101
|
Dorvigny BM, Tavares LS, de Almeida IA, Santana LN, de Souza Silva E, de Souza JKU, Soares AF, da Silva Júnior VA, Lima-Filho JV. Antiinflammatory and antiinfective effect of caffeine in a mouse model of disseminated salmonellosis. Phytother Res 2021; 36:1652-1663. [PMID: 34910341 DOI: 10.1002/ptr.7349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/09/2022]
Abstract
Caffeine has been reported for its antiinflammatory properties by stimulating phagocytosis. In this study, we investigated the antiinflammatory and antiinfective potential of caffeine in murine macrophage cell cultures and Swiss mice infected with virulent Salmonella enterica serotype typhimurium. Peritoneal macrophages (pMØ) were treated with caffeine on 96-well plates for 24 hr and then infected with Salmonella for 4 hr. In another experiment, the pMØ were first infected with the bacterium for 4 hr and then treated with caffeine for 24 hr. In addition, Swiss mice were inoculated, intraperitoneally, with S. typhimurium and then received caffeine intravenously. Control groups received phosphate-buffered saline (PBS) or dexamethasone. We found that treatments with caffeine increased the macrophage cell viability and reduced the intracellular bacterial load. The administration of caffeine to Swiss mice reduced the infiltration of leukocytes into the peritoneal cavity after the bacterial challenge. Furthermore, the bacterial burdens in the peritoneal fluid, bloodstream, spleen, and liver were decreased by caffeine treatment. The expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and inducible nitric oxide synthase (iNOs) were down-regulated after infection in caffeine-treated mice. We can conclude that caffeine has both antiinflammatory and antiinfective properties that can be useful for management of bacterial infections along with antibiotics.
Collapse
Affiliation(s)
| | | | | | - Lucas Nunes Santana
- Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | - Anísio Francisco Soares
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
102
|
Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, Ghasempour G, Jahangard Ahvazi R, Meshkani R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res 2021; 36:415-432. [PMID: 34825416 DOI: 10.1002/ptr.7329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Ample evidence highlights the potential benefits of polyphenols in health status especially in obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and cardiovascular diseases. Mechanistically, due to the key role of "Metainflammation" in the pathomechanism of metabolic disorders, recently much focus has been placed on the properties of polyphenols in obesity-related morbidities. This narrative review summarizes the current knowledge on the role of polyphenols, including genistein, chlorogenic acid, ellagic acid, caffeic acid, and silymarin in inflammatory responses pertinent to metabolic disorders and discusses the implications of this evidence for future directions. This review provides evidence that the aforementioned polyphenols benefit health status in metabolic disorders via direct and indirect regulation of a variety of target proteins involved in inflammatory signaling pathways. However, due to limitations of the in vitro and in vivo studies and also the lack of long-term human clinical trials studies, further high-quality investigations are required to firmly establish the clinical efficacy of the polyphenols for the prevention and management of metabolic disorders.
Collapse
Affiliation(s)
- Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of immunology and infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Jahangard Ahvazi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
103
|
Chen Y, Wang S, Wang Y. Role of herbal medicine for prevention and treatment of migraine. Phytother Res 2021; 36:730-760. [PMID: 34818682 DOI: 10.1002/ptr.7339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/06/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023]
Abstract
Migraine is a disabling neurovascular disease with unilateral or bilateral pulsatile headache, which intensively affects human health and quality of life due to high morbidity worldwide. Migraine is commonly accompanied by abnormal pain sensitization, neuroinflammatory response, and vasomotor dysfunction. Owing to the management dilemmas of migraine, there is an urgent need to develop effective and low-cost therapies. In recent years, herbal medicines as a promising strategy with analgesic activity and minor side effect, have been proposed for the prevention and treatment of migraine. Considering the lack of a review integrating experimental studies regarding the herbal treatment of migraine, this review systematically summarizes the important potential applications of herbal medicines in ameliorating migraine via multiple therapeutic targets and pathways, as well as provides a reference for further development of novel antimigraine drugs.
Collapse
Affiliation(s)
- Yulong Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
104
|
Baggio CH, Shang J, Gordon MH, Stephens M, von der Weid PY, Nascimento AM, Román Y, Cipriani TR, MacNaughton WK. The dietary fibre rhamnogalacturonan improves intestinal epithelial barrier function in a microbiota-independent manner. Br J Pharmacol 2021; 179:337-352. [PMID: 34784647 DOI: 10.1111/bph.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Dietary fibre comprises a complex group of polysaccharides that are indigestible but are fermented by gut microbiota, promoting beneficial effects to the intestinal mucosa indirectly through the production of short chain fatty acids. We found that a polysaccharide, rhamnogalacturonan (RGal), from the plant Acmella oleracea, has direct effects on intestinal epithelial barrier function. Our objective was to determine the mechanism whereby RGal enhances epithelial barrier function. EXPERIMENTAL APPROACH Monolayers of colonic epithelial cell lines (Caco-2, T84) and of human primary cells from organoids were mounted in Ussing chambers to assess barrier function. The cellular mechanism of RGal effects on barrier function was determined using inhibitors of TLR-4 and PKC isoforms. KEY RESULTS Apically applied RGal (1000 μg/ml) significantly enhanced barrier function as shown by increased transepithelial electrical resistance (TER) and reduced fluorescein isothiocyanate (FITC)-dextran flux in Caco-2, T84 and human primary cell monolayers, and accelerated tight junction reassembly in Caco-2 cells in a calcium switch assay. RGal also reversed the barrier-damaging effects of inflammatory cytokines on FITC-dextran flux and preserved the tight junction distribution of occludin. RGal activated TLR4 in TLR4-expressing HEK reporter cells, an effect that was significantly inhibited by the TLR4 inhibitor, C34. The effect of RGal was also dependent on PKC, specifically the isoforms PKCd and PKCζ. CONCLUSION AND IMPLICATIONS RGal enhances intestinal epithelial barrier function through activation of TLR4 and PKC signaling pathways. Elucidation of RGal mechanisms of action could lead to new, dietary approaches to enhance mucosal healing in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Cristiane H Baggio
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Judie Shang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Marilyn H Gordon
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew Stephens
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | - Adamara M Nascimento
- Department of Biochemistry, Universidade Federal do Acre, Rio Branco, AC, Brazil.,Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yony Román
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thales R Cipriani
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wallace K MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
105
|
Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: A targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res 2021; 36:323-335. [PMID: 34725890 DOI: 10.1002/ptr.7323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022]
Abstract
Fruit- and vegetable-derived (poly)phenols are secondary plant metabolites that may have beneficial effects on human health when consumed regularly. Recent years have seen rapid growth in both consumer demand for and research interest in (poly)phenol-rich dietary supplements, natural colorants, and functional foods. As these products continue to enter the marketplace and (poly)phenol intake patterns change from traditional food products to these sources, attention must be paid to the potential for toxicity from consuming elevated doses of (poly)phenols. To date, much remains unknown regarding the safety of high doses of (poly)phenols, especially in vivo. In this targeted narrative review, we summarize evidence from in vivo investigations of (poly)phenol toxicity after oral administration of green tea extracts, grape-derived phenolics, and anthocyanin-rich extracts. There is limited evidence of overt toxicity from oral ingestion of these (poly)phenol-rich sources, though more research on the safety of high doses-as well as defining what constitutes a "high" dose of both individual and complex mixtures of (poly)phenols-is needed before these observations can be used to create dietary guidance for consumers.
Collapse
Affiliation(s)
- Dennis P Cladis
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Connie M Weaver
- Department of Food Science, Purdue University, Lafayette, Indiana, USA
| | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
106
|
Kumar P, Mahato DK, Kamle M, Borah R, Sharma B, Pandhi S, Tripathi V, Yadav HS, Devi S, Patil U, Xiao J, Mishra AK. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother Res 2021; 35:6010-6029. [PMID: 34237796 DOI: 10.1002/ptr.7213] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023]
Abstract
Marijuana, or Cannabis sativa L., is a common psychoactive plant used for both recreational and medicinal purposes. In many countries, cannabis-based medicines have been legalized under certain conditions because of their immense prospects in medicinal applications. With a comprehensive insight into the prospects and challenges associated with the pharmacological use and global trade of C. sativa, this mini-review focuses on the medicinal importance of the plant and its legal status worldwide; the pharmacological compounds and its therapeutic potential along with the underlying public health concerns and future perspective are herein discussed. The existence of major compounds including Δ9 -tetrahydrocannabinol (Δ9 -THC), cannabidiol, cannabinol, and cannabichromene contributes to the medicinal effects of the cannabis plant. These compounds are also involved in the treatment of various types of cancer, epilepsy, and Parkinson's disease displaying several mechanisms of action. Cannabis sativa is a plant with significant pharmacological potential. However, several aspects of the plant need an in-depth understanding of the drug mechanism and its interaction with other drugs. Only after addressing these health concerns, legalization of cannabis could be utilized to its full potential as a future medicine.
Collapse
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Rituraj Borah
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Bharti Sharma
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Nirjuli, India
| | - Sheetal Devi
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, India
| | - Umesh Patil
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | | |
Collapse
|
107
|
Baranwal M, Gupta Y, Dey P, Majaw S. Antiinflammatory phytochemicals against virus-induced hyperinflammatory responses: Scope, rationale, application, and limitations. Phytother Res 2021; 35:6148-6169. [PMID: 34816512 DOI: 10.1002/ptr.7222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Uncontrolled inflammatory responses or cytokine storm associated with viral infections results in deleterious consequences such as vascular leakage, severe hemorrhage, shock, immune paralysis, multi-organ failure, and even death. With the emerging new viral infections and lack of effective prophylactic vaccines, evidence-based complementary strategies that limit viral infection-mediated hyperinflammatory responses could be a promising approach to limit host tissue injury. The present review emphasizes the potentials of antiinflammatory phytochemicals in limiting hyperinflammatory injury caused by viral infections. The predominant phytochemicals along with their mechanism in limiting hyperimmune and pro-inflammatory responses under viral infection have been reviewed comprehensively. How certain phytochemicals can be effective in limiting hyper-inflammatory response indirectly by favorably modulating gut microbiota and maintaining a functional intestinal barrier has also been presented. Finally, we have discussed improved systemic bioavailability of phytochemicals, efficient delivery strategies, and safety measures for effective antiinflammatory phytotherapies, in addition to emphasizing the requirement of tightly controlled clinical studies to establish the antiinflammatory efficacy of the phytochemicals. Collectively, the review provides a scooping overview on the potentials of bioactive phytochemicals to mitigate pro-inflammatory injury associated with viral infections.
Collapse
Affiliation(s)
- Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Suktilang Majaw
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India
| |
Collapse
|
108
|
Ma C, Wu H, Yang G, Xiang J, Feng K, Zhang J, Hua Y, Kang L, Fan G, Yang S. Calycosin ameliorates atherosclerosis by enhancing autophagy via regulating the interaction between KLF2 and MLKL in apoE -/- mice. Br J Pharmacol 2021; 179:252-269. [PMID: 34713437 DOI: 10.1111/bph.15720] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is one of the underlying causes of cardiovascular disease. Formation of foam cells and necrotic core in the plaque is a hallmark of atherosclerosis, which results from lipid deposition, apoptosis, and inflammation in macrophage. Macrophage autophagy is a critical anti-atherogenic process and defective autophagy aggravates atherosclerosis by enhancing foam cell formation, apoptosis, and inflammation. Hence, enhancing autophagy can be a strategy for atherosclerosis treatment. Calycosin, a flavonoid from Astragali Radix, displays antioxidant and anti-inflammatory activities, and therefore is potential to reduce the risk of cardiovascular disease. However, the antiatherogenic effect of calycosin and the involved mechanism remains unclear. In this study, we assessed the potential benefits of calycosin on autophagy and atherosclerosis, and revealed the underlying mechanism. EXPERIMENTAL APPROACH In this study, apoE-/- mice were fed high-fat diet for 16 weeks in presence of calycosin and/or autophagy inhibitor chloroquine, which was followed by determination of atherosclerosis development, autophagy activity, and the involved mechanisms. KEY RESULTS Calycosin protected against atherosclerosis and enhanced plaque stability via promoting autophagy. Calycosin inhibited foam cells formation, inflammation, and apoptosis by enhancing autophagy. MLKL was demonstrated as a new autophagy regulator, which can be negatively regulated by KLF2. Mechanistically, inhibitory effects of calycosin on atherogenesis were via improving autophagy through modulating KLF2-MLKL signaling pathway. CONCLUSIONS AND IMPLICATIONS This study demonstrated the atheroprotective effect of calycosin was through upregulating KLF2-MLKL-mediated autophagy, which not only proposed novel mechanistic insights into the atherogenesis but also identified calycosin as a potential drug candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Han Wu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangyan Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiaqing Xiang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ke Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Lin Kang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.,The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Shu Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
109
|
Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H. 18β-glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice. Phytother Res 2021; 35:6932-6943. [PMID: 34709693 DOI: 10.1002/ptr.7310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/10/2021] [Accepted: 09/30/2021] [Indexed: 01/08/2023]
Abstract
It has been shown that 18β-glycyrrhetinic acid (18β-GA), the main bioactive compound of licorice, can modulate oxidative stress and metabolic processes in liver and skin. Given the critical role of oxidative stress and energy metabolism in exercise-induced fatigue, we hypothesized that 18β-GA could exert an ergogenic action by inhibiting excess reactive oxygen species (ROS) induction and promoting energy production in muscles. Mice were gavage-fed with 18β-GA for four consecutive days. Running ability was assessed based on the exhaustive treadmill test with high- and moderate-intensity. Western blot analysis, enzyme-linked immunosorbent assay, and immunofluorescence staining were used to measure the changes of muscle fatigue-related markers, oxidative stress status, and energy metabolism in response to 18β-GA exposure. Treatment with 18β-GA significantly increased the exhaustive running distance (~37%) in the high-intensity exercise, but not in the moderate-intensity exercise. Mechanistically, reduction of oxidative stress and induction of antioxidants (SOD, CAT, and GSH) by 18β-GA were observed. Moreover, 18β-GA treatment caused an improved preservation of muscle glycogen (12%), which was associated with upregulation of glucose transporter 4 (GLUT4) (91%) and increased insulin level (17%). The findings of the present study clearly suggest that 18β-GA holds excellent potential as a novel bioactive agent against high-intensity exercise-induced fatigue.
Collapse
Affiliation(s)
- Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
110
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
111
|
Olajide OA, Iwuanyanwu VU, Lepiarz-Raba I, Al-Hindawi AA, Aderogba MA, Sharp HL, Nash RJ. Garcinia kola and garcinoic acid suppress SARS-CoV-2 spike glycoprotein S1-induced hyper-inflammation in human PBMCs through inhibition of NF-κB activation. Phytother Res 2021; 35:6963-6973. [PMID: 34697842 PMCID: PMC8661957 DOI: 10.1002/ptr.7315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Symptoms and complications associated with severe SARS-CoV-2 infection such as acute respiratory distress syndrome (ARDS) and organ damage have been linked to SARS-CoV-2 spike protein S1-induced increased production of pro-inflammatory cytokines by immune cells. In this study, the effects of an extract of Garcinia kola seeds and garcinoic acid were investigated in SARS-CoV-2 spike protein S1-stimulated human PBMCs. Results of ELISA experiments revealed that Garcinia kola extract (6.25, 12.5, and 25 μg/ml) and garcinoic acid (1.25, 2.5, and 5 μM) significantly reduced SARS-CoV-2 spike protein S1-induced secretion of TNFα, IL-6, IL-1β, and IL-8 in PBMCs. In-cell western assays showed that pre-treatment with Garcinia kola extract and garcinoic acid reduced expressions of both phospho-p65 and phospho-IκBα proteins, as well as NF-κB DNA binding capacity and NF-κB-driven luciferase expression following stimulation of PBMCs with spike protein S1. Furthermore, pre-treatment of PBMCs with Garcinia kola extract prior to stimulation with SARS-CoV-2 spike protein S1 resulted in reduced damage to adjacent A549 lung epithelial cells. These results suggest that the seed of Garcinia kola and garcinoic acid are natural products which may possess pharmacological/therapeutic benefits in reducing cytokine storm in severe SARS-CoV-2 and other coronavirus infections.
Collapse
Affiliation(s)
- Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Victoria U Iwuanyanwu
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Izabela Lepiarz-Raba
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Alaa A Al-Hindawi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Mutalib A Aderogba
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | | |
Collapse
|
112
|
Islam BU, Suhail M, Khan MK, Zughaibi TA, Alserihi RF, Zaidi SK, Tabrez S. Polyphenols as anticancer agents: Toxicological concern to healthy cells. Phytother Res 2021; 35:6063-6079. [PMID: 34679214 DOI: 10.1002/ptr.7216] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Polyphenols are a group of diverse chemical compounds present in a wide range of plants. Various biological properties such as antiallergic, antiviral, antibacterial, anticarcinogenic, antiinflammatory, antithrombotic, vasodilatory, and hepatoprotective effect of different polyphenols have been reported in the scientific literature. The major classes of polyphenols are flavonoids, stilbenoids, lignans, and polyphenolic acids. Flavonoids are a large class of food constituents comprising flavones, isoflavanones, flavanones, flavonols, catechins, and anthocyanins sub-classes. Even with seemingly broad biological activities, their use is minimal clinically. Among the other concurrent problems such as limited bioavailability, rapid metabolism, untargeted delivery, the toxicity associated with these polyphenols has been a topic of concern lately. These polyphenols have been reported to result in different forms of toxicity that include organ toxicity, genotoxicity, mutagenicity, cytotoxicity, etc. In the present article, we have tried to unravel the toxicological aspect of these polyphenols to healthy cells. Further high-quality studies are needed to establish the clinical efficacy and toxicology concern leading to further exploration of these polyphenols.
Collapse
Affiliation(s)
- Badar Ul Islam
- Department of Biochemistry, J N Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Kaleem Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed F Alserihi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
113
|
Li Y, Jiang MY, Chen JY, Xu ZW, Zhang JW, Li T, Zhang LL, Wei W. CP-25 exerts therapeutic effects in mice with dextran sodium sulfate-induced colitis by inhibiting GRK2 translocation to downregulate the TLR4-NF-κB-NLRP3 inflammasome signaling pathway in macrophages. IUBMB Life 2021; 73:1406-1422. [PMID: 34590407 DOI: 10.1002/iub.2564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Deficiency of G protein-coupled receptor kinase 2 (GRK2) was found to protect mice from dextran sulfate sodium (DSS)-induced colitis. Paeoniflorin-6'-O-benzene sulfonate (CP-25) has been shown to exert anti-inflammatory immune regulatory effects in animal models of inflammatory autoimmune disease. This study aimed to investigate the of GRK2 in the pathogenesis of ulcerative colitis (UC) and its effects on macrophage polarization, macrophage subtype regulation of intestinal barrier function, and therapeutic effects of CP-25 in mice with DSS-induced colitis. We found imbalanced macrophage polarization, intestinal barrier dysfunction, and abnormal activation of GRK2 and TLR4-NF-κB-NLRP3 inflammasome signaling pathway in the colonic mucosa of patients with UC. CP-25, restored the damaged intestinal barrier function by inhibiting the transmembrane region of GRK2 in macrophages stimulated by lipopolysaccharides. CP-25 exerted therapeutic effects by ameliorating clinical manifestation, regulating macrophage polarization, and restoring abnormally activated TLR4-NF-κB-NLRP3 inflammasome signaling pathway by inhibiting GRK2. These data suggest the pathogenesis of UC may be related to the imbalance of macrophage polarization, which leads to abnormal activation of TLR4-NF-κB-NLRP3 inflammasome signaling pathway mediated by GRK2 and destruction of the intestinal mucosal barrier. CP-25 confers therapeutic effects on colitis by inhibiting GRK2 translocation to induce the downregulation of TLR4-NF-κB-NLRP3 inflammasome signaling in macrophages.
Collapse
Affiliation(s)
- Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Meng-Ya Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Jing-Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia-Wei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China.,Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, China
| |
Collapse
|
114
|
Quijia CR, Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Res 2021; 36:147-163. [PMID: 34559416 DOI: 10.1002/ptr.7291] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.
Collapse
Affiliation(s)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
115
|
Zhang Y, Shi X, Xie X, Laster KV, Pang M, Liu K, Hwang J, Kim DJ. Harmaline isolated from Peganum harmala suppresses growth of esophageal squamous cell carcinoma through targeting mTOR. Phytother Res 2021; 35:6377-6388. [PMID: 34545650 DOI: 10.1002/ptr.7289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Harmaline is a naturally occurring β-carboline alkaloid that is isolated from Peganum harmala. It has shown efficacy in treating Parkinson's disease and has been reported to exhibit antimicrobial and anticancer properties. However, the molecular mechanism of harmaline in the context of esophageal squamous cell carcinoma (ESCC) has not been characterized. Here, we report that harmaline attenuates ESCC growth by directly targeting the mammalian target of rapamycin (mTOR). Harmaline strongly reduced cell proliferation and anchorage-independent cell growth. Additionally, harmaline treatment induced G2/M phase cell-cycle arrest through upregulation of p27. The results of in vitro and cell-based assays showed that harmaline directly inhibited the activity of mTOR kinase and the phosphorylation of its downstream pathway components. Depletion of mTOR using an shRNA-mediated strategy in ESCC cell lines indicated that reduced mTOR protein expression levels are correlated with decreased cell proliferation. Additionally, we observed that the inhibitory effect of harmaline was dependent upon mTOR expression. Notably, oral administration of harmaline suppressed ESCC patient-derived tumor growth in vivo. Taken together, harmaline is a potential mTOR inhibitor that might be used for therapeutically treating ESCC.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaomeng Xie
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Mengjun Pang
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Kangdong Liu
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Joonsung Hwang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Anticancer Agent Research Center, Cheongju, Republic of Korea
| | - Dong Joon Kim
- The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
116
|
Roshanravan N, Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytother Res 2021; 36:98-111. [PMID: 34532906 DOI: 10.1002/ptr.7286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
Crocus sativus Linn. (Saffron) is valued worldwide for its potential use in the management of various degenerative disorders, including cardiovascular diseases (CVDs), diabetes, cancer, metabolic syndrome (MetS), neurodegenerative diseases, immune disorders, and sexual dysfunction. Previous reports, based on clinical trials, suggest that crocetin, crocin, picrocrocin, and safranal are the main bioactive components of saffron with antioxidant, anti-inflammatory, and anti-apoptotic effects. In this comprehensive narrative review, we studied the recent clinical trials, investigating the medicinal applications of saffron and/or its components. The present results can provide important insights into the potential of saffron in preventing and treating different disorders, with a special focus on the underlying cellular and molecular mechanisms. However, further high-quality studies are needed to firmly establish the clinical efficacy of saffron in treating some degenerative diseases.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
117
|
Choi M, Mukherjee S, Yun JW. Anthocyanin oligomers stimulate browning in 3T3-L1 white adipocytes via activation of the β3-adrenergic receptor and ERK signaling pathway. Phytother Res 2021; 35:6281-6294. [PMID: 34523169 DOI: 10.1002/ptr.7276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Microbial fermentation of grape-skin extracts is found to synthesize anthocyanin oligomers (AO), which are more active than the monomeric anthocyanins that are effective for some metabolic diseases such as diabetes and obesity. This study investigated the functional role of AO in 3T3-L1 white adipocyte metabolism, with a focus on inducing browning. To achieve this, we determined the expressions of core genes and protein markers responsible for browning and lipid metabolism in response to AO treatment of 3T3-L1 white adipocytes. AO exposure significantly increases the expressions of beige-specific genes (Cidea, Cited1, Ppargc1α, Prdm16, Tbx1, Tmem26, and Ucp1) and brown-fat signature proteins (UCP1, PRDM16, and PGC-1α), and suppresses the expressions of lipogenic marker proteins while enhancing the protein levels of lipolysis in white adipocytes. The mechanistic study revealed stimulation of white fat browning via activation of the β3-AR/PKA/p38 axis and ERK/CREB signaling pathway subsequent to AO treatment. In conclusion, our current findings indicate the beneficial effects of AO for the treatment of obesity with interesting properties such as regulating the browning of adipocytes and increasing thermogenic activity. Although further research based on animal models or clinical trials remains, AO treatment can bring more insights into the treatment of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
118
|
Romero SA, Pavan ICB, Morelli AP, Mancini MCS, da Silva LGS, Fagundes I, Silva CHR, Ponte LGS, Rostagno MA, Bezerra RMN, Simabuco FM. Anticancer effects of root and beet leaf extracts (Beta vulgaris L.) in cervical cancer cells (HeLa). Phytother Res 2021; 35:6191-6203. [PMID: 34494317 DOI: 10.1002/ptr.7255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023]
Abstract
Cervical cancer is the fourth leading cause of cancer mortality in women worldwide. Beetroot (Beta vulgaris L.) has bioactive compounds that can inhibit the progression of different types of cancer. To analyze the antiproliferative effects of beet leaf and root extracts, we performed MTT, clonogenic survival, cell cycle analysis, Annexin/PI labeling, and western blotting. Here, we report that 10 and 100 μg/ml of root and leaf extracts decreased cell viability and potentiated rapamycin and cisplatin effects while decreased the number of large colonies, especially at 10 μg/ml (293.6 of control vs. 200.0 of leaf extract, p = .0059; 138.6 of root extract, p = .0002). After 48 hr, 100 μg/ml of both extracts led to increased sub-G1 and G0/G1 populations. In accordance, 100 μg/ml of root extract induced early apoptosis (mean = 0.64 control vs. 1.56 root; p = .048) and decreased cell size (p < .0001). Both extracts decreased phosphorylation and expression of mechanistic Target of Rapamycin (mTOR) signaling, especially by inhibiting ribosomal protein S6 (S6) phosphorylation, increasing cleaved poly(ADP-ribose) polysomerase 1 (PARP1) and Bcl-2-like protein 11 (BIM), and decreasing cyclin D1 expression, which regulates cell cycle progression. Here, we demonstrate that beetroot and leaf extracts could be an efficient strategy against cervical cancer.
Collapse
Affiliation(s)
- Stefhani Andrioli Romero
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isabella Fagundes
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Cayo Henrique Rocha Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Mauricio Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Rosângela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
119
|
Zhou Y, Zhong B, Min X, Hou Y, Lin L, Wu Q, Shi J, Chen X. Therapeutic potential of isobavachalcone, a natural flavonoid, in murine experimental colitis by inhibiting NF-κB p65. Phytother Res 2021; 35:5861-5870. [PMID: 34435401 DOI: 10.1002/ptr.7246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022]
Abstract
The incidence of ulcerative colitis (UC), one of the two types of inflammatory bowel disease, is increasing in many countries. Various natural products have been demonstrated with therapeutic potentials for UC. Herein, the therapeutic effects and mechanisms of isobavachalcone (IBC), a natural chalcone, were evaluated in dextran sulfate sodium (DSS)-induced colitis mice and lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The results demonstrated that IBC treatment significantly improved the clinical symptoms, assessed by the disease activity index (DAI) scores and the histological changes of the colon. The levels of myeloperoxidase (MPO), TNF-α, IL-6, IL-1β, and prostaglandin E2 (PGE2) in colon tissues were suppressed by IBC. The upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB p65 in colon tissues were reversed by IBC as well. Furthermore, IBC significantly inhibited LPS-triggered secretion of TNF-α, IL-6, and nitrite, and nuclear translocation of NF-κB p65, in RAW264.7 cells. The luciferase reporter assay indicated that IBC significantly inhibited LPS-triggered transcription of toll-like receptor 4 (TLR4). Molecular docking results showed that the binding pocket of IBC was adjacent to Ser276 of p65-p50 heterodimer and IBC could form H-bond with Thr191. Collectively, these results demonstrated that IBC ameliorated colitis in mice possibly through inhibition of NF-κB p65.
Collapse
Affiliation(s)
- Yishan Zhou
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiangjing Min
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Qin Wu
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Key Lab for Pharmacology of Ministry of Education, Department of Pharmacology, Zunyi Medical University, Zunyi, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
120
|
Kadoglou NPE, Christodoulou E, Kostomitsopoulos N, Valsami G. The cardiovascular-protective properties of saffron and its potential pharmaceutical applications: A critical appraisal of the literature. Phytother Res 2021; 35:6735-6753. [PMID: 34448254 DOI: 10.1002/ptr.7260] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Saffron, the dried stigma of Crocus sativus L., is used in traditional medicine for its healing properties and the treatment of various pathological conditions. The present literature review aimed to summarize and evaluate the preclinical and clinical data regarding the protective effects and mechanisms of saffron and its main components (crocin, crocetin, safranal) on cardiovascular risk factors and diseases. Many in vitro and animal studies have been conducted implicating antioxidant, hypolipidemic, anti-diabetic, and antiinflammatory impact of saffron and its constituents. Notably, there is evidence of direct atherosclerosis regression and stabilization in valid atherosclerosis-prone animal models. However, current clinical trials have shown mostly weak effects of saffron and its constituents on cardiovascular risk factors: (a) Modest lowering of fasting blood glucose, without significant reduction of HbA1c in type 2 diabetic patients, (b) moderate/controversial hypolipidemic effects, (c) negligible hypotensive effect, and (d) inconsistent modification of metabolic syndrome parameters. There are important drawbacks in clinical trial design, including the absence of pharmacokinetic/pharmacodynamic tests, the wide variance of doses and cohorts' characteristics, the small number of patients, the short duration. Therefore, large, properly designed, high-quality clinical trials, focusing on specific conditions are required to evaluate the biological/pharmacological activities and firmly establish the clinical efficacy of saffron and its possible therapeutic uses in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
121
|
Xia T, Li J, Ren X, Liu C, Sun C. Research progress of phenolic compounds regulating IL-6 to exert antitumor effects. Phytother Res 2021; 35:6720-6734. [PMID: 34427003 DOI: 10.1002/ptr.7258] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023]
Abstract
Cytokine therapy, which activates the host immune system, has become an important and novel therapeutic approach to treat various cancers. Recent studies have shown that IL-6 is an important cytokine that regulates the homeostasis in vivo. However, excessive IL-6 plays a pathological role in a variety of acute and chronic inflammatory diseases, especially in cancer. IL-6 can transmit signals through JAK/STAT, RAS /MAPK, PI3K/ Akt, NF-κB, and other pathways to promote cancer progression. Phenolic compounds can effectively regulate the level of IL-6 in tumor cells and improve the tumor microenvironment. This article focuses on the phenolic compounds through the regulation of IL-6, participate in the prevention of cancer, inhibit the proliferation of cancer cells, reduce angiogenesis, improve therapeutic efficacy, and reduce side effects and other aspects. This will help to further advance research on cytokine therapy to reduce the burden of cancer and improve patient prognosis. However, current studies are mostly limited to animal and cellular experiments, and high-quality clinical studies are needed to further determine their antitumor efficacy in humans.
Collapse
Affiliation(s)
- Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Ren
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
122
|
Sadgrove NJ, Simmonds MSJ. Pharmacodynamics of Aloe vera and acemannan in therapeutic applications for skin, digestion, and immunomodulation. Phytother Res 2021; 35:6572-6584. [PMID: 34427371 DOI: 10.1002/ptr.7242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Scientific studies of Aloe vera have tentatively explained therapeutic claims from a mechanistic perspective. Furthermore, in vitro outcomes demonstrate that the breakage of acemannan chains into smaller fragments enhances biological effects. These fragments can intravenously boost vaccine efficacy or entrain the immune system to attack cancer cells by mannose receptor agonism of macrophage or dendritic cells. With oral consumption, epithelialisation also occurs at injured sites in the small intestine or colon. The main advantage of dietary acemannan is the attenuation of the digestive process, increasing satiety, and slowing the release of sugars from starches. In the colon, acemannan is digested by microbes into short-chain fatty acids that are absorbed and augment the sensation of satiety and confer a host of other health benefits. In topical applications, an acemannan/chitosan combination accelerates the closure of wounds by promoting granular tissue formation, which creates a barrier between macrophages or neutrophils and the wound dressing. This causes M2 polarisation, reversal of inflammation, and acceleration of the re-epithelialisation process. This review summarises and explains the current pharmacodynamic paradigm in the context of acemannan in topical, oral, and intravenous applications. However, due to contradictory results in the literature, further research is required to provide scientific evidence to confirm or nullify these claims.
Collapse
|
123
|
Wang M, Wang L, Zhou Y, Feng X, Ye C, Wang C. Icariin attenuates renal fibrosis in chronic kidney disease by inhibiting interleukin-1β/transforming growth factor-β-mediated activation of renal fibroblasts. Phytother Res 2021; 35:6204-6215. [PMID: 34426999 DOI: 10.1002/ptr.7256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022]
Abstract
Icariin (ICA) is a bioactive flavonoid extracted from Epimedium brevicornum Maxim and exhibits a variety of pharmacological activities including antiinflammatory and antioxidant effects. Recently, icariin has shown renoprotective role by inhibiting pathological matrix. However, the underlying mechanisms of the efficacy remain unknown. This study aimed to determine the effects of icariin on renal fibrosis and explore its molecular mechanisms. Chronic kidney disease (CKD) was induced in rats with 5/6 ablation and infarction (A/I) operation. Four weeks later, rats were treated with vehicle or 20 mg/kg (low dose) or 40 mg/kg (high dose) of icariin by daily gavage. Furthermore, to further elucidate the effect mechanisms of icariin, in vitro, NRK-49F cells stimulated by 8 ng/ml IL-1β were treated with icariin in the presence or absence of SB431542 or the neutralizing antibody of transforming growth factor-β (TGF-β) for 24 h. We showed that icariin treatment for 8 weeks dose-dependently improved 5/6 (A/I)-induced kidney injury and fibrosis, and blocked the release of inflammatory cytokine IL-1β. In vitro, icariin inhibited IL-1β/TGF-β-mediated activation of renal fibroblasts. In summary, anti-fibrotic effects of icariin were interconnected with the inhibition of renal fibroblast activation caused by IL-1β/TGF-β signaling.
Collapse
Affiliation(s)
- Meng Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingchen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Zhou
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxuan Feng
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
124
|
Heidari S, Mehri S, Hosseinzadeh H. The genus Glycyrrhiza (Fabaceae family) and its active constituents as protective agents against natural or chemical toxicities. Phytother Res 2021; 35:6552-6571. [PMID: 34414608 DOI: 10.1002/ptr.7238] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Licorice is the dried roots and rhizomes of various species of the genus Glycyrrhiza (Fabaceae) that have been used in folk medicine from ancient times. Many important research projects have established several beneficial effects for this medicinal herb, including antiinflammatory, antimicrobial, antiviral, antiprotozoal, antioxidant, antihyperglycemic, antihyperlipidemic, hepatoprotective, and neuroprotective. Licorice contains important bioactive components, such as glycyrrhizin (glycyrrhizic, glycyrrhizinic acid), liquiritigenin, liquiritin, and glycyrrhetinic acid. The protective effects of licorice and its main chemical components against toxins and toxicants in several organs including the brain, heart, liver, kidney, and lung have been shown. In this comprehensive review article, the protective effects of these constituents against natural, industrial, environmental, and chemical toxicities with attention on the cellular and molecular mechanism are introduced. Also, it has been revealed that this plant and its main compounds can inhibit the toxicity of different toxins by the antioxidant, antiinflammatory, and anti-apoptotic properties as well as the modulation of Inhibitor of kappaB kinase (IKK), Extracellular signal-regulated protein kinase1/2 (ERK1/2), p38, inducible nitric oxide synthase, and nuclear factor-κB (NF-κB) signaling pathways. More high-quality investigations in both experimental and clinical studies need to firmly establish the efficacy of licorice and its main constituents against toxic agents.
Collapse
Affiliation(s)
- Somaye Heidari
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Toxicology and Addiction Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
125
|
Vahdat-Lasemi F, Aghaee-Bakhtiari SH, Tasbandi A, Jaafari MR, Sahebkar A. Targeting interleukin-β by plant-derived natural products: Implications for the treatment of atherosclerotic cardiovascular disease. Phytother Res 2021; 35:5596-5622. [PMID: 34390063 DOI: 10.1002/ptr.7194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Inflammation is the main contributing factor to atheroma formation in atherosclerosis. Interleukin-1 beta (IL-1β) is an inflammatory mediator found in endothelial cells and resident leukocytes. Canakinumab is a selective monoclonal antibody against IL-1β which attenuates inflammation and concurrently precipitates fatal infections and sepsis. Natural products derived from medicinal plants, herbal remedy and functional foods are widely used nowadays. Experimental and clinical trial evidence supports that some natural products such as curcumin, resveratrol, and quercetin have potential effects on IL-1β suppression. In this review, we tried to document findings that used medicinal plants and plant-based natural products for treating atherosclerosis and its related diseases through the suppression of IL-1β.
Collapse
Affiliation(s)
- Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
126
|
Xu B, Huang S, Chen Y, Wang Q, Luo S, Li Y, Wang X, Chen J, Luo X, Zhou L. Synergistic effect of combined treatment with baicalin and emodin on DSS-induced colitis in mouse. Phytother Res 2021; 35:5708-5719. [PMID: 34379340 DOI: 10.1002/ptr.7230] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022]
Abstract
The treatment of combination drugs in complex diseases has been spotlighted. Ulcerative colitis (UC) is a chronic inflammatory disease that has made progress in combination therapy. Baicalin, a flavone from Scutellaria baicalensis Georgi. (Lamiaceae), and emodin, an anthraquinone derivative from Rhei Radix et Rhizoma. (Polygonaceae), both have been reported to possess antiinflammatory activities. Our study investigated whether combined treatment with baicalin and emodin had a synergistic effect in inhibiting colitis inflammation. The results showed that baicalin combined with emodin at a lower dose had the same effect as the two drugs alone significantly alleviated the symptoms of dextran sulfate sodium (DSS)-induced colitis mice, involving the prevention of the loss of body weight and colon shortening, the decrease in the disease activity index (DAI), and intestinal damages. The combined treatment decreased the expression of CD14/TLR4/NF-κB pathway proteins and increased the expression of PPAR-γ protein in the colon of colitis mice. Further study in vitro has shown that baicalin decreased the expression of CD14, whereas emodin increased the expression of PPAR-γ, both of which inhibited the activity of NF-κB and exerted antiinflammatory effects. Furthermore, compared to the treatment using the two drugs individually, baicalin combined with emodin had more significant effects on the expression of CD14 and PPAR-γ. Therefore, emodin combined with baicalin had a synergistic effect on DSS-induced colitis.
Collapse
Affiliation(s)
- Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuang Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanyang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyan Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
127
|
Jin M, Kong L, Han Y, Zhang S. Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability. Phytother Res 2021; 35:5823-5837. [PMID: 34374130 DOI: 10.1002/ptr.7240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023]
Abstract
5-Fluorouracil (5-Fu) is efficient for hepatocellular carcinoma (HCC) treatment, but fast-emerging resistance limits its usage. Curcumin is being investigated for its potential chemosensitivity, but its low oral bioavailability hinders its chemosensitivity effect in vivo. Gut microbiota modulation is considered to contribute to its bioactivities in vivo. In the current study, we demonstrate that curcumin can enhance 5-Fu chemosensitivity in HCC cells in vitro, increase the apoptosis rate, arrest the cell cycle at G2/M phase, and block the PI3k/AKT/mTOR signalling pathway by inhibiting the phosphorylation of PI3K and its downstream protein kinases. Curcumin also remarkably sensitized H22 cells to 5-Fu, allowing it to inhibit tumour growth in vivo. 16S rDNA sequencing suggests that curcumin in combination with 5-Fu significantly alters the gut microbiota composition based on alpha and beta diversity analysis compared to drug treatment alone. Gut microbiota depletion abolished curcumin's chemosensitivity effect in vivo. A pharmacodynamics study suggested that the gut microbiota increased the oral bioavailability of curcumin (AUC(0-t) 15.24 ± 0.77 μM/h [wt] vs. 3.04 ± 0.18 μM/h [gut microbiota depleted]). In conclusion, curcumin can increase the chemosensitivity of HCC to 5-Fu in vitro and in vivo, and gut microbiota plays a key role in its effect in vivo.
Collapse
Affiliation(s)
- Meng Jin
- Department of Traditional Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Kong
- Department of Chinese and Western Medicine Combined with Liver Disease, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Han
- Department of Traditional Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, China
| |
Collapse
|
128
|
Sabbaghzadegan S, Golsorkhi H, Soltani MH, Kamalinejad M, Bahrami M, Kabir A, Dadmehr M. Potential protective effects of Aloe vera gel on cardiovascular diseases: A mini-review. Phytother Res 2021; 35:6101-6113. [PMID: 34355443 DOI: 10.1002/ptr.7219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
Cardiovascular diseases (CVDs) comprise the most prevalent causes of morbidity and mortality in both men and women worldwide. CVDs are associated with several risk factors such as hyperlipidemia, diabetes mellitus, hypertension, obesity, tobacco smoking and an unhealthy diet. Currently, in addition to the use of related pharmacological treatments in the management of CVDs, the investigation of other suitable healthcare approaches for these disorders such as the identification of herbal medicines has been considered in the scientific communities. Aloe vera (L.) Burm.f. is a perennial medicinal plant. The innermost leaf layer of this plant contains transparent gel, which is used as food. Pre-clinical studies have shown several biological activities of A. vera gel (AVG), including antidiabetic, lipid-lowering, antioxidant, antiinflammatory, hepatoprotective, and immunomodulatory effects. Other pharmacological activities of AVG such as anti-fibrotic, anti-hypertensive, and anti-atherosclerotic effects have been reported. Moreover, several clinical studies have demonstrated the ameliorating effects of AVG on some markers of CVDs risk factors. Thus, this study was conducted to review clinical trials besides in vitro and in vivo studies on the cardiac beneficial effects of AVG. However, further high-quality studies are needed to firmly establish the clinical efficacy of the plant.
Collapse
Affiliation(s)
- Saeideh Sabbaghzadegan
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haide Golsorkhi
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Kamalinejad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Dadmehr
- School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
129
|
Ali SA, Saifi MA, Godugu C, Talla V. Silibinin alleviates silica-induced pulmonary fibrosis: Potential role in modulating inflammation and epithelial-mesenchymal transition. Phytother Res 2021; 35:5290-5304. [PMID: 34250649 DOI: 10.1002/ptr.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
Pulmonary fibrosis (PF) is a devastating interstitial lung disease resulting from indefinite causes with very few limited, those too ineffective therapeutic options. Earlier evidence reported inflammation and epithelial-mesenchymal transition (EMT) are the major threats in PF. The present study was aimed to examine the anti-fibrotic activity of silibinin (SB) in PF. PF was induced by administering oropharyngeal 1.5 mg/mice silica on day 1, followed by treatment with and without oral SB for 14 days. Lung injury was assessed by x-ray analysis on day 14 and all the animals were sacrificed on day 15. The results showed that silica remarkably altered the histoarchitecture and induced the expression of inflammatory components in BALF and pulmonary tissue. Immunoblotting investigation quantified the expression of TGF-β, p-smad2/3, collagen-I, fibronectin, and α-SMA in the pulmonary tissue. To this end, treatment with SB alleviated inflammatory components, including IL-1β, IL-6, and TNF-α in the fibrotic tissue. Moreover, SB harnessed the tissue architecture, improved diffusive scattering of x-ray signals, and modulated epithelial-mesenchymal phenotypic alterations, including TGF-β, p-smad2/3, and collagen-I. Altogether, the significant reduction of inflammatory signaling, collagen deposition, and epithelial-mesenchymal transdifferentiation by SB suggested that it could be used as a potential therapeutic candidate to treat pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India.,Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Venu Talla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| |
Collapse
|
130
|
Murugan DD, Balan D, Wong PF. Adipogenesis and therapeutic potentials of antiobesogenic phytochemicals: Insights from preclinical studies. Phytother Res 2021; 35:5936-5960. [PMID: 34219306 DOI: 10.1002/ptr.7205] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/21/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
Obesity is one of the most serious public health problems in both developed and developing countries in recent years. While lifestyle and diet modifications are the most important management strategies of obesity, these may be insufficient to ensure long-term weight reduction in certain individuals and alternative strategies including pharmacotherapy need to be considered. However, drugs option remains limited due to low efficacy and adverse effects associated with their use. Hence, identification of safe and effective alternative therapeutic agents remains warranted to combat obesity. In recent years, bioactive phytochemicals are considered as valuable sources for the discovery of new pharmacological agents for the treatment of obesity. Adipocyte hypertrophy and hyperplasia increases with obesity and undergo molecular and cellular alterations that can affect systemic metabolism giving rise to metabolic syndrome and comorbidities such as type 2 diabetes and cardiovascular diseases. Many phytochemicals have been reported to target adipocytes by inhibiting adipogenesis, inducing lipolysis, suppressing the differentiation of preadipocytes to mature adipocytes, reducing energy intake, and boosting energy expenditure mainly in vitro and in animal studies. Nevertheless, further high-quality studies are needed to firmly establish the clinical efficacy of these phytochemicals. This review outlines common pathways involved in adipogenesis and phytochemicals targeting effector molecules of these pathways, the challenges faced and the way forward for the development of phytochemicals as antiobesity agents.
Collapse
Affiliation(s)
- Dharmani Devi Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dharvind Balan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
131
|
Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, Alhazmi HA, Al Bratty M, Ahsan W. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35:5440-5458. [PMID: 34184327 DOI: 10.1002/ptr.7176] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
132
|
Marmitt DJ, Bitencourt S, da Silva GR, Rempel C, Goettert MI. Traditional plants with antioxidant properties in clinical trials-A systematic review. Phytother Res 2021; 35:5647-5667. [PMID: 34165846 DOI: 10.1002/ptr.7202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
There is a trend toward the use of natural substances present in plants and vegetables. In general, foods rich in antioxidants are complex matrices; therefore, understanding its absorption effects is extremely relevant to know its bioactive potential. Thus, this systematic review focused on clinical trials involving plants (or compounds) registered on the National List of Medicinal Plants of Interest to the Unified Health System (RENISUS) with antioxidant properties. Following the reporting guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyzes studies of interest indexed in the PubMed and ClinicalTrials.gov databases were analyzed. Of the 59 clinical trials found, Allium sativum and Curcuma longa are the plant species with the highest percentage of clinical research. Prevention/attenuation of oxidative stress was one of the main antioxidant mechanisms indicated in the studies. The most tested compounds of the RENISUS plants in clinical trials were curcumin and soy isoflavone. In this review, we selected studies in advanced stages that highlight plants' value in optimizing antioxidant status; however, even with high-quality studies, it is not prudent to overstate the clinical efficacy of these plants.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Shanna Bitencourt
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | | | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Márcia Inês Goettert
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| |
Collapse
|
133
|
Wen J, Liu J, Wang X, Wang J. Triptolide promotes the apoptosis and attenuates the inflammation of fibroblast-like synoviocytes in rheumatoid arthritis by down-regulating lncRNA ENST00000619282. Phytother Res 2021; 35:4334-4346. [PMID: 34161642 DOI: 10.1002/ptr.7129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA), recognized as a common chronic autoimmune disease, is characterized by the excessive proliferation and inflammatory infiltration of fibroblast-like synoviocytes (FLS). In this study, our purpose is to elucidate the mechanisms of triptolide (TPL) in the treatment of RA by regulating the long non-coding RNA (lncRNA) ENST00000619282, which promoted apoptosis and reduced inflammatory infiltration of FLS in RA (RA-FLS). RA-FLS was treated with different concentrations of TPL at different time points. CCK-8 assay, ELISA, RT-qPCR, immunofluorescence, TUNEL assay, and the transmission electron microscopy were used to measure the changes of cell viability, apoptosis, and the release of inflammatory cytokines. Next, the involvement of ENST00000619282 in TPL-mediated protection against RA was explored. ENST00000619282 expression was significantly increased in the peripheral blood mononuclear cells (PBMCs) of RA patients. ENST0000061928 expression in RA PBMCs was positively associated with ESR, RF, CCP, and DAS28, while TPL treatment led to a downregulation of ENST00000619282. In addition, ENST00000619282 was significantly increased in RA-FLS. Furthermore, overexpression of ENST00000619282 elevated the levels of pro-apoptotic and pro-inflammatory factors, while reduced the levels of anti-apoptotic proteins and antiinflammatory factors. Besides, TPL treatment could reverse these effects by ENST00000619282 overexpression. The anti-RA potential of TPL might be achieved by downregulating ENST00000619282, thereby promoting apoptosis, and reducing the inflammatory response in RA.
Collapse
Affiliation(s)
- Jianting Wen
- College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China.,Institute of Rheumatology, Anhui Academy of Traditional Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Liu
- Institute of Rheumatology, Anhui Academy of Traditional Chinese Medicine, Hefei, China.,Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xin Wang
- College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jie Wang
- College of Traditional Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
134
|
Wang Y, Wu H, Deng R, Dai XJ, Bu YH, Sun MH, Zhang H, Wang MD, Wang RH. Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro. Phytother Res 2021; 35:4347-4362. [PMID: 34152633 DOI: 10.1002/ptr.7130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
The VEGF/SphK1/S1P pathway is closely related to angiogenesis in rheumatoid arthritis (RA), but the precise underlying mechanisms are unclear at present. Here, we explored the involvement of the VEGF/SphK1/S1P cascade in RA models and determined the effects of GE intervention. Our results showed abnormal expression of proteins related to this pathway in RA synovial tissue. Treatment with GE effectively regulated the signal axis, inhibited angiogenesis, and alleviated RA symptoms. In vitro, TNF-ɑ enhanced the VEGF/SphK1/S1P pathway in a co-culture model of fibroblast-like synoviocytes (FLS) and vascular endothelial cells (VEC). GE induced downregulation of VEGF in FLS, restored the dynamic balance of pro-/antiangiogenic factors, and suppressed SphK1/S1P signaling in VEC, resulting in lower proliferation activity, migration ability, tube formation ability, and S1P secretion ability of VEC cells. Additionally, SphK1-specific small interfering RNA (siRNA) blocked the VEGF/SphK1/S1P cascade, which can effectively alleviate the stimulatory effect of FLS on VEC and further enhanced the therapeutic effect of GE. Taken together, our results demonstrate that GE suppresses the VEGF/SphK1/S1P pathway and alleviates the stimulation of VEC by FLS, thereby preventing angiogenesis and promoting therapeutic effects against RA.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Ran Deng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Xue-Jing Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Yan-Hong Bu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Ming-Hui Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Heng Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Meng-Die Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| | - Rong-Hui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Science and Technology Department of Anhui Province, Hefei, China
| |
Collapse
|
135
|
Daniyal M, Liu Y, Yang Y, Xiao F, Fan J, Yu H, Qiu Y, Liu B, Wang W, Yuhui Q. Anti-gastric cancer activity and mechanism of natural compound "Heilaohulignan C" isolated from Kadsura coccinea. Phytother Res 2021; 35:3977-3987. [PMID: 34155704 DOI: 10.1002/ptr.7114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
In this research, we analyzed the antitumor activity of one new compound Heilaohulignan C (B-6) on the human gastric carcinoma cells. MTT, cell migration, Calcein AM/Propidium Iodide (PI), and flow cytometry in BGC-823 cell line (gastric tumor). Western blot was utilized to distinguish the protein level. Xenografts nude mice were used for in vivo anticancer analysis. H&E staining and laboratory investigation was accomplished for toxicity study. MTT test demonstrated the cytotoxicity of BGC-823 cells, Calcein AM/Propidium Iodide (PI) examine indicated increment dead cells proportion with a high dose of B-6, Flow cytometry (FACS) measure showed that B-6 influenced gastric cancer cells by initiating apoptosis. Western blot analysis confirmed that (B-6) decrease the level of Bcl-2 and increase the level of p53, Bax, and cleaved Caspase-3, this confirms that the B-6 doing the apoptosis through caspase and cytochrome C apoptotic pathways. Also, B-6 particularly decline the tumor volume and tumor size in the xenograft mice. H&E staining additionally supports that B-6 does not have any toxic impact on the normal tissues. This research supports that B-6 have pharmacological activity against gastric cancer, by p53 and mitochondrial dependent apoptotic pathway, and have no toxicity on normal tissues.
Collapse
Affiliation(s)
- Muhammad Daniyal
- TCM and Ethnomedicine Innovative & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yongbei Liu
- TCM and Ethnomedicine Innovative & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovative & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feng Xiao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, China
| | - Jialong Fan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, China
| | - Huanghe Yu
- TCM and Ethnomedicine Innovative & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yixing Qiu
- TCM and Ethnomedicine Innovative & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bin Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, China
| | - Wei Wang
- TCM and Ethnomedicine Innovative & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Yuhui
- TCM and Ethnomedicine Innovative & Development International Laboratory, Academician Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
136
|
Li X, Wu X, Li N, Li D, Sui A, Khan K, Ge B, Li S, Li S, Zhao J. Scorpion venom heat-resistant synthesized peptide ameliorates 6-OHDA-induced neurotoxicity and neuroinflammation: likely role of Na v 1.6 inhibition in microglia. Br J Pharmacol 2021; 178:3553-3569. [PMID: 33886140 DOI: 10.1111/bph.15502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Microglia-related inflammation is associated with the pathology of Parkinson's disease. Functional voltage-gated sodium channels (VGSCs) are involved in regulating microglial function. Here, we aim to investigate the effects of scorpion venom heat-resistant synthesized peptide (SVHRSP) on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease-like mouse model and reveal its underlying mechanism. EXPERIMENTAL APPROACH Unilateral brain injection of 6-OHDA was performed to establish Parkinson's disease mouse model. After behaviour test, brain tissues were collected for morphological analysis and protein/gene expression examination. Primary microglia culture was used to investigate the role of sodium channel Nav 1.6 in the regulation of microglia inflammation by SVHRSP. KEY RESULTS SVHRSP treatment attenuated motor deficits, dopamine neuron degeneration, activation of glial cells and expression of pro-inflammatory cytokines induced by 6-OHDA lesion. Primary microglia activation and the production of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) were also suppressed by SVHRSP treatment. In addition, SVHRSP could inhibit mitogen-activated protein kinases (MAPKs) pathway, which plays pivotal roles in the pro-inflammatory response. Notably, SVHRSP treatment suppressed the overexpression of microglial Nav 1.6 induced by 6-OHDA and LPS. Finally, it was shown that the anti-inflammatory effect of SVHRSP in microglia was Nav 1.6 dependent and was related to suppression of sodium current and probably the consequent Na+ /Ca2+ exchange. CONCLUSIONS AND IMPLICATIONS SVHRSP might inhibit neuroinflammation and protect dopamine neurons via down-regulating microglial Nav 1.6 and subsequently suppressing intracellular Ca2+ accumulation to attenuate the activation of MAPKs signalling pathway in microglia.
Collapse
Affiliation(s)
- Xiujie Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Xuefei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Donglai Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Aoran Sui
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Khizar Khan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Biying Ge
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
137
|
Mancini MCS, Ponte LGS, Silva CHR, Fagundes I, Pavan ICB, Romeiro SA, da Silva LGS, Morelli AP, Rostagno MA, Simabuco FM, Bezerra RMN. Beetroot and leaf extracts present protective effects against prostate cancer cells, inhibiting cell proliferation, migration, and growth signaling pathways. Phytother Res 2021; 35:5241-5258. [PMID: 34132433 DOI: 10.1002/ptr.7197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
Beet (Beta vulgaris L.) has high nutritional value, containing bioactive compounds such as betalains and flavonoids. Scientific evidence points to the use of these natural compounds in the treatment of several types of cancer, such as prostate cancer, one of the main causes of morbidity and mortality in men. Here, we compared beet roots and leaves extracts, and their main compounds, apigenin, and betanin, respectively, in DU-145 and PC-3 prostate cancer cell lines. Both cells presented the proliferation decreased for beetroot and beet leaves extracts. The apigenin treatment also reduced the proliferation of both cell lines. Regarding cell migration, beet leaves extract was able to decrease the scratch area in both cell lines, whereas apigenin affected only PC-3 cells' migration. In colony formation assay, both extracts were effective in reducing the number of colonies formed. Besides, the beet leaves extracts and apigenin presented strong inhibition of growth-related signaling pathways in both cell lines, and the beetroot extract and betanin presented effects only in DU-145 cells. Furthermore, the extracts and isolated compounds were able to reduce the levels of apoptotic and cell cycle proteins. This study reveals that beet extracts have important anti-cancer effects against prostate cancer cells.
Collapse
Affiliation(s)
- Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Cayo Henrique Rocha Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isabella Fagundes
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil.,Laboratory of Signal Mechanisms, School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, Brazil
| | - Stefhani Andrioli Romeiro
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maurício Ariel Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, Brazil
| |
Collapse
|
138
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
139
|
Sirotkin AV. Effects of resveratrol on female reproduction: A review. Phytother Res 2021; 35:5502-5513. [PMID: 34101259 DOI: 10.1002/ptr.7185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
The present review summarizes the current knowledge concerning physiological effects of resveratrol (RSV) with emphasis on the RSV action on female reproductive processes. The review outlines provenance, properties, mechanisms of action, physiological and therapeutic actions of RSV on female reproduction and other physiological processes, as well as areas of possible application of R. This review is based on the search for the related full papers indexed in Medline/Pubmed, Web of Science and SCOPUS databases between the year 2000 and 2021 according to the criteria of preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews and other related guidelines. The analysis of the available information suggests that RSV has a number of properties which enable its influence on various physiological processes including female reproduction at various regulatory levels via various extra- and intracellular signalling pathways. Despite some contradictions and limitations in the available data, they indicate applicability of both stimulatory and inhibitory effects of RSV for control and influence of various reproductive and non-reproductive processes and treatment of their disorders in phytotherapy, animal production, medicine, biotechnology and assisted reproduction. To establish the clinical efficacy of RSV, further high quality studies are needed.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Dept. Zoology and Anthropology, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| |
Collapse
|
140
|
Lynch KD, Montonye ML, Tian DD, Arman T, Oyanna VO, Bechtold BJ, Graf TN, Oberlies NH, Paine MF, Clarke JD. Hepatic organic anion transporting polypeptides mediate disposition of milk thistle flavonolignans and pharmacokinetic silymarin-drug interactions. Phytother Res 2021; 35:3286-3297. [PMID: 33587330 PMCID: PMC8217340 DOI: 10.1002/ptr.7049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023]
Abstract
Silybum marianum (L.) Gaertn. (Asteraceae), commonly known as milk thistle, is a botanical natural product used to self-treat multiple diseases such as Type 2 diabetes mellitus and nonalcoholic steatohepatitis (NASH). An extract from milk thistle seeds (achenes), termed silymarin, is comprised primarily of several flavonolignans. Systemic concentrations of these flavonolignans can influence the potential biologic effects of silymarin and the risk for pharmacokinetic silymarin-drug interactions. The aims of this research were to determine the roles of organic anion transporting polypeptides (OATPs/Oatps) in silymarin flavonolignan disposition and in pharmacokinetic silymarin-drug interactions. The seven major flavonolignans from silymarin were determined to be substrates for OATP1B1, OATP1B3, and OATP2B1. Sprague Dawley rats were fed either a control diet or a NASH-inducing diet and administered pitavastatin (OATP/Oatp probe substrate), followed by silymarin via oral gavage. Decreased protein expression of Oatp1b2 and Oatp1a4 in NASH animals increased flavonolignan area under the plasma concentration-time curve (AUC) and maximum plasma concentration. The combination of silymarin inhibition of Oatps and NASH-associated decrease in Oatp expression caused an additive increase in plasma pitavastatin AUC in the animals. These data indicate that OATPs/Oatps contribute to flavonolignan cellular uptake and mediate the interaction between silymarin and NASH on pitavastatin systemic exposure.
Collapse
Affiliation(s)
- Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Michelle L. Montonye
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Victoria O. Oyanna
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Baron J. Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
141
|
Bansod S, Saifi MA, Godugu C. Molecular updates on berberine in liver diseases: Bench to bedside. Phytother Res 2021; 35:5459-5476. [PMID: 34056769 DOI: 10.1002/ptr.7181] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Liver diseases are life-threatening illnesses and are the major cause of mortality and morbidity worldwide. These may include liver fibrosis, liver cirrhosis, and drug-induced liver toxicity. Liver diseases have a wide prevalence globally and the fifth most common cause of death among all gastrointestinal disorders. Several novel therapeutic approaches have emerged for the therapy of liver diseases that may provide better clinical outcomes with improved safety. The use of phytochemicals for the amelioration of liver diseases has gained considerable popularity. Berberine (BBR), an isoquinoline alkaloid of the protoberberine type, has emerged as a promising molecule for the treatment of gastrointestinal disorders. Accumulating studies have proved the hepatoprotective effects of BBR. BBR has been shown to modulate multiple signaling pathways implicated in the pathogenesis of liver diseases including Akt/FoxO2, PPAR-γ, Nrf2, insulin, AMPK, mTOR, and epigenetic pathways. In the present review, we have emphasized the important pharmacological activities and mechanisms of BBR in liver diseases. Further, we have reviewed various pharmacokinetic and toxicological barriers of this promising phytoconstituent. Finally, formulation-based novel approaches are also summarized to overcome the clinical hurdles for BBR.
Collapse
Affiliation(s)
- Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
142
|
Jalali A, Firouzabadi N, Zarshenas MM. Pharmacogenetic-based management of depression: Role of traditional Persian medicine. Phytother Res 2021; 35:5031-5052. [PMID: 34041799 DOI: 10.1002/ptr.7134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Depression is one of the most common mental disorders worldwide. The genetic factors are linked to depression and anti-depressant outcomes. Traditional Persian medicine (TPM) manuscripts have provided various anti-depressant remedies, which may be useful in depression management. This review has studied the bioactive compounds, underlying mechanisms, and treatment outcomes of the medicinal plants traditionally mentioned effective for depression from "The storehouse of medicament" (a famous pharmacopeia of TPM) to merge those with the novel genetics science and serve new scope in depression prevention and management. This review paper has been conducted in two sections: (1) Collecting medicinal plants and their bioactive components from "The storehouse of medicament," "Physician's Desk Reference (PDR) for Herbal Medicines," and "Google scholar" database. (2) The critical key factors and genes in depression pathophysiology, prevention, and treatment were clarified. Subsequently, the association between bioactive components' underlying mechanism and depression treatment outcomes via considering polymorphisms in related genes was derived. Taken together, α-Mangostin, β-carotene, β-pinene, apigenin, caffeic acid, catechin, chlorogenic acid, citral, ellagic acid, esculetin, ferulic acid, gallic acid, gentiopicroside, hyperoside, kaempferol, limonene, linalool, lycopene, naringin, protocatechuic acid, quercetin, resveratrol, rosmarinic acid, and umbelliferone are suitable for future pharmacogenetics-based studies in the management of depression.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
143
|
Zhang XS, Lu Y, Li W, Tao T, Wang WH, Gao S, Zhou Y, Guo YT, Liu C, Zhuang Z, Hang CH, Li W. Cerebroprotection by dioscin after experimental subarachnoid haemorrhage via inhibiting NLRP3 inflammasome through SIRT1-dependent pathway. Br J Pharmacol 2021; 178:3648-3666. [PMID: 33904167 DOI: 10.1111/bph.15507] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Dioscin has multiple biological activities and is beneficial for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of dioscin against subarachnoid haemorrhage and the molecular mechanisms involved. EXPERIMENTAL APPROACH Dioscin was administered after subarachnoid haemorrhage induced in rats. MCC950, a potent selective nod-like receptor pyrin domain-containing 3 (NLRP3) inhibitor, was used to suppress NLRP3 and EX527 (selisistat) was used to inhibit sirtuin 1 (SIRT1). KEY RESULTS In vivo, dioscin inhibited acute inflammatory response, oxidative damage, neurological impairment and neural cell degeneration after subarachnoid haemorrhage along with dramatically suppressing NLRP3 inflammasome activation. While pretreatment with MCC950 reduced the inflammatory response and improved neurological outcomes it did not lessen ROS production. However, giving dioscin after MCC950 reduced acute brain damage and ROS production. Dioscin increased SIRT1 expression after subarachnoid haemorrhage, whereas EX527 abolished the up-regulation of SIRT1 induced by dioscin and offset the inhibitory effects of dioscin on NLRP3 inflammasome activation. EX527 pretreatment also reversed the neuroprotective effects of dioscin against subarachnoid haemorrhage. Similarly, in vitro, dioscin dose-dependently suppressed inflammatory response, oxidative damage and neuronal degeneration and improved cell viability in neurons and microglia co-culture system. These effects were associated with inhibition of the NLRP3 inflammasome and stimulation of SIRT1 signalling, which could be inhibited by EX527 pretreatment. CONCLUSION AND IMPLICATIONS Dioscin provides protection against subarachnoid haemorrhage via the suppression of NLRP3 inflammasome activation through SIRT1-dependent pathway. Dioscin may be a new candidate to ameliorate early brain injury after subarachnoid haemorrhage.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Li
- Department of Pharmacy, Beijing Boai Hospital, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei-Han Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi-Ting Guo
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
144
|
Foss JD, Farkas DJ, Huynh LM, Kinney WA, Brenneman DE, Ward SJ. Behavioural and pharmacological effects of cannabidiol (CBD) and the cannabidiol analogue KLS-13019 in mouse models of pain and reinforcement. Br J Pharmacol 2021; 178:3067-3078. [PMID: 33822373 DOI: 10.1111/bph.15486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol (CBD) is a non-euphorigenic component of Cannabis sativa that prevents the development of paclitaxel-induced mechanical sensitivity in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). We recently reported that the CBD structural analogue KLS-13019 shows efficacy in an in vitro model of CIPN. The present study was to characterize the behavioural effects of KLS-13019 compared to CBD and morphine in mouse models of CIPN, nociceptive pain and reinforcement. EXPERIMENTAL APPROACH Prevention or reversal of paclitaxel-induced mechanical sensitivity were assessed following intraperitoneal or oral administration of CBD, KLS-13019 or morphine. Antinociceptive activity using acetic acid-induced stretching and hot plate assay, anti-reinforcing effects on palatable food or morphine self-administration and binding to human opioid receptors were also determined. KEY RESULTS Like CBD, KLS-13019 prevented the development of mechanical sensitivity associated with paclitaxel administration. In contrast to CBD, KLS-13019 was also effective at reversing established mechanical sensitivity. KLS-13019 significantly attenuated acetic acid-induced stretching and produced modest effects in the hot plate assay. KLS-13019 was devoid of activity at μ-, δ- or κ-opioid receptors. Lastly, KLS-13019, but not CBD, attenuated the reinforcing effects of palatable food or morphine. CONCLUSIONS AND IMPLICATIONS KLS-13019 like CBD, prevented the development of CIPN, while KLS-13019 uniquely attenuated established CIPN. Because KLS-13019 binds to fewer biological targets, this will help to identifying molecular mechanisms shared by these two compounds and those unique to KLS-13019. Lastly, KLS-13019 may possess the ability to attenuate reinforced behaviour, an effect not observed in the present study with CBD.
Collapse
Affiliation(s)
- Jeffery D Foss
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Lana M Huynh
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - William A Kinney
- KannaLife Sciences Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Douglas E Brenneman
- KannaLife Sciences Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
145
|
Barman R, Bora PK, Saikia J, Kemprai P, Saikia SP, Haldar S, Banik D. Nutmegs and wild nutmegs: An update on ethnomedicines, phytochemicals, pharmacology, and toxicity of the Myristicaceae species. Phytother Res 2021; 35:4632-4659. [PMID: 33987899 DOI: 10.1002/ptr.7098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest species of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diarrhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic agents. Nutmegs are cultivated around the tropics for high-value commercial spice, used in global cuisine. A thorough literature survey of peer-reviewed publications, scientific online databases, authentic webpages, and regulatory guidelines found major phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavonoids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immunomodulatory, antinociceptive, anticancer, antimicrobial, antiprotozoal, antidiabetic, antidiarrhoeal activities, and toxicity through in-vitro, in-vivo studies. Human clinical trials were very few. Most of the pharmacological studies were not conducted as per current guidelines of natural products to ensure repeatability, safety, and translational use in human therapeutics. Rigorous pharmacological evaluation and randomized double-blind clinical trials are recommended to analyze the efficacy and therapeutic potential of nutmeg and wild nutmegs in anxiety, Alzheimer's disease, autism, schizophrenia, stroke, cancer, and others.
Collapse
Affiliation(s)
- Rubi Barman
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Pranjit Kumar Bora
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jadumoni Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India
| | - Phirose Kemprai
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Dipanwita Banik
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
146
|
Wang N, Wang L, Yang J, Wang Z, Cheng L. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother Res 2021; 35:2639-2650. [PMID: 33421256 DOI: 10.1002/ptr.7010] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Decrepitude and apoptosis of bone mesenchymal stem cells (BMSCs) induced by reactive oxygen species (ROS) lead to inhibited osteogenic differentiation, causing decreased bone density and osteoporosis. Quercetin, a bioactive component of Solanum muricatum extracts, promotes the osteogenic differentiation of BMSCs and ameliorates the symptoms of osteoporosis in vivo. However, the detailed mechanism underlying this process remains unclear. The study aims to reveal the regulatory mechanism of quercetin in BMSCs. Mouse BMSCs (mBMSCs) were isolated from the bone marrow and characterized by flow cytometry. QRT-PCR and western blot assays were performed to evaluate the expression levels of related genes and proteins. Alkaline phosphatase (ALP) staining and Oil Red O staining of lipids were used to estimate the osteogenesis and adipogenesis levels of mBMSCs, respectively. Quercetin treatment (2 and 5 μM) induced significant upregulation of antioxidant enzymes, SOD1 and SOD2, in mBMSCs. Quercetin promoted osteogenic differentiation and inhibited adipogenic differentiation of mBMSCs. Quercetin treatment enhanced the phosphorylation of AMPK protein and upregulated the expression of SIRT1, thus activating the AMPK/SIRT1 signaling pathway in mBMSCs. Quercetin promoted osteogenic differentiation and antioxidant responses of mBMSCs by activating the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luyao Wang
- Stomatological Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jihao Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihong Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liangxing Cheng
- Research Office, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
147
|
Wang C, Huandike M, Yang Y, Zhang H, Feng G, Meng X, Zhang P, Liu J, Li J, Chai L. Glycosides of Caulis Lonicerae inhibits the inflammatory proliferation of IL-1β-mediated fibroblast-like synovial cells cocultured with lymphocytes. Phytother Res 2021; 35:2807-2823. [PMID: 33484196 DOI: 10.1002/ptr.7026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023]
Abstract
Caulis Lonicerae, the dried stem of Lonicera japonica, has been confirmed to have antiinflammatory and antioxidant therapeutic effects. In the present study, we aimed to evaluate the functional mechanism of glycosides extracted from Caulis Lonicerae on the inflammatory proliferation of interleukin-1 beta (IL-1β)-mediated fibroblast-like synoviocytes (FLSs) from rats. Rat FLSs (RSC-364) co-cultured with lymphocytes induced by IL-1β were used as a cell model. Glycosides in a freeze-dried powder of aqueous extract from Caulis Lonicerae were identified using high-performance liquid chromatography-electrospray ionization/mass spectrometry. After treatment with glycosides, the inflammatory proliferation of FLS, induced by IL-1β, decreased significantly. Flow cytometry analysis showed that treatment with glycosides restored the abnormal balance of T cells by intervening in the proliferation and differentiation of helper T (Th) cells. Glycosides also inhibited the activation of Janus kinase signal transducer and activator of transcription (JAK-STAT) and nuclear factor (NF)-κB signaling pathways by suppressing the protein expression of key molecules in these pathways. Therefore, we concluded that the glycosides of Caulis Lonicerae can intervene in the differentiation of Th cells, suppressing the activation of JAK-STAT and NF-κB signaling pathways, contributing to the inhibitory effect on inflammatory proliferation of FLS co-cultured with lymphocytes induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Changzhi Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyier Huandike
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingxia Yang
- Nephropathy Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoying Meng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
148
|
Ma TW, Wen YJ, Song XP, Hu HL, Li Y, Bai H, Zhao MC, Gao L. Puerarin inhibits the development of osteoarthritis through antiinflammatory and antimatrix-degrading pathways in osteoarthritis-induced rat model. Phytother Res 2021; 35:2579-2593. [PMID: 33350519 DOI: 10.1002/ptr.6988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022]
Abstract
Puerarin is an isoflavone isolated from the medicinal plant Pueraria lobata. The purpose of this study was to study the antiinflammatory and antimatrix-degrading effects of puerarin in a rat osteoarthritis (OA) model and its protective effects on joints. The rat OA model was established by anterior cruciate ligament transection (ACLT) surgery. Rats (n = 40) were divided into nontreated OA, OA + celecoxib (2.86 mg/kg), OA + puerarin (50 and 100 mg/kg), and control groups. Two weeks after surgical induction, puerarin was administered by gavage daily for 8 weeks. After 8 weeks, macroscopic observation and histopathological images showed that cartilage damage was reduced after puerarin and celecoxib treatment, the intensity of Safranin O staining was high, and the OARSI scores were significantly reduced compared to the OA group. Puerarin reduced the expression of MMP-3, MMP-13, ADAMTS-5, and COX-2 in the cartilage tissue of ACLT rats, inhibited the production of IL-1β, IL-6, and TNF-α inflammatory factors, increased Type II collagen content, and altered the expression of serum OA cartilage degradation/bone turnover biomarkers (CTX-I, CTX-II, COMP, and PIINP). Based on these findings, we speculate that puerarin supplement to attain recovery from OA damage.
Collapse
Affiliation(s)
- Tian-Wen Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ya-Jing Wen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-Peng Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hai-Long Hu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ming-Chao Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
149
|
Zhu D, Yu H, Liu P, Yang Q, Chen Y, Luo P, Zhang C, Gao Y. Calycosin modulates inflammation via suppressing TLR4/NF-κB pathway and promotes bone formation to ameliorate glucocorticoid-induced osteonecrosis of the femoral head in rat. Phytother Res 2021; 35:2824-2835. [PMID: 33484002 DOI: 10.1002/ptr.7028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Glucocorticoid (GC) administration is one of the main causes of osteonecrosis of the femoral head (ONFH). Inflammation, especially the TLR4/NF-κB pathway, has been demonstrated to play a pivotal role in the pathogenesis of GC-induced ONFH. Calycosin, the main bioactive extract of Astragali Radix, could substantially regulate the TLR4/NF-κB pathway. Therefore, in this study, we hypothesized that calycosin could exert beneficial effects in GC-induced ONFH. In vitro, effects of calycosin on the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) were determined using Alizarin red staining, alkaline phosphatase activity examination, and osteogenic-related gene assay. Meanwhile, inflammatory cytokines were detected by enzyme-linked immunosorbent assay. In vivo, 60 male Sprague-Dawley rats were randomly separated into three groups: the control group, the methylprednisolone (MPS) group, and the MPS + calycosin group. The results showed that calycosin could significantly promote dynamic bone formation and retard TLR4/NF-κB pathway. in vivo investigations indicated that calycosin could decrease the morbidity of ONFH and alleviate pathological manifestations within the femoral head. Meanwhile, calycosin could protect osseous blood supply and facilitate dynamic bone formation. The findings collectively demonstrated that calycosin could ameliorate GC-induced ONFH in rat and might become a potential candidate for pharmaceutical prevention of this intractable disease.
Collapse
Affiliation(s)
- Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Pengbo Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
150
|
Zhang ZB, Ip SP, Cho WCS, Ng ACF, Hu Z, Huang YF, Luo DD, Xian YF, Lin ZX. Herb-drug interactions between androgenic Chinese herbal medicines and androgen receptor antagonist on tumor growth: Studies on two xenograft prostate cancer animal models. Phytother Res 2021; 35:2758-2772. [PMID: 33440458 DOI: 10.1002/ptr.7020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 01/25/2023]
Abstract
Our previous study revealed that Epimedii Folium (EF) and Codonopsis Radix (CNR) significantly promoted tumor growth on a subcutaneous mouse model of prostate cancer (PCa) via enhancing the mRNA and protein expressions of androgen receptor (AR), while Astragali Radix (AGR) inhibited tumor growth via suppressing the protein expression of AR. In the present study, we aimed to investigate the potential interactions between EF, CNR or AGR and AR antagonist (abiraterone acetate [ABI]) on the tumor growth using subcutaneous and orthotopic PCa mouse models. EF, CNR, AGR and ABI were intragastrically given to mice once every 2 days for 4 weeks. The pharmacokinetics of ABI were evaluated in the plasma of rats when combined with EF, CNR, or AGR. Our results demonstrated that EF or CNR could weaken the anti-tumor effects of ABI via increasing the AR expression involving activation of the PI3K/AKT and Rb/E2F pathways and decreasing the bioavailability of ABI, while AGR could enhance the anti-tumor effects of ABI through suppressing the AR expression via inhibiting the activations of PI3K/AKT and Rb/E2F pathways and increasing the bioavailability of ABI. These findings imply that cautions should be exercised when prescribing EF and CNR for PCa patients.
Collapse
Affiliation(s)
- Zhen-Biao Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Siu-Po Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Brain Research Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | | | - Anthony Chi Fai Ng
- SH Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhen Hu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Yan-Feng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Dan-Dan Luo
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, PR China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Brain Research Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Brain Research Center, The Chinese University of Hong Kong, Hong Kong SAR, PR China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|