101
|
Meng WL, Zhao MJ, Yang XB, Zhang AX, Wang NN, Xu ZS, Ma J. Examination of Genomic and Transcriptomic Alterations in a Morphologically Stable Line, MU1, Generated by Intergeneric Pollination. Genes (Basel) 2020; 11:genes11020199. [PMID: 32075264 PMCID: PMC7073617 DOI: 10.3390/genes11020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Interspecific hybridization creates genetic variation useful for crop improvement. However, whether pollen from a different genus affects the genomic stability and/or transcriptome of the recipient species during intergeneric pollination has not been investigated. Here, we crossed japonica rice cv. Z12 with the maize accession B73 (pollen donor) and obtained a morphologically stable line, MU1, exhibiting moderate dwarfism, higher tiller number, and increased grain weight compared with Z12. To reveal the genetic basis of these morphological changes in MU1, we performed whole-genome resequencing of MU1 and Z12. Compared with Z12, MU1 showed 107,250 single nucleotide polymorphisms (SNPs) and 23,278 insertion/deletions (InDels). Additionally, 5'-upstream regulatory regions (5'UTRs) of 429 and 309 differentially expressed genes (DEGs) in MU1 contained SNPs and InDels, respectively, suggesting that a subset of these DEGs account for the variation in 5'UTRs. Transcriptome analysis revealed 2190 DEGs in MU1 compared with Z12. Genes up-regulated in MU1 were mainly involved in photosynthesis, generation of precursor metabolites, and energy and cellular biosynthetic processes; whereas those down-regulated in MU1 were involved in plant hormone signal transduction pathway and response to stimuli and stress processes. Quantitative PCR (qPCR) further identified the expression levels of the up- or down-regulated gene in plant hormone signal transduction pathway. The expression level changes of plant hormone signal transduction pathway may be significant for plant growth and development. These findings suggest that mutations caused by intergeneric pollination could be the important reason for changes of MU1 in agronomic traits.
Collapse
Affiliation(s)
- Wei-Long Meng
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Meng-Jie Zhao
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China;
| | - Xiang-Bo Yang
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, China;
| | - An-Xing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Ning-Ning Wang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
| | - Zhao-Shi Xu
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China;
- Correspondence: (Z.-S.X.); (J.M.)
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China; (W.-L.M.); (A.-X.Z.); (N.-N.W.)
- Correspondence: (Z.-S.X.); (J.M.)
| |
Collapse
|
102
|
Hardigan MA, Feldmann MJ, Lorant A, Bird KA, Famula R, Acharya C, Cole G, Edger PP, Knapp SJ. Genome Synteny Has Been Conserved Among the Octoploid Progenitors of Cultivated Strawberry Over Millions of Years of Evolution. FRONTIERS IN PLANT SCIENCE 2020; 10:1789. [PMID: 32158449 PMCID: PMC7020885 DOI: 10.3389/fpls.2019.01789] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/20/2019] [Indexed: 05/18/2023]
Abstract
Allo-octoploid cultivated strawberry (Fragaria × ananassa) originated through a combination of polyploid and homoploid hybridization, domestication of an interspecific hybrid lineage, and continued admixture of wild species over the last 300 years. While genes appear to flow freely between the octoploid progenitors, the genome structures and diversity of the octoploid species remain poorly understood. The complexity and absence of an octoploid genome frustrated early efforts to study chromosome evolution, resolve subgenomic structure, and develop a single coherent linkage group nomenclature. Here, we show that octoploid Fragaria species harbor millions of subgenome-specific DNA variants. Their diversity was sufficient to distinguish duplicated (homoeologous and paralogous) DNA sequences and develop 50K and 850K SNP genotyping arrays populated with co-dominant, disomic SNP markers distributed throughout the octoploid genome. Whole-genome shotgun genotyping of an interspecific segregating population yielded 1.9M genetically mapped subgenome variants in 5,521 haploblocks spanning 3,394 cM in F. chiloensis subsp. lucida, and 1.6M genetically mapped subgenome variants in 3,179 haploblocks spanning 2,017 cM in F. × ananassa. These studies provide a dense genomic framework of subgenome-specific DNA markers for seamlessly cross-referencing genetic and physical mapping information and unifying existing chromosome nomenclatures. Using comparative genomics, we show that geographically diverse wild octoploids are effectively diploidized, nearly completely collinear, and retain strong macro-synteny with diploid progenitor species. The preservation of genome structure among allo-octoploid taxa is a critical factor in the unique history of garden strawberry, where unimpeded gene flow supported its origin and domestication through repeated cycles of interspecific hybridization.
Collapse
Affiliation(s)
- Michael A. Hardigan
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mitchell J. Feldmann
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Kevin A. Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Randi Famula
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Charlotte Acharya
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Glenn Cole
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Steven J. Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
103
|
Pan Q, Zhu B, Zhang D, Tong C, Ge X, Liu S, Li Z. Gene Expression Changes During the Allo-/Deallopolyploidization Process of Brassica napus. Front Genet 2020; 10:1279. [PMID: 31921314 PMCID: PMC6931035 DOI: 10.3389/fgene.2019.01279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
Gene expression changes due to allopolyploidization have been extensively studied in plants over the past few decades. Nearly all these studies focused on comparing the changes before and after genome merger. In this study, we used the uniquely restituted Brassica rapa (RBR, AeAe, 2n = 20) obtained from Brassica napus (AnAnCnCn, 2n = 38) to analyze the gene expression changes and its potential mechanism during the process of allo-/deallopolyploidization. RNA-seq-based transcriptome profiling identified a large number of differentially expressed genes (DEGs) between RBR and natural B. rapa (ArAr), suggesting potential effects of allopolyploidization/domestication of AA component of B. napus at the tetrapolyploid level. Meanwhile, it was revealed that up to 20% of gene expressions were immediately altered when compared with those in the An-subgenome. Interestingly, one fifth of these changes are in fact indicative of the recovery of antecedent gene expression alternations occurring since the origin of B. napus and showed association with homoeologous expression bias between An and Cn subgenomes. Enrichment of distinct gene ontology (GO) categories of the above sets of genes further indicated potential functional cooperation of the An and Cn subgenome of B. napus. Whole genome methylation analysis revealed a small number of DEGs were identified in the differentially methylated regions.
Collapse
Affiliation(s)
- Qi Pan
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Zhu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dawei Zhang
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China.,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
104
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 PMCID: PMC7202327 DOI: 10.3389/fpls.2020.00496] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/19/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
- *Correspondence: Rod Snowdon,
| |
Collapse
|
105
|
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R. Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:496. [PMID: 32411167 DOI: 10.3389/fpls.2020.00496/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/01/2020] [Indexed: 05/21/2023]
Abstract
Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
106
|
Bosch J, Czedik-Eysenberg A, Hastreiter M, Khan M, Güldener U, Djamei A. Two Is Better Than One: Studying Ustilago bromivora- Brachypodium Compatibility by Using a Hybrid Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1623-1634. [PMID: 31657673 DOI: 10.1094/mpmi-05-19-0148-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pathogenic fungi can have devastating effects on agriculture and health. One potential challenge in dealing with pathogens is the possibility of a host jump (i.e., when a pathogen infects a new host species). This can lead to the emergence of new diseases or complicate the management of existing threats. We studied host specificity by using a hybrid fungus formed by mating two closely related fungi: Ustilago bromivora, which normally infects Brachypodium spp., and U. hordei, which normally infects barley. Although U. hordei was unable to infect Brachypodium spp., the hybrid could. These hybrids also displayed the same mating-type bias that had been observed in U. bromivora and provide evidence of a dominant spore-killer-like system on the sex chromosome of U. bromivora. By analyzing the genomic composition of 109 hybrid strains, backcrossed with U. hordei over four generations, we identified three regions associated with infection on Brachypodium spp. and 75 potential virulence candidates. The most strongly associated region was located on chromosome 8, where seven genes encoding predicted secreted proteins were identified. The fact that we identified several regions relevant for pathogenicity on Brachypodium spp. but that none were essential suggests that host specificity, in the case of U. bromivora, is a multifactorial trait which can be achieved through different subsets of virulence factors.
Collapse
Affiliation(s)
- Jason Bosch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Angelika Czedik-Eysenberg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Maximilian Hastreiter
- TUM School of Life Sciences, Technical University of Munich, Department of Bioinformatics, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Mamoona Khan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Ulrich Güldener
- TUM School of Life Sciences, Technical University of Munich, Department of Bioinformatics, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| |
Collapse
|
107
|
Multicolored Fluorescent In Situ Hybridization to Assess Pairing Configurations at Metaphase I in Brassica Hybrids. Methods Mol Biol 2019. [PMID: 31583659 DOI: 10.1007/978-1-4939-9818-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Genetic diversity can be introduced into polyploid crop species through meiotic recombination by exchanges between homologous or homoeologous chromosomes. Fluorescent in situ hybridization (FISH) enables the characterization of these homologous and homoeologous chromosome pairs during meiosis and identification of structural rearrangements during mitosis in metaphase I. In this chapter, we describe a protocol for the multicolored fluorescent labeling of chromosome spreads. This protocol allows the characterization of each A and C homoeologous subgenomes in a polyploid species using a genome-specific BAC combined with specific chromosome labeling BAC sequences.
Collapse
|
108
|
Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z. Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4721-4736. [PMID: 31106831 PMCID: PMC6760319 DOI: 10.1093/jxb/erz239] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/11/2019] [Indexed: 05/20/2023]
Abstract
Plants undergo a phase transition from vegetative to reproductive development that triggers floral induction. Genes containing an AAI (α-amylase inhibitor) domain form a large gene family, but there have been no comprehensive analyses of this gene family in any plant species. Here, we identified 336 AAI genes from nine plant species including122 AAI genes in cotton (Gossypium hirsutum). The AAI gene family has evolutionarily conserved amino acid residues throughout the plant kingdom. Phylogenetic analysis classified AAI genes into five major clades with significant polyploidization and showing effects of genome duplication. Our study identified 42 paralogous and 216 orthologous gene pairs resulting from segmental and whole-genome duplication, respectively, demonstrating significant contributions of gene duplication to expansion of the cotton AAI gene family. Further, GhAAI66 was preferentially expressed in flower tissue and as responses to phytohormone treatments. Ectopic expression of GhAAI66 in Arabidopsis and silencing in cotton revealed that GhAAI66 triggers a phase transition to induce early flowering. Further, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of RNA sequencing data and qRT-PCR (quantitative reverse transcription-PCR) analysis indicated that GhAAI66 integrates multiple flower signaling pathways including gibberellin, jasmonic acid, and floral integrators to trigger an early flowering cascade in Arabidopsis. Therefore, characterization of the AAI family provides invaluable insights for improving cotton breeding.
Collapse
Affiliation(s)
- Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kehai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| |
Collapse
|
109
|
Wei Y, Li F, Zhang S, Zhang S, Zhang H, Sun R. Analysis of small RNA changes in different Brassica napus synthetic allopolyploids. PeerJ 2019; 7:e7621. [PMID: 31565564 PMCID: PMC6746219 DOI: 10.7717/peerj.7621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Allopolyploidy is an evolutionary and mechanisticaly intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the small RNA changes of eight F2 synthetic B. napus using small RNA sequencing. We found that a part of miRNAs and siRNAs were non-additively expressed in the synthesized B. napus allotetraploid. Differentially expressed miRNAs and siRNAs differed among eight F2 individuals, and the differential expression of miR159 and miR172 was consistent with that of flowering time trait. The GO enrichment analysis of differential expression miRNA target genes found that most of them were concentrated in ATP-related pathways, which might be a potential regulatory process contributing to heterosis. In addition, the number of siRNAs present in the offspring was significantly higher than that of the parent, and the number of high parents was significantly higher than the number of low parents. The results have shown that the differential expression of miRNA lays the foundation for explaining the trait separation phenomenon, and the significant increase of siRNA alleviates the shock of the newly synthesized allopolyploidy. It provides a new perspective between small RNA changes and trait separation in the early stages of allopolyploid polyploid formation.
Collapse
Affiliation(s)
- Yunxiao Wei
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
110
|
Amosova AV, Zoshchuk SA, Volovik VT, Shirokova AV, Horuzhiy NE, Mozgova GV, Yurkevich OY, Artyukhova MA, Lemesh VA, Samatadze TE, Muravenko OV. Phenotypic, biochemical and genomic variability in generations of the rapeseed (Brassica napus L.) mutant lines obtained via chemical mutagenesis. PLoS One 2019; 14:e0221699. [PMID: 31461492 PMCID: PMC6713389 DOI: 10.1371/journal.pone.0221699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023] Open
Abstract
The phenotypic, biochemical and genetic variability was studied in M2-M5 generations of ethyl methansulfonat (EMS, 0.2%) mutagenized rapeseed lines generated from canola, '00', B. napus cv. Vikros. EMS mutagenesis induced extensive diversity in morphological and agronomic traits among mutant progeny resulted in selection of EMS populations of B. napus- and B. rapa-morphotypes. The seeds of the obtained mutant lines were high-protein, low in oil and stabilized in contents of main fatty acids which make them useful for feed production. Despite the increased level of various meiotic abnormalities revealed in EMS populations, comparative karyotype analysis and FISH-based visualization of 45S and 5S rDNA indicated a high level of karyotypic stability in M2-M5 plants, and therefore, the obtained mutant lines could be useful in further rapeseed improvement. The revealed structural chromosomal reorganizations in karyotypes of several plants of B. rapa-type indicate that rapeseed breeding by chemical mutagenesis can result in cytogenetic instability in the mutant progeny, and therefore, it should include the karyotype examination. Our findings demonstrate that EMS at low concentrations has great potential in rapeseed improvement.
Collapse
Affiliation(s)
- Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
- * E-mail:
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valentina T. Volovik
- Federal Williams Research Center of Forage Production and Agroecology, Lobnya, Moscow region, Russian Federation
| | - Anna V. Shirokova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nickolai E. Horuzhiy
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Galina V. Mozgova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Margarita A. Artyukhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Valentina A. Lemesh
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
111
|
Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y, Lu L, Wang P, Mo H, Zhang X, Li F. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun 2019; 10:2989. [PMID: 31278252 PMCID: PMC6611876 DOI: 10.1038/s41467-019-10820-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/03/2019] [Indexed: 01/28/2023] Open
Abstract
Multiple cotton genomes (diploid and tetraploid) have been assembled. However, genomic variations between cultivars of allotetraploid upland cotton (Gossypium hirsutum L.), the most widely planted cotton species in the world, remain unexplored. Here, we use single-molecule long read and Hi-C sequencing technologies to assemble genomes of the two upland cotton cultivars TM-1 and zhongmiansuo24 (ZM24). Comparisons among TM-1 and ZM24 assemblies and the genomes of the diploid ancestors reveal a large amount of genetic variations. Among them, the top three longest structural variations are located on chromosome A08 of the tetraploid upland cotton, which account for ~30% total length of this chromosome. Haplotype analyses of the mapping population derived from these two cultivars and the germplasm panel show suppressed recombination rates in this region. This study provides additional genomic resources for the community, and the identified genetic variations, especially the reduced meiotic recombination on chromosome A08, will help future breeding.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gaofei Sun
- Anyang Institute of Technology, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ji Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ye Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Lili Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peng Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Huijuan Mo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xueyan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
112
|
Gaebelein R, Schiessl SV, Samans B, Batley J, Mason AS. Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids. THE NEW PHYTOLOGIST 2019; 223:965-978. [PMID: 30887525 DOI: 10.1111/nph.15804] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Synthetic allohexaploid Brassica hybrids (2n = AABBCC) do not exist naturally, but can be synthesized by crosses between diploid and/or allotetraploid Brassica species. Using these hybrids, we aimed to identify how novel allohexaploids restore fertility and normal meiosis after formation. Chromosome inheritance, genome structure, fertility and meiotic behaviour were assessed in three segregating allohexaploid populations derived from the cross (B. napus × B. carinata) × B. juncea using a combination of molecular marker genotyping, phenotyping and cytogenetics. Plants with unbalanced A-C translocations in one direction (where a C-genome chromosome fragment replaces an A-genome fragment) but not the other (where an A-genome fragment replaces a C-genome fragment) showed significantly reduced fertility across all populations. Genomic regions associated with fertility contained several meiosis genes with putatively causal mutations inherited from the parents (copies of SCC2 in the A genome, PAIR1/PRD3, PRD1 and ATK1/KATA/KIN14a in the B genome, and MSH2 and SMC1/TITAN8 in the C genome). Reduced seed fertility associated with the loss of chromosome fragments from only one subgenome following homoeologous exchanges could comprise a mechanism for biased genome fractionation in allopolyploids. Pre-existing meiosis gene variants present in allotetraploid parents may help to stabilize meiosis in novel allohexaploids.
Collapse
Affiliation(s)
- Roman Gaebelein
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Sarah V Schiessl
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Birgit Samans
- Faculty of Health Science, Technische Hochschule Mittelhessen, Wiesenstrasse 14, Giessen, 35390, Germany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
113
|
Li N, Xu C, Zhang A, Lv R, Meng X, Lin X, Gong L, Wendel JF, Liu B. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. THE NEW PHYTOLOGIST 2019; 223:979-992. [PMID: 30919978 DOI: 10.1111/nph.15820] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/21/2019] [Indexed: 05/18/2023]
Abstract
Allopolyploidization, which entails interspecific hybridization and whole genome duplication (WGD), is associated with emergent genetic and epigenetic instabilities that are thought to contribute to adaptation and evolution. One frequent genomic consequence of nascent allopolyploidization is homoeologous exchange (HE), which arises from compromised meiotic fidelity and generates genetically and phenotypically variable progenies. Here, we used a genetically tractable synthetic rice segmental allotetraploid system to interrogate genome-wide DNA methylation and gene expression responses and outcomes to the separate and combined effects of hybridization, WGD and HEs. Progenies of the tetraploid rice were genomically diverse due to genome-wide HEs that affected all chromosomes, yet they exhibited overall methylome stability. Nonetheless, regional variation of cytosine methylation states was widespread in the tetraploids. Transcriptome profiling revealed genome-wide alteration of gene expression, which at least in part associates with changes in DNA methylation. Intriguingly, changes of DNA methylation and gene expression could be decoupled from hybridity and sustained and amplified by HEs. Our results suggest that HEs, a prominent genetic consequence of nascent allopolyploidy, can exacerbate, diversify and perpetuate the effects of allopolyploidization on epigenetic and gene expression variation, and hence may contribute to allopolyploid evolution.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiuyun Lin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
114
|
An H, Qi X, Gaynor ML, Hao Y, Gebken SC, Mabry ME, McAlvay AC, Teakle GR, Conant GC, Barker MS, Fu T, Yi B, Pires JC. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat Commun 2019; 10:2878. [PMID: 31253789 PMCID: PMC6599199 DOI: 10.1038/s41467-019-10757-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Brassica napus, an allotetraploid crop, is hypothesized to be a hybrid from unknown varieties of Brassica rapa and Brassica oleracea. Despite the economic importance of B. napus, much is unresolved regarding its phylogenomic relationships, genetic structure, and diversification. Here we conduct a comprehensive study among diverse accessions from 183 B. napus (including rapeseed, rutabaga, and Siberian kale), 112 B. rapa, and 62 B. oleracea and its wild relatives. Using RNA-seq of B. napus accessions, we define the genetic diversity and sub-genome variance of six genetic clusters. Nuclear and organellar phylogenies for B. napus and its progenitors reveal varying patterns of inheritance and post-formation introgression. We discern regions with signatures of selective sweeps and detect 8,187 differentially expressed genes with implications for B. napus diversification. This study highlights the complex origin and evolution of B. napus providing insights that can further facilitate B. napus breeding and germplasm preservation.
Collapse
Affiliation(s)
- Hong An
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, P. R. China
| | - Xinshuai Qi
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle L Gaynor
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sarah C Gebken
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Makenzie E Mabry
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Alex C McAlvay
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Graham R Teakle
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Tingdong Fu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, P. R. China
| | - Bin Yi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, P. R. China.
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
115
|
Martinez Palacios P, Jacquemot MP, Tapie M, Rousselet A, Diop M, Remoué C, Falque M, Lloyd A, Jenczewski E, Lassalle G, Chévre AM, Lelandais C, Crespi M, Brabant P, Joets J, Alix K. Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids. Mol Biol Evol 2019; 36:709-726. [PMID: 30657939 PMCID: PMC6445299 DOI: 10.1093/molbev/msz007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Allopolyploidy, combining interspecific hybridization with whole genome duplication, has had significant impact on plant evolution. Its evolutionary success is related to the rapid and profound genome reorganizations that allow neoallopolyploids to form and adapt. Nevertheless, how neoallopolyploid genomes adapt to regulate their expression remains poorly understood. The hypothesis of a major role for small noncoding RNAs (sRNAs) in mediating the transcriptional response of neoallopolyploid genomes has progressively emerged. Generally, 21-nt sRNAs mediate posttranscriptional gene silencing by mRNA cleavage, whereas 24-nt sRNAs repress transcription (transcriptional gene silencing) through epigenetic modifications. Here, we characterize the global response of sRNAs to allopolyploidy in Brassica, using three independently resynthesized Brassica napus allotetraploids originating from crosses between diploid Brassica oleracea and Brassica rapa accessions, surveyed at two different generations in comparison with their diploid progenitors. Our results suggest an immediate but transient response of specific sRNA populations to allopolyploidy. These sRNA populations mainly target noncoding components of the genome but also target the transcriptional regulation of genes involved in response to stresses and in metabolism; this suggests a broad role in adapting to allopolyploidy. We finally identify the early accumulation of both 21- and 24-nt sRNAs involved in regulating the same targets, supporting a posttranscriptional gene silencing to transcriptional gene silencing shift at the first stages of the neoallopolyploid formation. We propose that reorganization of sRNA production is an early response to allopolyploidy in order to control the transcriptional reactivation of various noncoding elements and stress-related genes, thus ensuring genome stability during the first steps of neoallopolyploid formation.
Collapse
Affiliation(s)
- Paulina Martinez Palacios
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Pierre Jacquemot
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marion Tapie
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Agnès Rousselet
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mamoudou Diop
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Carine Remoué
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Falque
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Gilles Lassalle
- IGEPP, INRA, Agrocampus Ouest, Univ. Rennes I, Le Rheu, France.,ESE, INRA, Agrocampus Ouest, Rennes, France
| | | | - Christine Lelandais
- IPS2, Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Universités Paris Diderot, Paris Sud and Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Crespi
- IPS2, Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Universités Paris Diderot, Paris Sud and Evry, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Brabant
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Johann Joets
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Karine Alix
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
116
|
Wang H, Yu Z, Li G, Yang Z. Diversified Chromosome Rearrangements Detected in a Wheat‒ Dasypyrum breviaristatum Substitution Line Induced by Gamma-Ray Irradiation. PLANTS 2019; 8:plants8060175. [PMID: 31207944 PMCID: PMC6630480 DOI: 10.3390/plants8060175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023]
Abstract
To determine the composition of chromosome aberrations in a wheat‒Dasypyrum breviaristatum substitution line with seeds treated by a dose of gamma-rays (200 Gy), sequential non-denaturing fluorescence in situ hybridization (ND-FISH) with multiple oligonucleotide probes was used to screen individual plants of the mutagenized progenies. We identified 122 types of chromosome rearrangements, including centromeric, telomeric, and intercalary chromosome translocations from a total of 772 M1 and 872 M2 plants. The frequency of reciprocal translocations between B- and D-chromosomes was higher than that between A- and D-chromosomes. Eight translocations between D. breviaristatum and wheat chromosomes were also detected. The 13 stable plants with multiple chromosome translocations displayed novel agronomic traits. The newly developed materials will enhance wheat breeding programs through wheat‒Dasypyrum introgression and also facilitate future studies on the genetic and epigenetic effects of translocations in wheat genomics.
Collapse
Affiliation(s)
- Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhihui Yu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
117
|
Iqbal MZ, Cheng M, Su Y, Li Y, Jiang W, Li H, Zhao Y, Wen X, Zhang L, Ali A, Rong T, Tang Q. Allopolyploidization facilitates gene flow and speciation among corn, Zea perennis and Tripsacum dactyloides. PLANTA 2019; 249:1949-1962. [PMID: 30895446 DOI: 10.1007/s00425-019-03136-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/12/2019] [Indexed: 05/09/2023]
Abstract
Tripsacum dactyloides is closely related to Zea mays since Zea perennis and the MTP tri- species hybrid have four possible reproductive modes. Eastern gamagrass (Tripsacum dactyloides L.) and tetraploid perennial teosinte (Zea perennis) are well known to possess genes conferring resistance against biotic and abiotic stresses as well as adaptation to flood and aluminum toxic soils. However, plant breeders have been hampered to utilize these and other beneficial traits for maize improvement due to sterility in their hybrids. By crossing a tetraploid maize-inbred line × T. dactyloides, a female fertile hybrid was produced that was crossed with Z. perennis to yield a tri-genomic female fertile hybrid, which was backcrossed with diploid maize to produce BC1 and BC2. The tri-genomic hybrid provided a new way to transfer genetic material from both species into maize by utilizing conventional plant breeding methods. On the basis of cytogenetic observations using multi-color genomic in situ hybridization, the progenies were classified into four groups, in which chromosomes could be scaled both up and down with ease to produce material for varying breeding and genetic purposes via apomixis or sexual reproduction. In the present study, pathways were found to recover maize and to obtain specific translocations as well as a speedy recovery of the T. dactyloides-maize addition line in a second backcross generation. However, phenotypes of the recovered maize were in most cases far from maize as a result of genetic load from T. dactyloides and Z. perennis, and could not be directly used as a maize-inbred line but could serve as an intermediate material for maize improvement. A series of hybrids was produced (having varying chromosome number, constitution, and translocations) with agronomic traits from all three parental species. The present study provides an application of overcoming the initial interspecific barriers among these species. Moreover, T. dactyloides is closely related to Z. mays L. ssp. mays since Z. perennis and the MTP tri- species hybrid have four possible reproductive modes.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mingjun Cheng
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Sichuan Grass Industry Technology Research and Promotion Center, Chengdu, 610041, China
| | - Yuegui Su
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Yang Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Weiming Jiang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Huaxiong Li
- Institue of Forestry and Pomology, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| | - Yanli Zhao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xiaodong Wen
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lei Zhang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Asif Ali
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 610041, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
118
|
Qanmber G, Ali F, Lu L, Mo H, Ma S, Wang Z, Yang Z. Identification of Histone H3 ( HH3) Genes in Gossypium hirsutum Revealed Diverse Expression During Ovule Development and Stress Responses. Genes (Basel) 2019; 10:genes10050355. [PMID: 31075950 PMCID: PMC6562411 DOI: 10.3390/genes10050355] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/23/2022] Open
Abstract
Histone acts as the core for nucleosomes and is a key protein component of chromatin. Among different histone variants, histone H3 (HH3) variants have been reported to play vital roles in plant development. However, biological information and evolutionary relationships of HH3 genes in cotton remain to be elucidated. The current study identified 34 HH3 genes in Gossypium hirsutum. Phylogenetic analysis classified HH3 genes of 19 plant species into eight distinct clades. Sequence logos analysis among Arabidopsis, rice, and G. hirsutum amino acid residues showed higher conservation in amino acids. Using collinearity analysis, we identified 81 orthologous/paralogous gene pairs among the four genomes (A, D, At, and Dt) of cotton. Further, orthologous/paralogous and the Ka/Ks ratio demonstrated that cotton HH3 genes experienced strong purifying selection pressure with restricted functional divergence resulting from segmental and whole genome duplication. Expression pattern analysis indicated that GhHH3 genes were preferentially expressed in cotton ovule tissues. Additionally, GhHH3 gene expression can be regulated by abiotic stresses (cold, heat, sodium chloride (NaCl), and polyethylene glycol (PEG)) and phytohormonal (brassinolide (BL), gibberellic acid (GA), indole-3-acetic acid (IAA), salicylic acid (SA), and methyl jasmonate (MeJA)) treatments, suggesting that GhHH3 genes might play roles in abiotic and hormone stress resistance. Taken together, this work provides important information to decipher complete molecular and physiological functions of HH3 genes in cotton.
Collapse
Affiliation(s)
- Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Faiza Ali
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Huijuan Mo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Shuya Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China.
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China.
| |
Collapse
|
119
|
Ferreira de Carvalho J, Lucas J, Deniot G, Falentin C, Filangi O, Gilet M, Legeai F, Lode M, Morice J, Trotoux G, Aury JM, Barbe V, Keller J, Snowdon R, He Z, Denoeud F, Wincker P, Bancroft I, Chèvre AM, Rousseau-Gueutin M. Cytonuclear interactions remain stable during allopolyploid evolution despite repeated whole-genome duplications in Brassica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:434-447. [PMID: 30604905 DOI: 10.1111/tpj.14228] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species.
Collapse
Affiliation(s)
| | - Jérémy Lucas
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenaëlle Deniot
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Cyril Falentin
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Olivier Filangi
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Marie Gilet
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Fabrice Legeai
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Maryse Lode
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jérôme Morice
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Gwenn Trotoux
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
| | - Jean Keller
- UMR CNRS 6553 ECOBIO, OSUR, Université de Rennes 1, Rennes, 35042, France
| | - Rod Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Zhesi He
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de biologie François-Jacob, Evry, 91057, France
- UMR CNRS 8030, Evry, CP5706, France
- Université d'Evry-Val-d'Essonne, Université Paris-Saclay, Evry, 91000, France
| | - Ian Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Anne-Marie Chèvre
- IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu, 35653, France
| | | |
Collapse
|
120
|
Genome-Wide Identification and Characterization of the PERK Gene Family in Gossypium hirsutum Reveals Gene Duplication and Functional Divergence. Int J Mol Sci 2019; 20:ijms20071750. [PMID: 30970629 PMCID: PMC6479967 DOI: 10.3390/ijms20071750] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 PERK genes in Arabidopsis. At present, there is no comprehensive published study of PERK genes in G. hirsutum. Our study identified 33 PERK genes in G. hirsutum. Phylogenetic analysis of conserved PERK protein sequences from 15 plant species grouped them into four well defined clades. The GhPERK gene family is an evolutionarily advanced gene family that lost its introns over time. Several cis-elements were identified in the promoter regions of the GhPERK genes that are important in regulating growth, development, light responses and the response to several stresses. In addition, we found evidence for gene loss or addition through segmental or whole genome duplication in cotton. Gene duplication and synteny analysis identified 149 orthologous/paralogous gene pairs. Ka/Ks values show that most GhPERK genes experienced strong purifying selection during the rapid evolution of the gene family. GhPERK genes showed high expression levels in leaves and during ovule development. Furthermore, the expression of GhPERK genes can be regulated by abiotic stresses and phytohormone treatments. Additionally, PERK genes could be involved in several molecular, biological and physiological processes that might be the result of functional divergence.
Collapse
|
121
|
Qin Q, Cao L, Wang Y, Ren L, Liu Q, Zhou Y, Wang C, Qin H, Zhao C, Liu S. Rapid Genomic and Genetic Changes in the First Generation of Autotetraploid Lineages Derived from Distant Hybridization of Carassius auratus Red Var. (♀) × Megalobrama amblycephala (♂). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:139-149. [PMID: 30426270 PMCID: PMC6441405 DOI: 10.1007/s10126-018-9859-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/01/2018] [Indexed: 05/15/2023]
Abstract
Autopolyploids are traditionally used to demonstrate multivalent pairing and unstable inheritance. However, the autotetraploid fish (4nRR) (RRRR, 4n = 200) derived from the distant hybridization of Carassius auratus red var. (RCC) (RR, 2n = 100) (♀) × Megalobrama amblycephala (BSB) (BB, 2n = 48) (♂) exhibits chromosome number (or ploidy) stability over consecutive generations (F1-F10). Comparative analysis based on somatic and gametic chromosomal loci [centromeric, 5S rDNA, and Ag-NORs (silver-stained nucleolar organizer regions)] revealed that a substantial loss of chromosomal loci during genome doubling increases the divergence between homologous chromosomes and that diploid-like chromosome pairing was restored during meiosis in the first generation of 4nRR lineages. In addition, a comparative analysis of genomes and transcriptomes from 4nRR (F1) and its diploid progenitor (RCC) exhibited significant genomic structure and gene expression changes. From these data, we suggest that genomes and genes diverge and that expression patterns change in the first generations following autotetraploidization, which are processes that might contribute to the stable inheritance and successful establishment of autotetraploid lineages.
Collapse
Affiliation(s)
- Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qiwen Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Yuwei Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Huan Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
122
|
Wang Y, Zhang M, Qin Q, Peng Y, Huang X, Wang C, Cao L, Li W, Tao M, Zhang C, Liu S. Transcriptome Profile Analysis on Ovarian Tissues of Autotetraploid Fish and Diploid Red Crucian Carp. Front Genet 2019; 10:208. [PMID: 30941161 PMCID: PMC6434244 DOI: 10.3389/fgene.2019.00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
Polyploidization can significantly alter the size of animal gametes. Autotetraploid fish (RRRR, 4nRR = 200) (4nRR) possessing four sets of chromosomes were derived from whole-genome duplication in red crucian carp (RR, 2n = 100) (RCC). The diploid eggs of the 4nRR fish were significantly larger than the eggs of RCC. To explore the differences between the ovaries of these two ploidies of fishes at the molecular level, we compared the ovary transcriptome profiles of 4nRR fish and RCC and identified differentially expressed genes (DEGs). A total of 19,015 unigenes were differentially expressed between 4nRR fish and RCC, including 12,591 upregulated and 6,424 downregulated unigenes in 4nRR fish. Functional analyses revealed that eight genes (CDKL1, AHCY, ARHGEF3, TGFβ, WNT11, CYP27A, GDF7, and CKB) were involved in the regulation of cell proliferation, cell division, gene transcription, ovary development and energy metabolism, suggesting that these eight genes were related to egg size in 4nRR fish and RCC. We validated the expression levels of these eight DEGs in 4nRR fish and RCC using quantitative PCR. The study results provided insights into the regulatory mechanisms underlying the differences in crucian carp egg sizes.
Collapse
Affiliation(s)
- Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minghe Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qinbo Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yajun Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chongqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Liu Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
123
|
Wei N, Cronn R, Liston A, Ashman T. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. THE NEW PHYTOLOGIST 2019; 221:2286-2297. [PMID: 30281801 PMCID: PMC6587808 DOI: 10.1111/nph.15508] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 05/09/2023]
Abstract
Polyploidy, or whole-genome duplication often with hybridization, is common in eukaryotes and is thought to drive ecological and evolutionary success, especially in plants. The mechanisms of polyploid success in ecologically relevant contexts, however, remain largely unknown. We conducted an extensive test of functional trait divergence and plasticity in conferring polyploid fitness advantage in heterogeneous environments, by growing clonal replicates of a worldwide genotype collection of six allopolyploid and five diploid wild strawberry (Fragaria) taxa in three climatically different common gardens. Among leaf functional traits, we detected divergence in trait means but not plasticities between polyploids and diploids, suggesting that increased genomic redundancy in polyploids does not necessarily translate into greater trait plasticity in response to environmental change. Across the heterogeneous garden environments, however, polyploids exhibited fitness advantage, which was conferred by both trait means and adaptive trait plasticities, supporting a 'jack-and-master' hypothesis for polyploids. Our findings elucidate essential ecological mechanisms underlying polyploid adaptation to heterogeneous environments, and provide an important insight into the prevalence and persistence of polyploid plants.
Collapse
Affiliation(s)
- Na Wei
- Department of Biological SciencesUniversity of PittsburghPittsburghPA15260USA
| | - Richard Cronn
- Pacific Northwest Research StationUnited States Department of Agriculture Forest ServiceCorvallisOR97331USA
| | - Aaron Liston
- Department of Botany and Plant PathologyOregon State UniversityCorvallisOR97331USA
| | - Tia‐Lynn Ashman
- Department of Biological SciencesUniversity of PittsburghPittsburghPA15260USA
| |
Collapse
|
124
|
Visger CJ, Wong GKS, Zhang Y, Soltis PS, Soltis DE. Divergent gene expression levels between diploid and autotetraploid Tolmiea relative to the total transcriptome, the cell, and biomass. AMERICAN JOURNAL OF BOTANY 2019; 106:280-291. [PMID: 30779448 DOI: 10.1002/ajb2.1239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 05/28/2023]
Abstract
PREMISE OF THE STUDY Studies of gene expression and polyploidy are typically restricted to characterizing differences in transcript concentration. Using diploid and autotetraploid Tolmiea, we present an integrated approach for cross-ploidy comparisons that account for differences in transcriptome size and cell density and make multiple comparisons of transcript abundance. METHODS We use RNA spike-in standards in concert with cell size and density to identify and correct for differences in transcriptome size and compare levels of gene expression across multiple scales: per transcriptome, per cell, and per biomass. KEY RESULTS In total, ~17% of all loci were identified as differentially expressed (DEGs) between the diploid and autopolyploid species. The per-transcriptome normalization, the method researchers typically use, captured the fewest DEGs (58% of total DEGs) and failed to detect any DEGs not found by the alternative normalizations. When transcript abundance was normalized per biomass and per cell, ~66% and ~82% of the total DEGs were recovered, respectively. The discrepancy between per-transcriptome and per-cell recovery of DEGs occurs because per-transcriptome normalizations are concentration-based and therefore blind to differences in transcriptome size. CONCLUSIONS While each normalization enables valid comparisons at biologically relevant scales, a holistic comparison of multiple normalizations provides additional explanatory power not available from any single approach. Notably, autotetraploid loci tend to conserve diploid-like transcript abundance per biomass through increased gene expression per cell, and these loci are enriched for photosynthesis-related functions.
Collapse
Affiliation(s)
- Clayton J Visger
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA, 95819, USA
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Beijing Genomics Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Yong Zhang
- Beijing Genomics Institute-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Shenzhen Hua Han Gene Co. Ltd., 7F Jian An Shan Hai Building, No. 8000, Shennan Road, Futian District, Shenzhen, 518040, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
125
|
Egan AN, Moore S, Stellari GM, Kang BC, Jahn MM. Tandem gene duplication and recombination at the AT3 locus in the Solanaceae, a gene essential for capsaicinoid biosynthesis in Capsicum. PLoS One 2019; 14:e0210510. [PMID: 30673734 PMCID: PMC6343889 DOI: 10.1371/journal.pone.0210510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/23/2018] [Indexed: 01/18/2023] Open
Abstract
Capsaicinoids are compounds synthesized exclusively in the genus Capsicum and are responsible for the burning sensation experienced when consuming hot pepper fruits. To date, only one gene, AT3, a member of the BAHD family of acyltransferases, is currently known to have a measurable quantitative effect on capsaicinoid biosynthesis. Multiple AT3 paralogs exist in the Capsicum genome, but their evolutionary relationships have not been characterized well. Recessive alleles at this locus result in absence of capsaicinoids in pepper fruit. To explore the evolution of AT3 in Capsicum and the Solanaceae, we sequenced this gene from diverse Capsicum genotypes and species, along with a number of representative solanaceous taxa. Our results revealed that the coding region of AT3 is highly conserved throughout the family. Further, we uncovered a tandem duplication that predates the diversification of the Solanaceae taxa sampled in this study. This pair of tandem duplications were designated AT3-1 and AT3-2. Sequence alignments showed that the AT3-2 locus, a pseudogene, retains regions of amino acid conservation relative to AT3-1. Gene tree estimation demonstrated that AT3-1 and AT3-2 form well supported, distinct clades. In C. rhomboideum, a non-pungent basal Capsicum species, we describe a recombination event between AT3-1 and AT3-2 that modified the putative active site of AT3-1, also resulting in a frame-shift mutation in the second exon. Our data suggest that duplication of the original AT3 representative, in combination with divergence and pseudogene degeneration, may account for the patterns of sequence divergence and punctuated amino acid conservation observed in this study. Further, an early rearrangement in C. rhomboidium could account for the absence of pungency in this Capsicum species.
Collapse
Affiliation(s)
- Ashley N. Egan
- Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America
| | - Shanna Moore
- Department of Physics, Howard Hughes Medical Institute, Cornell University, Ithaca, New York, United States of America
| | - Giulia Marina Stellari
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Byoung-Cheorl Kang
- Department of Horticulture, Seoul National University, Seoul, Republic of Korea
| | - Molly M. Jahn
- Department of Agronomy, University of Wisconsin-Madison, USDA FPL, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
126
|
Wang R, Li M, Wu X, Wang J. The Gene Structure and Expression Level Changes of the GH3 Gene Family in Brassica napus Relative to Its Diploid Ancestors. Genes (Basel) 2019; 10:genes10010058. [PMID: 30658516 PMCID: PMC6356818 DOI: 10.3390/genes10010058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
The GH3 gene family plays a vital role in the phytohormone-related growth and developmental processes. The effects of allopolyploidization on GH3 gene structures and expression levels have not been reported. In this study, a total of 38, 25, and 66 GH3 genes were identified in Brassica rapa (ArAr), Brassica oleracea (CoCo), and Brassica napus (AnACnCn), respectively. BnaGH3 genes were unevenly distributed on chromosomes with 39 on An and 27 on Cn, in which six BnaGH3 genes may appear as new genes. The whole genome triplication allowed the GH3 gene family to expand in diploid ancestors, and allopolyploidization made the GH3 gene family re-expand in B. napus. For most BnaGH3 genes, the exon-intron compositions were similar to diploid ancestors, while the cis-element distributions were obviously different from its ancestors. After allopolyploidization, the expression patterns of GH3 genes from ancestor species changed greatly in B. napus, and the orthologous gene pairs between An/Ar and Cn/Co had diverged expression patterns across four tissues. Our study provides a comprehensive analysis of the GH3 gene family in B. napus, and these results could contribute to identifying genes with vital roles in phytohormone-related growth and developmental processes.
Collapse
Affiliation(s)
- Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoming Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430072, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
127
|
Cheng H, Sun G, He S, Gong W, Peng Z, Wang R, Lin Z, Du X. Comparative effect of allopolyploidy on transposable element composition and gene expression between Gossypium hirsutum and its two diploid progenitors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:45-59. [PMID: 30565413 DOI: 10.1111/jipb.12763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/15/2018] [Indexed: 05/20/2023]
Abstract
An allopolyploidization event formed allotetraploid Gossypium species from an A-genome diploid species and a D-genome diploid species. To explore the responses of transposable elements (TEs) to allopolyploidy, we assembled parallel TE datasets from G. hirsutum, G. arboreum and G. raimondii and analyzed the TE types and the effects of TEs on orthologous gene expression in the three Gossypium genomes. Gypsy was the most abundant TE type and most TEs were located ∼500 bp from genes in all three genomes. In G. hirsutum, 35.6% of genes harbored TE insertions, whereas insertions were more frequent in G. arboreum and G. raimondii. G. hirsutum had the highest proportion of uniquely matching 24-nt small interfering RNAs (siRNAs) that targeted TEs. TEs, particularly those targeted by 24-nt siRNAs, were associated with reduced gene expression, but the effect of TEs on orthologous gene expression varied substantially among species. Orthologous gene expression levels in G. hirsutum were intermediate between those of G. arboreum and G. raimondii, which did not experience TE expansion or reduction resulting from allopolyploidization. This study underscores the diversity of TEs co-opted by host genes and provides insights into the roles of TEs in regulating gene expression in Gossypium.
Collapse
Affiliation(s)
- Hua Cheng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Science, Anyang 455000, China
- College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Gaofei Sun
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Shoupu He
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Wenfang Gong
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Zhen Peng
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Ruiping Wang
- Department of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Zhongxu Lin
- College of Plant Science & Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Xiongming Du
- Research Base, Anyang Institute of Technology, State Key Laboratory of Cotton Biology, Institute of Cotton Research, the Chinese Academy of Agricultural Science, Anyang 455000, China
| |
Collapse
|
128
|
Goswami G, Nath UK, Park JI, Hossain MR, Biswas MK, Kim HT, Kim HR, Nou IS. Transcriptional regulation of anthocyanin biosynthesis in a high-anthocyanin resynthesized Brassica napus cultivar. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2018; 25:19. [PMID: 30505808 PMCID: PMC6258291 DOI: 10.1186/s40709-018-0090-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/09/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Anthocyanins are plant secondary metabolites with key roles in attracting insect pollinators and protecting against biotic and abiotic stresses. They have potential health-promoting effects as part of the human diet. Anthocyanin biosynthesis has been elucidated in many species, enabling the development of anthocyanin-enriched fruits, vegetables, and grains; however, few studies have investigated Brassica napus anthocyanin biosynthesis. RESULTS We developed a high-anthocyanin resynthesized B. napus line, Rs035, by crossing anthocyanin-rich B. rapa (A genome) and B. oleracea (C genome) lines, followed by chromosome doubling. We identified and characterized 73 and 58 anthocyanin biosynthesis genes in silico in the A and C genomes, respectively; these genes showed syntenic relationships with 41 genes in Arabidopsis thaliana and B. napus. Among the syntenic genes, twelve biosynthetic and six regulatory genes showed transgressively higher expression in Rs035, and eight structural genes and one regulatory gene showed additive expression. We identified three early-, four late-biosynthesis pathways, three transcriptional regulator genes, and one transporter as putative candidates enhancing anthocyanin accumulation in Rs035. Principal component analysis and Pearson's correlation coefficients corroborated the contribution of these genes to anthocyanin accumulation. CONCLUSIONS Our study lays the foundation for producing high-anthocyanin B. napus cultivars. The resynthesized lines and the differentially expressed genes we have identified could be used to transfer the anthocyanin traits to other commercial rapeseed lines using molecular and conventional breeding.
Collapse
Affiliation(s)
- Gayatri Goswami
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Mohammad Rashed Hossain
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hye Ran Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| |
Collapse
|
129
|
Li X, Yu H, Jiao Y, Shahid MQ, Wu J, Liu X. Genome-wide analysis of DNA polymorphisms, the methylome and transcriptome revealed that multiple factors are associated with low pollen fertility in autotetraploid rice. PLoS One 2018; 13:e0201854. [PMID: 30080873 PMCID: PMC6078310 DOI: 10.1371/journal.pone.0201854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Autotetraploid rice is a useful germplasm with high biomass production; however, low fertility is the main barrier in commercial utilization. In our previous study, differential expression of meiosis-related miRNAs was found to be involved in the pollen sterility of autotetraploid rice. However, genome-wide DNA variations and methylomes associated with low fertility of autotetraploid rice are still poorly understood. Here, we measured both global DNA variations and the methylome and compared them with the transcriptome during pollen development in autotetraploid rice by high-throughput sequencing. A total of 34416 SNPs, 6993 InDels, 1003 SVs and 25 CNVs were detected, and 11367 and 41117 differentially methylated regions showed hypermethylation and hypomethylation in 02428-4x. In total, 1110 genes displayed differentially expression in 02428-4x during meiosis, of these six harbored CNVs, including four upregulated genes with gain CNVs, such as LOC_Os11g38620. We identified 122 genes by comparing with the previous data that might be associated with low fertility during pollen development in 02428-4x. Of the 122 gens, 98 were displayed methylation and differential expression, including OsMADS98, CYP703A3 and OsABCG26. The downregulation of these three genes were confirmed by qPCR during meiosis of 02428-4x, which played pivotal roles in pollen fertility. These results indicate that the low fertility of autotetraploid rice is not only caused by the differential expression of genes involved in pollen development, but also by sequence variation and differential methylation, suggesting that the reason for pollen sterility in autotetraploid rice is complex and might be affected by multiple factors.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yamin Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- * E-mail:
| |
Collapse
|
130
|
Wu J, Lin L, Xu M, Chen P, Liu D, Sun Q, Ran L, Wang Y. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. BMC Genomics 2018; 19:586. [PMID: 30081834 PMCID: PMC6080508 DOI: 10.1186/s12864-018-4966-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Background Allopolyploids require rapid genetic and epigenetic modifications to reconcile two or more sets of divergent genomes. To better understand the fate of duplicate genes following genomic mergers and doubling during allopolyploid formation, in this study, we explored the global gene expression patterns in resynthesized allotetraploid Brassica napus (AACC) and its diploid parents B. rapa (AA) and B. oleracea (CC) using RNA sequencing of leaf transcriptomes. Results We found that allopolyploid B. napus formation was accompanied by extensive changes (approximately one-third of the expressed genes) in the parental gene expression patterns (‘transcriptome shock’). Interestingly, the majority (85%) of differentially expressed genes (DEGs) were downregulated in the allotetraploid. Moreover, the homoeolog expression bias (relative contribution of homoeologs to the transcriptome) and expression level dominance (total expression level of both homoeologs) were thoroughly investigated by monitoring the expression of 23,766 B. oleracea-B. rapa orthologous gene pairs. Approximately 36.5% of the expressed gene pairs displayed expression bias with a slight preference toward the A-genome. In addition, 39.6, 4.9 and 9.0% of the expressed gene pairs exhibited expression level dominance (ELD), additivity expression and transgressive expression, respectively. The genome-wide ELD was also biased toward the A-genome in the resynthesized B. napus. To explain the ELD phenomenon, we compared the individual homoeolog expression levels relative to those of the diploid parents and found that ELD in the direction of the higher-expression parent can be explained by the downregulation of homoeologs from the dominant parent or upregulation of homoeologs from the nondominant parent; however, ELD in the direction of the lower-expression parent can be explained only by the downregulation of the nondominant parent or both homoeologs. Furthermore, Gene Ontology (GO) enrichment analysis suggested that the alteration in the gene expression patterns could be a prominent cause of the phenotypic variation between the newly formed B. napus and its parental species. Conclusions Collectively, our data provide insight into the rapid repatterning of gene expression at the beginning of Brassica allopolyploidization and enhance our knowledge of allopolyploidization processes. Electronic supplementary material The online version of this article (10.1186/s12864-018-4966-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Li Lin
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Meiling Xu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Peipei Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Dongxiao Liu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Qinfu Sun
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Liping Ran
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
131
|
Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IAP, Pires JC, Chalhoub B, King GJ, Snowdon R, Batley J, Edwards D. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1265-1274. [PMID: 29205771 PMCID: PMC5999312 DOI: 10.1111/pbi.12867] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 05/08/2023]
Abstract
Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.
Collapse
Affiliation(s)
- Bhavna Hurgobin
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
- School of Agriculture and Food SciencesUniversity of QueenslandSt. LuciaQLDAustralia
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVICAustralia
| | - Philipp E. Bayer
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Chon‐Kit Kenneth Chan
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Aria Dolatabadian
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Sarah V. Schiessl
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Birgit Samans
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Juan D. Montenegro
- School of Agriculture and Food SciencesUniversity of QueenslandSt. LuciaQLDAustralia
| | | | - J. Chris Pires
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Boulos Chalhoub
- Institute of System and Synthetic Biology, Organization and Evolution of Complex GenomesInstitut National de la Recherche agronomique, GenopoleCentre National de la Recherche ScientifiqueUniversité d'Evry Val d'EssonneUniversité Paris‐SaclayEvryFrance
| | - Graham J. King
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreNSWAustralia
| | - Rod Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
132
|
Pelé A, Rousseau-Gueutin M, Chèvre AM. Speciation Success of Polyploid Plants Closely Relates to the Regulation of Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2018; 9:907. [PMID: 30002669 PMCID: PMC6031745 DOI: 10.3389/fpls.2018.00907] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 05/18/2023]
Abstract
Polyploidization is a widespread phenomenon, especially in flowering plants that have all undergone at least one event of whole genome duplication during their evolutionary history. Consequently, a large range of plants, including many of the world's crops, combines more than two sets of chromosomes originating from the same (autopolyploids) or related species (allopolyploids). Depending on the polyploid formation pathway, different patterns of recombination will be promoted, conditioning the level of heterozygosity. A polyploid population harboring a high level of heterozygosity will produce more genetically diverse progenies. Some of these individuals may show a better adaptability to different ecological niches, increasing their chance for successful establishment through natural selection. Another condition for young polyploids to survive corresponds to the formation of well-balanced gametes, assuring a sufficient level of fertility. In this review, we discuss the consequences of polyploid formation pathways, meiotic behavior and recombination regulation on the speciation success and maintenance of polyploid species.
Collapse
Affiliation(s)
- Alexandre Pelé
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Mathieu Rousseau-Gueutin
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| | - Anne-Marie Chèvre
- Institut de Génétique, Environnement et Protection des Plantes, Institut National de la Recherche Agronomique, Agrocampus Ouest, Université de Rennes 1, Rennes, France
| |
Collapse
|
133
|
Skrzypek E, Warzecha T, Noga A, Warchoł M, Czyczyło-Mysza I, Dziurka K, Marcińska I, Kapłoniak K, Sutkowska A, Nita Z, Werwińska K, Idziak-Helmcke D, Rojek M, Hosiawa-Barańska M. Complex characterization of oat ( Avena sativa L.) lines obtained by wide crossing with maize ( Zea mays L.). PeerJ 2018; 6:e5107. [PMID: 29967749 PMCID: PMC6022724 DOI: 10.7717/peerj.5107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Background The oat × maize addition (OMA) lines are used for mapping of the maize genome, the studies of centromere-specific histone (CENH3), gene expression, meiotic chromosome behavior and also for introducing maize C4 photosynthetic system to oat. The aim of our study was the identification and molecular-cytogenetic characterization of oat × maize hybrids. Methods Oat DH lines and oat × maize hybrids were obtained using the wide crossing of Avena sativa L. with Zea mays L. The plants identified as having a Grande-1 retrotransposon fragment, which produced seeds, were used for genomic in situ hybridization (GISH). Results A total of 138 oat lines obtained by crossing of 2,314 oat plants from 80 genotypes with maize cv. Waza were tested for the presence of maize chromosomes. The presence of maize chromatin was indicated in 66 lines by amplification of the PCR product (500 bp) generated using primers specific for the maize retrotransposon Grande-1. Genomic in situ hybridization (GISH) detected whole maize chromosomes in eight lines (40%). All of the analyzed plants possessed full complement of oat chromosomes. The number of maize chromosomes differed between the OMA lines. Four OMA lines possessed two maize chromosomes similar in size, three OMA—one maize chromosome, and one OMA—four maize chromosomes. In most of the lines, the detected chromosomes were labeled uniformly. The presence of six 45S rDNA loci was detected in oat chromosomes, but none of the added maize chromosomes in any of the lines carried 45S rDNA locus. Twenty of the analyzed lines did not possess whole maize chromosomes, but the introgression of maize chromatin in the oat chromosomes. Five of 66 hybrids were shorter in height, grassy type without panicles. Twenty-seven OMA lines were fertile and produced seeds ranging in number from 1–102 (in total 613). Sixty-three fertile DH lines, out of 72 which did not have an addition of maize chromosomes or chromatin, produced seeds in the range of 1–343 (in total 3,758). Obtained DH and OMA lines were fertile and produced seeds. Discussion In wide hybridization of oat with maize, the complete or incomplete chromosomes elimination of maize occur. Hybrids of oat and maize had a complete set of oat chromosomes without maize chromosomes, and a complete set of oat chromosomes with one to four retained maize chromosomes.
Collapse
Affiliation(s)
- Edyta Skrzypek
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Tomasz Warzecha
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Angelika Noga
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Marzena Warchoł
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Ilona Czyczyło-Mysza
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kinga Dziurka
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Izabela Marcińska
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kamila Kapłoniak
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Agnieszka Sutkowska
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Zygmunt Nita
- Plant Breeding Strzelce Ltd., PBAI Group, Strzelce, Polska
| | | | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Marta Hosiawa-Barańska
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| |
Collapse
|
134
|
Liu Q, Qi Y, Liang Q, Xu X, Hu F, Wang J, Xiao J, Wang S, Li W, Tao M, Qin Q, Zhao R, Yao Z, Liu S. The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (♀)×Carassius auratus red var. (♂). SCIENCE CHINA-LIFE SCIENCES 2018; 61:1079-1089. [DOI: 10.1007/s11427-017-9306-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
|
135
|
Hasan MJ, Rahman H. Resynthesis of Brassica juncea for resistance to Plasmodiophora brassicae pathotype 3. BREEDING SCIENCE 2018; 68:385-391. [PMID: 30100807 PMCID: PMC6081302 DOI: 10.1270/jsbbs.18010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 05/12/2023]
Abstract
The oilseed crop Brassica juncea carries many desirable traits; however, resistance to clubroot disease, caused by Plasmodiophora brassicae, is not available in this species. We are the first to report the clubroot resistant resynthesized B. juncea lines, developed through interspecific crosses between a clubroot resistant B. rapa ssp. rapifera and two susceptible B. nigra lines, and the stability of the resistance in self-pollinated generations. The interspecific nature of the resynthesized B. juncea plants was confirmed by using A- and B-genome specific SSR markers, and flow cytometric analysis of nuclear DNA content. Self-pollinated progeny (S1 and S2) of the resynthesized B. juncea plants were evaluated for resistance to P. brassicae pathotype 3. The S1 and S2 progenies of one of the resynthesized B. juncea lines were resistant to this pathotype. However, resistance was lost in 6 to 13% plants of the S2 progenies derived from the second resynthesized B. juncea line; this apparently resulted from the loss of the genomic region carrying resistance due to meiotic anomalies.
Collapse
|
136
|
Wang R, Zou J, Meng J, Wang J. Integrative analysis of genome-wide lncRNA and mRNA expression in newly synthesized Brassica hexaploids. Ecol Evol 2018; 8:6034-6052. [PMID: 29988444 PMCID: PMC6024132 DOI: 10.1002/ece3.4152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 01/02/2023] Open
Abstract
Polyploidization, as a significant evolution force, has been considered to facilitate plant diversity. The expression levels of lncRNAs and how they control the expression of protein-coding genes in allopolyploids remain largely unknown. In this study, lncRNA expression profiles were compared between Brassica hexaploid and its parents using a high-throughput sequencing approach. A total of 2,725, 1,672, and 2,810 lncRNAs were discovered in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. It was also discovered that 725 lncRNAs were differentially expressed between Brassica hexaploid and its parents, and 379 lncRNAs were nonadditively expressed in this hexaploid. LncRNAs have multiple expression patterns between Brassica hexaploid and its parents and show paternal parent-biased expression. These lncRNAs were found to implement regulatory functions directly in the long-chain form, and acted as precursors or targets of miRNAs. According to the prediction of the targets of differentially expressed lncRNAs, 109 lncRNAs were annotated, and their target genes were involved in the metabolic process, pigmentation, reproduction, exposure to stimulus, biological regulation, and so on. Compared with the paternal parent, differentially expressed lncRNAs between Brassica hexaploid and its maternal parent participated in more regulation pathways. Additionally, 61 lncRNAs were identified as putative targets of known miRNAs, and 15 other lncRNAs worked as precursors of miRNAs. Some conservative motifs of lncRNAs from different groups were detected, which indicated that these motifs could be responsible for their regulatory roles. Our findings may provide a reference for the further study of the function and action mechanisms of lncRNAs during plant evolution.
Collapse
Affiliation(s)
- Ruihua Wang
- State Key Laboratory of Hybrid RiceDepartment of Plant ScienceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jianbo Wang
- State Key Laboratory of Hybrid RiceDepartment of Plant ScienceCollege of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
137
|
Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks. Nat Commun 2018; 9:1995. [PMID: 29777105 PMCID: PMC5959919 DOI: 10.1038/s41467-018-04256-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies. DNA double-strand break (DSB) leads to genome rearrangements with various genetic and phenotypic effects. Here, the authors develop a tool to induce large-scale genome restructuring by introducing conditional multiple DNA breaks, and produce various traits in yeast and Arabidopsis thaliana.
Collapse
|
138
|
Liu C, Wang M, Wang L, Guo Q, Liang G. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids. Genome 2018; 61:437-447. [PMID: 29687741 DOI: 10.1139/gen-2017-0232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.
Collapse
Affiliation(s)
- Chao Liu
- a Key Laboratory of Horticulture Science for Southern Mountainous Region, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Tiansheng Road 2, 400715, Chongqing, P.R. China
| | - Mingbo Wang
- b CSIRO Agriculture and Food, Clunies Ross Street, Canberra ACT 2061, Australia
| | - Lingli Wang
- c Technical Advice Station of Economic Crop, Yubei district, Chongqing, P.R. China
| | - Qigao Guo
- a Key Laboratory of Horticulture Science for Southern Mountainous Region, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Tiansheng Road 2, 400715, Chongqing, P.R. China
| | - Guolu Liang
- a Key Laboratory of Horticulture Science for Southern Mountainous Region, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Tiansheng Road 2, 400715, Chongqing, P.R. China
| |
Collapse
|
139
|
Yu X, Wang X, Hyldgaard B, Zhu Z, Zhou R, Kjaer KH, Ouzounis T, Lou Q, Li J, Cai Q, Rosenqvist E, Ottosen CO, Chen J. Allopolyploidization in Cucumis contributes to delayed leaf maturation with repression of redundant homoeologous genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:393-404. [PMID: 29421854 DOI: 10.1111/tpj.13865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 05/25/2023]
Abstract
The important role of polyploidy in plant evolution is widely recognized. However, many questions remain to be explored to address how polyploidy affects the phenotype of the plant. To shed light on the phenotypic and molecular impacts of allopolyploidy, we investigated the leaf development of a synthesized allotetraploid (Cucumis × hytivus), with an emphasis on chlorophyll development. Delayed leaf maturation was identified in C. × hytivus, based on delayed leaf expansion, initial chlorophyll deficiency in the leaves and disordered sink-source transition. Anatomical observations also revealed disturbed chloroplast development in C. ×hytivus. The determination of chlorophyll biosynthesis intermediates suggested that the chlorophyll biosynthesis pathway of C. × hytivus is blocked at the site at which uroporphyrinogen III is catalysed to coproporphyrinogen III. Three chlorophyll biosynthesis-related genes, HEMA1, HEME2 and POR, were significantly repressed in C. × hytivus. Sequence alignment showed both synonymous and non-synonymous substitutions in the HEMA1, HEME2 and POR genes of the parents. Cloning of the chlorophyll biosynthetic genes suggested the retention of homoeologs. In addition, a chimeric clone of the HEMA1 gene that consisted of homologous genes from the parents was identified in C. × hytivus. Overall, our results showed that allopolyploidization in Cucumis has resulted in disturbed chloroplast development and reduced chlorophyll biosynthesis caused by the repressed expression of duplicated homologous genes, which further led to delayed leaf maturation in the allotetraploid, C. × hytivus. The preferential retention/loss of certain types of genes and non-reciprocal homoeologous recombination were also supported in the present study, which provides new insights into the impact of allopolyploidy.
Collapse
Affiliation(s)
- Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xixi Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | - Zaobing Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Rong Zhou
- Vegetable Research Institute, Jiangsu Academy of Agricultural Science, Jiangsu, Nanjing, China
| | | | - Theoharis Ouzounis
- Horticulture and Product Physiology Group, Wageningen University, Wageningen, The Netherlands
| | - Qunfeng Lou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ji Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jinfeng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- State Key Lab for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
140
|
Ding M, Chen ZJ. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:37-48. [PMID: 29502038 PMCID: PMC6058195 DOI: 10.1016/j.pbi.2018.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 05/19/2023]
Abstract
Polyploidy or whole genome duplication (WGD) is a prominent feature for genome evolution of some animals and all flowering plants, including many important crops such as wheat, cotton, and canola. In autopolyploids, genome duplication often perturbs dosage regulation on biological networks. In allopolyploids, interspecific hybridization could induce genetic and epigenetic changes, the effects of which could be amplified by genome doubling (ploidy changes). Albeit the importance of genetic changes, some epigenetic changes can be stabilized and transmitted as epialleles into the progeny, which are subject to natural selection, adaptation, and domestication. Here we review recent advances for general and specific roles of epigenetic changes in the evolution of flowering plants and domestication of agricultural crops.
Collapse
Affiliation(s)
- Mingquan Ding
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Departments of Molecular Biosciences and Integrative Biology, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
141
|
Edger PP, McKain MR, Bird KA, VanBuren R. Subgenome assignment in allopolyploids: challenges and future directions. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:76-80. [PMID: 29649616 DOI: 10.1016/j.pbi.2018.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 05/11/2023]
Abstract
Whole genome duplications (WGDs), also known as polyploid events, have played a crucial role in the evolutionary success of angiosperms across recent and ancient timescales. A recurrent observation from the analysis of allopolyploids is that one of the parental subgenomes is generally more dominant, referred to as 'subgenome dominance', based on higher gene content and expression patterns. Subgenome dominance has far reaching implications to research areas ranging from crop improvement efforts to evolutionary and ecological studies. However, the analysis of subgenome dominance in more ancient polyploids is complicated by a long history of homoeologous exchanges among subgenomes. Here, we will discuss how resulting homoeolog rearrangements and replacements have been ignored in previous studies and urge future studies to integrate phylogenetic approaches to assign homoeologs to parental subgenomes.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA.
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
142
|
Kalinka A, Achrem M. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale). PLANTA 2018; 247:807-829. [PMID: 29234880 PMCID: PMC5856900 DOI: 10.1007/s00425-017-2827-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/03/2017] [Indexed: 06/01/2023]
Abstract
The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.
Collapse
Affiliation(s)
- Anna Kalinka
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Magdalena Achrem
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
143
|
Emery M, Willis MMS, Hao Y, Barry K, Oakgrove K, Peng Y, Schmutz J, Lyons E, Pires JC, Edger PP, Conant GC. Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PLoS Genet 2018; 14:e1007267. [PMID: 29590103 PMCID: PMC5891031 DOI: 10.1371/journal.pgen.1007267] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/09/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is increasingly seen as a driver of both evolutionary innovation and ecological success. One source of polyploid organisms' successes may be their origins in the merging and mixing of genomes from two different species (e.g., allopolyploidy). Using POInT (the Polyploid Orthology Inference Tool), we model the resolution of three allopolyploidy events, one from the bakers' yeast (Saccharomyces cerevisiae), one from the thale cress (Arabidopsis thaliana) and one from grasses including Sorghum bicolor. Analyzing a total of 21 genomes, we assign to every gene a probability for having come from each parental subgenome (i.e., derived from the diploid progenitor species), yielding orthologous segments across all genomes. Our model detects statistically robust evidence for the existence of biased fractionation in all three lineages, whereby genes from one of the two subgenomes were more likely to be lost than those from the other subgenome. We further find that a driver of this pattern of biased losses is the co-retention of genes from the same parental genome that share functional interactions. The pattern of biased fractionation after the Arabidopsis and grass allopolyploid events was surprisingly constant in time, with the same parental genome favored throughout the lineages' history. In strong contrast, the yeast allopolyploid event shows evidence of biased fractionation only immediately after the event, with balanced gene losses more recently. The rapid loss of functionally associated genes from a single subgenome is difficult to reconcile with the action of genetic drift and suggests that selection may favor the removal of specific duplicates. Coupled to the evidence for continuing, functionally-associated biased fractionation after the A. thaliana At-α event, we suggest that, after allopolyploidy, there are functional conflicts between interacting genes encoded in different subgenomes that are ultimately resolved through preferential duplicate loss.
Collapse
Affiliation(s)
- Marianne Emery
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - M. Madeline S. Willis
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Khouanchy Oakgrove
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Yi Peng
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - J. Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Gavin C. Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
144
|
Jiao W, Yuan J, Jiang S, Liu Y, Wang L, Liu M, Zheng D, Ye W, Wang X, Chen ZJ. Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:828-842. [PMID: 29265531 DOI: 10.1111/tpj.13805] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/04/2017] [Indexed: 05/26/2023]
Abstract
Polyploidy occurs in some animals and all flowering plants, including important crops such as wheat. The consequences of polyploidy in crops remain elusive, partly because their progenitors are unknown. Using two resynthesized wheat allotetraploids Sl Sl AA and AADD with known diploid progenitors, we analyzed mRNA and small RNA transcriptomes in the endosperm, compared transcriptomes between endosperm and root in AADD, and examined chromatin changes in the allotetraploids. In the endosperm, there were more non-additively expressed genes in Sl Sl AA than in AADD. In AADD, non-additively expressed genes were developmentally regulated, and the majority (62-70%) were repressed. The repressed genes in AADD included a group of histone methyltransferase gene homologs, which correlated with reduced histone H3K9me2 levels and activation of various transposable elements in AADD. In Sl Sl AA, there was a tendency for expression dominance of Sl over A homoeologs, but the histone methyltransferase gene homologs were additively expressed, correlating with insignificant changes in histone H3K9me2 levels. Moreover, more 24-nucleotide small inferring RNAs (siRNAs) in the A subgenome were disrupted in AADD than in Sl Sl AA, which were associated with expression changes of siRNA-associated genes. Our results indicate that asymmetrical changes in siRNAs, chromatin modifications, transposons and gene expression coincide with unstable AADD genomes and stable Sl Sl AA genomes, which could help explain the evolutionary trajectories of wheat allotetraploids formed by different progenitors.
Collapse
Affiliation(s)
- Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Shan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Mingming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Dewei Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
145
|
Zou J, Hu D, Mason AS, Shen X, Wang X, Wang N, Grandke F, Wang M, Chang S, Snowdon RJ, Meng J. Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:507-519. [PMID: 28703467 PMCID: PMC5811809 DOI: 10.1111/pbi.12791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 05/20/2023]
Abstract
Introgression of genomic variation between and within related crop species is a significant evolutionary approach for population differentiation, genome reorganization and trait improvement. Using the Illumina Infinium Brassica 60K SNP array, we investigated genomic changes in a panel of advanced generation new-type Brassica napus breeding lines developed from hundreds of interspecific crosses between 122 Brassica rapa and 74 Brassica carinata accessions, and compared them with representative accessions of their three parental species. The new-type B. napus population presented rich genetic diversity and abundant novel genomic alterations, consisting of introgressions from B. rapa and B. carinata, novel allelic combinations, reconstructed linkage disequilibrium patterns and haplotype blocks, and frequent deletions and duplications (nonrandomly distributed), particularly in the C subgenome. After a much shorter, but very intensive, selection history compared to traditional B. napus, a total of 15 genomic regions with strong selective sweeps and 112 genomic regions with putative signals of selective sweeps were identified. Some of these regions were associated with important agronomic traits that were selected for during the breeding process, while others were potentially associated with restoration of genome stability and fertility after interspecific hybridization. Our results demonstrate how a novel method for population-based crop genetic improvement can lead to rapid adaptation, restoration of genome stability and positive responses to artificial selection.
Collapse
Affiliation(s)
- Jun Zou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for BiosystemsLand Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Xueqi Shen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xiaohua Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Nian Wang
- College of Horticulture & Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Fabian Grandke
- Department of Plant BreedingIFZ Research Centre for BiosystemsLand Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Meng Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shihao Chang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for BiosystemsLand Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
146
|
Wang T, Huang D, Chen B, Mao N, Qiao Y, Ji M. Differential expression of photosynthesis-related genes in pentaploid interspecific hybrid and its decaploid of Fragaria spp. Genes Genomics 2018; 40:321-331. [DOI: 10.1007/s13258-018-0647-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/04/2018] [Indexed: 12/26/2022]
|
147
|
Lloyd A, Blary A, Charif D, Charpentier C, Tran J, Balzergue S, Delannoy E, Rigaill G, Jenczewski E. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. THE NEW PHYTOLOGIST 2018; 217:367-377. [PMID: 29034956 DOI: 10.1111/nph.14836] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/02/2017] [Indexed: 05/22/2023]
Abstract
Structural variation is a major source of genetic diversity and an important substrate for selection. In allopolyploids, homoeologous exchanges (i.e. between the constituent subgenomes) are a very frequent type of structural variant. However, their direct impact on gene content and gene expression had not been determined. Here, we used a tissue-specific mRNA-Seq dataset to measure the consequences of homoeologous exchanges (HE) on gene expression in Brassica napus, a representative allotetraploid crop. We demonstrate that expression changes are proportional to the change in gene copy number triggered by the HEs. Thus, when homoeologous gene pairs have unbalanced transcriptional contributions before the HE, duplication of one copy does not accurately compensate for loss of the other and combined homoeologue expression also changes. These effects are, however, mitigated over time. This study sheds light on the origins, timing and functional consequences of homeologous exchanges in allopolyploids. It demonstrates that the interplay between new structural variation and the resulting impacts on gene expression, influences allopolyploid genome evolution.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Aurélien Blary
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Joseph Tran
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, Beaucouzé cedex, 49071, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry Cedex, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| |
Collapse
|
148
|
Qi X, Wang H, Song A, Jiang J, Chen S, Chen F. Genomic and transcriptomic alterations following intergeneric hybridization and polyploidization in the Chrysanthemum nankingense× Tanacetum vulgare hybrid and allopolyploid (Asteraceae). HORTICULTURE RESEARCH 2018; 5:5. [PMID: 29423235 PMCID: PMC5802763 DOI: 10.1038/s41438-017-0003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 05/05/2023]
Abstract
Allopolyploid formation involves two major events: interspecific hybridization and polyploidization. A number of species in the Asteraceae family are polyploids because of frequent hybridization. The effects of hybridization on genomics and transcriptomics in Chrysanthemum nankingense×Tanacetum vulgare hybrids have been reported. In this study, we obtained allopolyploids by applying a colchicine treatment to a synthesized C. nankingense×T. vulgare hybrid. Sequence-related amplified polymorphism (SRAP), methylation-sensitive amplification polymorphism (MSAP), and high-throughput RNA sequencing (RNA-Seq) technologies were used to investigate the genomic, epigenetic, and transcriptomic alterations in both the hybrid and allopolyploids. The genomic alterations in the hybrid and allopolyploids mainly involved the loss of parental fragments and the gain of novel fragments. The DNA methylation level of the hybrid was reduced by hybridization but was restored somewhat after polyploidization. There were more significant differences in gene expression between the hybrid/allopolyploid and the paternal parent than between the hybrid/allopolyploid and the maternal parent. Most differentially expressed genes (DEGs) showed down-regulation in the hybrid/allopolyploid relative to the parents. Among the non-additive genes, transgressive patterns appeared to be dominant, especially repression patterns. Maternal expression dominance was observed specifically for down-regulated genes. Many methylase and methyltransferase genes showed differential expression between the hybrid and parents and between the allopolyploid and parents. Our data indicate that hybridization may be a major factor affecting genomic and transcriptomic changes in newly formed allopolyploids. The formation of allopolyploids may not simply be the sum of hybridization and polyploidization changes but also may be influenced by the interaction between these processes.
Collapse
Affiliation(s)
- Xiangyu Qi
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Haibin Wang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Aiping Song
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Jiafu Jiang
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Sumei Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| | - Fadi Chen
- Key Laboratory of Landscape Agriculture, College of Horticulture, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, 210095 China
| |
Collapse
|
149
|
Zhao C, Li H, Zhang W, Wang H, Xu A, Tian J, Zou J, Taylor DC, Zhang M. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:2205. [PMID: 29312429 PMCID: PMC5744481 DOI: 10.3389/fpls.2017.02205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG) biosynthesis in plants. While all four BnDGAT1s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content.
Collapse
Affiliation(s)
- Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Huan Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Hailan Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Jitao Zou
- National Research Council of Canada, Saskatoon, SK, Canada
| | | | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
150
|
Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. Evolutionary mysteries in meiosis. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0001. [PMID: 27619705 DOI: 10.1098/rstb.2016.0001] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/25/2023] Open
Abstract
Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Thomas Lenormand
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Christoph R Haag
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)-Unité Mixte de Recherche 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier-Université Paul-Valéry Montpellier-Ecole Pratique des Hautes Etudes (EPHE), 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|