101
|
Weijerman M, Gove JM, Williams ID, Walsh WJ, Minton D, Polovina JJ. Evaluating management strategies to optimise coral reef ecosystem services. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mariska Weijerman
- Joint Institute of Marine and Atmospheric Research; University of Hawai'i at Manoa; Honolulu HI USA
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| | - Jamison M. Gove
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| | - Ivor D. Williams
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| | - William J. Walsh
- Division of Aquatic Resources; Department of Land and Natural Resources; Kailua-Kona; HI USA
| | | | - Jeffrey J. Polovina
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| |
Collapse
|
102
|
Zill JA, Gil MA, Osenberg CW. When environmental factors become stressors: interactive effects of vermetid gastropods and sedimentation on corals. Biol Lett 2017; 13:rsbl.2016.0957. [PMID: 28330976 DOI: 10.1098/rsbl.2016.0957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 11/12/2022] Open
Abstract
Environmental stressors often interact, but most studies of multiple stressors have focused on combinations of abiotic stressors. Here we examined the potential interaction between a biotic stressor, the vermetid snail Ceraesignum maximum, and an abiotic stressor, high sedimentation, on the growth of reef-building corals. In a field experiment, we subjected juvenile massive Porites corals to four treatments: (i) neither stressor, (ii) sedimentation, (iii) vermetids or (iv) both stressors. Unexpectedly, we found no effect of either stressor in isolation, but a significant decrease in coral growth in the presence of both stressors. Additionally, seven times more sediment remained on corals in the presence (versus absence) of vermetids, likely owing to adhesion of sediments to corals via vermetid mucus. Thus, vermetid snails and high sedimentation can interact to drive deleterious effects on reef-building corals. More generally, our study illustrates that environmental factors can combine to have negative interactive effects even when individual effects are not detectable. Such 'ecological surprises' may be easily overlooked, leading to environmental degradation that cannot be anticipated through the study of isolated factors.
Collapse
Affiliation(s)
- Julie A Zill
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Michael A Gil
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Craig W Osenberg
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
103
|
Lamare MD, Liddy M, Uthicke S. In situ developmental responses of tropical sea urchin larvae to ocean acidification conditions at naturally elevated pCO2 vent sites. Proc Biol Sci 2017; 283:rspb.2016.1506. [PMID: 27903867 DOI: 10.1098/rspb.2016.1506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/03/2016] [Indexed: 01/05/2023] Open
Abstract
Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO2 and ambient pCO2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH(T) = 7.89-7.92), larvae developing in elevated pCO2 vent conditions (pH(T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response.
Collapse
Affiliation(s)
- Miles D Lamare
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Michelle Liddy
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand.,Australia Institute of Marine Sciences, Townsville, 4810, Queensland, Australia
| | - Sven Uthicke
- Australia Institute of Marine Sciences, Townsville, 4810, Queensland, Australia
| |
Collapse
|
104
|
Rosenblatt AE, Smith-Ramesh LM, Schmitz OJ. Interactive effects of multiple climate change variables on food web dynamics: Modeling the effects of changing temperature, CO2, and water availability on a tri-trophic food web. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2016.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
105
|
Mera H, Bourne DG. Disentangling causation: complex roles of coral-associated microorganisms in disease. Environ Microbiol 2017; 20:431-449. [DOI: 10.1111/1462-2920.13958] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hanaka Mera
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
| | - David G. Bourne
- College of Science and Engineering; James Cook University; Townsville Queensland 4811, Australia
- Australian Institute of Marine Science; PMB 3, Townsville, Queensland 4810 Australia
| |
Collapse
|
106
|
Abstract
Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.
Collapse
|
107
|
R R, L S, M M, T T, S K S, S B C. Mapping sites of reef vulnerability along lagoons of Lakshadweep archipelago, Indian Ocean. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:494. [PMID: 28887778 DOI: 10.1007/s10661-017-6175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Tissue degradation and mediated mortality have turned into a major threat to coral reef systems around the world. Detailed knowledge on interactions of prime biological factors that mediate tissue loss and mortality is of paramount importance in understanding the prevailing reef health scenario and to trial management actions. In the present study, a series of benthic surveys were conducted in Lakshadweep islands to understand the interactions of plausible biological factors in causing tissue loss and mediated mortality. Interactions of biological scenarios were prioritized using hierarchical regression analysis. The hierarchical regression model analysis revealed black band disease (β = 0.59; p < 0.001) and algal interactions (β = 0.48; p < 0.001) as the major factors responsible for tissue-loss-mediated coral mortality in the region. The observations from the hierarchical analysis were used to derive vulnerability maps based on weighted overlay analysis. The vulnerability mapping revealed that lagoon of Kalpeni Island is very highly vulnerable to coral degradation with 683.5 ha followed by Kavaratti (70.2 ha), Bangaram (70 ha), and Amini (47 ha). Chethalath and Agatti lagoons were inferred as low vulnerable sites where coral reefs can sustain. The vulnerability maps derived can be used as a baseline observation to identify areas of very high vulnerability and specific stressor prevalent in those sites. This will be helpful in defining stressor and site-specific management plans.
Collapse
Affiliation(s)
- Ranith R
- Fishery Environment Management Division, Central Marine Fisheries Research Institute, Cochin, Kerala, India
| | - Senthilnathan L
- AMET University, Kanathur, Chennai, Tamilnadu, 603112, India
| | - Machendiranathan M
- Centre of Advanced Studies in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamilnadu, 608 502, India
| | - Thangaradjou T
- Science and Engineering Research Board, New Delhi, 110070, India.
| | - Sasamal S K
- National Remote Sensing Centre, Indian Space Research Organisation, Balanagar, Hyderabad, Andhrapradesh, 500 625, India
| | - Choudhury S B
- National Remote Sensing Centre, Indian Space Research Organisation, Balanagar, Hyderabad, Andhrapradesh, 500 625, India
| |
Collapse
|
108
|
Gieswein A, Hering D, Feld CK. Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:27-35. [PMID: 28340479 DOI: 10.1016/j.scitotenv.2017.03.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Freshwater ecosystems are impacted by a range of stressors arising from diverse human-caused land and water uses. Identifying the relative importance of single stressors and understanding how multiple stressors interact and jointly affect biology is crucial for River Basin Management. This study addressed multiple human-induced stressors and their effects on the aquatic flora and fauna based on data from standard WFD monitoring schemes. For altogether 1095 sites within a mountainous catchment, we used 12 stressor variables covering three different stressor groups: riparian land use, physical habitat quality and nutrient enrichment. Twenty-one biological metrics calculated from taxa lists of three organism groups (fish, benthic invertebrates and aquatic macrophytes) served as response variables. Stressor and response variables were subjected to Boosted Regression Tree (BRT) analysis to identify stressor hierarchy and stressor interactions and subsequently to Generalised Linear Regression Modelling (GLM) to quantify the stressors standardised effect size. Our results show that riverine habitat degradation was the dominant stressor group for the river fauna, notably the bed physical habitat structure. Overall, the explained variation in benthic invertebrate metrics was higher than it was in fish and macrophyte metrics. In particular, general integrative (aggregate) metrics such as % Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa performed better than ecological traits (e.g. % feeding types). Overall, additive stressor effects dominated, while significant and meaningful stressor interactions were generally rare and weak. We concluded that given the type of stressor and ecological response variables addressed in this study, river basin managers do not need to bother much about complex stressor interactions, but can focus on the prevailing stressors according to the hierarchy identified.
Collapse
Affiliation(s)
- Alexander Gieswein
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany.
| | - Daniel Hering
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Christian K Feld
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| |
Collapse
|
109
|
Crotty SM, Angelini C, Bertness MD. Multiple stressors and the potential for synergistic loss of New England salt marshes. PLoS One 2017; 12:e0183058. [PMID: 28859097 PMCID: PMC5578661 DOI: 10.1371/journal.pone.0183058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/29/2017] [Indexed: 12/04/2022] Open
Abstract
Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change.
Collapse
Affiliation(s)
- Sinead M. Crotty
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States of America
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States of America
| | - Christine Angelini
- Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, United States of America
| | - Mark D. Bertness
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States of America
| |
Collapse
|
110
|
Gissi E, Menegon S, Sarretta A, Appiotti F, Maragno D, Vianello A, Depellegrin D, Venier C, Barbanti A. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region. PLoS One 2017; 12:e0180501. [PMID: 28692688 PMCID: PMC5503246 DOI: 10.1371/journal.pone.0180501] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
Maritime spatial planning (MSP) is envisaged as a tool to apply an ecosystem-based approach to the marine and coastal realms, aiming at ensuring that the collective pressure of human activities is kept within acceptable limits. Cumulative impacts (CI) assessment can support science-based MSP, in order to understand the existing and potential impacts of human uses on the marine environment. A CI assessment includes several sources of uncertainty that can hinder the correct interpretation of its results if not explicitly incorporated in the decision-making process. This study proposes a three-level methodology to perform a general uncertainty analysis integrated with the CI assessment for MSP, applied to the Adriatic and Ionian Region (AIR). We describe the nature and level of uncertainty with the help of expert judgement and elicitation to include all of the possible sources of uncertainty related to the CI model with assumptions and gaps related to the case-based MSP process in the AIR. Next, we use the results to tailor the global uncertainty analysis to spatially describe the uncertainty distribution and variations of the CI scores dependent on the CI model factors. The results show the variability of the uncertainty in the AIR, with only limited portions robustly identified as the most or the least impacted areas under multiple model factors hypothesis. The results are discussed for the level and type of reliable information and insights they provide to decision-making. The most significant uncertainty factors are identified to facilitate the adaptive MSP process and to establish research priorities to fill knowledge gaps for subsequent planning cycles. The method aims to depict the potential CI effects, as well as the extent and spatial variation of the data and scientific uncertainty; therefore, this method constitutes a suitable tool to inform the potential establishment of the precautionary principle in MSP.
Collapse
Affiliation(s)
- Elena Gissi
- Department of Design and Planning in Complex Environments, Università Iuav di Venezia, Venice, Italy
- * E-mail:
| | - Stefano Menegon
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | | | - Federica Appiotti
- Department of Design and Planning in Complex Environments, Università Iuav di Venezia, Venice, Italy
| | - Denis Maragno
- Department of Design and Planning in Complex Environments, Università Iuav di Venezia, Venice, Italy
| | - Andrea Vianello
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | | | - Chiara Venier
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | - Andrea Barbanti
- Institute of Marine Sciences, National Research Council, Venice, Italy
| |
Collapse
|
111
|
Swain TD, DuBois E, Goldberg SJ, Backman V, Marcelino LA. Bleaching response of coral species in the context of assemblage response. CORAL REEFS (ONLINE) 2017; 36:395-400. [PMID: 29129968 PMCID: PMC5679474 DOI: 10.1007/s00338-017-1550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon-α and -β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly-sensitive to weak stress (α > 0) but under-responsive compared to assemblage bleaching (β < 1), or a threshold response, insensitive to weak stress (α < 0) but over-responsive compared to assemblage bleaching (β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.
Collapse
Affiliation(s)
- Timothy D. Swain
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
- Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois, 60605, USA
| | - Emily DuBois
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Scott J. Goldberg
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Luisa A. Marcelino
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
- Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois, 60605, USA
- Corresponding author: Luisa Marcelino, Phone: (847) 491-4035, Fax: (847) 491-4011,
| |
Collapse
|
112
|
Hopkins GR, French SS, Brodie ED. Interacting stressors and the potential for adaptation in a changing world: responses of populations and individuals. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161057. [PMID: 28680662 PMCID: PMC5493904 DOI: 10.1098/rsos.161057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/19/2017] [Indexed: 05/12/2023]
Abstract
To accurately predict the impact of environmental change, it is necessary to assay effects of key interacting stressors on vulnerable organisms, and the potential resiliency of their populations. Yet, for the most part, these critical data are missing. We examined the effects of two common abiotic stressors predicted to interact with climate change, salinity and temperature, on the embryonic survival and development of a model freshwater vertebrate, the rough-skinned newt (Taricha granulosa) from different populations. We found that salinity and temperature significantly interacted to affect newt embryonic survival and development, with the negative effects of salinity most pronounced at temperature extremes. We also found significant variation among, and especially within, populations, with different females varying in the performance of their eggs at different salinity-temperature combinations, possibly providing the raw material for future natural selection. Our results highlight the complex nature of predicting responses to climate change in space and time, and provide critical data towards that aim.
Collapse
|
113
|
Tickler DM, Letessier TB, Koldewey HJ, Meeuwig JJ. Drivers of abundance and spatial distribution of reef-associated sharks in an isolated atoll reef system. PLoS One 2017; 12:e0177374. [PMID: 28562602 PMCID: PMC5451018 DOI: 10.1371/journal.pone.0177374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
We investigated drivers of reef shark demography across a large and isolated marine protected area, the British Indian Ocean Territory Marine Reserve, using stereo baited remote underwater video systems. We modelled shark abundance against biotic and abiotic variables at 35 sites across the reserve and found that the biomass of low trophic order fish (specifically planktivores) had the greatest effect on shark abundance, although models also included habitat variables (depth, coral cover and site type). There was significant variation in the composition of the shark assemblage at different atolls within the reserve. In particular, the deepest habitat sampled (a seamount at 70-80m visited for the first time in this study) recorded large numbers of scalloped hammerhead sharks (Sphyrna lewini) not observed elsewhere. Size structure of the most abundant and common species, grey reef sharks (Carcharhinus amblyrhynchos), varied with location. Individuals at an isolated bank were 30% smaller than those at the main atolls, with size structure significantly biased towards the size range for young of year (YOY). The 18 individuals judged to be YOY represented the offspring of between four and six females, so, whilst inconclusive, these data suggest the possible use of a common pupping site by grey reef sharks. The importance of low trophic order fish biomass (i.e. potential prey) in predicting spatial variation in shark abundance is consistent with other studies both in marine and terrestrial systems which suggest that prey availability may be a more important predictor of predator distribution than habitat suitability. This result supports the need for ecosystem level rather than species-specific conservation measures to support shark recovery. The observed spatial partitioning amongst sites for species and life-stages also implies the need to include a diversity of habitats and reef types within a protected area for adequate protection of reef-associated shark assemblages.
Collapse
Affiliation(s)
- David M. Tickler
- Oceans Institute: Centre for Marine Futures, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, Australia
- * E-mail:
| | - Tom B. Letessier
- Oceans Institute: Centre for Marine Futures, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, Australia
- Zoological Society of London, Regents Park, London, United Kingdom
| | - Heather J. Koldewey
- Zoological Society of London, Regents Park, London, United Kingdom
- Centre for Ecology & Conservation, University of Exeter, Cornwall Campus, United Kingdom
| | - Jessica J. Meeuwig
- Oceans Institute: Centre for Marine Futures, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, Australia
| |
Collapse
|
114
|
Oleson KLL, Falinski KA, Lecky J, Rowe C, Kappel CV, Selkoe KA, White C. Upstream solutions to coral reef conservation: The payoffs of smart and cooperative decision-making. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 191:8-18. [PMID: 28082251 DOI: 10.1016/j.jenvman.2016.12.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/21/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Land-based source pollutants (LBSP) actively threaten coral reef ecosystems globally. To achieve the greatest conservation outcome at the lowest cost, managers could benefit from appropriate tools that evaluate the benefits (in terms of LBSP reduction) and costs of implementing alternative land management strategies. Here we use a spatially explicit predictive model (InVEST-SDR) that quantifies change in sediment reaching the coast for evaluating the costs and benefits of alternative threat-abatement scenarios. We specifically use the model to examine trade-offs among possible agricultural road repair management actions (water bars to divert runoff and gravel to protect the road surface) across the landscape in West Maui, Hawaii, USA. We investigated changes in sediment delivery to coasts and costs incurred from management decision-making that is (1) cooperative or independent among landowners, and focused on (2) minimizing costs, reducing sediment, or both. The results illuminate which management scenarios most effectively minimize sediment while also minimizing the cost of mitigation efforts. We find targeting specific "hotspots" within all individual parcels is more cost-effective than targeting all road segments. The best outcomes are achieved when landowners cooperate and target cost-effective road repairs, however, a cooperative strategy can be counter-productive in some instances when cost-effectiveness is ignored. Simple models, such as the one developed here, have the potential to help managers make better choices about how to use limited resources.
Collapse
Affiliation(s)
- Kirsten L L Oleson
- Department of Natural Resources and Environmental Management, University of Hawai'i, 1910 East West Road, Honolulu, HI 96822, USA.
| | - Kim A Falinski
- Department of Natural Resources and Environmental Management, University of Hawai'i, 1910 East West Road, Honolulu, HI 96822, USA.
| | - Joey Lecky
- Department of Natural Resources and Environmental Management, University of Hawai'i, 1910 East West Road, Honolulu, HI 96822, USA.
| | - Clara Rowe
- Yale School of Forestry and Environmental Studies, 195 Prospect St., New Haven, CT 06511, USA.
| | - Carrie V Kappel
- National Center for Ecological Analysis and Synthesis, 735 State Street, Santa Barbara, CA 93101, USA.
| | - Kimberly A Selkoe
- National Center for Ecological Analysis and Synthesis, 735 State Street, Santa Barbara, CA 93101, USA; Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 97644, USA.
| | - Crow White
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
115
|
High-throughput amplicon sequencing and stream benthic bacteria: identifying the best taxonomic level for multiple-stressor research. Sci Rep 2017; 7:44657. [PMID: 28327636 PMCID: PMC5361126 DOI: 10.1038/srep44657] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/01/2017] [Indexed: 11/08/2022] Open
Abstract
Disentangling the individual and interactive effects of multiple stressors on microbial communities is a key challenge to our understanding and management of ecosystems. Advances in molecular techniques allow studying microbial communities in situ and with high taxonomic resolution. However, the taxonomic level which provides the best trade-off between our ability to detect multiple-stressor effects versus the goal of studying entire communities remains unknown. We used outdoor mesocosms simulating small streams to investigate the effects of four agricultural stressors (nutrient enrichment, the nitrification inhibitor dicyandiamide (DCD), fine sediment and flow velocity reduction) on stream bacteria (phyla, orders, genera, and species represented by Operational Taxonomic Units with 97% sequence similarity). Community composition was assessed using amplicon sequencing (16S rRNA gene, V3-V4 region). DCD was the most pervasive stressor, affecting evenness and most abundant taxa, followed by sediment and flow velocity. Stressor pervasiveness was similar across taxonomic levels and lower levels did not perform better in detecting stressor effects. Community coverage decreased from 96% of all sequences for abundant phyla to 28% for species. Order-level responses were generally representative of responses of corresponding genera and species, suggesting that this level may represent the best compromise between stressor sensitivity and coverage of bacterial communities.
Collapse
|
116
|
Hempson TN, Graham NAJ, MacNeil MA, Williamson DH, Jones GP, Almany GR. Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol Evol 2017; 7:2626-2635. [PMID: 28428853 PMCID: PMC5395445 DOI: 10.1002/ece3.2805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 07/14/2016] [Accepted: 01/18/2017] [Indexed: 11/11/2022] Open
Abstract
Diet specificity is likely to be the key predictor of a predator's vulnerability to changing habitat and prey conditions. Understanding the degree to which predatory coral reef fishes adjust or maintain prey choice, in response to declines in coral cover and changes in prey availability, is critical for predicting how they may respond to reef habitat degradation. Here, we use stable isotope analyses to characterize the trophic structure of predator-prey interactions on coral reefs of the Keppel Island Group on the southern Great Barrier Reef, Australia. These reefs, previously typified by exceptionally high coral cover, have recently lost much of their coral cover due to coral bleaching and frequent inundation by sediment-laden, freshwater flood plumes associated with increased rainfall patterns. Long-term monitoring of these reefs demonstrates that, as coral cover declined, there has been a decrease in prey biomass, and a shift in dominant prey species from pelagic plankton-feeding damselfishes to territorial benthic algal-feeding damselfishes, resulting in differences in the principal carbon pathways in the food web. Using isotopes, we tested whether this changing prey availability could be detected in the diet of a mesopredator (coral grouper, Plectropomus maculatus). The δ13C signature in grouper tissue in the Keppel Islands shifted from a more pelagic to a more benthic signal, demonstrating a change in carbon sources aligning with the change in prey availability due to habitat degradation. Grouper with a more benthic carbon signature were also feeding at a lower trophic level, indicating a shortening in food chains. Further, we found a decline in the coral grouper population accompanying a decrease in total available prey biomass. Thus, while the ability to adapt diets could ameliorate the short-term impacts of habitat degradation on mesopredators, long-term effects may negatively impact mesopredator populations and alter the trophic structure of coral reef food webs.
Collapse
Affiliation(s)
- Tessa N Hempson
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Nicholas A J Graham
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia.,Lancaster Environment Centre Lancaster University Lancaster UK
| | - M Aaron MacNeil
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia.,Australian Institute of Marine Science Townsville Qld Australia.,Department of Mathematics and Statistics Dalhousie University Halifax NS Canada
| | - David H Williamson
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Geoffrey P Jones
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia.,College of Marine and Environmental Sciences James Cook University Townsville Qld Australia
| | - Glenn R Almany
- CRIOBE-USR 3278 CNRS-EPHE-UPVD and Laboratoire d'Excellence "CORAIL" Perpignan Cedex France
| |
Collapse
|
117
|
Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Sci Rep 2017; 7:44101. [PMID: 28281658 PMCID: PMC5345069 DOI: 10.1038/srep44101] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/01/2017] [Indexed: 11/08/2022] Open
Abstract
Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.
Collapse
|
118
|
Orlando JL, Yee SH. Linking terrigenous sediment delivery to declines in coral reef ecosystem services. ESTUARIES AND COASTS : JOURNAL OF THE ESTUARINE RESEARCH FEDERATION 2017; 40:359-375. [PMID: 30123101 PMCID: PMC6093629 DOI: 10.1007/s12237-016-0167-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Worldwide coral reef conditions continue to decline despite the valuable socio-economic benefits of these ecosystems. There is growing recognition that quantifying reefs in terms reflecting what stakeholders value is vital for comparing inherent tradeoffs among coastal management decisions. Terrestrial sediment runoff ranks high as a stressor to coral reefs and is a key concern in Puerto Rico where reefs are among the most threatened in the Caribbean. This research aimed to identify the degree to which sediment runoff impacts production of coral reef ecosystem services and the potential for watershed management actions to improve these services. Ecosystem service production functions were applied to map and translate metrics of ecological reef condition into ecosystem services production under a gradient of increasing sediment delivery. We found that higher sediment delivery decreased provisioning of most ecosystem services, including ecosystem integrity, bioprospecting discovery, and reef-based recreational opportunities and fisheries production. However shoreline protection and services with a strong contribution from non-reef habitats (e.g., mangroves, seagrasses) were higher in locations with high sediment delivery, although there was a strong inshore effect suggesting the influence of distance to shore, depth, and inshore habitats. Differences among services may indicate potential tradeoffs and the need to consider habitat connectivity, nursery habitat, accessibility, and sediment buffering. The relationships we have identified can be used to link stakeholder values to decision alternatives to ensure continued provisioning of these services and the well-being of communities.
Collapse
|
119
|
Poli D, Fabbri E, Goffredo S, Airi V, Franzellitti S. Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa. PLoS One 2017; 12:e0171456. [PMID: 28199351 PMCID: PMC5310758 DOI: 10.1371/journal.pone.0171456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/20/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigates for the first time the transcriptional regulation of a stress-inducible 70-kDa heat shock protein (hsp70) in the scleractinian coral Pocillopora verrucosa sampled at three locations and two depths (3 m and 12 m) in Bangka Island waters (North Sulawesi, Indonesia). Percentage of coral cover indicated reduced habitat suitability with depth and at the Tanjung Husi (TA) site, which also displayed relatively higher seawater temperatures. Expression of the P. verrucosa hsp70 transcript evaluated under field conditions followed a depth-related profile, with relatively higher expression levels in 3-m collected nubbins compared to the 12-m ones. Expression levels of metabolism-related transcripts ATP synthase and NADH dehydrogenase indicated metabolic activation of nubbins to cope with habitat conditions of the TA site at 3 m. After a 14-day acclimatization to common and fixed temperature conditions in the laboratory, corals were subjected for 7 days to an altered thermal regime, where temperature was elevated at 31°C during the light phase and returned to 28°C during the dark phase. Nubbins collected at 12 m were relatively more sensitive to thermal stress, as they significantly over-expressed the selected transcripts. Corals collected at 3 m appeared more resilient, as they showed unaffected mRNA expressions. The results indicated that local habitat conditions may influence transcription of stress-related genes in P. verrucosa. Corals exhibiting higher basal hsp70 levels may display enhanced tolerance towards environmental stressors.
Collapse
Affiliation(s)
- Davide Poli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, Via F. Selmi 3, Bologna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, via S. Alberto, Ravenna, Italy
- * E-mail:
| |
Collapse
|
120
|
The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp. PLoS One 2017; 12:e0171032. [PMID: 28152002 PMCID: PMC5289496 DOI: 10.1371/journal.pone.0171032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/14/2017] [Indexed: 11/19/2022] Open
Abstract
Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host and consequently holobiont parameters may partially explain their persistence on reefs faced with climate change.
Collapse
|
121
|
Tong H, Cai L, Zhou G, Yuan T, Zhang W, Tian R, Huang H, Qian PY. Temperature shapes coral-algal symbiosis in the South China Sea. Sci Rep 2017; 7:40118. [PMID: 28084322 PMCID: PMC5234030 DOI: 10.1038/srep40118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
With the increase in sea surface temperature (SST), scleractinian corals are exposed to bleaching threats but may possess certain flexibilities in terms of their associations with symbiotic algae. Previous studies have shown a close symbiosis between coral the and Symbiodinium; however, the spatial variation of the symbiosis and the attribution underlying are not well understood. In the present study, we examined coral-algal symbiosis in Galaxea fascicularis and Montipora spp. from three biogeographic regions across ~10° of latitude in the South China Sea. Analysis of similarities (ANOSIM) indicated a highly flexible coral-algal symbiosis in both G. fascicularis and Montipora spp. and canonical correspondence analysis (CCA) showed that temperature explained 83.2% and 60.1% of the explanatory subclade variations in G. fascicularis and Montipora spp., respectively, which suggested that temperature was the main environmental factor contributing to the diversity of Symbiodinium across the three regions. The geographic specificity of the Symbiodinium phylogeny was identified, revealing possible environmental selection across the three regions. These results suggest that scleractinian corals may have the ability to regulate Symbiodinium community structures under different temperatures and thus be able to adapt to gradual climate change.
Collapse
Affiliation(s)
- Haoya Tong
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Lin Cai
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Guowei Zhou
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, China
| | - Tao Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China
| | - Weipeng Zhang
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Renmao Tian
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China.,Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, China
| | - Pei-Yuan Qian
- HKUST Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
122
|
Côté IM, Darling ES, Brown CJ. Interactions among ecosystem stressors and their importance in conservation. Proc Biol Sci 2017; 283:rspb.2015.2592. [PMID: 26865306 DOI: 10.1098/rspb.2015.2592] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions-notably synergies-a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism's physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world.
Collapse
Affiliation(s)
- Isabelle M Côté
- Earth to Ocean Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Emily S Darling
- Wildlife Conservation Society, Toronto, Ontario, Canada M5S 3A7
| | - Christopher J Brown
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
123
|
Ørsted M, Schou MF, Kristensen TN. Biotic and abiotic factors investigated in two Drosophila species - evidence of both negative and positive effects of interactions on performance. Sci Rep 2017; 7:40132. [PMID: 28059144 PMCID: PMC5216344 DOI: 10.1038/srep40132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/30/2016] [Indexed: 11/26/2022] Open
Abstract
Multiple environmental factors acting in concert can interact and strongly influence population fitness and ecosystem composition. Studies investigating interactions usually involve only two environmental factors; most frequently a chemical and another abiotic factor such as a stressful temperature. Here we investigate the effects of three environmental factors: temperature, an insecticide (dimethoate) and interspecific co-occurrence. We expose two naturally co-occurring species of Drosophila (D. hydei and D. melanogaster) to the different environments during development and examine the consequences on several performance measures. Results are highly species and trait specific with evidence of two- and three-way interactions in approximately 30% of all cases, suggesting that additive effects of combined environmental factors are most common, and that interactions are not universal. To provide more informative descriptions of complex interactions we implemented re-conceptualised definitions of synergism and antagonism. We found approximately equal proportions of synergistic and antagonistic interactions in both species, however the effects of interactions on performance differed between the two. Furthermore, we found negative impacts on performance in only 60% of interactions, thus our study also reveals a high proportion of cases with positive effects of interactions.
Collapse
Affiliation(s)
- Michael Ørsted
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg E, Denmark
| | - Mads Fristrup Schou
- Department of Bioscience, Section of Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg E, Denmark.,Department of Bioscience, Section of Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| |
Collapse
|
124
|
Harborne AR, Rogers A, Bozec YM, Mumby PJ. Multiple Stressors and the Functioning of Coral Reefs. ANNUAL REVIEW OF MARINE SCIENCE 2017; 9:445-468. [PMID: 27575738 DOI: 10.1146/annurev-marine-010816-060551] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.
Collapse
Affiliation(s)
- Alastair R Harborne
- Department of Biological Sciences, Florida International University, North Miami, Florida 33181;
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| | - Alice Rogers
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| | - Yves-Marie Bozec
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| | - Peter J Mumby
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia; , ,
| |
Collapse
|
125
|
Feld CK, Segurado P, Gutiérrez-Cánovas C. Analysing the impact of multiple stressors in aquatic biomonitoring data: A 'cookbook' with applications in R. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1320-1339. [PMID: 27499499 DOI: 10.1016/j.scitotenv.2016.06.243] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Multiple stressors threaten biodiversity and ecosystem integrity, imposing new challenges to ecosystem management and restoration. Ecosystem managers are required to address and mitigate the impact of multiple stressors, yet the knowledge required to disentangle multiple-stressor effects is still incomplete. Experimental studies have advanced the understanding of single and combined stressor effects, but there is a lack of a robust analytical framework, to address the impact of multiple stressors based on monitoring data. Since 2000, the monitoring of Europe's waters has resulted in a vast amount of biological and environmental (stressor) data of about 120,000 water bodies. For many reasons, this data is rarely exploited in the multiple-stressor context, probably because of its rather heterogeneous nature: stressors vary and are mixed with broad-scale proxies of environmental stress (e.g. land cover), missing values and zero-inflated data limit the application of statistical methods and biological indicators are often aggregated (e.g. taxon richness) and do not respond stressor-specific. Here, we present a 'cookbook' to analyse the biological response to multiple stressors using data from biomonitoring schemes. Our 'cookbook' includes guidance for the analytical process and the interpretation of results. The 'cookbook' is accompanied by scripts, which allow the user to run a stepwise analysis based on his/her own data in R, an open-source language and environment for statistical computing and graphics. Using simulated and real data, we show that the recommended procedure is capable of identifying stressor hierarchy (importance) and interaction in large datasets. We recommend a minimum number of 150 independent observations and a minimum stressor gradient length of 75% (of the most relevant stressor's gradient in nature), to be able to reliably rank the stressor's importance, detect relevant interactions and estimate their standardised effect size. We conclude with a brief discussion of the advantages and limitations of this protocol.
Collapse
Affiliation(s)
- Christian K Feld
- Aquatic Ecology and Centre for Water and Environmental Research, University Duisburg-Essen, 45117 Essen, Germany.
| | - Pedro Segurado
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
| | - Cayetano Gutiérrez-Cánovas
- Catchment Research Group, Cardiff University, School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
126
|
Ritson-Williams R, Ross C, Paul VJ. Elevated Temperature and Allelopathy Impact Coral Recruitment. PLoS One 2016; 11:e0166581. [PMID: 27926916 PMCID: PMC5142781 DOI: 10.1371/journal.pone.0166581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
As climate change continues to alter seawater temperature and chemistry on a global scale, coral reefs show multiple signs of degradation. One natural process that could facilitate the recovery of reef ecosystems is coral recruitment, which can be influenced by the benthic organisms in a local habitat. We experimentally tested both a global stressor (increased seawater temperature) and a local stressor (exposure to microcolin A, a natural product from a common marine benthic cyanobacterium) to determine how these stressors impacted coral larval sublethal stress, survival and settlement. Larvae of Porites astreoides had the same survival and settlement as the controls after exposure to increased temperature alone, but elevated temperature did cause oxidative stress. When exposed to natural concentrations of microcolin A, larval survival and settlement were significantly reduced. When larvae were exposed to these two stressors sequentially there was no interactive effect; but when exposed to both stressors simultaneously, there was a synergistic reduction in larval survival and an increase in oxidative stress more than in either stressor treatment alone. Increased seawater temperatures made larvae more susceptible to a concurrent local stressor disrupting a key process of coral reef recovery and resilience. These results highlight the importance of understanding how interactive stressors of varying spatial scales can impact coral demographics.
Collapse
Affiliation(s)
- Raphael Ritson-Williams
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL, United States of America
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Cliff Ross
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, United States of America
| | - Valerie J. Paul
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL, United States of America
| |
Collapse
|
127
|
Baum G, Januar I, Ferse SCA, Wild C, Kunzmann A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 2016; 4:e2625. [PMID: 27904802 PMCID: PMC5127238 DOI: 10.7717/peerj.2625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/25/2016] [Indexed: 12/03/2022] Open
Abstract
Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN), turbidity (NTU), and sedimentation) were assessed at three sites (< 20 km north of Jakarta) in Jakarta Bay (JB) and five sites along the outer Thousand Islands (20–60 km north of Jakarta). This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS) activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L), 67% higher NTU (1.49 NTU) and 47% higher sedimentation rate (30.4 g m−2 d−1). Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover) compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover). Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts.
Collapse
Affiliation(s)
- Gunilla Baum
- Department of Ecology, Leibniz Center for Tropical Marine Ecology, Bremen, Germany; Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Indra Januar
- Indonesian Research Center for Marine and Fisheries Products Processing and Biotechnology , Jakarta, Jakarta Pusat , Indonesia
| | - Sebastian C A Ferse
- Department of Ecology, Leibniz Center for Tropical Marine Ecology , Bremen , Germany
| | - Christian Wild
- Faculty of Biology and Chemistry, University of Bremen , Bremen , Germany
| | - Andreas Kunzmann
- Department of Ecology, Leibniz Center for Tropical Marine Ecology , Bremen , Germany
| |
Collapse
|
128
|
Roik A, Röthig T, Roder C, Ziegler M, Kremb SG, Voolstra CR. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea. PLoS One 2016; 11:e0163939. [PMID: 27828965 PMCID: PMC5102394 DOI: 10.1371/journal.pone.0163939] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
Collapse
Affiliation(s)
- Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Cornelia Roder
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Stephan G. Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- * E-mail:
| |
Collapse
|
129
|
Hopkins FE, Bell TG, Yang M, Suggett DJ, Steinke M. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Sci Rep 2016; 6:36031. [PMID: 27796323 PMCID: PMC5086842 DOI: 10.1038/srep36031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here we show that gas phase DMS concentrations (DMSgas) increased by an order of magnitude when three Indo-Pacific corals were exposed to air in laboratory experiments. Upon re-submersion, an additional rapid rise in DMSgas was observed, reflecting increased production by the coral and/or dissolution of DMS-rich mucus formed by the coral during air exposure. Depletion in DMS following re-submersion was likely due to biologically-driven conversion of DMS to dimethylsulfoxide (DMSO). Fast Repetition Rate fluorometry showed downregulated photosynthesis during air exposure but rapid recovery upon re-submersion, suggesting that DMS enhances coral tolerance to oxidative stress during a process that can induce photoinhibition. We estimate that DMS emission from exposed coral reefs may be comparable in magnitude to emissions from other marine DMS hotspots. Coral DMS emission likely comprises a regular and significant source of sulfur to the tropical marine atmosphere, which is currently unrecognised in global DMS emission estimates and Earth System Models.
Collapse
Affiliation(s)
- Frances E Hopkins
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, United Kingdom
| | - Thomas G Bell
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, United Kingdom
| | - Mingxi Yang
- Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, United Kingdom
| | - David J Suggett
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom.,Climate Change Research Cluster, University of Technology Sydney, PO Box 123, Broadway NSW 2007, Australia
| | - Michael Steinke
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| |
Collapse
|
130
|
Ponti M, Fratangeli F, Dondi N, Segre Reinach M, Serra C, Sweet MJ. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats. PeerJ 2016; 4:e2614. [PMID: 27812416 PMCID: PMC5088584 DOI: 10.7717/peerj.2614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/27/2016] [Indexed: 11/20/2022] Open
Abstract
Worldwide coral reef decline appears to be accompanied by an increase in the spread of hard coral diseases. However, whether this is the result of increased direct and indirect human disturbances and/or an increase in natural stresses remains poorly understood. The provision of baseline surveys for monitoring coral health status lays the foundations to assess the effects of any such anthropogenic and/or natural effects on reefs. Therefore, the objectives of this present study were to provide a coral health baseline in a poorly studied area, and to investigate possible correlations between coral health and the level of anthropogenic and natural disturbances. During the survey period, we recorded 20 different types of coral diseases and other compromised health statuses. The most abundant were cases of coral bleaching, followed by skeletal deformations caused by pyrgomatid barnacles, damage caused by fish bites, general pigmentation response and galls caused by cryptochirid crabs. Instances of colonies affected by skeletal eroding bands, and sedimentation damage increased in correlation to the level of bio-chemical disturbance and/or proximity to villages. Moreover, galls caused by cryptochirid crabs appeared more abundant at sites affected by blast fishing and close to a newly opened metal mine. Interestingly, in the investigated area the percentage of corals showing signs of 'common' diseases such as black band disease, brown band disease, white syndrome and skeletal eroding band disease were relatively low. Nevertheless, the relatively high occurrence of less common signs of compromised coral-related reef health, including the aggressive overgrowth by sponges, deserves further investigation. Although diseases appear relatively low at the current time, this area may be at the tipping point and an increase in activities such as mining may irredeemably compromise reef health.
Collapse
Affiliation(s)
- Massimo Ponti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Ravenna, Italy; Reef Check Italia onlus, Ancona, Italy
| | - Francesca Fratangeli
- Reef Check Italia onlus, Ancona, Italy; Coral Eye, Bangka Island, North Sulawesi, Indonesia
| | - Nicolò Dondi
- Reef Check Italia onlus, Ancona, Italy; Coral Eye, Bangka Island, North Sulawesi, Indonesia
| | - Marco Segre Reinach
- Reef Check Italia onlus, Ancona, Italy; Coral Eye, Bangka Island, North Sulawesi, Indonesia
| | - Clara Serra
- Reef Check Italia onlus, Ancona, Italy; Coral Eye, Bangka Island, North Sulawesi, Indonesia
| | - Michael J Sweet
- Environmental Sustainability Research Centre, University of Derby , Derby , United Kingdom
| |
Collapse
|
131
|
Quigley KM, Willis BL, Bay LK. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160471. [PMID: 27853562 PMCID: PMC5098987 DOI: 10.1098/rsos.160471] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/12/2016] [Indexed: 05/24/2023]
Abstract
Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5-17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis. After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage.
Collapse
Affiliation(s)
- Kate M. Quigley
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Bette L. Willis
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Line K. Bay
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
- Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
132
|
Quigley KM, Willis BL, Bay LK. Maternal effects and Symbiodinium community composition drive differential patterns in juvenile survival in the coral Acropora tenuis. ROYAL SOCIETY OPEN SCIENCE 2016. [PMID: 27853562 DOI: 10.5061/dryad.8b5g6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Coral endosymbionts in the dinoflagellate genus Symbiodinium are known to impact host physiology and have led to the evolution of reef-building, but less is known about how symbiotic communities in early life-history stages and their interactions with host parental identity shape the structure of coral communities on reefs. Differentiating the roles of environmental and biological factors driving variation in population demographic processes, particularly larval settlement, early juvenile survival and the onset of symbiosis is key to understanding how coral communities are structured and to predicting how they are likely to respond to climate change. We show that maternal effects (that here include genetic and/or effects related to the maternal environment) can explain nearly 24% of variation in larval settlement success and 5-17% of variation in juvenile survival in an experimental study of the reef-building scleractinian coral, Acropora tenuis. After 25 days on the reef, Symbiodinium communities associated with juvenile corals differed significantly between high mortality and low mortality families based on estimates of taxonomic richness, composition and relative abundance of taxa. Our results highlight that maternal and familial effects significantly explain variation in juvenile survival and symbiont communities in a broadcast-spawning coral, with Symbiodinium type A3 possibly a critical symbiotic partner during this early life stage.
Collapse
Affiliation(s)
- Kate M Quigley
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia
| | - Line K Bay
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810, Australia
| |
Collapse
|
133
|
Humanes A, Noonan SHC, Willis BL, Fabricius KE, Negri AP. Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis. PLoS One 2016; 11:e0161616. [PMID: 27575699 PMCID: PMC5004850 DOI: 10.1371/journal.pone.0161616] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/09/2016] [Indexed: 11/18/2022] Open
Abstract
Inshore coral reefs are experiencing the combined pressures of excess nutrient availability associated with coastal activities and warming seawater temperatures. Both pressures are known to have detrimental effects on the early life history stages of hard corals, but studies of their combined effects on early demographic stages are lacking. We conducted a series of experiments to test the combined effects of nutrient enrichment (three levels) and elevated seawater temperature (up to five levels) on early life history stages of the inshore coral Acropora tenuis, a common species in the Indo-Pacific and Red Sea. Gamete fertilization, larval survivorship and larval settlement were all significantly reduced as temperature increased, but only fertilization was further affected by simultaneous nutrient enrichment. Combined high temperatures and nutrient enrichment affected fertilization in an additive manner, whereas embryo abnormalities increased synergistically. Higher than normal temperatures (32°C) increased coral juvenile growth rates 1.6-fold, but mortality also increased by 50%. The co-occurrence of nutrient enrichment with high temperatures reduced juvenile mortality to 36%, ameliorating temperature stress (antagonistic interaction). Overall, the types of effect (additive vs synergistic or antagonistic) and their magnitude varied among life stages. Gamete and embryo stages were more affected by temperature stress and, in some cases, also by nutrient enrichment than juveniles. The data suggest that coastal runoff events might exacerbate the impacts of warming temperatures on fertilization if these events co-occur during corals spawning. The cumulative impacts of simultaneous exposure to nutrient enrichment and elevated temperatures over all early life history stages increases the likelihood for failure of larval supply and recruitment for this coral species. Our results suggest that improving the water quality of river discharges into coastal areas might help to enhance the thermal tolerances of early life history stages in this common coral species.
Collapse
Affiliation(s)
- Adriana Humanes
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- * E-mail:
| | - Sam H. C. Noonan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Bette L. Willis
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | | | - Andrew P. Negri
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
134
|
Lance E, Desprat J, Holbech BF, Gérard C, Bormans M, Lawton LA, Edwards C, Wiegand C. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp(®) Flash) stressors. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:116-24. [PMID: 27267390 DOI: 10.1016/j.aquatox.2016.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 05/21/2023]
Abstract
Freshwater gastropods are increasingly exposed to multiple stressors in the field such as the herbicide glyphosate in Roundup formulations and cyanobacterial blooms either producing or not producing microcystins (MCs), potentially leading to interacting effects. Here, the responses of Lymnaea stagnalis to a 21-day exposure to non-MC or MC-producing (33μgL(-1)) Planktothrix agardhii alone or in combination with the commercial formulation RoundUp(®) Flash at a concentration of 1μgL(-1) glyphosate, followed by 14days of depuration, were studied via i) accumulation of free and bound MCs in tissues, and ii) activities of anti-oxidant (catalase CAT) and biotransformation (glutathione-S-transferase GST) enzymes. During the intoxication, the cyanobacterial exposure induced an early increase of CAT activity, independently of the MC content, probably related to the production of secondary cyanobacterial metabolites. The GST activity was induced by RoundUp(®) Flash alone or in combination with non MC-producing cyanobacteria, but was inhibited by MC-producing cyanobacteria with or without RoundUp(®) Flash. Moreover, MC accumulation in L. stagnalis was 3.2 times increased when snails were concomitantly exposed to MC-producing cyanobacteria with RoundUp(®), suggesting interacting effects of MCs on biotransformation processes. The potent inhibition of detoxication systems by MCs and RoundUp(®) Flash was reversible during the depuration, during which CAT and GST activities were significantly higher in snails previously exposed to MC-producing cyanobacteria with or without RoundUp(®) Flash than in other conditions, probably related to the oxidative stress caused by accumulated MCs remaining in tissues.
Collapse
Affiliation(s)
- Emilie Lance
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; UMR-I 02 SEBIO, Bat 18, Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex, France.
| | - Julia Desprat
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; UMR 5023-LEHNA, Université Lyon 1, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Bâtiment Darwin C, F-69622 Villeurbanne Cedex France, France
| | - Bente Frost Holbech
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Claudia Gérard
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Myriam Bormans
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Linda A Lawton
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Christine Edwards
- IDEAS Research Institute, School of Pharmacy & Life Sciences, Robert Gordon University, Riverside East, Garthdee Road, Aberdeen AB10 7GJ, UK
| | - Claudia Wiegand
- UMR CNRS 6553 Ecobio, University of Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France; University of Southern Denmark, Institute of Biology, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
135
|
Hunsicker ME, Kappel CV, Selkoe KA, Halpern BS, Scarborough C, Mease L, Amrhein A. Characterizing driver-response relationships in marine pelagic ecosystems for improved ocean management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:651-63. [PMID: 27411240 DOI: 10.1890/14-2200] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Scientists and resource managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressors. However, a growing body of literature demonstrates that many relationships are-non-linear, where small changes in a driver prompt a disproportionately large ecological response. We aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focused our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relation- ships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency (on average 11% more). Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socioeconomic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables but are also associated with local stressors, such as overfishing and pollution, that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information about threshold responses to guide how other stressors are managed and to adapt to new ocean conditions. As methods to detect and reduce uncertainty around threshold values improve, managers will be able to better understand and account for ubiquitous non-linear relationships.
Collapse
|
136
|
Foster CN, Sato CF, Lindenmayer DB, Barton PS. Integrating theory into disturbance interaction experiments to better inform ecosystem management. GLOBAL CHANGE BIOLOGY 2016; 22:1325-1335. [PMID: 26554638 DOI: 10.1111/gcb.13155] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Managing multiple, interacting disturbances is a key challenge to biodiversity conservation, and one that will only increase as global change drivers continue to alter disturbance regimes. Theoretical studies have highlighted the importance of a mechanistic understanding of stressor interactions for improving the prediction and management of interactive effects. However, many conservation studies are not designed or interpreted in the context of theory and instead focus on case-specific management questions. This is a problem as it means that few studies test the relationships highlighted in theoretical models as being important for ecological management. We explore the extent of this problem among studies of interacting disturbances by reviewing recent experimental studies of the interaction between fire and grazing in terrestrial ecosystems. Interactions between fire and grazing can occur via a number of pathways; one disturbance can modify the other's likelihood, intensity or spatial distribution, or one disturbance can alter the other's impacts on individual organisms. The strength of such interactions will vary depending on disturbance attributes (e.g. size or intensity), and this variation is likely to be nonlinear. We show that few experiments testing fire-grazing interactions are able to identify the mechanistic pathway driving an observed interaction, and most are unable to detect nonlinear effects. We demonstrate how these limitations compromise the ability of experimental studies to effectively inform ecological management. We propose a series of adjustments to the design of disturbance interaction experiments that would enable tests of key theoretical pathways and provide the deeper ecological understanding necessary for effective management. Such considerations are relevant to studies of a broad range of ecological interactions and are critical to informing the management of disturbance regimes in the context of accelerating global change.
Collapse
Affiliation(s)
- Claire N Foster
- Fenner School of Environment and Society, The Australian National University, 141 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Chloe F Sato
- Fenner School of Environment and Society, The Australian National University, 141 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Environmental Decisions, National Environmental Research Program Environmental Decisions Hub, The Australian National University, 141 Linnaeus Way, Acton, ACT, 2601, Australia
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, 141 Linnaeus Way, Acton, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Environmental Decisions, National Environmental Research Program Environmental Decisions Hub, The Australian National University, 141 Linnaeus Way, Acton, ACT, 2601, Australia
- The Long Term Ecological Research Network, The Australian National University, 141 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Philip S Barton
- Fenner School of Environment and Society, The Australian National University, 141 Linnaeus Way, Acton, ACT, 2601, Australia
| |
Collapse
|
137
|
Haywood MDE, Dennis D, Thomson DP, Pillans RD. Mine waste disposal leads to lower coral cover, reduced species richness and a predominance of simple coral growth forms on a fringing coral reef in Papua New Guinea. MARINE ENVIRONMENTAL RESEARCH 2016; 115:36-48. [PMID: 26874890 DOI: 10.1016/j.marenvres.2016.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
A large gold mine has been operating at the Lihir Island Group, Papua New Guinea since 1997. The mine disposes of waste rock in nearshore waters, impacting nearby coral communities. During 2010, 2012 we conducted photographic surveys at 73 sites within 40 km of the mine to document impacts of mining operations on the hard coral communities. Coral communities close to the mine (∼2 km to the north and south of the mine) were depaurperate, but surprisingly, coral cover and community composition beyond this range appeared to be relatively similar, suggesting that the mine impacts were limited spatially. In particular, we found mining operations have resulted in a significant decrease in coral cover (4.4% 1.48 km from the disposal site c.f. 66.9% 10.36 km from the disposal site), decreased species richness and a predominance of less complex growth forms within ∼2 km to the north and south of the mine waste disposal site. In contrast to the two 'snapshot' surveys of corals performed in 2010 and 2012, long term data (1999-2012) based on visual estimates of coral cover suggested that impacts on coral communities may have been more extensive than this. With global pressures on the world's coral reefs increasing, it is vital that local, direct anthropogenic pressures are reduced, in order to help offset the impacts of climate change, disease and predation.
Collapse
Affiliation(s)
- M D E Haywood
- CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, 306 Carmody Rd., St. Lucia, Queensland 4067, Australia.
| | - D Dennis
- CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, 306 Carmody Rd., St. Lucia, Queensland 4067, Australia
| | - D P Thomson
- CSIRO Oceans and Atmosphere, 147 Underwood Ave, Floreat, Western Australia 6014, Australia
| | - R D Pillans
- CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, 306 Carmody Rd., St. Lucia, Queensland 4067, Australia
| |
Collapse
|
138
|
Swain TD, DuBois E, Gomes A, Stoyneva VP, Radosevich AJ, Henss J, Wagner ME, Derbas J, Grooms HW, Velazquez EM, Traub J, Kennedy BJ, Grigorescu AA, Westneat MW, Sanborn K, Levine S, Schick M, Parsons G, Biggs BC, Rogers JD, Backman V, Marcelino LA. Skeletal light-scattering accelerates bleaching response in reef-building corals. BMC Ecol 2016; 16:10. [PMID: 26996922 PMCID: PMC4800776 DOI: 10.1186/s12898-016-0061-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/12/2016] [Indexed: 02/03/2023] Open
Abstract
Background At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as ‘microscopic’ reduced-scattering coefficient, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Results Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals bleach at higher rate and severity than high-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals and the Symbiodinium associated with low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals. Conclusions While symbionts associated with low-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mu ^{\prime}_{{S,m}} $$\end{document}μS,m′ as one of the key determinants of differential bleaching response. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0061-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy D Swain
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Emily DuBois
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Andrew Gomes
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Valentina P Stoyneva
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Andrew J Radosevich
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jillian Henss
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Michelle E Wagner
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Justin Derbas
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Hannah W Grooms
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Elizabeth M Velazquez
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joshua Traub
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Brian J Kennedy
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Arabela A Grigorescu
- Keck Biophysics Facility, Northwestern University, 633 Clark Street, Evanston, IL, 60208, USA
| | - Mark W Westneat
- Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Kevin Sanborn
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Shoshana Levine
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Mark Schick
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - George Parsons
- Fishes Department, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL, 60605, USA
| | - Brendan C Biggs
- Division of Water Resource Management, Florida Department of Environmental Protection, 2600 Blair Stone Road, Tallahassee, 32399, USA
| | - Jeremy D Rogers
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Luisa A Marcelino
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA. .,Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL, 60605, USA.
| |
Collapse
|
139
|
|
140
|
Caldwell JM, Heron SF, Eakin CM, Donahue MJ. Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian Archipelago. REMOTE SENSING 2016; 8:93. [PMID: 29071133 PMCID: PMC5651227 DOI: 10.3390/rs8020093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Predicting wildlife disease risk is essential for effective monitoring and management, especially for geographically expansive ecosystems such as coral reefs in the Hawaiian archipelago. Warming ocean temperature has increased coral disease outbreaks contributing to declines in coral cover worldwide. In this study we investigated seasonal effects of thermal stress on the prevalence of the three most widespread coral diseases in Hawai'i: Montipora white syndrome, Porites growth anomalies and Porites tissue loss syndrome. To predict outbreak likelihood we compared disease prevalence from surveys conducted between 2004 and 2015 from 18 Hawaiian Islands and atolls with biotic (e.g., coral density) and abiotic (satellite-derived sea surface temperature metrics) variables using boosted regression trees. To date, the only coral disease forecast models available were developed for Acropora white syndrome on the Great Barrier Reef (GBR). Given the complexities of disease etiology, differences in host demography and environmental conditions across reef regions, it is important to refine and adapt such models for different diseases and geographic regions of interest. Similar to the Acropora white syndrome models, anomalously warm conditions were important for predicting Montipora white syndrome, possibly due to a relationship between thermal stress and a compromised host immune system. However, coral density and winter conditions were the most important predictors of all three coral diseases in this study, enabling development of a forecasting system that can predict regions of elevated disease risk up to six months before an expected outbreak. Our research indicates satellite-derived systems for forecasting disease outbreaks can be appropriately adapted from the GBR tools and applied for a variety of diseases in a new region. These models can be used to enhance management capacity to prepare for and respond to emerging coral diseases throughout Hawai'i and can be modified for other diseases and regions around the world.
Collapse
Affiliation(s)
- Jamie M Caldwell
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i, Kāne'ohe, HI 96744, USA;
| | - Scott F Heron
- Coral ReefWatch, U.S. National Oceanic and Atmospheric Administration, College Park, MD 20740, USA; (S.F.H.); (C.M.E.)
- Marine Geophysical Laboratory, Physics Department, College of Science, Technology and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Global Science and Technology, Inc., Greenbelt, MD 20770, USA
| | - C Mark Eakin
- Coral ReefWatch, U.S. National Oceanic and Atmospheric Administration, College Park, MD 20740, USA; (S.F.H.); (C.M.E.)
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i, Kāne'ohe, HI 96744, USA;
| |
Collapse
|
141
|
Jackson MC, Loewen CJG, Vinebrooke RD, Chimimba CT. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. GLOBAL CHANGE BIOLOGY 2016; 22:180-9. [PMID: 26149723 DOI: 10.1111/gcb.13028] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/24/2015] [Indexed: 05/14/2023]
Abstract
The accelerating rate of global change has focused attention on the cumulative impacts of novel and extreme environmental changes (i.e. stressors), especially in marine ecosystems. As integrators of local catchment and regional processes, freshwater ecosystems are also ranked highly sensitive to the net effects of multiple stressors, yet there has not been a large-scale quantitative synthesis. We analysed data from 88 papers including 286 responses of freshwater ecosystems to paired stressors and discovered that overall, their cumulative mean effect size was less than the sum of their single effects (i.e. an antagonistic interaction). Net effects of dual stressors on diversity and functional performance response metrics were additive and antagonistic, respectively. Across individual studies, a simple vote-counting method revealed that the net effects of stressor pairs were frequently more antagonistic (41%) than synergistic (28%), additive (16%) or reversed (15%). Here, we define a reversal as occurring when the net impact of two stressors is in the opposite direction (negative or positive) from that of the sum of their single effects. While warming paired with nutrification resulted in additive net effects, the overall mean net effect of warming combined with a second stressor was antagonistic. Most importantly, the mean net effects across all stressor pairs and response metrics were consistently antagonistic or additive, contrasting the greater prevalence of reported synergies in marine systems. Here, a possible explanation for more antagonistic responses by freshwater biota to stressors is that the inherent greater environmental variability of smaller aquatic ecosystems fosters greater potential for acclimation and co-adaptation to multiple stressors.
Collapse
Affiliation(s)
- Michelle C Jackson
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, P/Bag X20, Hatfield, 0028, South Africa
| | - Charlie J G Loewen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Christian T Chimimba
- Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, P/Bag X20, Hatfield, 0028, South Africa
| |
Collapse
|
142
|
Forrester GE, Flynn RL, Forrester LM, Jarecki LL. Episodic Disturbance from Boat Anchoring Is a Major Contributor to, but Does Not Alter the Trajectory of, Long-Term Coral Reef Decline. PLoS One 2015; 10:e0144498. [PMID: 26717208 PMCID: PMC4696730 DOI: 10.1371/journal.pone.0144498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022] Open
Abstract
Isolating the relative effects of episodic disturbances and chronic stressors on long-term community change is challenging. We assessed the impact of an episodic disturbance associated with human visitation (boat anchoring) relative to other drivers of long-term change on coral reefs. A one-time anchoring event at Crab Cove, British Virgin Islands, in 2004 caused rapid losses of coral and reef structural complexity that were equal to the cumulative decline over 23 years observed at an adjacent site. The abundance of small site-attached reef fishes dropped by approximately one quarter after the anchoring event, but this drop was not immediate and only fully apparent two years after the anchoring event. There was no obvious recovery from the impact, and no evidence that this episodic impact accelerated or retarded subsequent declines from other causes. This apparent lack of synergism between the effect of this episodic human impact and other chronic stressors is consistent with the few other long-term studies of episodic impacts, and suggests that action to mitigate anchor damage should yield predictable benefits.
Collapse
Affiliation(s)
- Graham E. Forrester
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, Rhode Island, 02881, United States of America
| | - Rebecca L. Flynn
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, Rhode Island, 02881, United States of America
| | - Linda M. Forrester
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island, 02881, United States of America
| | - Lianna L. Jarecki
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, Rhode Island, 02881, United States of America
| |
Collapse
|
143
|
Kersting DK, Cebrian E, Casado C, Teixidó N, Garrabou J, Linares C. Experimental evidence of the synergistic effects of warming and invasive algae on a temperate reef-builder coral. Sci Rep 2015; 5:18635. [PMID: 26692424 PMCID: PMC4686896 DOI: 10.1038/srep18635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/20/2015] [Indexed: 12/27/2022] Open
Abstract
In the current global climate change scenario, stressors overlap in space and time, and knowledge on the effects of their interaction is highly needed to understand and predict the response and resilience of organisms. Corals, among many other benthic organisms, are affected by an increasing number of global change-related stressors including warming and invasive species. In this study, the cumulative effects between warming and invasive algae were experimentally assessed on the temperate reef-builder coral Cladocora caespitosa. We first investigated the potential local adaptation to thermal stress in two distant populations subjected to contrasting thermal and necrosis histories. No significant differences were found between populations. Colonies from both populations suffered no necrosis after long-term exposure to temperatures up to 29 °C. Second, we tested the effects of the interaction of both warming and the presence of invasive algae. The combined exposure triggered critical synergistic effects on photosynthetic efficiency and tissue necrosis. At the end of the experiment, over 90% of the colonies subjected to warming and invasive algae showed signs of necrosis. The results are of particular concern when considering the predicted increase of extreme climatic events and the spread of invasive species in the Mediterranean and other seas in the future.
Collapse
Affiliation(s)
- Diego K Kersting
- Departament d’Ecologia. Facultat de Biologia. Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Emma Cebrian
- Centre d’Estudis Avançats de Blanes (CSIC), 17300 Girona, Spain
- Departament de Ciències Ambientals. Facultat de Ciències. Universitat de Girona, 17004 Girona, Spain
| | - Clara Casado
- Departament d’Ecologia. Facultat de Biologia. Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Núria Teixidó
- Institut Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
- Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Joaquim Garrabou
- Institut Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
- Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), 13288, Marseille, Cedex 9; Université de Toulon, 83957, CNRS/IRD, France
| | - Cristina Linares
- Departament d’Ecologia. Facultat de Biologia. Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
144
|
Weijerman M, Fulton EA, Kaplan IC, Gorton R, Leemans R, Mooij WM, Brainard RE. An Integrated Coral Reef Ecosystem Model to Support Resource Management under a Changing Climate. PLoS One 2015; 10:e0144165. [PMID: 26672983 PMCID: PMC4682628 DOI: 10.1371/journal.pone.0144165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022] Open
Abstract
Millions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management. We adapted the Atlantis Ecosystem Model to incorporate key dynamics for a coral reef ecosystem around Guam in the tropical western Pacific. We used this model to quantify the effects of predicted climate and ocean changes and current levels of current land-based sources of pollution (LBSP) and fishing. We used the following six ecosystem metrics as indicators of ecosystem state, resilience and harvest potential: 1) ratio of calcifying to non-calcifying benthic groups, 2) trophic level of the community, 3) biomass of apex predators, 4) biomass of herbivorous fishes, 5) total biomass of living groups and 6) the end-to-start ratio of exploited fish groups. Simulation tests of the effects of each of the three drivers separately suggest that by mid-century climate change will have the largest overall effect on this suite of ecosystem metrics due to substantial negative effects on coral cover. The effects of fishing were also important, negatively influencing five out of the six metrics. Moreover, LBSP exacerbates this effect for all metrics but not quite as badly as would be expected under additive assumptions, although the magnitude of the effects of LBSP are sensitive to uncertainty associated with primary productivity. Over longer time spans (i.e., 65 year simulations), climate change impacts have a slight positive interaction with other drivers, generally meaning that declines in ecosystem metrics are not as steep as the sum of individual effects of the drivers. These analyses offer one way to quantify impacts and interactions of particular stressors in an ecosystem context and so provide guidance to managers. For example, the model showed that improving water quality, rather than prohibiting fishing, extended the timescales over which corals can maintain high abundance by at least 5–8 years. This result, in turn, provides more scope for corals to adapt or for resilient species to become established and for local and global management efforts to reduce or reverse stressors.
Collapse
Affiliation(s)
- Mariska Weijerman
- Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Environmental Systems Analysis Group, Wageningen University, Wageningen, Netherlands
- Pacific Island Fisheries Science Centre, NOAA Fisheries, Honolulu, Hawaii, United States of America
- * E-mail:
| | | | - Isaac C. Kaplan
- Northwest Fisheries Science Centre, NOAA Fisheries, Seattle, Washington, United States of America
| | - Rebecca Gorton
- Oceans and Atmosphere Flagship, CSIRO, Hobart, Tasmania, Australia
| | - Rik Leemans
- Environmental Systems Analysis Group, Wageningen University, Wageningen, Netherlands
| | - Wolf M. Mooij
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, Netherlands
| | - Russell E. Brainard
- Pacific Island Fisheries Science Centre, NOAA Fisheries, Honolulu, Hawaii, United States of America
| |
Collapse
|
145
|
Ainsworth TD, Knack B, Ukani L, Seneca F, Weiss Y, Leggat W. In situ hybridisation detects pro-apoptotic gene expression of a Bcl-2 family member in white syndrome-affected coral. DISEASES OF AQUATIC ORGANISMS 2015; 117:155-163. [PMID: 26648107 DOI: 10.3354/dao02882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
White syndrome has been described as one of the most prolific diseases on the Great Barrier Reef. Previously, apoptotic cell death has been described as the mechanism driving the characteristic rapid tissue loss associated with this disease, but the molecular mechanisms controlling apoptotic cell death in coral disease have yet to be investigated. In situ methods were used to study the expression patterns of 2 distinct regulators of apoptosis in Acropora hyacinthus tissues undergoing white syndrome and apoptotic cell death. Apoptotic genes within the Bcl-2 family were not localized in apparently healthy coral tissues. However, a Bcl-2 family member (bax-like) was found to localize to cells and tissues affected by white syndrome and those with morphological evidence for apoptosis. A potential up-regulation of pro-apoptotic or bax-like gene expression in tissues with apoptotic cell death adjacent to disease lesions is consistent with apoptosis being the primary cause of rapid tissue loss in coral affected by white syndrome. Pro-apoptotic (bax-like) expression in desmocytes and the basal tissue layer, the calicodermis, distant from the disease lesion suggests that apoptosis may also underlie the sloughing of healthy tissues associated with the characteristic, rapid spread of tissue loss, evident of this disease. This study also shows that in situ hybridisation is an effective tool for studying gene expression in adult corals, and wider application of these methods should allow a better understanding of many aspects of coral biology and disease pathology.
Collapse
Affiliation(s)
- T D Ainsworth
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| | | | | | | | | | | |
Collapse
|
146
|
Pandolfi JM. Incorporating Uncertainty in Predicting the Future Response of Coral Reefs to Climate Change. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-120213-091811] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- John M. Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia;
| |
Collapse
|
147
|
Abstract
With accelerating rates of invasion being documented in many ecosystems, communities of interacting invasive species are becoming increasingly common. Opposing theories predict that invaders can either hinder or promote one another's success. Additionally, evidence suggests that co-occurring invaders can interact to amplify or mitigate one another's impacts on ecosystems. However, there has not been a quantitative review on interactions among multiple invasive animals. Here I use a meta-analysis approach to show that, across a global scale, the mean interaction among invaders was to reduce one another's performance. This pattern was consistent when considering interactions between marine animals but interactions were neutral overall in terrestrial and freshwater ecosystems. Crucially, individual studies showed that neutral interactions were the most common interaction type. Further, I demonstrate that the combined ecological impacts of multiple invaders were frequently the sum of their independent effects (additive) but the mean effect was non-additive and less than predicted (antagonistic). In both meta-analyses, the disparity between the most frequent and mean interaction type indicates that case studies of multiple invasions commonly have different outcomes to global trends. These results will help predict how co-occurring invasive animals interact and assist in developing management strategies for problematic invaders in our changing world.
Collapse
|
148
|
Local and Regional Impacts of Pollution on Coral Reefs along the Thousand Islands North of the Megacity Jakarta, Indonesia. PLoS One 2015; 10:e0138271. [PMID: 26378910 PMCID: PMC4574762 DOI: 10.1371/journal.pone.0138271] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/26/2015] [Indexed: 11/19/2022] Open
Abstract
Worldwide, coral reefs are challenged by multiple stressors due to growing urbanization, industrialization and coastal development. Coral reefs along the Thousand Islands off Jakarta, one of the largest megacities worldwide, have degraded dramatically over recent decades. The shift and decline in coral cover and composition has been extensively studied with a focus on large-scale gradients (i.e. regional drivers), however special focus on local drivers in shaping spatial community composition is still lacking. Here, the spatial impact of anthropogenic stressors on local and regional scales on coral reefs north of Jakarta was investigated. Results indicate that the direct impact of Jakarta is mainly restricted to inshore reefs, separating reefs in Jakarta Bay from reefs along the Thousand Islands further north. A spatial patchwork of differentially degraded reefs is present along the islands as a result of localized anthropogenic effects rather than regional gradients. Pollution is the main anthropogenic stressor, with over 80% of variation in benthic community composition driven by sedimentation rate, NO2, PO4 and Chlorophyll a. Thus, the spatial structure of reefs is directly related to intense anthropogenic pressure from local as well as regional sources. Therefore, improved spatial management that accounts for both local and regional stressors is needed for effective marine conservation.
Collapse
|
149
|
Morri C, Montefalcone M, Lasagna R, Gatti G, Rovere A, Parravicini V, Baldelli G, Colantoni P, Bianchi CN. Through bleaching and tsunami: Coral reef recovery in the Maldives. MARINE POLLUTION BULLETIN 2015; 98:188-200. [PMID: 26228070 DOI: 10.1016/j.marpolbul.2015.06.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Coral reefs are degrading worldwide, but little information exists on their previous conditions for most regions of the world. Since 1989, we have been studying the Maldives, collecting data before, during and after the bleaching and mass mortality event of 1998. As early as 1999, many newly settled colonies were recorded. Recruits shifted from a dominance of massive and encrusting corals in the early stages of recolonisation towards a dominance of Acropora and Pocillopora by 2009. Coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% by 2013. The 2004 tsunami had comparatively little effect. In 2014, the coral community was similar to that existing before the bleaching. According to descriptors and metrics adopted, recovery of Maldivian coral reefs took between 6 and 15years, or may even be considered unachieved, as there are species that had not come back yet.
Collapse
Affiliation(s)
- Carla Morri
- DiSTAV (Department of Earth, Environment and Life Sciences), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Monica Montefalcone
- DiSTAV (Department of Earth, Environment and Life Sciences), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Roberta Lasagna
- DiSTAV (Department of Earth, Environment and Life Sciences), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Giulia Gatti
- UMR 7263 Institut Méditerranéen de Biodiversité et d'Écologie marine et continentale (IMBE), Station Marine d'Endoume, Rue de la Batterie des Lions, 13007 Marseille, France
| | - Alessio Rovere
- MARUM, Centre for Marine Environmental Sciences, University of Bremen, & ZMT, Leibniz Centre for Tropical Marine Ecology, Leobener Str. 20, 28359 Bremen, Germany
| | - Valeriano Parravicini
- CRIOBE, USR 3278 CNRS-EPHE-UPVD, LABEX 'CORAIL', University of Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan cedex 9, France
| | - Giuseppe Baldelli
- DiSTeVA (Department of Earth, Life and Environment Sciences), University of Urbino, loc. Crocicchia, 61029 Urbino, Italy
| | - Paolo Colantoni
- DiSTeVA (Department of Earth, Life and Environment Sciences), University of Urbino, loc. Crocicchia, 61029 Urbino, Italy
| | - Carlo Nike Bianchi
- DiSTAV (Department of Earth, Environment and Life Sciences), University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| |
Collapse
|
150
|
Rocha JC, Peterson GD, Biggs R. Regime shifts in the anthropocene: drivers, risks, and resilience. PLoS One 2015; 10:e0134639. [PMID: 26267896 PMCID: PMC4533971 DOI: 10.1371/journal.pone.0134639] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/11/2015] [Indexed: 11/19/2022] Open
Abstract
Many ecosystems can experience regime shifts: surprising, large and persistent changes in the function and structure of ecosystems. Assessing whether continued global change will lead to further regime shifts, or has the potential to trigger cascading regime shifts has been a central question in global change policy. Addressing this issue has, however, been hampered by the focus of regime shift research on specific cases and types of regime shifts. To systematically assess the global risk of regime shifts we conducted a comparative analysis of 25 generic types of regime shifts across marine, terrestrial and polar systems; identifying their drivers, and impacts on ecosystem services. Our results show that the drivers of regime shifts are diverse and co-occur strongly, which suggests that continued global change can be expected to synchronously increase the risk of multiple regime shifts. Furthermore, many regime shift drivers are related to climate change and food production, whose links to the continued expansion of human activities makes them difficult to limit. Because many regime shifts can amplify the drivers of other regime shifts, continued global change can also be expected to increase the risk of cascading regime shifts. Nevertheless, the variety of scales at which regime shift drivers operate provides opportunities for reducing the risk of many types of regime shifts by addressing local or regional drivers, even in the absence of rapid reduction of global drivers.
Collapse
Affiliation(s)
- Juan Carlos Rocha
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691, Stockholm, Sweden
| | - Garry D. Peterson
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691, Stockholm, Sweden
| | - Reinette Biggs
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691, Stockholm, Sweden
- Centre for Studies in Complexity, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa
| |
Collapse
|