101
|
Sakamoto Y, Sato M, Sato Y, Harada A, Suzuki T, Goto C, Tamura K, Toyooka K, Kimura H, Ohkawa Y, Hara-Nishimura I, Takagi S, Matsunaga S. Subnuclear gene positioning through lamina association affects copper tolerance. Nat Commun 2020; 11:5914. [PMID: 33219233 PMCID: PMC7679404 DOI: 10.1038/s41467-020-19621-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear lamina plays an important role in the regulation of chromatin organization and gene positioning in animals. CROWDED NUCLEI (CRWN) is a strong candidate for the plant nuclear lamina protein in Arabidopsis thaliana but its biological function was largely unknown. Here, we show that CRWNs localize at the nuclear lamina and build the meshwork structure. Fluorescence in situ hybridization and RNA-seq analyses revealed that CRWNs regulate chromatin distribution and gene expression. More than 2000 differentially expressed genes were identified in the crwn1crwn4 double mutant. Copper-associated (CA) genes that form a gene cluster on chromosome 5 were among the downregulated genes in the double mutant exhibiting low tolerance to excess copper. Our analyses showed this low tolerance to copper was associated with the suppression of CA gene expression and that CRWN1 interacts with the CA gene locus, enabling the locus to localize at the nuclear lamina under excess copper conditions. The nuclear lamina regulates chromatin organization and gene positioning. Here the authors show that CROWDED NUCLEI proteins contribute to the meshwork lamina structure in Arabidopsis nuclei and regulate copper tolerance by promoting lamina association and expression of copper response genes.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501, Japan
| | - Chieko Goto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Kentaro Tamura
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | | | - Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Sachihiro Matsunaga
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
102
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
103
|
He G, Qin L, Tian W, Meng L, He T, Zhao D. Heavy Metal Transporters-Associated Proteins in S. tuberosum: Genome-Wide Identification, Comprehensive Gene Feature, Evolution and Expression Analysis. Genes (Basel) 2020; 11:genes11111269. [PMID: 33126505 PMCID: PMC7694169 DOI: 10.3390/genes11111269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Plants have evolved a number of defense and adaptation responses to protect themselves against challenging environmental stresses. Genes containing a heavy metal associated (HMA) domain are required for the spatiotemporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by StHMA genes, we identified 36 gene members in the StHMA family and divided them into six subfamilies by phylogenetic analysis. The StHMAs had high collinearity and were segmentally duplicated. Structurally, most StHMAs had one HMA domain, StHIPPc and StRNA1 subfamilies had two, and 13 StHMAs may be genetically variable. The StHMA gene structures and motifs varied considerably among the various classifications, this suggests the StHMA family is diverse in genetic functions. The promoter analysis showed that the StHMAs had six main cis-acting elements with abiotic stress. An expression pattern analysis revealed that the StHMAs were expressed tissue specifically, and a variety of abiotic stresses may induce the expression of StHMA family genes. The HMA transporter family may be regulated and expressed by a series of complex signal networks under abiotic stress. The results of this study may help to establish a theoretical foundation for further research investigating the functions of HMA genes in Solanum tuberosum to elucidate their regulatory role in the mechanism governing the response of plants to abiotic stress.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
- Institute of New Rural Development of Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
- Guizhou Academy of Agricultural Science, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| |
Collapse
|
104
|
Julca I, Marcet-Houben M, Cruz F, Gómez-Garrido J, Gaut BS, Díez CM, Gut IG, Alioto TS, Vargas P, Gabaldón T. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol 2020; 18:148. [PMID: 33100219 PMCID: PMC7586694 DOI: 10.1186/s12915-020-00881-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/27/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Olive tree (Olea europaea L. subsp. europaea, Oleaceae) has been the most emblematic perennial crop for Mediterranean countries since its domestication around 6000 years ago in the Levant. Two taxonomic varieties are currently recognized: cultivated (var. europaea) and wild (var. sylvestris) trees. However, it remains unclear whether olive cultivars derive from a single initial domestication event followed by secondary diversification, or whether cultivated lineages are the result of more than a single, independent primary domestication event. To shed light into the recent evolution and domestication of the olive tree, here we analyze a group of newly sequenced and available genomes using a phylogenomics and population genomics framework. RESULTS We improved the assembly and annotation of the reference genome, newly sequenced the genomes of twelve individuals: ten var. europaea, one var. sylvestris, and one outgroup taxon (subsp. cuspidata)-and assembled a dataset comprising whole genome data from 46 var. europaea and 10 var. sylvestris. Phylogenomic and population structure analyses support a continuous process of olive tree domestication, involving a major domestication event, followed by recurrent independent genetic admixture events with wild populations across the Mediterranean Basin. Cultivated olives exhibit only slightly lower levels of genetic diversity than wild forms, which can be partially explained by the occurrence of a mild population bottleneck 3000-14,000 years ago during the primary domestication period, followed by recurrent introgression from wild populations. Genes associated with stress response and developmental processes were positively selected in cultivars, but we did not find evidence that genes involved in fruit size or oil content were under positive selection. This suggests that complex selective processes other than directional selection of a few genes are in place. CONCLUSIONS Altogether, our results suggest that a primary domestication area in the eastern Mediterranean basin was followed by numerous secondary events across most countries of southern Europe and northern Africa, often involving genetic admixture with genetically rich wild populations, particularly from the western Mediterranean Basin.
Collapse
Affiliation(s)
- Irene Julca
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Present address: Barcelona Supercomputing Centre (BSC-CNS), and Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Brandon S Gaut
- Department Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Ivo G Gut
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Tyler S Alioto
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
| | - Pablo Vargas
- Royal Botanical Garden of Madrid. Consejo Superior de Investigaciones Científicas (CSIC), 28014, Madrid, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Present address: Barcelona Supercomputing Centre (BSC-CNS), and Institute for Research in Biomedicine (IRB), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
105
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
106
|
Zhang H, Zhang X, Liu J, Niu Y, Chen Y, Hao Y, Zhao J, Sun L, Wang H, Xiao J, Wang X. Characterization of the Heavy-Metal-Associated Isoprenylated Plant Protein ( HIPP) Gene Family from Triticeae Species. Int J Mol Sci 2020; 21:E6191. [PMID: 32867204 PMCID: PMC7504674 DOI: 10.3390/ijms21176191] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Heavy-metal-associated (HMA) isoprenylated plant proteins (HIPPs) only exist in vascular plants. They play important roles in responses to biotic/abiotic stresses, heavy-metal homeostasis, and detoxification. However, research on the distribution, diversification, and function of HIPPs in Triticeae species is limited. In this study, a total of 278 HIPPs were identified from a database from five Triticeae species, and 13 were cloned from Haynaldia villosa. These genes were classified into five groups by phylogenetic analysis. Most HIPPs had one HMA domain, while 51 from Clade I had two, and all HIPPs had good collinear relationships between species or subgenomes. In silico expression profiling revealed that 44 of the 114 wheat HIPPs were dominantly expressed in roots, 43 were upregulated under biotic stresses, and 29 were upregulated upon drought or heat treatment. Subcellular localization analysis of the cloned HIPPs from H. villosa showed that they were expressed on the plasma membrane. HIPP1-V was upregulated in H. villosa after Cd treatment, and transgenic wheat plants overexpressing HIPP1-V showed enhanced Cd tolerance, as shown by the recovery of seed-germination and root-growth inhibition by supplementary Cd. This research provides a genome-wide overview of the Triticeae HIPP genes and proved that HIPP1-V positively regulates Cd tolerance in common wheat.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Liu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Ying Niu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Yongli Hao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; (H.Z.); (X.Z.); (J.L.); (Y.N.); (Y.C.); (Y.H.); (J.Z.); (L.S.); (H.W.)
| |
Collapse
|
107
|
Li J, Zhang M, Sun J, Mao X, Wang J, Liu H, Zheng H, Li X, Zhao H, Zou D. Heavy Metal Stress-Associated Proteins in Rice and Arabidopsis: Genome-Wide Identification, Phylogenetics, Duplication, and Expression Profiles Analysis. Front Genet 2020; 11:477. [PMID: 32457808 PMCID: PMC7225358 DOI: 10.3389/fgene.2020.00477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022] Open
Abstract
Heavy metal exposure is a serious environmental stress in plants. However, plants have evolved several strategies to improve their heavy metal tolerance. Heavy metal-associated proteins (HMPs) participate in heavy metal detoxification. Here, we identified 46 and 55 HMPs in rice and Arabidopsis, respectively, and named them OsHMP 1–46 and AtHMP 1–55 according to their chromosomal locations. The HMPs from both plants were divided into six clades based on the characteristics of their heavy metal-associated domains (HMA). The HMP gene structures and motifs varied greatly among the different classifications. The HMPs had high collinearity and were segmentally duplicated. A cis-element analysis revealed that the HMPs may be regulated by different transcription factors. An expression profile analysis disclosed that only eight OsHMPs were constitutive in rice tissues. Of these, the expression of OsHMP37 was far higher than that of the other seven genes while OsHMP28 was expressed exclusively in the roots. For Arabidopsis, nine AtHMPs presented with very high transcript levels in all organs. Most of the selected OsHMPs were differentially expressed in various tissues under different heavy metal stresses. Only OsHMP09, OsHMP18, and OsHMP22 showed higher expression levels in all tissues under different heavy metal stresses. In contrast, most of the selected AtHMPs had nearly constant expression levels in different tissues under various heavy metal stresses. The AtHMP20, AtHMP23, AtHMP25, AtHMP31, AtHMP35, AtHMP46 expression levels under different heavy metal stresses were higher in the leaves and roots. The foregoing discoveries elucidated HMP evolution in monocotyledonous and dicotyledonous plants and may helpful functionally characterize HMPs in the future.
Collapse
Affiliation(s)
- Jiaming Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Minghui Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jian Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xinrui Mao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xianwei Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
108
|
Zhang BQ, Liu XS, Feng SJ, Zhao YN, Wang LL, Rono JK, Li H, Yang ZM. Developing a cadmium resistant rice genotype with OsHIPP29 locus for limiting cadmium accumulation in the paddy crop. CHEMOSPHERE 2020; 247:125958. [PMID: 32069726 DOI: 10.1016/j.chemosphere.2020.125958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/05/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Widespread contamination of agricultural soil with toxic metals such as cadmium (Cd) is a major threat to crop production and human health. Metallochaperones are a unique class of proteins that play pivotal roles in detoxifying metallic ions inside cells. In this study, we investigated the biological function of an uncharacterized metallochaperone termed OsHIPP29 in rice plants and showed that OsHIPP29 resides in the plasma membrane and nucleus and detoxifies excess Cd and Zn. OsHIPP29 was primarily expressed in shoots during the vegetative stage and in leaf sheath and spikelet at the flowering stage. It can be differentially induced by excess Cd, Zn, Cu, Fe and Mn. To identify the function of OsHIPP29 in mediating rice response to Cd stress, we examined a pair of OsHIPP29 mutants, RNAi lines and transgenic rice overexpressing OsHIPP29 (OX) under Cd stress. Both mutant and RNAi lines are sensitive to Cd in growth as reflected in decreased plant height and dry biomass. In contrast, the OX lines showed better growth under Cd exposure. Consistent with the phenotype, the OX lines accumulated less Cd in both root and shoot tissues, whereas OsHIPP29 knockout led to higher accumulation of Cd. These results point out that expression of OsHIPP29 is able to contribute to Cd detoxification by reducing Cd accumulation in rice plants. Our work highlights the significance of OsHIPP29-mediated reduced Cd in rice plants, with important implications for further developing genotypes that will minimize Cd accumulation in rice and environmental risks to human health.
Collapse
Affiliation(s)
- Bai Qing Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ya Ning Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - He Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
109
|
Xu X, Chen Q, Mo S, Qian Y, Wu X, Jin Y, Ding H. Transcriptome -wide modulation combined with morpho-physiological analyses of Typha orientalis roots in response to lead challenge. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121405. [PMID: 31629596 DOI: 10.1016/j.jhazmat.2019.121405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is a common pollutant in many environments, including in the soil, water, and/or air. Typha orientalis Presl, a large emergent aquatic plant, has been reported to function as a Pb-tolerant and Pb-accumulating plant; however, very little molecular information regarding the tolerance of T. orientalis towards Pb is known. In this study, Pb accumulation and key factors involved in the Pb stress response at different Pb concentrations were investigated. Pb was primarily accumulated in the roots and was mainly located in the cell wall and membrane systems. Differentially expressed genes (DEGs) were identified in T. orientalis roots after Pb exposure via RNA-seq analyses. In the 0.10 mM and 0.25 mM Pb2+-treated groups, a total of 3275 DEGs were detected relative to the control. Many of these genes were associated with oxidation-reduction processes, metal transport, protein kinase/phosphorylation, and DNA binding transcription factors, which were shown to be Pb-responsive DEGs. Mapping Kyoto Encyclopedia of Genes and Genomes (KEGG) database, "phenylpropanoid biosynthesis" was analyzed as the major pathway of the important modules of overlapping DEGs of 0.10 mM and 0.25 mM Pb2+ treatments. Furthermore, a lead response gene named ToLR1 with unknown function was of particular interest. The full-length of ToLR1 sequence was cloned using rapid amplification of cDNA ends (RACE) and overexpressed in Arabidopsis thaliana, which resulted in enhanced resistance to Pb stress. This is the first report providing genomic information detailing Pb responsive genes in T. orientalis. Moreover, this study provides novel insights into the molecular mechanisms underlying the response of T. orientalis and other accumulators towards Pb stress. The key genes identified in this study may serve as potential targets for genetic engineering targeting phytoremediation.
Collapse
Affiliation(s)
- Xiaoying Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Shuangrong Mo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ying Qian
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxia Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yingen Jin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Haidong Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
110
|
Zhang F, Xiao X, Xu K, Cheng X, Xie T, Hu J, Wu X. Genome-wide association study (GWAS) reveals genetic loci of lead (Pb) tolerance during seedling establishment in rapeseed (Brassica napus L.). BMC Genomics 2020; 21:139. [PMID: 32041524 PMCID: PMC7011513 DOI: 10.1186/s12864-020-6558-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lead (Pb) pollution in soil has become one of the major environmental threats to plant growth and human health. Safe utilization of Pb contaminated soil by phytoremediation require Pb-tolerant rapeseed (Brassica napus L.) accessions. However, breeding of new B. napus cultivars tolerance to Pb stress has been restricted by limited knowledge on molecular mechanisms involved in Pb tolerance. This work was carried out to identify genetic loci related to Pb tolerance during seedling establishment in rapeseed. RESULTS Pb tolerance, which was assessed by quantifying radicle length (RL) under 0 or 100 mg/L Pb stress condition, shown an extensive variation in 472 worldwide-collected rapeseed accessions. Based on the criterion of relative RL > 80%, six Pb-tolerant genotypes were selected. Four quantitative trait loci (QTLs) associated with Pb tolerance were identified by Genome-wide association study. The expression level of nine promising candidate genes, including GSTUs, BCATs, UBP13, TBR and HIPP01, located in these four QTL regions, were significantly higher or induced by Pb in Pb-tolerant accessions in comparison to Pb-sensitive accessions. CONCLUSION To our knowledge, this is the first study on Pb-tolerant germplasms and genomic loci in B. napus. The findings can provide valuable genetic resources for the breeding of Pb-tolerant B. napus cultivars and understanding of Pb tolerance mechanism in Brassica species.
Collapse
Affiliation(s)
- Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Xi Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Ting Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Jihong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan, 430062, Hubei, China.
| |
Collapse
|
111
|
The Tomato Metallocarboxypeptidase Inhibitor I, which Interacts with a Heavy Metal-Associated Isoprenylated Protein, Is Implicated in Plant Response to Cadmium. Molecules 2020; 25:molecules25030700. [PMID: 32041288 PMCID: PMC7038206 DOI: 10.3390/molecules25030700] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 11/23/2022] Open
Abstract
Metallocarboxypeptidases are metal-dependent enzymes, whose biological activity is regulated by inhibitors directed on the metal-containing active site. Some metallocarboxypeptidase inhibitors are induced under stress conditions and have a role in defense against pests. This paper is aimed at investigating the response of the tomato metallocarboxypeptidase inhibitor (TCMP)-1 to Cd and other abiotic stresses. To this aim, the tomato TCMP-1 was ectopically expressed in the model species Arabidopsis thaliana, and a yeast two-hybrid analysis was performed to identify interacting proteins. We demonstrate that TCMP-1 is responsive to Cd, NaCl, and abscisic acid (ABA) and interacts with the tomato heavy metal-associated isoprenylated plant protein (HIPP)26. A. thaliana plants overexpressing TCMP-1 accumulate lower amount of Cd in shoots, display an increased expression of AtHIPP26 in comparison with wild-type plants, and are characterized by a modulation in the expression of antioxidant enzymes. Overall, these results suggest a possible role for the TCMP-1/HIPP26 complex in Cd response and compartmentalization.
Collapse
|
112
|
Fatiukha A, Klymiuk V, Peleg Z, Saranga Y, Cakmak I, Krugman T, Korol AB, Fahima T. Variation in phosphorus and sulfur content shapes the genetic architecture and phenotypic associations within the wheat grain ionome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:555-572. [PMID: 31571297 DOI: 10.1111/tpj.14554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 05/04/2023]
Abstract
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Zvi Peleg
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yehoshua Saranga
- R. H. Smith Institute of Plant Science & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Ismail Cakmak
- Faculty of Engineering & Natural Sciences, Sabanci University, Tuzla İstanbul, 34956, Turkey
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, 199 Abba-Khoushy Ave, Mt. Carmel, Haifa, 3498838, Israel
| |
Collapse
|
113
|
Lee SB, Kim GJ, Kim KW, Chu SH, Shin JD, Lee YJ, Park YJ, Park SW. Functional Haplotype and eQTL Analyses of Genes Affecting Cadmium Content in Cultivated Rice. RICE (NEW YORK, N.Y.) 2019; 12:84. [PMID: 31754895 PMCID: PMC6872708 DOI: 10.1186/s12284-019-0340-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rice is a major food resource for Asian countries including Korea. However, most Asian countries are facing food safety problems due to cropland contamination by heavy metals. Thus, this study was conducted to investigate genetic factors affecting the expression of cadmium (Cd) gene, and to confirm differences in Cd translocation among cultivars because the current molecular understanding of Cd uptake-transport mechanisms remains insufficient. Associations between genotypes and gene expression level of Cd-related genes such as NRAMP, MTP, and HMA gene families in the rice core collection were analyzed at the genomic level. RESULTS Os01g0956700, Os05g0128400 and Os11g0485200 showed strong associations between expression level and genotype in the rice core collection, the regulatory factors that associated with these genes in cis and trans were founded. The association between the expression level and genotype of the candidate gene (Os01g0611300: metal tolerance protein) predicted to affect Cd content in rice by a previous genome-wide association study (GWAS) was also analyzed. Furthermore, as a result of the phylogeny and haplotype analyses of the candidate gene, high-Cd tolerance cultivars were selected. The correlations between Cd and other inorganic components (Mg, Mn, Fe, Cu and Zn) in the roots, stems, leaves and unpolished grain of selected rice cultivars were analyzed. CONCLUSION Therefore, these results may be useful for understanding the uptake-transport mechanisms of Cd and other inorganic components via molecular genetics and may help rice breeders develop new low-Cd cultivars in the near future.
Collapse
Affiliation(s)
- Sang-Beom Lee
- Chemical Safety Division, National Institute of Agriculture Science (NIAS), Wanju, 55365, South Korea
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439, South Korea
| | - Gyeong-Jin Kim
- Chemical Safety Division, National Institute of Agriculture Science (NIAS), Wanju, 55365, South Korea
| | - Kyu-Won Kim
- Center of Crop Breeding on Omics Artificial Intelligence, Kongju National University, Yesan, 32439, South Korea
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics Artificial Intelligence, Kongju National University, Yesan, 32439, South Korea
| | - Jung-Du Shin
- Department of Climate Change and Agro-Ecology, National Institute of Agriculture Science (NIAS), Wanju, 55365, South Korea
| | - Yu-Ji Lee
- Chemical Safety Division, National Institute of Agriculture Science (NIAS), Wanju, 55365, South Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439, South Korea.
| | - Sang-Won Park
- Chemical Safety Division, National Institute of Agriculture Science (NIAS), Wanju, 55365, South Korea.
| |
Collapse
|
114
|
Hála M, Žárský V. Protein Prenylation in Plant Stress Responses. Molecules 2019; 24:molecules24213906. [PMID: 31671559 PMCID: PMC6866125 DOI: 10.3390/molecules24213906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
Protein prenylation is one of the most important posttranslational modifications of proteins. Prenylated proteins play important roles in different developmental processes as well as stress responses in plants as the addition of hydrophobic prenyl chains (mostly farnesyl or geranyl) allow otherwise hydrophilic proteins to operate as peripheral lipid membrane proteins. This review focuses on selected aspects connecting protein prenylation with plant responses to both abiotic and biotic stresses. It summarizes how changes in protein prenylation impact plant growth, deals with several families of proteins involved in stress response and highlights prominent regulatory importance of prenylated small GTPases and chaperons. Potential possibilities of these proteins to be applicable for biotechnologies are discussed.
Collapse
Affiliation(s)
- Michal Hála
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic.
| |
Collapse
|
115
|
Xu X, Wang K, Pan J, Chen X. Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation. Mol Biol Rep 2019; 46:6381-6389. [PMID: 31538299 DOI: 10.1007/s11033-019-05084-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
The formation of adventitious roots (ARs) is a key morphological adaptation of cucumber (Cucumis sativus L.) to waterlogging stress. MicroRNAs (miRNAs) constitute a group of non-coding small RNAs (sRNA) that play crucial roles in regulating diverse biological processes, including waterlogging acclimation. However, which specific miRNAs and how they are involved in waterlogging-triggered de novo AR primordia formation are not fully known. Here, Illumina sRNA sequencing was applied to sequence six sRNA libraries generated from the waterlogging-tolerant cucumber Zaoer-N after 48 h of waterlogging and the control. A total of 358 cucumber miRNAs, 312 known and 46 novel, were obtained. Among them, 23 were differentially expressed, with 10 and 13 being up- and downregulated, respectively. A qPCR expression study confirmed that the identified differentially expressed miRNAs were credible. A total of 657 putative miRNA target genes were predicted for the 23 miRNAs using an in silico approach. A gene ontology enrichment analysis revealed that target genes functioning in cell redox homeostasis, cytoskeleton, photosynthesis and cell growth were over-represented. In total, 58 of the 657 target genes showed inverse expression patterns compared with their respective miRNAs through a combined analysis of sRNA- and RNA-sequencing-based transcriptome datasets using the same experimental design. The target gene annotation included a peroxidase, a GDSL esterases/lipase and two heavy metal-associated isoprenylated plant proteins. Our results provide an important framework for understanding the unique miRNA patterns seen in responses to waterlogging and the miRNA-mediated formation of de novo AR primordia in cucumber.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kaixuan Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
116
|
Liu M, He X, Feng T, Zhuo R, Qiu W, Han X, Qiao G, Zhang D. cDNA Library for Mining Functional Genes in Sedum alfredii Hance Related to Cadmium Tolerance and Characterization of the Roles of a Novel SaCTP2 Gene in Enhancing Cadmium Hyperaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10926-10940. [PMID: 31449747 DOI: 10.1021/acs.est.9b03237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination presents serious threats to living organisms. Functional genes related to cadmium (Cd) hypertolerance or hyperaccumulation must be explored to enhance phytoremediation. Sedum alfredii Hance is a Zn/Cd cohyperaccumulator exhibiting abundant genes associated with Cd hypertolerance. Here, we developed a method for screening genes related to Cd tolerance by expressing a cDNA-library for S. alfredii Hance. Yeast functional complementation validated 42 of 48 full-length genes involved in Cd tolerance, and the majority of them were strongly induced in roots and exhibited diverse expression profiles across tissues. Coexpression network analysis suggested that 15 hub genes were connected with genes involved in metabolic processes, response to stimuli, and metal transporter and antioxidant activity. The functions of a novel SaCTP2 gene were validated by heterologous expression in Arabidopsis, responsible for retarding chlorophyll content decrease, maintaining membrane integrity, promoting reactive oxygen species (ROS) scavenger activities, and reducing ROS levels. Our findings suggest a highly complex network of genes related to Cd hypertolerance in S. alfredii Hance, accomplished via the antioxidant system, defense genes induction, and the calcium signaling pathway. The proposed cDNA-library method is an effective approach for mining candidate genes associated with Cd hypertolerance to develop genetically engineered plants for use in phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
- School of Basic Medical Sciences , Zhejiang Chinese Medical University , Hangzhou 310053 , People's Republic of China
| | - Xuelian He
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Tongyu Feng
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding , Xiangshan Road , Beijing 100091 , People's Republic of China
- Key Laboratory of Tree Breeding of Zhejiang Province , Research Institute of Subtropical of Forestry, Chinese Academy of Forestry , Hangzhou 311400 , People's Republic of China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , People's Republic of China
| |
Collapse
|
117
|
Lai JL, Luo XG. Comparative transcriptomics analysis of potassium uptake pathways mediated cesium accumulation differences and related molecular mechanisms in Brassica juncea and Vicia faba. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:31-39. [PMID: 31022653 DOI: 10.1016/j.ecoenv.2019.04.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
To analyze the differences between high- and low-accumulation plants in cesium (Cs) uptake and its related mechanism, Brassica juncea (a hyperaccumulation plant for Cs) and Vicia faba (a low-accumulation plant for Cs) were selected as comparative experimental materials. The contributions to Cs uptake of a K-transporter-mediated high-affinity transport system and a K-channel-mediated low-affinity transport system in the two plants were compared and analyzed. The difference between the two plants in the mechanism of Cs uptake was further analyzed using transcription sequence technology. The results show that the transfer characteristics of Cs in the two plants had a similar distribution relationship with K. The contribution rate of the K-channel pathway to Cs uptake was 32.00% in the V. faba seedling roots, which was significantly higher than for B. juncea (9.81%) (P < 0.01); the contribution rate of the K-transporter pathway to Cs uptake of the B. juncea seedlings was 32.08%, which was significantly higher than that of the V. faba seedlings (17.13%)(P < 0.05). Other uptake pathways also mediated the uptake of Cs by roots in B. juncea and V. faba (contribution rate: 54.92-60.09% and 42.18-59.73%, respectively). The transcriptome sequencing results confirmed that Cs-induced treatment significantly inhibited the expression of the K-transporter protein and K-channel protein-related genes in the V. faba roots, but it had no significant effect on the expression of related genes in the B. juncea roots. Thus, one reason for the significant difference between the two plant in the accumulation of Cs is that Cs inhibited the expression of related transporter protein genes in the V. faba roots.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xue-Gang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
118
|
An M, Zhou T, Guo Y, Zhao X, Wu Y. Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses 2019; 11:E815. [PMID: 31484426 PMCID: PMC6784071 DOI: 10.3390/v11090815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Ningnanmycin (NNM) belongs to microbial pesticides that display comprehensive antiviral activity against plant viruses. NNM treatment has been shown to efficiently delay or suppress the disease symptoms caused by tobacco mosaic virus (TMV) infection in local-inoculated or systemic-uninoculated tobacco leaves, respectively. However, the underlying molecular mechanism of NNM-mediated antiviral activity remains to be further elucidated. In this study, 414 differentially expressed genes (DEGs), including 383 which were up-regulated and 31 down-regulated, caused by NNM treatment in TMV-infected BY-2 protoplasts, were discovered by RNA-seq. In addition, KEGG analysis indicated significant enrichment of DEGs in the plant-pathogen interaction and MAPK signaling pathway. The up-regulated expression of crucial DEGs, including defense-responsive genes, such as the receptor-like kinase FLS2, RLK1, and the mitogen-activated protein kinase kinase kinase MAPKKK, calcium signaling genes, such as the calcium-binding protein CML19, as well as phytohormone responsive genes, such as the WRKY transcription factors WRKY40 and WRKY70, were confirmed by RT-qPCR. These findings provided valuable insights into the antiviral mechanisms of NNM, which indicated that the agent induces tobacco systemic resistance against TMV via activating multiple plant defense signaling pathways.
Collapse
Affiliation(s)
- Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yi Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
119
|
Murugaiyan V, Ali J, Mahender A, Aslam UM, Jewel ZA, Pang Y, Marfori-Nazarea CM, Wu LB, Frei M, Li Z. Mapping of genomic regions associated with arsenic toxicity stress in a backcross breeding populations of rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2019; 12:61. [PMID: 31399885 PMCID: PMC6689042 DOI: 10.1186/s12284-019-0321-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Arsenic (As) is an unwanted toxic mineral that threatens the major rice-growing regions in the world, especially in South Asia. Rice production in Bangladesh and India depends on As-contaminated groundwater sources for irrigating paddy fields, resulting in elevated amounts of As in the topsoil. Arsenic accumulating in rice plants has a significant negative effect on human and animal health. Here, we present a quantitative trait locus (QTL) mapping study to identify candidate genes conferring As toxicity tolerance and accumulation in rice (Oryza sativa L.) seedlings. An early backcross breeding population consisting of 194 lines derived from a cross between WTR1 (indica) and Hao-an-nong (japonica) was grown in hydroponics for 25 days, from the seventh day exposed to an environmentally relevant concentration of 10 ppm As. RESULTS Arsenic toxicity leads to significantly negative plant responses, including reduced biomass, stunted plant growth, reduced leaf chlorophyll content, and increased shoot As concentration ranging from 9 to 20 mg kg- 1. Marker-trait association was determined for seven As-related traits using 704 single nucleotide polymorphism (SNP) markers generated from a 6 K SNP-array. One QTL was mapped on chromosome 1 for relative chlorophyll content, two QTLs for As content in roots were mapped on chromosome 8, and six QTLs for As content in shoots were mapped on chromosomes 2, 5, 6, and 9. Using the whole-genome sequence of the parents, we narrowed down the number of candidate genes associated with the QTL intervals based on the existence of a non-synonymous mutation in genes between the parental lines. Also, by using publicly available gene expression profiles for As stress, we further narrowed down the number of candidate genes in the QTL intervals by comparing the expression profiles of genes under As stress and control conditions. Twenty-five genes showing transcription regulation were considered as candidate gene nominees for As toxicity-related traits. CONCLUSIONS Our study provides insight into the genetic basis of As tolerance and uptake in the early seedling stage of rice. Comparing our findings with the previously reported QTLs for As toxicity stress in rice, we identified some novel and co-localized QTLs associated with As stress. Also, the mapped QTLs harbor gene models of known function associated with stress responses, metal homeostasis, and transporter activity in rice. Overall, our findings will assist breeders with initial marker information to develop suitable varieties for As-contaminated ecosystems.
Collapse
Affiliation(s)
- Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, D-53012, Bonn, Germany
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines.
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Umair M Aslam
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Zilhas Ahmed Jewel
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Yunlong Pang
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, People's Republic of China
| | - Corinne M Marfori-Nazarea
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031, Los Baños, Laguna, Philippines
| | - Lin-Bo Wu
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, D-53012, Bonn, Germany
| | - Michael Frei
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, D-53012, Bonn, Germany
| | - Zhikang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
120
|
Engelsdorf T, Kjaer L, Gigli-Bisceglia N, Vaahtera L, Bauer S, Miedes E, Wormit A, James L, Chairam I, Molina A, Hamann T. Functional characterization of genes mediating cell wall metabolism and responses to plant cell wall integrity impairment. BMC PLANT BIOLOGY 2019; 19:320. [PMID: 31319813 PMCID: PMC6637594 DOI: 10.1186/s12870-019-1934-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/10/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant cell walls participate in all plant-environment interactions. Maintaining cell wall integrity (CWI) during these interactions is essential. This realization led to increased interest in CWI and resulted in knowledge regarding early perception and signalling mechanisms active during CWI maintenance. By contrast, knowledge regarding processes mediating changes in cell wall metabolism upon CWI impairment is very limited. RESULTS To identify genes involved and to investigate their contributions to the processes we selected 23 genes with altered expression in response to CWI impairment and characterized the impact of T-DNA insertions in these genes on cell wall composition using Fourier-Transform Infrared Spectroscopy (FTIR) in Arabidopsis thaliana seedlings. Insertions in 14 genes led to cell wall phenotypes detectable by FTIR. A detailed analysis of four genes found that their altered expression upon CWI impairment is dependent on THE1 activity, a key component of CWI maintenance. Phenotypic characterizations of insertion lines suggest that the four genes are required for particular aspects of CWI maintenance, cell wall composition or resistance to Plectosphaerella cucumerina infection in adult plants. CONCLUSION Taken together, the results implicate the genes in responses to CWI impairment, cell wall metabolism and/or pathogen defence, thus identifying new molecular components and processes relevant for CWI maintenance.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Present address: Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Lars Kjaer
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: Sjælland erhvervsakademi, Breddahlsgade 1b, 4200 Slagelse, Zealand Denmark
| | - Nora Gigli-Bisceglia
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Present address: Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Lauri Vaahtera
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
| | - Stefan Bauer
- Energy Biosciences Institute, University of California, 120A Energy Biosciences Building, 2151 Berkeley Way, MC 5230, Berkeley, CA 94720-5230 USA
- Present address: Zymergen, Inc, 5980 Horton St, Suite 105, Emeryville, CA 94608 USA
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo- UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Alexandra Wormit
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: RWTH Aachen, Institute for Biology I, Worringerweg 3, D-52056 Aachen, Germany
| | - Lucinda James
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: ADAS, Battlegate Road, Boxworth, Cambridge, CB23 4NN UK
| | - Issariya Chairam
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: ADAS, Battlegate Road, Boxworth, Cambridge, CB23 4NN UK
- Present address: Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo- UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
| |
Collapse
|
121
|
Khan IU, Rono JK, Zhang BQ, Liu XS, Wang MQ, Wang LL, Wu XC, Chen X, Cao HW, Yang ZM. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:8-18. [PMID: 30878662 DOI: 10.1016/j.ecoenv.2019.03.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 05/27/2023]
Abstract
HPP (heavy metal associated plant protein) and HIPP (heavy metal associated isoprenylated plant protein) are a group of metal-binding metallochaperones playing crucial roles in metal homeostasis and detoxification. Up to now, only few of them have been functionally identified in plants. Here, we identified 54 HPP and HIPP genes in rice genome. Analysis of the transcriptome datasets of the rice genome exposed to cadmium (Cd) revealed 17 HPP/HIPP genes differentially expressed, with 11 being upregulated (>2 fold change, p < 0.05). Comprehensive analysis of transcripts by qRT-PCR showed that both types of genes displayed diverse expression pattern in rice under excess manganese (Mn), copper (Cu) and Cd stress. Multiple genomic analyses of HPPs/HIPPs including phylogenesis, conserved domains and motifs, genomic arrangement and genomic and tandem duplication were performed. To identify the role of the genes, OsHIPP16, OsHIPP34 and OsHIPP60 were randomly selected to express in yeast (Saccharomyces cerevisiae) mutants pmrl, cup2, ycf1 and zrc1, exhibiting sensitivity to Mn, Cu, Cd and Zn toxicity, respectively. Complementation test showed that the transformed cells accumulated more metals in the cells, but their growth status was improved. To confirm the functional role, two mutant oshipp42 lines defective in OsHIPP42 expression were identified under metal stress. Under normal condition, no difference of growth between the oshipp42 mutant and wild-type plants was observed. Upon excess Cu, Zn, Cd and Mn, the oshipp42 lines grew weaker than the wild-type. Our work provided a novel source of heavy metal-binding genes in rice that can be potentially used to develop engineered plants for phytoremediation in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Justice Kipkoir Rono
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bai Qing Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Song Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Qi Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Chun Wu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Wei Cao
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
122
|
Pranathi K, Kalyani MB, Viraktamath BC, Balachandran SM, Hajira SK, Koteshwar Rao P, Kulakarni SR, Rekha G, Anila M, Koushik MBVN, Senguttuvel P, Hariprasad AS, Mangrautia SK, Madhav MS, Sundaram RM. Expression profiling of immature florets of IR58025A, a wild-abortive cytoplasmic male sterile line of rice and its cognate, isonuclear maintainer line, IR58025B. 3 Biotech 2019; 9:278. [PMID: 31245242 PMCID: PMC6588665 DOI: 10.1007/s13205-019-1806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022] Open
Abstract
Interaction between gene products encoded by the cytoplasm and nucleus form the core of wild abortive cytoplasmic male sterile (WA-CMS) system of hybrid breeding in rice. Gaining insights into such interactions can be helpful in the development of better three-line rice hybrids and also identify novel male sterility systems. In the present study, the whole transcriptome profiles of immature florets of IR58025A, a WA-CMS line and its isonuclear maintainer line, IR58025B, collected at pre-anthesis stage were compared to delineate the pathways involved in pollen abortion and male sterility. Among the 774 differentially expressed transcripts (DETs), 496 were down regulated and 278 were up regulated in IR58025A compared to IR58025B. The genes associated with oxidative stress response, defense response, etc. were significantly up-regulated, while those associated with respiration, cell wall modifications, pectinesterase activity, etc. were significantly down-regulated in the WA-CMS line. Gene ontology and pathway enrichment analyses revealed the down-regulation of both nuclear and organellar genes involved in key metabolic processes of cell respiration, photosynthesis and other energy yielding metabolites in IR58025A, relative to IR58025B, indicating a general shift toward conservation of energy and other key resources in the florets of WA-CMS line. The data derived from RNA-Seq analysis were validated through qRT-PCR analysis. Based on the results obtained, it can be hypothesized that pollen abortion principally occurs due to up-regulation of pathways leading to oxidative stress leading to energy starvation conditions in consonance with reduced expression of genes associated with the cell wall formation, respiration, and other key metabolic processes.
Collapse
Affiliation(s)
- K. Pranathi
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - M. B. Kalyani
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - B. C. Viraktamath
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | | | - S. K. Hajira
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - P. Koteshwar Rao
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - S. R. Kulakarni
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - G. Rekha
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - M. Anila
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | | | - P. Senguttuvel
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - A. S. Hariprasad
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - S. K. Mangrautia
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - M. S. Madhav
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| | - R. M. Sundaram
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, 500030 India
| |
Collapse
|
123
|
Dharmaraj K, Cui W, Rikkerink EHA, Templeton MD. Construction of a kiwifruit yeast two-hybrid cDNA library to identify host targets of the Pseudomonas syringae pv. actinidiae effector AvrPto5. BMC Res Notes 2019; 12:63. [PMID: 30691538 PMCID: PMC6350409 DOI: 10.1186/s13104-019-4102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/19/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Bacterial canker is a destructive disease of kiwifruit caused by the Gram-negative bacterium Pseudomonas syringae pv. actinidiae (Psa). To understand the disease-causing mechanism of Psa, a kiwifruit yeast two-hybrid cDNA library was constructed to identify putative host targets of the Psa Type Three Secreted Effector AvrPto5. Results In this study, we used the Mate & Plate™ yeast two-hybrid library method for constructing a kiwifruit cDNA library from messenger RNA of young leaves. The constructed library consisted of 2.15 × 106 independent clones with an average insert size of 1.52 kb. The screening of the kiwifruit yeast two-hybrid cDNA library with Psa AvrPto5 revealed the interaction of a V-type proton ATPase subunit-H, a proline rich-protein and heavy metal-associated isoprenylated plant protein 26. Among these, heavy metal-associated isoprenylated plant protein 26 showed a positive interaction with Psa AvrPto5 as both prey and bait. Electronic supplementary material The online version of this article (10.1186/s13104-019-4102-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karthikeyan Dharmaraj
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.,Plant Health and Environment Laboratory, Ministry for Primary Industries, 231 Morrin Road, Auckland, 1072, New Zealand
| | - Wei Cui
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Matthew D Templeton
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
124
|
Exogenously Applied Nitric Oxide Enhances Salt Tolerance in Rice (Oryza sativa L.) at Seedling Stage. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8120276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Salinity is one of the major abiotic factors that limit rice production worldwide. Previous trends show that salt concentration in rivers is increasing consistently, posing potentially adverse threats in the near future. Thus, crops currently being cultivated, particularly in small-scale farming systems, are under high threat from salinity. In this study, we investigated the mitigating effect of nitric oxide (NO) on salt stress in rice based on the assessment of changes in the transcript levels of different genes and the phenotypic response of rice genotypes. We observed that exogenously applied NO increased the expression levels of OsHIPP38, OsGR1, and OsP5CS2 in the susceptible genotype of rice, whereas in the tolerant genotype, the effect of NO was mainly in counteracting the salt-induced gene expression that diverts cellular energy for defense. Moreover, seedlings that were pretreated with NO showed high biomass production under salt stress conditions, indicating the positive role of NO against salt-induced leaf chlorosis and early senescence. The effect of NO-mediated enhancement was more pronounced in the salt tolerant genotype. Therefore, the use of NO with the integration of tolerant genes or genotypes will enhance salt tolerance levels in rice.
Collapse
|
125
|
Guo L, Cesari S, de Guillen K, Chalvon V, Mammri L, Ma M, Meusnier I, Bonnot F, Padilla A, Peng YL, Liu J, Kroj T. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc Natl Acad Sci U S A 2018; 115:11637-11642. [PMID: 30355769 PMCID: PMC6233088 DOI: 10.1073/pnas.1810705115] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The structurally conserved but sequence-unrelated MAX (Magnaporthe oryzae avirulence and ToxB-like) effectors AVR1-CO39 and AVR-PikD from the blast fungus M. oryzae are recognized by the rice nucleotide-binding domain and leucine-rich repeat proteins (NLRs) RGA5 and Pikp-1, respectively. This involves, in both cases, direct interaction of the effector with a heavy metal-associated (HMA) integrated domain (ID) in the NLR. Here, we solved the crystal structures of a C-terminal fragment of RGA5 carrying the HMA ID (RGA5_S), alone, and in complex with AVR1-CO39 and compared it to the structure of the Pikp1HMA/AVR-PikD complex. In both complexes, HMA ID/MAX effector interactions involve antiparallel alignment of β-sheets from each partner. However, effector-binding occurs at different surfaces in Pikp1HMA and RGA5HMA, indicating that these interactions evolved independently by convergence of these two MAX effectors to the same type of plant target proteins. Interestingly, the effector-binding surface in RGA5HMA overlaps with the surface that mediates RGA5HMA self-interaction. Mutations in the HMA-binding interface of AVR1-CO39 perturb RGA5HMA-binding, in vitro and in vivo, and affect the recognition of M. oryzae in a rice cultivar containing Pi-CO39 Our study provides detailed insight into the mechanisms of effector recognition by NLRs, which has substantial implications for future engineering of NLRs to expand their recognition specificities. In addition, we propose, as a hypothesis for the understanding of effector diversity, that in the structurally conserved MAX effectors the molecular mechanism of host target protein-binding is conserved rather than the host target proteins themselves.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Stella Cesari
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - Karine de Guillen
- CBS, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Véronique Chalvon
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - Léa Mammri
- CBS, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mengqi Ma
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Isabelle Meusnier
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - François Bonnot
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - André Padilla
- CBS, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China;
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Thomas Kroj
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France;
| |
Collapse
|
126
|
Cheng D, Tan M, Yu H, Li L, Zhu D, Chen Y, Jiang M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genomics 2018; 19:709. [PMID: 30257650 PMCID: PMC6158873 DOI: 10.1186/s12864-018-5109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background Metal tolerance is often an integrative result of metal uptake and distribution, which are fine-tuned by a network of signaling cascades and metal transporters. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, comparative RNAseq-based transcriptome analysis was conducted to dissect differentially expressed genes (DEGs) in maize roots exposed to cadmium (Cd) stress. Results To unveil conserved Cd-responsive genes in cereal plants, the obtained 5166 maize DEGs were compared with 2567 Cd-regulated orthologs in rice roots, and this comparison generated 880 universal Cd-responsive orthologs groups composed of 1074 maize DEGs and 981 rice counterparts. More importantly, most of the orthologous DEGs showed coordinated expression pattern between Cd-treated maize and rice, and these include one large orthologs group of pleiotropic drug resistance (PDR)-type ABC transporters, two clusters of amino acid transporters, and 3 blocks of multidrug and toxic compound extrusion (MATE) efflux family transporters, and 3 clusters of heavy metal-associated domain (HMAD) isoprenylated plant proteins (HIPPs), as well as all 4 groups of zinc/iron regulated transporter protein (ZIPs). Additionally, several blocks of tandem maize paralogs, such as germin-like proteins (GLPs), phenylalanine ammonia-lyases (PALs) and several enzymes involved in JA biosynthesis, displayed consistent co-expression pattern under Cd stress. Out of the 1074 maize DEGs, approximately 30 maize Cd-responsive genes such as ZmHIPP27, stress-responsive NAC transcription factor (ZmSNAC1) and 9-cis-epoxycarotenoid dioxygenase (NCED, vp14) were also common stress-responsive genes reported to be uniformly regulated by multiple abiotic stresses. Moreover, the aforementioned three promising Cd-upregulated genes with rice counterparts were identified to be novel Cd-responsive genes in maize. Meanwhile, one maize glutamate decarboxylase (ZmGAD1) with Cd co-modulated rice ortholog was selected for further analysis of Cd tolerance via heterologous expression, and the results suggest that ZmGAD1 can confer Cd tolerance in yeast and tobacco leaves. Conclusions These novel findings revealed the conserved function of Cd-responsive orthologs and paralogs, which would be valuable for elucidating the genetic basis of the plant response to Cd stress and unraveling Cd tolerance genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Haijuan Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dandan Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
127
|
Fan G, Wang Z, Zhai X, Cao Y. ceRNA Cross-Talk in Paulownia Witches' Broom Disease. Int J Mol Sci 2018; 19:ijms19082463. [PMID: 30127310 PMCID: PMC6121691 DOI: 10.3390/ijms19082463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/05/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA) are important in the regulation of life activities. However, their function is unclear in Paulownia fortunei. To identify lncRNAs, circRNAs, and miRNA, and investigate their roles in the infection progress of Paulownia witches’ broom (PaWB) disease, we performed RNA sequencing of healthy and infected P. fortunei. A total of 3126 lncRNAs, 1634 circRNAs, and 550 miRNAs were identified. Among them, 229 lncRNAs, 65 circRNAs, and 65 miRNAs were differentially expressed in a significant manner. We constructed a competing endogenous RNA (ceRNA) network, which contains 5 miRNAs, 4 circRNAs, 5 lncRNAs, and 15 mRNAs, all of which were differentially expressed between healthy and infected P. fortunei. This study provides the first catalog of candidate ceRNAs in Paulownia and gives a revealing insight into the molecular mechanism responsible for PaWB.
Collapse
Affiliation(s)
- Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China.
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China.
| | | | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
128
|
Trypsin Hydrolysed Protein Fractions as Radical Scavengers and Anti-bacterial Agents from Ficus deltoidea. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
129
|
Radakovic ZS, Anjam MS, Escobar E, Chopra D, Cabrera J, Silva AC, Escobar C, Sobczak M, Grundler FMW, Siddique S. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii. MOLECULAR PLANT PATHOLOGY 2018; 19:1917-1928. [PMID: 29470862 PMCID: PMC6638061 DOI: 10.1111/mpp.12668] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 05/23/2023]
Abstract
Sedentary plant-parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode-induced syncytia. Loss-of-function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype.
Collapse
Affiliation(s)
- Zoran S. Radakovic
- INRES–Molecular PhytomedicineRheinische‐Friedrich‐Wilhelms‐University of BonnD‐53115 BonnGermany
| | - Muhammad Shahzad Anjam
- INRES–Molecular PhytomedicineRheinische‐Friedrich‐Wilhelms‐University of BonnD‐53115 BonnGermany
| | - Elizabeth Escobar
- INRES–Molecular PhytomedicineRheinische‐Friedrich‐Wilhelms‐University of BonnD‐53115 BonnGermany
| | - Divykriti Chopra
- INRES–Molecular PhytomedicineRheinische‐Friedrich‐Wilhelms‐University of BonnD‐53115 BonnGermany
| | - Javier Cabrera
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La Mancha, Área de Fisiología VegetalAvda, Carlos III, s/n, 45071 ToledoSpain
| | - Ana Cláudia Silva
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La Mancha, Área de Fisiología VegetalAvda, Carlos III, s/n, 45071 ToledoSpain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y BioquímicaUniversidad de Castilla‐La Mancha, Área de Fisiología VegetalAvda, Carlos III, s/n, 45071 ToledoSpain
| | - Miroslaw Sobczak
- Department of BotanyWarsaw University of Life SciencesPL‐02787 WarsawPoland
| | - Florian M. W. Grundler
- INRES–Molecular PhytomedicineRheinische‐Friedrich‐Wilhelms‐University of BonnD‐53115 BonnGermany
| | - Shahid Siddique
- INRES–Molecular PhytomedicineRheinische‐Friedrich‐Wilhelms‐University of BonnD‐53115 BonnGermany
| |
Collapse
|
130
|
Fryzova R, Pohanka M, Martinkova P, Cihlarova H, Brtnicky M, Hladky J, Kynicky J. Oxidative Stress and Heavy Metals in Plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 245:129-156. [PMID: 29032515 DOI: 10.1007/398_2017_7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oxidative stress is a pathological process related to not only animal kingdom but also plants. Regarding oxidative stress in plants, heavy metals are frequently discussed as causative stimuli with relevance to ecology. Because heavy metals have broad technological importance, they can easily contaminate the environment. Much of previous effort regarding the harmful impact of the heavy metals was given to their toxicology in the animals and humans. Their implication in plant pathogeneses is less known and remains underestimated.The current paper summarizes basic facts about heavy metals, their distribution in soil, mobility, accumulation by plants, and initiation of oxidative stress including the decline in basal metabolism. The both actual and frontier studies in the field are summarized and discussed. The major pathophysiological pathways are introduced as well and link between heavy metals toxicity and their ability to initiate an oxidative damage is provided. Mobility and bioaccessibility of the metals is also considered as key factors in their impact on oxidative stress development in the plant. The metals like lead, mercury, copper, cadmium, iron, zinc, nickel, vanadium are depicted in the text.Heavy metals appear to be significant contributors to pathological processes in the plants and oxidative stress is probably an important contributor to the effect. The most sensitive plant species are enlisted and discussed in this review. The facts presented here outline next effort to investigate pathological processes in the plants.
Collapse
Affiliation(s)
- Radka Fryzova
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
| | - Miroslav Pohanka
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, 613 00, Czech Republic
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, 500 01, Czech Republic
| | - Pavla Martinkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove, 500 01, Czech Republic
| | - Hana Cihlarova
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, 613 00, Czech Republic
| | - Martin Brtnicky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
| | - Jan Hladky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic
| | - Jindrich Kynicky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, Brno, 613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 612 00, Czech Republic.
| |
Collapse
|
131
|
Tan M, Cheng D, Yang Y, Zhang G, Qin M, Chen J, Chen Y, Jiang M. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC PLANT BIOLOGY 2017; 17:194. [PMID: 29115926 PMCID: PMC5678563 DOI: 10.1186/s12870-017-1143-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/30/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The migration of cadmium (Cd) from contaminated soil to rice is a cause for concern. However, the molecular mechanism underlying the response of rice roots to various Cd stresses remains to be clarified from the viewpoint of the co-expression network at a system-wide scale. RESULTS We employed a comparative RNAseq-based approach to identify early Cd-responsive differentially expressed genes (DEGs) in rice 'Nipponbare' seedling roots after 1 h of high-Cd treatment. A multiplicity of the identified 1772 DEGs were implicated in hormone signaling and transcriptional regulation, particularly NACs and WRKYs were all upregulated under Cd stress. All of the 6 Cd-upregulated ABC transporters were pleiotropic drug resistance proteins (PDRs), whereas all of the 6 ZRT/IRT-like proteins (ZIPs) were consistently downregulated by Cd treatment. To further confirm our results of this early transcriptomic response to Cd exposure, we then conducted weighted gene co-expression network analysis (WGCNA) to re-analyze our RNAseq data in combination with other 11 previously published RNAseq datasets for rice roots exposed to diverse concentrations of Cd for extended treatment periods. This integrative approach identified 271 transcripts as universal Cd-regulated DEGs that are key components of the Cd treatment coupled co-expression module. A global view of the 164 transcripts with annotated functions in pathway networks revealed several Cd-upregulated key functional genes, including transporter ABCG36/OsPDR9, 12-oxo-phytodienoic acid reductases (OPRs) for JA synthesis, and ZIM domain proteins JAZs in JA signaling, as well as OsWRKY10, NAC, and ZFP transcription factors. More importantly, 104 of these, including ABCG36/OsPDR9, OsNAC3, as well as several orthologs in group metalloendoproteinase, plastocyanin-like domain containing proteins and pectin methylesterase inhibitor, may respond specifically to various Cd pressures, after subtracting the 60 general stress-responsive genes reported to be commonly upregulated following multiple stresses. CONCLUSION An integrative approach was implemented to identify DEGs and co-expression network modules in response to various Cd pressures, and 104 of the 164 annotatable universal Cd-responsive DEGs may specifically respond to various Cd pressures. These results provide insight into the universal molecular mechanisms beneath the Cd response in rice roots, and suggest many promising targets for improving the rice acclimation process against Cd toxicity.
Collapse
Affiliation(s)
- Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dan Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuening Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guoqiang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengjie Qin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
132
|
Sanz-Fernández M, Rodríguez-Serrano M, Sevilla-Perea A, Pena L, Mingorance MD, Sandalio LM, Romero-Puertas MC. Screening Arabidopsis mutants in genes useful for phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2017; 335:143-151. [PMID: 28441590 DOI: 10.1016/j.jhazmat.2017.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Emissions of heavy metals have risen over the past 200 years and significantly exceed those from natural sources. Phytoremediation strategies may be able to recover soil productivity in self-sustaining ecosystems; however, our knowledge of the molecular mechanisms involved in plant heavy-metal perception and signalling is scarce. The aim of this study was to assemble a "molecular tool box" of genes useful for phytoremediation. To identify mutants with different heavy-metal-tolerance, we first selected a medium from mixtures containing three metals based on their presence in two Spanish mining areas and then screened about 7000 lines of Arabidopsis T-DNA mutants and found 74 lines more resistant and 56 more susceptible than the wild type (WT). Classification of the genes showed that they were mainly linked to transport, protein modification and signalling, with RNA metabolism being the most representative category in the resistant phenotypes and protein metabolism in the sensitive ones. We have characterized one resistant mutant, Athpp9 and one sensitive, Atala4. These mutants showed differences in growth and metal translocation. Additionally, we found that these mutants keep their phenotype in amended former soils, suggesting that these genes may be useful for phytoremediation and the recovery of contaminated soils.
Collapse
Affiliation(s)
- María Sanz-Fernández
- Department of Biochemistry, Cell and Molecular Biology of Plants, EEZ, CSIC, Granada, Spain
| | | | | | - Liliana Pena
- Department of Biological Chemistry, University of Buenos Aires and IQUIFIB, CONICET, Argentina
| | | | - Luisa M Sandalio
- Department of Biochemistry, Cell and Molecular Biology of Plants, EEZ, CSIC, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry, Cell and Molecular Biology of Plants, EEZ, CSIC, Granada, Spain.
| |
Collapse
|
133
|
Broz AK, Guerrero RF, Randle AM, Baek YS, Hahn MW, Bedinger PA. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC PLANT BIOLOGY 2017; 17:81. [PMID: 28438120 PMCID: PMC5402651 DOI: 10.1186/s12870-017-1032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. RESULTS We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. CONCLUSIONS Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | | | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117 USA
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
134
|
Hewitt S, Kilian B, Hari R, Koepke T, Sharpe R, Dhingra A. Evaluation of multiple approaches to identify genome-wide polymorphisms in closely related genotypes of sweet cherry ( Prunus avium L.). Comput Struct Biotechnol J 2017; 15:290-298. [PMID: 28392892 PMCID: PMC5376269 DOI: 10.1016/j.csbj.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
Identification of genetic polymorphisms and subsequent development of molecular markers is important for marker assisted breeding of superior cultivars of economically important species. Sweet cherry (Prunus avium L.) is an economically important non-climacteric tree fruit crop in the Rosaceae family and has undergone a genetic bottleneck due to breeding, resulting in limited genetic diversity in the germplasm that is utilized for breeding new cultivars. Therefore, it is critical to recognize the best platforms for identifying genome-wide polymorphisms that can help identify, and consequently preserve, the diversity in a genetically constrained species. For the identification of polymorphisms in five closely related genotypes of sweet cherry, a gel-based approach (TRAP), reduced representation sequencing (TRAPseq), a 6k cherry SNParray, and whole genome sequencing (WGS) approaches were evaluated in the identification of genome-wide polymorphisms in sweet cherry cultivars. All platforms facilitated detection of polymorphisms among the genotypes with variable efficiency. In assessing multiple SNP detection platforms, this study has demonstrated that a combination of appropriate approaches is necessary for efficient polymorphism identification, especially between closely related cultivars of a species. The information generated in this study provides a valuable resource for future genetic and genomic studies in sweet cherry, and the insights gained from the evaluation of multiple approaches can be utilized for other closely related species with limited genetic diversity in the breeding germplasm.
Collapse
Affiliation(s)
- Seanna Hewitt
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Benjamin Kilian
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Ramyya Hari
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Tyson Koepke
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Richard Sharpe
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| | - Amit Dhingra
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, United States; Department of Horticulture, Washington State University, Pullman, WA 99164-6414, United States
| |
Collapse
|
135
|
de Abreu Neto JB, Hurtado-Perez MC, Wimmer MA, Frei M. Genetic factors underlying boron toxicity tolerance in rice: genome-wide association study and transcriptomic analysis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:687-700. [PMID: 28204664 PMCID: PMC5444448 DOI: 10.1093/jxb/erw423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Boron (B) toxicity is a nutritional disorder affecting crop production in many parts of the world. This study explored genetic factors associated with B tolerance in rice (Oryza sativa L.) through an integrated genome mapping and transcriptomic approach. Variation in B tolerance was first evaluated by screening a panel of 137 indica genotypes in B toxic conditions (+2 mM B), followed by genome-wide association study (GWAS). Leaf bronzing and greenness were significantly correlated with shoot and root dry weight, but B uptake was not correlated with any stress phenotype. Single nucleotide polymorphism (SNP) markers exceeding a significance value of –log10P>4.0 were obtained for four traits, namely leaf bronzing, shoot dry weight, root dry weight, and root length. Linkage disequilibrium block analysis of the corresponding chromosomal regions revealed candidate loci containing 75 gene models. Two contrasting genotypes from the panel were selected for transcriptomic analysis, which included gene ontology enrichment analysis of differentially regulated genes and investigating transcriptional responses of GWAS candidate genes. Characteristic expression patterns associated with tolerance or sensitivity were seen in genes related to biochemical binding, transport, transcriptional regulation, and redox homeostasis. These results advance the understanding of genetic and physiological factors associated with B tolerance in rice.
Collapse
Affiliation(s)
| | | | - Monika A Wimmer
- Abiotic Stress Tolerance in Crops, INRES, University of Bonn, Bonn, Germany
| | - Michael Frei
- Abiotic Stress Tolerance in Crops, INRES, University of Bonn, Bonn, Germany
| |
Collapse
|
136
|
Yıldırım K, Uylaş S. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:146-155. [PMID: 27683050 DOI: 10.1016/j.plaphy.2016.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/18/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study.
Collapse
Affiliation(s)
- Kubilay Yıldırım
- Gaziosmanpasa University, Department of Bioengineering, Tokat, Turkey.
| | - Senem Uylaş
- Gaziosmanpasa University, Department of Bioengineering, Tokat, Turkey
| |
Collapse
|
137
|
Imran QM, Falak N, Hussain A, Mun BG, Sharma A, Lee SU, Kim KM, Yun BW. Nitric Oxide Responsive Heavy Metal-Associated Gene AtHMAD1 Contributes to Development and Disease Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1712. [PMID: 27917181 PMCID: PMC5116471 DOI: 10.3389/fpls.2016.01712] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/31/2016] [Indexed: 05/29/2023]
Abstract
Exposure of plants to different biotic and abiotic stress condition instigates significant change in the cellular redox status; resulting in the elevation of reactive nitrogen species that play signaling role in mediating defense responses. Heavy metal associated (HMA) domain containing genes are required for spatio-temporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by AtHMA genes, we identified 14 Arabidopsis HMA genes that were differentially expressed in response to nitrosative stress through RNA-seq analysis. Of those 14 genes, the expression of eight HMA genes was significantly increased, whereas that of six genes was significantly reduced. We further validated the RNA-seq results through quantitative real-time PCR analysis. Gene ontology analysis revealed the involvement of these genes in biological processes such as hemostasis and transport. The majority of these nitric oxide (NO)-responsive AtHMA gene products are carrier/transport proteins. AtHMAD1 (At1g51090) showed the highest fold change to S-nitrosocystein. We therefore, further investigated its role in oxidative and nitrosative mediated stress conditions and found that AtHMAD1 has antagonistic role in shoot and root growth. Characterization of AtHMAD1 through functional genomics showed that the knock out mutant athmad1 plants were resistant to virulent Pseudomonas syringae (DC3000) and showed early induction and high transcript accumulation of pathogenesis related gene. Furthermore, inoculation of athamd1 with avirulent strain of the same bacteria showed negative regulation of R-gene mediated resistance. These results were supported by hypersensitive cell death response and cell death induced electrolyte leakage. AtHMAD1 was also observed to negatively regulate systemic acquired resistance SAR as the KO mutant showed induction of SAR marker genes. Overall, these results imply that NO-responsive AtHMA domain containing genes may play an important role in plant development and immunity.
Collapse
Affiliation(s)
- Q. Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Noreen Falak
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan UniversityMardan, Pakistan
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Arti Sharma
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
138
|
Hussain A, Mun BG, Imran QM, Lee SU, Adamu TA, Shahid M, Kim KM, Yun BW. Nitric Oxide Mediated Transcriptome Profiling Reveals Activation of Multiple Regulatory Pathways in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:975. [PMID: 27446194 PMCID: PMC4926318 DOI: 10.3389/fpls.2016.00975] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 05/18/2023]
Abstract
Imbalance between the accumulation and removal of nitric oxide and its derivatives is a challenge faced by all plants at the cellular level, and is especially important under stress conditions. Exposure of plants to various biotic and abiotic stresses causes rapid changes in cellular redox tone potentiated by the rise in reactive nitrogen species that serve as signaling molecules in mediating defensive responses. To understand mechanisms mediated by these signaling molecules, we performed a large-scale analysis of the Arabidopsis transcriptome induced by nitrosative stress. We generated an average of 84 and 91 million reads from three replicates each of control and 1 mM S-nitrosocysteine (CysNO)-infiltrated Arabidopsis leaf samples, respectively. After alignment, more than 95% of all reads successfully mapped to the reference and 32,535 genes and 55,682 transcripts were obtained. CysNO infiltration caused differential expression of 6436 genes (3448 up-regulated and 2988 down-regulated) and 6214 transcripts (3335 up-regulated and 2879 down-regulated) 6 h post-infiltration. These differentially expressed genes were found to be involved in key physiological processes, including plant defense against various biotic and abiotic stresses, hormone signaling, and other developmental processes. After quantile normalization of the FPKM values followed by student's T-test (P < 0.05) we identified 1165 DEGs (463 up-regulated and 702 down-regulated) with at least 2-folds change in expression after CysNO treatment. Expression patterns of selected genes involved in various biological pathways were verified using quantitative real-time PCR. This study provides comprehensive information about plant responses to nitrosative stress at transcript level and would prove helpful in understanding and incorporating mechanisms associated with nitrosative stress responses in plants.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Agriculture, Abdul Wali Khan University MardanMardan, Pakistan
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Qari M. Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Teferi A. Adamu
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Muhammad Shahid
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Kyung-Min Kim
- Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| |
Collapse
|
139
|
Zhu Y, Liu L, Shen L, Yu H. NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis. NATURE PLANTS 2016; 2:16075. [PMID: 27255839 DOI: 10.1038/nplants.2016.75] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/26/2016] [Indexed: 05/03/2023]
Abstract
Flowering plants perceive photoperiodic signals in leaves to generate mobile stimuli required for the induction of flower formation at shoot apices. Although FLOWERING LOCUS T (FT) has been identified as part of the mobile floral stimuli in Arabidopsis thaliana, the mechanisms underlying long-distance movement of FT from leaves to shoot apices remain largely unclear. Here we show that a heavy-metal-associated (HMA) domain-containing protein, SODIUM POTASSIUM ROOT DEFECTIVE 1 (NaKR1), is activated by CONSTANS (CO) under long-day conditions and regulates long-distance movement of FT in Arabidopsis. Loss of function of NaKR1 compromises FT transport to shoot apices through sieve elements, causing late flowering under long-day conditions. NaKR1 and FT share similar expression patterns and subcellular localization, and interact with each other in vivo. Grafting experiments demonstrate that NaKR1 promotes flowering through mediating FT translocation from leaves to shoot apices. Thus, photoperiodic control of floral induction requires NaKR1-mediated long-distance delivery of florigenic signals.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Lisha Shen
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
140
|
Huang Q, Huang X, Deng J, Liu H, Liu Y, Yu K, Huang B. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis. FRONTIERS IN PLANT SCIENCE 2016; 7:348. [PMID: 27066021 PMCID: PMC4811964 DOI: 10.3389/fpls.2016.00348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/19/2023]
Abstract
The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan, China
| | - Xiao Huang
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan, China
| | - Juan Deng
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan, China
| | - Hegang Liu
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan, China
| | - Yanwen Liu
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan, China
| | - Kun Yu
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan, China
| | - Bisheng Huang
- College of Pharmacy, Hubei University of Chinese Medicine Wuhan, China
| |
Collapse
|
141
|
Zhang X, Feng H, Feng C, Xu H, Huang X, Wang Q, Duan X, Wang X, Wei G, Huang L, Kang Z. Isolation and characterisation of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1176-86. [PMID: 25951496 DOI: 10.1111/plb.12344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/01/2015] [Indexed: 05/03/2023]
Abstract
In cells, metallochaperones are important proteins that safely transport metal ions. Heavy metal-associated isoprenylated plant proteins (HIPPs) are metallochaperones that contain a metal binding domain and a CaaX isoprenylation motif at the carboxy-terminal end. To investigate the roles of wheat heavy metal-associated isoprenylated plant protein (TaHIPP) genes in plant development and in stress responses, we isolated cDNA encoding the wheat TaHIPP1 gene, which contains a heavy metal-associated domain, nuclear localisation signals and an isoprenylation motif (CaaX motif). Quantitative real-time PCR analysis indicated that the TaHIPP1 gene was differentially expressed under biotic and abiotic stresses. Specifically, TaHIPP1 expression was up-regulated by ABA exposure or wounding. Additionally, TaHIPP1 over-expression in yeast (Schizosaccharomyces pombe) significantly increased the cell growth rate under Cu(2+) and high salinity stresses. The nuclear localisation of the protein was confirmed with confocal laser scanning microscopy of epidermal onion cells after particle bombardment with chimeric TaHIPP1-GFP constructs. In addition, TaHIPP1 was shown to enhance the susceptibility of wheat to Pst as determined by virus-induced gene silencing. These data indicate that TaHIPP1 is an important component in defence signalling pathways and may play a crucial role in the defence response of wheat to biotic and certain abiotic stresses.
Collapse
Affiliation(s)
- X Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - H Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - C Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - H Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - X Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Q Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - X Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - X Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - G Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - L Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
142
|
Zschiesche W, Barth O, Daniel K, Böhme S, Rausche J, Humbeck K. The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate-dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:1084-1096. [PMID: 25913773 DOI: 10.1111/nph.13419] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Biotic and abiotic stress responses of plants are linked to developmental programs. Proteins involved in different signaling pathways are the molecular basis of this concerted interplay. In our study, we show that Arabidopsis thaliana HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN3 (HIPP3; At5g60800) acts as an upstream regulator of stress- and development-related regulatory networks. Localization, metal-binding and stress-responsive gene expression of HIPP3 were analyzed via microscopy, protein and inductively coupled plasma (ICP)-MS analyses and quantitative real-time PCR. In addition, transcriptome and phenotype analyses of plants overexpressing HIPP3 were used to unravel its function. Our data show that HIPP3 is a nuclear, zinc-binding protein. It is repressed during drought stress and abscisic acid (ABA) treatment and, similar to other pathogen-related genes, is induced after infection with Pseudomonas syringae pv. tomato. HIPP3 overexpression affects the regulation of > 400 genes. Strikingly, most of these genes are involved in pathogen response, especially in the salicylate pathway. In addition, many genes of abiotic stress responses and seed and flower development are affected by HIPP3 overexpression. Plants overexpressing HIPP3 show delayed flowering. We conclude that HIPP3 acts via its bound zinc as an upstream regulator of the salicylate-dependent pathway of pathogen response and is also involved in abiotic stress responses and seed and flower development.
Collapse
Affiliation(s)
- Wiebke Zschiesche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Olaf Barth
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Katharina Daniel
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Sandra Böhme
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Juliane Rausche
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 10, 06120, Halle, Germany
| |
Collapse
|
143
|
Zlobin IE, Kholodova VP, Rakhmankulova ZF, Kuznetsov VV. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization. PHOTOSYNTHESIS RESEARCH 2015; 125:141-50. [PMID: 25361533 DOI: 10.1007/s11120-014-0054-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/27/2014] [Indexed: 05/12/2023]
Abstract
In the present study, the influence of 50 and 100 µM CuSO4 was investigated starting from 3 h till 72 h treatment of 4-weeks Brassica napus plants. High CuSO4 concentrations in nutrient medium resulted in the rapid copper accumulation in plants, especially in roots, much slower and to lower degree in leaves. Copper excess induced early decrease in the leaf water content and temporary leaf wilting. The decrease in content of photosynthetic pigments became significant to 24 h of excessive copper treatments and reached 35 % decrease to 72 h, but there were no significant changes in maximum quantum efficiency of photosystem II photochemistry. The copper excess affected the expression of ten genes involved in heavy metal homeostasis and copper detoxification. The results showed the differential and organ-specific expression of most genes. The potential roles of copper-activated genes encoding heavy metal transporters (ZIP5, NRAMP4, YSL2, and MRP1), metallothioneins (MT1a and MT2b), low-molecular chelator synthesis enzymes (PCS1 and NAS2), and metallochaperones (CCS and HIPP06) in heavy metal homeostasis and copper ion detoxification were discussed. The highest increase in gene expression was shown for NRAMP4 in leaves in spite of relatively moderate Cu accumulation there. The opinion was advanced that the NRAMP4 activation can be considered among the early reactions in the defense of the photosystem II against copper excess.
Collapse
Affiliation(s)
- I E Zlobin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya ul. 35, 127276, Moscow, Russia
| | | | | | | |
Collapse
|
144
|
de Abreu Neto JB, Frei M. Microarray Meta-Analysis Focused on the Response of Genes Involved in Redox Homeostasis to Diverse Abiotic Stresses in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1260. [PMID: 26793229 PMCID: PMC4709464 DOI: 10.3389/fpls.2015.01260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/24/2015] [Indexed: 05/11/2023]
Abstract
Plants are exposed to a wide range of abiotic stresses (AS), which often occur in combination. Because physiological investigations typically focus on one stress, our understanding of unspecific stress responses remains limited. The plant redox homeostasis, i.e., the production and removal of reactive oxygen species (ROS), may be involved in many environmental stress conditions. Therefore, this study intended to identify genes, which are activated in diverse AS, focusing on ROS-related pathways. We conducted a meta-analysis (MA) of microarray experiments, focusing on rice. Transcriptome data were mined from public databases and fellow researchers, which represented 36 different experiments and investigated diverse AS, including ozone stress, drought, heat, cold, salinity, and mineral deficiencies/toxicities. To overcome the inherent artifacts of different MA methods, data were processed using Fisher, rOP, REM, and product of rank (GeneSelector), and genes identified by most approaches were considered as shared differentially expressed genes (DEGs). Two MA strategies were adopted: first, datasets were separated into shoot, root, and seedling experiments, and these tissues were analyzed separately to identify shared DEGs. Second, shoot and seedling experiments were classed into oxidative stress (OS), i.e., ozone and hydrogen peroxide treatments directly producing ROS in plant tissue, and other AS, in which ROS production is indirect. In all tissues and stress conditions, genes a priori considered as ROS-related were overrepresented among the DEGs, as they represented 4% of all expressed genes but 7-10% of the DEGs. The combined MA approach was substantially more conservative than individual MA methods and identified 1001 shared DEGs in shoots, 837 shared DEGs in root, and 1172 shared DEGs in seedlings. Within the OS and AS groups, 990 and 1727 shared DEGs were identified, respectively. In total, 311 genes were shared between OS and AS, including many regulatory genes. Combined co-expression analysis identified among those a cluster of 42 genes, many involved in the photosynthetic apparatus and responsive to drought, iron deficiency, arsenic toxicity, and ozone. Our data demonstrate the importance of redox homeostasis in plant stress responses and the power of MA to identify candidate genes underlying unspecific signaling pathways.
Collapse
|
145
|
Comparative transcriptional profiling of two wheat genotypes, with contrasting levels of minerals in grains, shows expression differences during grain filling. PLoS One 2014; 9:e111718. [PMID: 25364903 PMCID: PMC4218811 DOI: 10.1371/journal.pone.0111718] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/03/2014] [Indexed: 12/24/2022] Open
Abstract
Wheat is one of the most important cereal crops in the world. To identify the candidate genes for mineral accumulation, it is important to examine differential transcriptome between wheat genotypes, with contrasting levels of minerals in grains. A transcriptional comparison of developing grains was carried out between two wheat genotypes- Triticum aestivum Cv. WL711 (low grain mineral), and T. aestivum L. IITR26 (high grain mineral), using Affymetrix GeneChip Wheat Genome Array. The study identified a total of 580 probe sets as differentially expressed (with log2 fold change of ≥2 at p≤0.01) between the two genotypes, during grain filling. Transcripts with significant differences in induction or repression between the two genotypes included genes related to metal homeostasis, metal tolerance, lignin and flavonoid biosynthesis, amino acid and protein transport, vacuolar-sorting receptor, aquaporins, and stress responses. Meta-analysis revealed spatial and temporal signatures of a majority of the differentially regulated transcripts.
Collapse
|
146
|
Lin YF, Severing EI, te Lintel Hekkert B, Schijlen E, Aarts MGM. A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens. FRONTIERS IN PLANT SCIENCE 2014; 5:261. [PMID: 24999345 PMCID: PMC4064536 DOI: 10.3389/fpls.2014.00261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 05/21/2014] [Indexed: 05/06/2023]
Abstract
Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc, and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass. In order to provide additional molecular resources for this model metal hyperaccumulator species to study and understand the mechanism of adaptation to heavy metal exposure, we aimed to provide a comprehensive database of transcript sequences for N. caerulescens. In this study, 23,830 transcript sequences (isotigs) with an average length of 1025 bp were determined for roots, shoots and inflorescences of N. caerulescens accession "Ganges" by Roche GS-FLEX 454 pyrosequencing. These isotigs were grouped into 20,378 isogroups, representing potential genes. This is a large expansion of the existing N. caerulescens transcriptome set consisting of 3705 unigenes. When translated and compared to a Brassicaceae proteome set, 22,232 (93.2%) of the N. caerulescens isotigs (corresponding to 19,191 isogroups) had a significant match and could be annotated accordingly. Of the remaining sequences, 98 isotigs resembled non-plant sequences and 1386 had no significant similarity to any sequence in the GenBank database. Among the annotated set there were many isotigs with similarity to metal homeostasis genes or genes for glucosinolate biosynthesis. Only for transcripts similar to Metallothionein3 (MT3), clear evidence for an additional copy was found. This comprehensive set of transcripts is expected to further contribute to the discovery of mechanisms used by N. caerulescens to adapt to heavy metal exposure.
Collapse
Affiliation(s)
- Ya-Fen Lin
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
| | - Edouard I. Severing
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
- Laboratory of Bioinformatics, Wageningen UniversityWageningen, Netherlands
| | - Bas te Lintel Hekkert
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentresWageningen, Netherlands
| | - Elio Schijlen
- Business Unit Bioscience, Plant Research International, Wageningen University and Research CentresWageningen, Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|