THE NEW PHYTOLOGIST 2016; 211:194-207. [PMID: 26889912 DOI: 10.1111/nph.13886] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/04/2016] [Indexed: 05/23/2023]
Abstract
Complex I of the mitochondrial electron transport chain (mETC) in plants contains an extra domain that is made up from proteins homologous to prokaryotic gamma-carbonic anhydrases (γCA). This domain has been suggested to participate in complex I assembly or to support transport of mitochondrial CO2 to the chloroplast. Here, we generated mutants lacking CA1 and CA2 - two out of three CA proteins in Arabidopsis thaliana. Double mutants were characterized at the developmental and physiological levels. Furthermore, the composition and activity of the mETC were determined, and mutated CA versions were used for complementation assays. Embryo development of double mutants was strongly delayed and seed development stopped before maturation. Mutant plants could only be rescued on sucrose media, showed severe stress symptoms and never produced viable seeds. By contrast, callus cultures were only slightly affected in growth. Complex I was undetectable in the double mutants, but complex II and complex IV were upregulated concomitant with increased oxygen consumption in mitochondrial respiration. Ectopic expression of inactive CA variants was sufficient to complement the mutant phenotype. Data indicate that CA proteins are structurally required for complex I assembly and that reproductive development is dependent on the presence of complex I.
Collapse
Affiliation(s)
- Steffanie Fromm
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
- Institute of Botany, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | | |
Collapse
|
124
|
Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MKM, Florian A, Krahnert I, Maurino VG, Araújo WL, Fernie AR. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:1304-19. [PMID: 26616144 DOI: 10.1111/pce.12682] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 05/23/2023]
Abstract
During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response.
Collapse
Affiliation(s)
- Marcel V Pires
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adilson A Pereira Júnior
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - David B Medeiros
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Phuong Anh Pham
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kallyne A Barros
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Martin K M Engqvist
- Plant Molecular Physiology and Biotechnology, Institute of Plant Developmental and Molecular Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstr 1, D-40225, Düsseldorf, Germany
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göterborg, Sweden
| | - Alexandra Florian
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology, Institute of Plant Developmental and Molecular Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstr 1, D-40225, Düsseldorf, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
125
|
Garnik EY, Belkov VI, Tarasenko VI, Korzun MA, Konstantinov YM. Glutathione reductase gene expression depends on chloroplast signals in Arabidopsis thaliana. BIOCHEMISTRY (MOSCOW) 2016; 81:364-72. [DOI: 10.1134/s0006297916040064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
126
|
Wang Y, Lyu W, Berkowitz O, Radomiljac JD, Law SR, Murcha MW, Carrie C, Teixeira PF, Kmiec B, Duncan O, Van Aken O, Narsai R, Glaser E, Huang S, Roessner U, Millar AH, Whelan J. Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. MOLECULAR PLANT 2016; 9:696-710. [PMID: 26829715 DOI: 10.1016/j.molp.2016.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
At12Cys-1 (At5g64400) and At12Cys-2 (At5g09570) are two closely related isogenes that encode small, twin cysteine proteins, typically located in mitochondria. At12Cys-2 transcript is induced in a variety of mutants with disrupted mitochondrial proteins, but an increase in At12Cys protein is only detected in mutants with reduced mitochondrial complex I abundance. Induction of At12Cys protein in mutants that lack mitochondrial complex I is accompanied by At12Cys protein located in mitochondria, chloroplasts, and the cytosol. Biochemical analyses revealed that even single gene deletions, i.e., At12cys-1 or At12cys-2, have an effect on mitochondrial and chloroplast functions. However, only double mutants, i.e., At12cys-1:At12cys-2, affect the abundance of protein and mRNA transcripts encoding translation elongation factors as well as rRNA abundance. Blue native PAGE showed that At12Cys co-migrated with mitochondrial supercomplex I + III. Likewise, deletion of both At12cys-1 and At12cys-2 genes, but not single gene deletions, results in enhanced tolerance to drought and light stress and increased anti-oxidant capacity. The induction and multiple localization of At12Cys upon a reduction in complex I abundance provides a mechanism to specifically signal mitochondrial dysfunction to the cytosol and then beyond to other organelles in the cell.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wenhui Lyu
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jordan D Radomiljac
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Simon R Law
- Umeå Plant Science Centre (UPSC), Faculty of Science and Technology, Umeå University, Umeå, Sweden
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Olivier Van Aken
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, 10691 Stockholm, Sweden
| | - Shaobai Huang
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
127
|
Berkowitz O, De Clercq I, Van Breusegem F, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. PLANT, CELL & ENVIRONMENT 2016; 39:1127-39. [PMID: 26763171 DOI: 10.1111/pce.12712] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 05/23/2023]
Abstract
Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
128
|
Fromm S, Senkler J, Eubel H, Peterhänsel C, Braun HP. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3079-93. [PMID: 27122571 PMCID: PMC4867900 DOI: 10.1093/jxb/erw165] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.
Collapse
Affiliation(s)
- Steffanie Fromm
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jennifer Senkler
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Christoph Peterhänsel
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
129
|
Garcia L, Welchen E, Gey U, Arce AL, Steinebrunner I, Gonzalez DH. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:628-44. [PMID: 26436309 DOI: 10.1111/pce.12647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/22/2015] [Indexed: 05/03/2023]
Abstract
COX17 is a soluble protein from the mitochondrial intermembrane space that participates in the transfer of copper for cytochrome c oxidase (COX) assembly in eukaryotic organisms. In this work, we studied the function of both Arabidopsis thaliana AtCOX17 genes using plants with altered expression levels of these genes. Silencing of AtCOX17-1 in a cox17-2 knockout background generates plants with smaller rosettes and decreased expression of genes involved in the response of plants to different stress conditions, including several genes that are induced by mitochondrial dysfunctions. Silencing of either of the AtCOX17 genes does not affect plant development or COX activity but causes a decrease in the response of genes to salt stress. In addition, these plants contain higher reactive oxygen and lipid peroxidation levels after irrigation with high NaCl concentrations and are less sensitive to abscisic acid. In agreement with a role of AtCOX17 in stress and abscisic acid responses, both AtCOX17 genes are induced by several stress conditions, abscisic acid and mutation of the transcription factor ABI4. The results indicate that AtCOX17 is required for optimal expression of a group of stress-responsive genes, probably as a component of signalling pathways that link stress conditions to gene expression responses.
Collapse
Affiliation(s)
- Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Uta Gey
- Technische Universität Dresden, Department of Biology, 01062, Dresden, Germany
| | - Agustín L Arce
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Iris Steinebrunner
- Technische Universität Dresden, Department of Biology, 01062, Dresden, Germany
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
130
|
Córdoba JP, Marchetti F, Soto D, Martin MV, Pagnussat GC, Zabaleta E. The CA domain of the respiratory complex I is required for normal embryogenesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1589-603. [PMID: 26721503 PMCID: PMC5854192 DOI: 10.1093/jxb/erv556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/10/2015] [Indexed: 05/04/2023]
Abstract
The NADH-ubiquinone oxidoreductase [complex I (CI), EC 1.6.5.3] of the mitochondrial respiratory chain is the principal entry point of electrons, and vital in maintaining metabolism and the redox balance. In a variety of eukaryotic organisms, except animal and fungi (Opisthokonta), it contains an extra domain composed of putative gamma carbonic anhydrases subunits, named the CA domain, which was proposed to be essential for complex I assembly. There are two kinds of carbonic anhydrase subunits: CAs (of which there are three) and carbonic anhydrase-like proteins (CALs) (of which there are two). In plants, the CA domain has been linked to photorespiration. In this work, we report that Arabidopsis mutant plants affected in two specific CA subunits show a lethal phenotype. Double homozygous knockouts ca1ca2 embryos show a significant developmental delay compared to the non-homozygous embryos, which show a wild-type (WT) phenotype in the same silique. Mutant embryos show impaired mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) accumulation. The characteristic embryo greening does not take place and fewer but larger oil bodies are present. Although seeds look dark brown and wrinkled, they are able to germinate 12 d later than WT seeds. However, they die immediately, most likely due to oxidative stress.Since the CA domain is required for complex I biogenesis, it is predicted that in ca1ca2 mutants no complex I could be formed, triggering the lethal phenotype. The in vivo composition of a functional CA domain is proposed.
Collapse
Affiliation(s)
- Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Fernanda Marchetti
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Débora Soto
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - María Victoria Martin
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas IIB-CONICET-UNMdP, Funes 3250 3er nivel 7600 Mar del Plata, Argentina Received 6 October 2015; Revised 24 November 2015; Accepted 10 December 2015
| |
Collapse
|
131
|
Liang C, Cheng S, Zhang Y, Sun Y, Fernie AR, Kang K, Panagiotou G, Lo C, Lim BL. Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination. BMC PLANT BIOLOGY 2016; 16:43. [PMID: 26865323 PMCID: PMC4750186 DOI: 10.1186/s12870-016-0726-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/28/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Light plays an important role in plant growth and development. In this study, the impact of light on physiology of 20-d-old Arabidopsis leaves was examined through transcriptomic, proteomic and metabolomic analysis. Since the energy-generating electron transport chains in chloroplasts and mitochondria are encoded by both nuclear and organellar genomes, sequencing total RNA after removal of ribosomal RNAs provides essential information on transcription of organellar genomes. The changes in the levels of ADP, ATP, NADP(+), NADPH and 41 metabolites upon illumination were also quantified. RESULTS Upon illumination, while the transcription of the genes encoded by the plastid genome did not change significantly, the transcription of nuclear genes encoding different functional complexes in the photosystem are differentially regulated whereas members of the same complex are co-regulated with each other. The abundance of mRNAs and proteins encoded by all three genomes are, however, not always positively correlated. One such example is the negative correlation between mRNA and protein abundances of the photosystem components, which reflects the importance of post-transcriptional regulation in plant physiology. CONCLUSION This study provides systems-wide datasets which allow plant researchers to examine the changes in leaf transcriptomes, proteomes and key metabolites upon illumination and to determine whether there are any correlations between changes in transcript and protein abundances of a particular gene or pathway upon illumination. The integration of data of the organelles and the photosystems, Calvin-Benson cycle, carbohydrate metabolism, glycolysis, the tricarboxylic acid cycle and respiratory chain, thereby provides a more complete picture to the changes in plant physiology upon illumination than has been attained to date.
Collapse
Affiliation(s)
- Chao Liang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Shifeng Cheng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Yuzhe Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Kang Kang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Gianni Panagiotou
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
132
|
Xiu Z, Sun F, Shen Y, Zhang X, Jiang R, Bonnard G, Zhang J, Tan BC. EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:507-19. [PMID: 26764126 DOI: 10.1111/tpj.13122] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/05/2016] [Indexed: 05/02/2023]
Abstract
In higher plants, chloroplast and mitochondrial transcripts contain a number of group II introns that need to be precisely spliced before translation into functional proteins. However, the mechanism of splicing and the factors involved in this process are not well understood. By analysing a seed mutant in maize, we report here the identification of Empty pericarp16 (Emp16) that is required for splicing of nad2 intron 4 in mitochondria. Disruption of Emp16 function causes developmental arrest in the embryo and endosperm, giving rise to an empty pericarp phenotype in maize. Differentiation of the basal endosperm transfer layer cells is severely affected. Molecular cloning indicates that Emp16 encodes a P-type pentatricopeptide repeat (PPR) protein with 11 PPR motifs and is localized in the mitochondrion. Transcript analysis revealed that mitochondrial nad2 intron 4 splicing is abolished in the emp16 mutants, leading to severely reduced assembly and activity of complex I. In response, the mutant dramatically increases the accumulation of mitochondrial complex III and the expression of alternative oxidase AOX2. These results imply that EMP16 is specifically required for mitochondrial nad2 intron 4 cis-splicing and is essential for complex I assembly and embryogenesis and development endosperm in maize.
Collapse
Affiliation(s)
- Zhihui Xiu
- State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, NT, Hong Kong, China
| | - Feng Sun
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yun Shen
- State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, NT, Hong Kong, China
| | - Xiaoyan Zhang
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Ruicheng Jiang
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes CNRS, Associé à l'Université de Strasbourg, 12 Rue du Général Zimmer, 67084, Strasbourg, France
| | - Jianhua Zhang
- State Key Lab of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, NT, Hong Kong, China
| | - Bao-Cai Tan
- Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
133
|
Subrahmanian N, Remacle C, Hamel PP. Plant mitochondrial Complex I composition and assembly: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1001-14. [PMID: 26801215 DOI: 10.1016/j.bbabio.2016.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/31/2022]
Abstract
In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Nitya Subrahmanian
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Claire Remacle
- Institute of Botany, Department of Life Sciences, University of Liège, 4000 Liège, Belgium
| | - Patrice Paul Hamel
- The Ohio State University, Department of Molecular Genetics, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA; The Ohio State University, Department of Biological Chemistry and Pharmacology, 500 Aronoff Laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
134
|
Vigani G, Briat JF. Impairment of Respiratory Chain under Nutrient Deficiency in Plants: Does it Play a Role in the Regulation of Iron and Sulfur Responsive Genes? FRONTIERS IN PLANT SCIENCE 2016; 6:1185. [PMID: 26779219 PMCID: PMC4700279 DOI: 10.3389/fpls.2015.01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/10/2015] [Indexed: 05/23/2023]
Abstract
Plant production and plant product quality strongly depend on the availability of mineral nutrients. Among them, sulfur (S) and iron (Fe) play a central role, as they are needed for many proteins of the respiratory chain. Plant mitochondria play essential bioenergetic and biosynthetic functions as well as they have an important role in signaling processes into the cell. Here, by comparing several transcriptomic data sets from plants impaired in their respiratory function with the genes regulated under Fe or S deficiencies obtained from other data sets, nutrient-responsive genes potentially regulated by hypothetical mitochondrial retrograde signaling pathway are evidenced. It leads us to hypothesize that plant mitochondria could be, therefore, required for regulating the expression of key genes involved both in Fe and S metabolisms.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio Agroenergia, Università degli Studi di MilanoMilan, Italy
| | - Jean-François Briat
- Biochimie and Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/SupAgro/UM2Montpellier, France
| |
Collapse
|
135
|
Schimmeyer J, Bock R, Meyer EH. L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. PLANT MOLECULAR BIOLOGY 2016; 90:117-26. [PMID: 26520835 PMCID: PMC4689740 DOI: 10.1007/s11103-015-0400-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/27/2015] [Indexed: 05/19/2023]
Abstract
L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyses the last enzymatic step of the ascorbate biosynthetic pathway in plants. GLDH is localised to mitochondria and several reports have shown that GLDH is associated with complex I of the respiratory chain. In a gldh knock-out mutant, complex I is not detectable, suggesting that GLDH is essential for complex I assembly or stability. GLDH has not been identified as a genuine complex I subunit, instead, it is present in a smaller, lowly abundant version of complex I called complex I*. In addition, GLDH activity has also been detected in smaller protein complexes within mitochondria membranes. Here, we investigated the role of GLDH during complex I assembly. We identified GLDH in complexes co-localising with some complex I assembly intermediates. Using a mutant that accumulates complex I assembly intermediates, we confirmed that GLDH is associated with the complex I assembly intermediates of 400 and 450 kDa. In addition, we detected accumulation of the 200 kDa complex I assembly intermediate in the gldh mutant. Taken together, our data suggest that GLDH is an assembly factor of the membrane arm of complex I. This function appears to be independent of the role of GLDH in ascorbate synthesis, as evidenced by the ascorbate-deficient mutant vtc2-1 accumulating wild-type levels of complex I. Therefore, we propose that GLDH is a dual-function protein that has a second, non-enzymatic function in complex I assembly as a plant-specific assembly factor. We propose an updated model for complex I assembly that includes complex I* as an assembly intermediate.
Collapse
Affiliation(s)
- Joram Schimmeyer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Etienne H Meyer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
136
|
Nucleic acid import into mitochondria: New insights into the translocation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3165-81. [DOI: 10.1016/j.bbamcr.2015.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Accepted: 09/10/2015] [Indexed: 11/18/2022]
|
137
|
Mansilla N, Garcia L, Gonzalez DH, Welchen E. AtCOX10, a protein involved in haem o synthesis during cytochrome c oxidase biogenesis, is essential for plant embryogenesis and modulates the progression of senescence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6761-75. [PMID: 26246612 DOI: 10.1093/jxb/erv381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cytochrome c oxidase (CcO) biogenesis requires several accessory proteins implicated, among other processes, in copper and haem a insertion. In yeast, the farnesyltransferase Cox10p that catalyses the conversion of haem b to haem o is the limiting factor in haem a biosynthesis and is essential for haem a insertion in CcO. In this work, we characterized AtCOX10, a putative Cox10p homologue from Arabidopsis thaliana. AtCOX10 was localized in mitochondria and was able to restore growth of a yeast Δcox10 null mutant on non-fermentable carbon sources, suggesting that it also participates in haem o synthesis. Plants with T-DNA insertions in the coding region of both copies of AtCOX10 could not be recovered, and heterozygous mutant plants showed seeds with embryos arrested at early developmental stages that lacked CcO activity. Heterozygous mutant plants exhibited lower levels of CcO activity and cyanide-sensitive respiration but normal levels of total respiration at the expense of an increase in alternative respiration. AtCOX10 seems to be implicated in the onset and progression of senescence, since heterozygous mutant plants showed a faster decrease in chlorophyll content and photosynthetic performance than wild-type plants after natural and dark-induced senescence. Furthermore, complementation of mutants by expressing AtCOX10 under its own promoter allowed us to obtain plants with T-DNA insertions in both AtCOX10 copies, which showed phenotypic characteristics comparable to those of wild type. Our results highlight the relevance of haem o synthesis in plants and suggest that this process is a limiting factor that influences CcO activity levels, mitochondrial respiration, and plant senescence.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| |
Collapse
|
138
|
Fromm S, Göing J, Lorenz C, Peterhänsel C, Braun HP. Depletion of the "gamma-type carbonic anhydrase-like" subunits of complex I affects central mitochondrial metabolism in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:60-71. [PMID: 26482706 DOI: 10.1016/j.bbabio.2015.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022]
Abstract
"Gamma-type carbonic anhydrase-like" (CAL) proteins form part of complex I in plants. Together with "gamma carbonic anhydrase" (CA) proteins they form an extra domain which is attached to the membrane arm of complex I on its matrix exposed side. In Arabidopsis two CAL and three CA proteins are present, termed CAL1, CAL2, CA1, CA2 and CA3. It has been proposed that the carbonic anhydrase domain of complex I is involved in a process mediating efficient recycling of mitochondrial CO2 for photosynthetic carbon fixation which is especially important during growth conditions causing increased photorespiration. Depletion of CAL proteins has been shown to significantly affect plant development and photomorphogenesis. To better understand CAL function in plants we here investigated effects of CAL depletion on the mitochondrial compartment. In mutant lines and cell cultures complex I amount was reduced by 90-95% but levels of complexes III and V were unchanged. At the same time, some of the CA transcripts were less abundant. Proteome analysis of CAL depleted cells revealed significant reduction of complex I subunits as well as proteins associated with photorespiration, but increased amounts of proteins participating in amino acid catabolism and stress response reactions. Developmental delay of the mutants was slightly alleviated if plants were cultivated at high CO2. Profiling of selected metabolites revealed defined changes in intermediates of the citric acid cycle and amino acid catabolism. It is concluded that CAL proteins are essential for complex I assembly and that CAL depletion specifically affects central mitochondrial metabolism.
Collapse
Affiliation(s)
- Steffanie Fromm
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany; Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Jennifer Göing
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Christin Lorenz
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Christoph Peterhänsel
- Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| |
Collapse
|
139
|
Sun F, Wang X, Bonnard G, Shen Y, Xiu Z, Li X, Gao D, Zhang Z, Tan BC. Empty pericarp7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:283-95. [PMID: 26303363 DOI: 10.1111/tpj.12993] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 05/02/2023]
Abstract
RNA editing, converting cytidines (C) to uridines (U) at specific sites in the transcripts of mitochondria and plastids, plays a critical role in organelle gene expression in land plants. Recently pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing. In this study, we characterized an empty pericarp7 mutant (emp7) in Zea mays (maize), which confers an embryo-lethal phenotype. In emp7 mutants, mitochondrial functions are seriously perturbed, resulting in a strikingly reduced respiration rate. Emp7 encodes an E-subgroup PPR protein that is localized exclusively in the mitochondrion. Null mutation of Emp7 abolishes the C → U editing of ccmF(N) transcript solely at position 1553. CcmF(N) is coding for a subunit of heme lyase complex in the cytochrome c maturation pathway. The resulting Phe → Ser substitution in CcmF(N) leads to the loss of CcmF(N) protein and a strikingly reduced c-type cytochrome. Consequently, the mitochondrial cytochrome-linked respiratory chain is impaired as a result of the disassembly of complex III in the emp7 mutant. These results indicate that the PPR-E subgroup protein EMP7 is required for C → U editing of ccmF(N) -1553 at a position essential for cytochrome c maturation and mitochondrial oxidative phosphorylation, and hence is essential to embryo and endosperm development in maize.
Collapse
Affiliation(s)
- Feng Sun
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Géraldine Bonnard
- Institut de biologie moléculaire des plantes CNRS, Associé à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Yun Shen
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Zhihui Xiu
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Xiaojie Li
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Dahai Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhonghang Zhang
- School of Life Sciences, The Chinese University of Hong Kong, N.T, Hong Kong
| | - Bao-Cai Tan
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| |
Collapse
|
140
|
Romani I, Manavski N, Morosetti A, Tadini L, Maier S, Kühn K, Ruwe H, Schmitz-Linneweber C, Wanner G, Leister D, Kleine T. A Member of the Arabidopsis Mitochondrial Transcription Termination Factor Family Is Required for Maturation of Chloroplast Transfer RNAIle(GAU). PLANT PHYSIOLOGY 2015; 169:627-46. [PMID: 26152711 PMCID: PMC4577433 DOI: 10.1104/pp.15.00964] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 05/20/2023]
Abstract
Plastid gene expression is crucial for organelle function, but the factors that control it are still largely unclear. Members of the so-called mitochondrial transcription termination factor (mTERF) family are found in metazoans and plants and regulate organellar gene expression at different levels. Arabidopsis (Arabidopsis thaliana) mTERF6 is localized in chloroplasts and mitochondria, and its knockout perturbs plastid development and results in seedling lethality. In the leaky mterf6-1 mutant, a defect in photosynthesis is associated with reduced levels of photosystem subunits, although corresponding messenger RNA levels are unaffected, whereas translational capacity and maturation of chloroplast ribosomal RNAs (rRNAs) are perturbed in mterf6-1 mutants. Bacterial one-hybrid screening, electrophoretic mobility shift assays, and coimmunoprecipitation experiments reveal a specific interaction between mTERF6 and an RNA sequence in the chloroplast isoleucine transfer RNA gene (trnI.2) located in the rRNA operon. In vitro, recombinant mTERF6 bound to its plastid DNA target site can terminate transcription. At present, it is unclear whether disturbed rRNA maturation is a primary or secondary defect. However, it is clear that mTERF6 is required for the maturation of trnI.2. This points to an additional function of mTERFs.
Collapse
MESH Headings
- 5' Untranslated Regions/genetics
- Aminoacylation
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Chloroplasts/metabolism
- DNA, Bacterial/genetics
- Gene Expression Regulation, Plant
- Genetic Loci
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional/genetics
- Mutation
- Phenotype
- Photosynthesis
- Protein Binding
- Protein Transport
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/genetics
- RNA, Transfer, Ile/metabolism
- Ribosomes/metabolism
- Seedlings/metabolism
- Seeds/ultrastructure
- Transcription Termination, Genetic
Collapse
Affiliation(s)
- Isidora Romani
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Nikolay Manavski
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Arianna Morosetti
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Luca Tadini
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Swetlana Maier
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Kristina Kühn
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Hannes Ruwe
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Christian Schmitz-Linneweber
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Gerhard Wanner
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I (I.R., N.M., A.M., L.T., D.L., T.K.), and Ultrastrukturforschung, Department Biology I (G.W.), Ludwig-Maximilians-Universität München, 81252 Planegg-Martinsried, Germany;Mathematisch-Naturwissenschaftliche Fakultät I/Biologie, Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10099 Berlin, Germany (S.M., K.K.); andInstitute of Biology, Molecular Genetics, Humboldt-University of Berlin, 10115 Berlin, Germany (H.R., C.S.-L.)
| |
Collapse
|
141
|
Kühn K, Obata T, Feher K, Bock R, Fernie AR, Meyer EH. Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I. PLANT PHYSIOLOGY 2015; 168:1537-49. [PMID: 26134164 PMCID: PMC4528760 DOI: 10.1104/pp.15.00589] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/26/2015] [Indexed: 05/17/2023]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is central to cellular NAD(+) recycling and accounts for approximately 40% of mitochondrial ATP production. To understand how complex I function impacts respiration and plant development, we isolated Arabidopsis (Arabidopsis thaliana) lines that lack complex I activity due to the absence of the catalytic subunit NDUFV1 (for NADH:ubiquinone oxidoreductase flavoprotein1) and compared these plants with ndufs4 (for NADH:ubiquinone oxidoreductase Fe-S protein4) mutants possessing trace amounts of complex I. Unlike ndufs4 plants, ndufv1 lines were largely unable to establish seedlings in the absence of externally supplied sucrose. Measurements of mitochondrial respiration and ATP synthesis revealed that compared with ndufv1, the complex I amounts retained by ndufs4 did not increase mitochondrial respiration and oxidative phosphorylation capacities. No major differences were seen in the mitochondrial proteomes, cellular metabolomes, or transcriptomes between ndufv1 and ndufs4. The analysis of fluxes through the respiratory pathway revealed that in ndufv1, fluxes through glycolysis and the tricarboxylic acid cycle were dramatically increased compared with ndufs4, which showed near wild-type-like fluxes. This indicates that the strong growth defects seen for plants lacking complex I originate from a switch in the metabolic mode of mitochondria and an up-regulation of respiratory fluxes. Partial reversion of these phenotypes when traces of active complex I are present suggests that complex I is essential for plant development and likely acts as a negative regulator of respiratory fluxes.
Collapse
Affiliation(s)
- Kristina Kühn
- Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (K.K.);Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg, France (K.K., E.H.M.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (T.O., K.F., R.B., A.R.F., E.H.M.)
| | - Toshihiro Obata
- Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (K.K.);Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg, France (K.K., E.H.M.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (T.O., K.F., R.B., A.R.F., E.H.M.)
| | - Kristen Feher
- Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (K.K.);Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg, France (K.K., E.H.M.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (T.O., K.F., R.B., A.R.F., E.H.M.)
| | - Ralph Bock
- Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (K.K.);Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg, France (K.K., E.H.M.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (T.O., K.F., R.B., A.R.F., E.H.M.)
| | - Alisdair R Fernie
- Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (K.K.);Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg, France (K.K., E.H.M.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (T.O., K.F., R.B., A.R.F., E.H.M.)
| | - Etienne H Meyer
- Molekulare Zellbiologie der Pflanzen, Humboldt-Universität zu Berlin, 10115 Berlin, Germany (K.K.);Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg, France (K.K., E.H.M.); andMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (T.O., K.F., R.B., A.R.F., E.H.M.)
| |
Collapse
|
142
|
Skippington E, Barkman TJ, Rice DW, Palmer JD. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A 2015; 112:E3515-24. [PMID: 26100885 PMCID: PMC4500244 DOI: 10.1073/pnas.1504491112] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the enormous diversity among parasitic angiosperms in form and structure, life-history strategies, and plastid genomes, little is known about the diversity of their mitogenomes. We report the sequence of the wonderfully bizarre mitogenome of the hemiparasitic aerial mistletoe Viscum scurruloideum. This genome is only 66 kb in size, making it the smallest known angiosperm mitogenome by a factor of more than three and the smallest land plant mitogenome. Accompanying this size reduction is exceptional reduction of gene content. Much of this reduction arises from the unexpected loss of respiratory complex I (NADH dehydrogenase), universally present in all 300+ other angiosperms examined, where it is encoded by nine mitochondrial and many nuclear nad genes. Loss of complex I in a multicellular organism is unprecedented. We explore the potential relationship between this loss in Viscum and its parasitic lifestyle. Despite its small size, the Viscum mitogenome is unusually rich in recombinationally active repeats, possessing unparalleled levels of predicted sublimons resulting from recombination across short repeats. Many mitochondrial gene products exhibit extraordinary levels of divergence in Viscum, indicative of highly relaxed if not positive selection. In addition, all Viscum mitochondrial protein genes have experienced a dramatic acceleration in synonymous substitution rates, consistent with the hypothesis of genomic streamlining in response to a high mutation rate but completely opposite to the pattern seen for the high-rate but enormous mitogenomes of Silene. In sum, the Viscum mitogenome possesses a unique constellation of extremely unusual features, a subset of which may be related to its parasitic lifestyle.
Collapse
Affiliation(s)
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405;
| |
Collapse
|
143
|
Laitz AVN, Acencio ML, Budzinski IGF, Labate MTV, Lemke N, Ribolla PEM, Maia IG. Transcriptome response signatures associated with the overexpression of a mitochondrial uncoupling protein (AtUCP1) in tobacco. PLoS One 2015; 10:e0130744. [PMID: 26106890 PMCID: PMC4479485 DOI: 10.1371/journal.pone.0130744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 05/23/2015] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial inner membrane uncoupling proteins (UCP) dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1) in tobacco seedlings. Compared to wild-type (WT), AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.
Collapse
Affiliation(s)
| | - Marcio Luis Acencio
- UNESP, Instituto de Biociências, Departamento de Física e Biofísica, Botucatu, SP, Brazil
| | - Ilara G. F. Budzinski
- USP, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, Brazil
| | - Mônica T. V. Labate
- USP, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, Brazil
| | - Ney Lemke
- UNESP, Instituto de Biociências, Departamento de Física e Biofísica, Botucatu, SP, Brazil
| | | | - Ivan G. Maia
- UNESP, Instituto de Biociências, Departamento de Genética, Botucatu, SP, Brazil
| |
Collapse
|
144
|
Jia F, Wan X, Zhu W, Sun D, Zheng C, Liu P, Huang J. Overexpression of Mitochondrial Phosphate Transporter 3 Severely Hampers Plant Development through Regulating Mitochondrial Function in Arabidopsis. PLoS One 2015; 10:e0129717. [PMID: 26076137 PMCID: PMC4468087 DOI: 10.1371/journal.pone.0129717] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are abundant and important organelles present in nearly all eukaryotic cells, which maintain metabolic communication with the cytosol through mitochondrial carriers. The mitochondrial membrane localized phosphate transporter (MPT) plays vital roles in diverse development and signaling processes, especially the ATP biosynthesis. Among the three MPT genes in Arabidopsis genome, AtMPT3 was proven to be a major member, and its overexpression gave rise to multiple developmental defects including curly leaves with deep color, dwarfed stature, and reduced fertility. Transcript profiles revealed that genes involved in plant metabolism, cellular redox homeostasis, alternative respiration pathway, and leaf and flower development were obviously altered in AtMPT3 overexpression (OEMPT3) plants. Moreover, OEMPT3 plants also accumulated higher ATP content, faster respiration rate and more reactive oxygen species (ROS) than wild type plants. Overall, our studies showed that AtMPT3 was indispensable for Arabidopsis normal growth and development, and provided new sights to investigate its possible regulation mechanisms.
Collapse
Affiliation(s)
- Fengjuan Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Xiaomin Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Wei Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Dan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Pei Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, P.R. China
- * E-mail: (PL); (JH)
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
- * E-mail: (PL); (JH)
| |
Collapse
|
145
|
Hsieh WY, Liao JC, Chang CY, Harrison T, Boucher C, Hsieh MH. The SLOW GROWTH3 Pentatricopeptide Repeat Protein Is Required for the Splicing of Mitochondrial NADH Dehydrogenase Subunit7 Intron 2 in Arabidopsis. PLANT PHYSIOLOGY 2015; 168:490-501. [PMID: 25888618 PMCID: PMC4453791 DOI: 10.1104/pp.15.00354] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 05/03/2023]
Abstract
Mitochondria play an important role in maintaining metabolic and energy homeostasis in the cell. In plants, impairment in mitochondrial functions usually has detrimental effects on growth and development. To study genes that are important for plant growth, we have isolated a collection of slow growth (slo) mutants in Arabidopsis (Arabidopsis thaliana). One of the slo mutants, slo3, has a significant reduction in mitochondrial complex I activity. The slo3 mutant has a four-nucleotide deletion in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. The SLO3 protein contains nine classic PPR domains belonging to the P subfamily. The small deletion in the slo3 mutant changes the reading frame and creates a premature stop codon in the first PPR domain. We demonstrated that the SLO3-GFP is localized to the mitochondrion. Further analysis of mitochondrial RNA metabolism revealed that the slo3 mutant was defective in splicing of NADH dehydrogenase subunit7 (nad7) intron 2. This specific splicing defect led to a dramatic reduction in complex I activity in the mutant as revealed by blue native gel analysis. Complementation of slo3 by 35S:SLO3 or 35S:SLO3-GFP restored the splicing of nad7 intron 2, the complex I activity, and the growth defects of the mutant. Together, these results indicate that the SLO3 PPR protein is a splicing factor of nad7 intron 2 in Arabidopsis mitochondria.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Chiung-Yun Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Thomas Harrison
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Christina Boucher
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan (W.-Y.H., J.-C.L., C.-Y.C., M.-H.H.); andDepartment of Computer Science, Colorado State University, Fort Collins, Colorado 80523-1873 (T.H., C.B.)
| |
Collapse
|
146
|
Wu J, Sun Y, Zhao Y, Zhang J, Luo L, Li M, Wang J, Yu H, Liu G, Yang L, Xiong G, Zhou JM, Zuo J, Wang Y, Li J. Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res 2015; 25:621-33. [PMID: 25906995 PMCID: PMC4423084 DOI: 10.1038/cr.2015.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Accepted: 02/27/2015] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death (PCD) is of fundamental importance to development and defense in animals and plants. In plants, a well-recognized form of PCD is hypersensitive response (HR) triggered by pathogens, which involves the generation of reactive oxygen species (ROS) and other signaling molecules. While the mitochondrion is a master regulator of PCD in animals, the chloroplast is known to regulate PCD in plants. Arabidopsis Mosaic Death 1 (MOD1), an enoyl-acyl carrier protein (ACP) reductase essential for fatty acid biosynthesis in chloroplasts, negatively regulates PCD in Arabidopsis. Here we report that PCD in mod1 results from accumulated ROS and can be suppressed by mutations in mitochondrial complex I components, and that the suppression is confirmed by pharmaceutical inhibition of the complex I-generated ROS. We further show that intact mitochondria are required for full HR and optimum disease resistance to the Pseudomonas syringae bacteria. These findings strongly indicate that the ROS generated in the electron transport chain in mitochondria plays a key role in triggering plant PCD and highlight an important role of the communication between chloroplast and mitochondrion in the control of PCD in plants.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuefeng Sun
- 1] State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2] Current address: Department of Pathology and Cell Biology, University of South Florida, Tampa, FL 33612, USA
| | - Yannan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinlong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liusha Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
147
|
Thioredoxin, a master regulator of the tricarboxylic acid cycle in plant mitochondria. Proc Natl Acad Sci U S A 2015; 112:E1392-400. [PMID: 25646482 DOI: 10.1073/pnas.1424840112] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant mitochondria have a fully operational tricarboxylic acid (TCA) cycle that plays a central role in generating ATP and providing carbon skeletons for a range of biosynthetic processes in both heterotrophic and photosynthetic tissues. The cycle enzyme-encoding genes have been well characterized in terms of transcriptional and effector-mediated regulation and have also been subjected to reverse genetic analysis. However, despite this wealth of attention, a central question remains unanswered: "What regulates flux through this pathway in vivo?" Previous proteomic experiments with Arabidopsis discussed below have revealed that a number of mitochondrial enzymes, including members of the TCA cycle and affiliated pathways, harbor thioredoxin (TRX)-binding sites and are potentially redox-regulated. We have followed up on this possibility and found TRX to be a redox-sensitive mediator of TCA cycle flux. In this investigation, we first characterized, at the enzyme and metabolite levels, mutants of the mitochondrial TRX pathway in Arabidopsis: the NADP-TRX reductase a and b double mutant (ntra ntrb) and the mitochondrially located thioredoxin o1 (trxo1) mutant. These studies were followed by a comparative evaluation of the redistribution of isotopes when (13)C-glucose, (13)C-malate, or (13)C-pyruvate was provided as a substrate to leaves of mutant or WT plants. In a complementary approach, we evaluated the in vitro activities of a range of TCA cycle and associated enzymes under varying redox states. The combined dataset suggests that TRX may deactivate both mitochondrial succinate dehydrogenase and fumarase and activate the cytosolic ATP-citrate lyase in vivo, acting as a direct regulator of carbon flow through the TCA cycle and providing a mechanism for the coordination of cellular function.
Collapse
|
148
|
Rurek M, Woyda-Ploszczyca AM, Jarmuszkiewicz W. Biogenesis of mitochondria in cauliflower (Brassica oleracea var. botrytis) curds subjected to temperature stress and recovery involves regulation of the complexome, respiratory chain activity, organellar translation and ultrastructure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:399-417. [PMID: 25617518 DOI: 10.1016/j.bbabio.2015.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/05/2014] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Abstract
The biogenesis of the cauliflower curd mitochondrial proteome was investigated under cold, heat and the recovery. For the first time, two dimensional fluorescence difference gel electrophoresis was used to study the plant mitochondrial complexome in heat and heat recovery. Particularly, changes in the complex I and complex III subunits and import proteins, and the partial disintegration of matrix complexes were observed. The presence of unassembled subunits of ATP synthase was accompanied by impairment in mitochondrial translation of its subunit. In cold and heat, the transcription profiles of mitochondrial genes were uncorrelated. The in-gel activities of respiratory complexes were particularly affected after stress recovery. Despite a general stability of respiratory chain complexes in heat, functional studies showed that their activity and the ATP synthesis yield were affected. Contrary to cold stress, heat stress resulted in a reduced efficiency of oxidative phosphorylation likely due to changes in alternative oxidase (AOX) activity. Stress and stress recovery differently modulated the protein level and activity of AOX. Heat stress induced an increase in AOX activity and protein level, and AOX1a and AOX1d transcript level, while heat recovery reversed the AOX protein and activity changes. Conversely, cold stress led to a decrease in AOX activity (and protein level), which was reversed after cold recovery. Thus, cauliflower AOX is only induced by heat stress. In heat, contrary to the AOX activity, the activity of rotenone-insensitive internal NADH dehydrogenase was diminished. The relevance of various steps of plant mitochondrial biogenesis to temperature stress response and recovery is discussed.
Collapse
Affiliation(s)
- Michal Rurek
- Department of Cellular and Molecular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland.
| | - Andrzej M Woyda-Ploszczyca
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
149
|
Podgórska A, Ostaszewska M, Gardeström P, Rasmusson AG, Szal B. In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant. PLANT, CELL & ENVIRONMENT 2015; 38:224-37. [PMID: 25040883 DOI: 10.1111/pce.12404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 05/21/2023]
Abstract
Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild-type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | | | |
Collapse
|
150
|
Kühn K, Yin G, Duncan O, Law SR, Kubiszewski-Jakubiak S, Kaur P, Meyer E, Wang Y, Small CCDF, Giraud E, Narsai R, Whelan J. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. PLANT PHYSIOLOGY 2015; 167:228-50. [PMID: 25378695 PMCID: PMC4281006 DOI: 10.1104/pp.114.249946] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Diverse signaling pathways are activated by perturbation of mitochondrial function under different growth conditions.Mitochondria have emerged as an important organelle for sensing and coping with stress in addition to being the sites of important metabolic pathways. Here, responses to moderate light and drought stress were examined in different Arabidopsis (Arabidopsis thaliana) mutant plants lacking a functional alternative oxidase (alternative oxidase1a [aox1a]), those with reduced cytochrome electron transport chain capacity (T3/T7 bacteriophage-type RNA polymerase, mitochondrial, and plastidial [rpoTmp]), and double mutants impaired in both pathways (aox1a:rpoTmp). Under conditions considered optimal for growth, transcriptomes of aox1a and rpoTmp were distinct. Under adverse growth conditions, however, transcriptome changes in aox1a and rpoTmp displayed a highly significant overlap and were indicative of a common mitochondrial stress response and down-regulation of photosynthesis. This suggests that the role of mitochondria to support photosynthesis is provided through either the alternative pathway or the cytochrome pathway, and when either pathway is inhibited, such as under environmental stress, a common, dramatic, and succinct mitochondrial signal is activated to alter energy metabolism in both organelles. aox1a:rpoTmp double mutants grown under optimal conditions showed dramatic reductions in biomass production compared with aox1a and rpoTmp and a transcriptome that was distinct from aox1a or rpoTmp. Transcript data indicating activation of mitochondrial biogenesis in aox1a:rpoTmp were supported by a proteomic analysis of over 200 proteins. Under optimal conditions, aox1a:rpoTmp plants seemed to switch on many of the typical mitochondrial stress regulators. Under adverse conditions, aox1a:rpoTmp turned off these responses and displayed a biotic stress response. Taken together, these results highlight the diverse signaling pathways activated by the perturbation of mitochondrial function under different growth conditions.
Collapse
Affiliation(s)
- Kristina Kühn
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Guangkun Yin
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Owen Duncan
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Simon R Law
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Szymon Kubiszewski-Jakubiak
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Parwinder Kaur
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Etienne Meyer
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Yan Wang
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Catherine Colas des Francs Small
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Estelle Giraud
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Reena Narsai
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - James Whelan
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| |
Collapse
|