101
|
Ghavami SB, Yadegar A, Aghdaei HA, Sorrentino D, Farmani M, Mir AS, Azimirad M, Balaii H, Shahrokh S, Zali MR. Immunomodulation and Generation of Tolerogenic Dendritic Cells by Probiotic Bacteria in Patients with Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:6266. [PMID: 32872480 PMCID: PMC7503552 DOI: 10.3390/ijms21176266] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
In inflammatory bowel diseases (IBD), the therapeutic benefit and mucosal healing from specific probiotics may relate to the modulation of dendritic cells (DCs). Herein, we assessed the immunomodulatory effects of four probiotic strains including Lactobacillus salivarius, Bifidobacterium bifidum, Bacillus coagulans and Bacillus subtilis natto on the expression of co-stimulatory molecules, cytokine production and gene expression of signal-transducing receptors in DCs from IBD patients. Human monocyte-derived DCs from IBD patients and healthy controls were exposed to four probiotic strains. The expression of co-stimulatory molecules was assessed and supernatants were analyzed for anti-inflammatory cytokines. The gene expression of toll-like receptors (TLRs), IL-12p40 and integrin αvβ8 were also analyzed. CD80 and CD86 were induced by most probiotic strains in ulcerative colitis (UC) patients whereas only B. bifidum induced CD80 and CD86 expression in Crohn's disease (CD) patients. IL-10 and TGF-β production was increased in a dose-independent manner while TLR expression was decreased by all probiotic bacteria except B. bifidum in DCs from UC patients. TLR-4 and TLR-9 expression was significantly downregulated while integrin ß8 was significantly increased in the DCs from CD patients. IL-12p40 expression was only significantly downregulated in DCs from CD patients. Our findings point to the general beneficial effects of probiotics in DC immunomodulation and indicate that probiotic bacteria favorably modulate the expression of co-stimulatory molecules, proinflammatory cytokines and TLRs in DCs from IBD patients.
Collapse
Affiliation(s)
- Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (S.B.G.); (H.A.A.); (M.F.)
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (A.Y.); (M.A.)
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (S.B.G.); (H.A.A.); (M.F.)
| | - Dario Sorrentino
- IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, 33100 Udine, Italy
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (S.B.G.); (H.A.A.); (M.F.)
| | - Adil Shamim Mir
- Department of Internal Medicine, Roanoke Memorial Hospital, Carilion Clinic, VA 24014, USA;
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (A.Y.); (M.A.)
| | - Hedieh Balaii
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (H.B.); (S.S.); (M.R.Z.)
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (H.B.); (S.S.); (M.R.Z.)
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; (H.B.); (S.S.); (M.R.Z.)
| |
Collapse
|
102
|
Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol 2020; 104:8089-8104. [PMID: 32813065 PMCID: PMC7434852 DOI: 10.1007/s00253-020-10832-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Interspecies transmissions of viruses between animals and humans may result in unpredictable pathogenic potential and new transmissible diseases. This mechanism has recently been exemplified by the discovery of new pathogenic viruses, such as the novel severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) pandemic, Middle-East respiratory syndrome-coronavirus epidemic in Saudi Arabia, and the deadly outbreak of Ebola in West Africa. The. SARS-CoV-2 causes coronavirus disease-19 (COVID-19), which is having a massive global impact in terms of economic disruption, and, above all, human health. The disease is characterized by dry cough, fever, fatigue, myalgia, and dyspnea. Other symptoms include headache, sore throat, rhinorrhea, and gastrointestinal disorders. Pneumonia appears to be the most common and severe manifestation of the infection. Currently, there is no vaccine or specific drug for COVID-19. Further, the development of new antiviral requires a considerable length of time and effort for drug design and validation. Therefore, repurposing the use of natural compounds can provide alternatives and can support therapy against COVID-19. In this review, we comprehensively discuss the prophylactic and supportive therapeutic role of probiotics for the management of COVID-19. In addition, the unique role of probiotics to modulate the gut microbe and assert gut homeostasis and production of interferon as an antiviral mechanism is described. Further, the regulatory role of probiotics on gut-lung axis and mucosal immune system for the potential antiviral mechanisms is reviewed and discussed.Key points• Gut microbiota role in antiviral diseases• Factors influencing the antiviral mechanism• Probiotics and Covid-19.
Collapse
Affiliation(s)
- Aravind Sundararaman
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Mousumi Ray
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - P V Ravindra
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - Prakash M Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India.
| |
Collapse
|
103
|
Engevik MA, Luck B, Visuthranukul C, Ihekweazu FD, Engevik AC, Shi Z, Danhof HA, Chang-Graham AL, Hall A, Endres BT, Haidacher SJ, Horvath TD, Haag AM, Devaraj S, Garey KW, Britton RA, Hyser JM, Shroyer NF, Versalovic J. Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut-Brain Axis. Cell Mol Gastroenterol Hepatol 2020; 11:221-248. [PMID: 32795610 PMCID: PMC7683275 DOI: 10.1016/j.jcmgh.2020.08.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The human gut microbiota can regulate production of serotonin (5-hydroxytryptamine [5-HT]) from enterochromaffin cells. However, the mechanisms underlying microbial-induced serotonin signaling are not well understood. METHODS Adult germ-free mice were treated with sterile media, live Bifidobacterium dentium, heat-killed B dentium, or live Bacteroides ovatus. Mouse and human enteroids were used to assess the effects of B dentium metabolites on 5-HT release from enterochromaffin cells. In vitro and in vivo short-chain fatty acids and 5-HT levels were assessed by mass spectrometry. Expression of tryptophan hydroxylase, short-chain fatty acid receptor free fatty acid receptor 2, 5-HT receptors, and the 5-HT re-uptake transporter (serotonin transporter) were assessed by quantitative polymerase chain reaction and immunostaining. RNA in situ hybridization assessed 5-HT-receptor expression in the brain, and 5-HT-receptor-dependent behavior was evaluated using the marble burying test. RESULTS B dentium mono-associated mice showed increased fecal acetate. This finding corresponded with increased intestinal 5-HT concentrations and increased expression of 5-HT receptors 2a, 4, and serotonin transporter. These effects were absent in B ovatus-treated mice. Application of acetate and B dentium-secreted products stimulated 5-HT release in mouse and human enteroids. In situ hybridization of brain tissue also showed significantly increased hippocampal expression of 5-HT-receptor 2a in B dentium-treated mice relative to germ-free controls. Functionally, B dentium colonization normalized species-typical repetitive and anxiety-like behaviors previously shown to be linked to 5-HT-receptor 2a. CONCLUSIONS These data suggest that B dentium, and the bacterial metabolite acetate, are capable of regulating key components of the serotonergic system in multiple host tissues, and are associated with a functional change in adult behavior.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Berkley Luck
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Chonnikant Visuthranukul
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Pediatrics, Pediatric Nutrition Special Task Force for Activating Research (STAR), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Faith D Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Amy C Engevik
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville Tennessee
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | | | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas; Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph M Hyser
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
104
|
Ortigão R, Pimentel-Nunes P, Dinis-Ribeiro M, Libânio D. Gastrointestinal Microbiome - What We Need to Know in Clinical Practice. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2020; 27:336-351. [PMID: 32999906 PMCID: PMC7506249 DOI: 10.1159/000505036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Human gut microbiota plays an important role in individual health. When the balance between host and gut microbiota is disrupted, changes in microbiota composition and function occur, which is referred as dysbiosis. Environmental factors as diet, proton pump inhibitors, and antibiotics can lead to a permanent dysbiotic disruption. Clarification of these imbalances was made possible by recent advances in genome sequencing methods that supported acknowledgment of the interplay between microbiome and intestinal and extraintestinal disorders. This review focuses on the microbiota impact in inflammatory bowel disease, gastric cancer, colorectal cancer, nonalcoholic fatty liver disease (NAFLD), irritable bowel syndrome (IBS), and Clostridium difficile infection (CDI). Furthermore, novel therapies are summarized. Fecal microbiota transplant (FMT) is a successful and established therapy in recurrent CDI, and its application in other dysbiosis-related diseases is attracting enormous interest. Pre- and probiotics target microbial rebalance and have positive effects mainly in NAFLD, ulcerative colitis, IBS, and CDI patients. Promising anticarcinogenic effects have also been demonstrated in animal models. The literature increasingly describes microbial changes in many dysbiotic disorders and shows what needs to be treated. However, probiotics and FMT application in clinical practice suffers from a shortage of randomized controlled trials with standardized therapy regimens to support their recommendation.
Collapse
Affiliation(s)
- Raquel Ortigão
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Pedro Pimentel-Nunes
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, Porto, Portugal
- MEDCIDS − Department of Community Medicine, Information and Decision in Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, Porto, Portugal
- MEDCIDS − Department of Community Medicine, Information and Decision in Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diogo Libânio
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, Porto, Portugal
- MEDCIDS − Department of Community Medicine, Information and Decision in Health, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
105
|
Preidis GA, Weizman AV, Kashyap PC, Morgan RL. AGA Technical Review on the Role of Probiotics in the Management of Gastrointestinal Disorders. Gastroenterology 2020; 159:708-738.e4. [PMID: 32531292 PMCID: PMC8018518 DOI: 10.1053/j.gastro.2020.05.060] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Geoffrey A. Preidis
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Adam V. Weizman
- Division of Gastroenterology, Mount Sinai Hospital, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Rebecca L. Morgan
- Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
106
|
The microbiome in inflammatory bowel diseases: from pathogenesis to therapy. Protein Cell 2020; 12:331-345. [PMID: 32601832 PMCID: PMC8106558 DOI: 10.1007/s13238-020-00745-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/30/2020] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become a global disease with accelerating incidence worldwide in the 21st century while its accurate etiology remains unclear. In the past decade, gut microbiota dysbiosis has consistently been associated with IBD. Although many IBD-associated dysbiosis have not been proven to be a cause or an effect of IBD, it is often hypothesized that at least some of alteration in microbiome is protective or causative. In this article, we selectively reviewed the hypothesis supported by both association studies in human and pathogenesis studies in biological models. Specifically, we reviewed the potential protective bacterial pathways and species against IBD, as well as the potential causative bacterial pathways and species of IBD. We also reviewed the potential roles of some members of mycobiome and virome in IBD. Lastly, we covered the current status of therapeutic approaches targeting microbiome, which is a promising strategy to alleviate and cure this inflammatory disease.
Collapse
|
107
|
Peng M, Tabashsum Z, Anderson M, Truong A, Houser AK, Padilla J, Akmel A, Bhatti J, Rahaman SO, Biswas D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr Rev Food Sci Food Saf 2020; 19:1908-1933. [PMID: 33337097 DOI: 10.1111/1541-4337.12565] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
The bioactive ingredients in commonly consumed foods include, but are not limited to, prebiotics, prebiotic-like components, probiotics, and postbiotics. The bioactive ingredients in functional foods have also been associated with beneficial effects on human health. For example, they aid in shaping of gut microflora and promotion of immunity. These functional components also contribute in preventing serious diseases such as cardiovascular malfunction and tumorigenesis. However, the specific mechanisms of these positive influences on human health are still under investigation. In this review, we aim to emphasize the major contents of probiotics, prebiotics, and prebiotic-like components commonly found in consumable functional foods, and we present an overview of direct and indirect benefits they provide on human health. The major contributors are certain families of metabolites, specifically short-chain fatty acids and polyunsaturated fatty acids produced by probiotics, and prebiotics, or prebiotic-like components such as flavonoids, polyphenols, and vitamins that are found in functional foods. These functional ingredients in foods influence the gut microbiota by stimulating the growth of beneficial microbes and the production of beneficial metabolites that, in turn, have direct benefits to the host, while also providing protection from pathogens and maintaining a balanced gut ecosystem. The complex interactions that arise among functional food ingredients, human physiology, the gut microbiota, and their respective metabolic pathways have been found to minimize several factors that contribute to the incidence of chronic disease, such as inflammation oxidative stress.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Zajeba Tabashsum
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Mary Anderson
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Andy Truong
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Ashley K Houser
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Joselyn Padilla
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Ahlam Akmel
- Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland
| | - Jacob Bhatti
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Shaik O Rahaman
- Department of Nutrition and Food Sciences, University of Maryland, College Park, Maryland
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland.,Biological Sciences Program - Molecular and Cellular Biology, University of Maryland, College Park, Maryland.,Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland
| |
Collapse
|
108
|
Ren C, Faas MM, de Vos P. Disease managing capacities and mechanisms of host effects of lactic acid bacteria. Crit Rev Food Sci Nutr 2020; 61:1365-1393. [PMID: 32366110 DOI: 10.1080/10408398.2020.1758625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of lactic acid bacteria (LAB) has been suggested to confer health-promoting effects on the host. However, effects of LABs have been reported to be species- and strain-specific and the mechanisms involved are subjects of discussion. Here, the possible mechanisms by which LABs induce antipathogenic, gut barrier enhancing and immune modulating effects in consumers are reviewed. Specific strains for which it has been proven that health is improved by these mechanisms are discussed. However, most strains probably act via several or combinations of mechanisms depending on which effector molecules they express. Current insight is that these effector molecules are either present on the cell wall of LAB or are excreted. These molecules are reviewed as well as the ligand binding receptors in the host. Also postbiotics are discussed. Finally, we provide an overview of the efficacy of LABs in combating infections caused by Helicobacter pylori, Salmonella, Escherichia coli, Streptococcus pneumoniae, and influenza virus, in controlling gut inflammatory diseases, in managing allergic disorders, and in alleviating cancer.
Collapse
Affiliation(s)
- Chengcheng Ren
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
109
|
Abstract
Over the last decade, the interplay between the gut microbiota, the consortium of intestinal microbes that colonizes intestinal mucosal barriers, and its host immune system has been increasingly better understood. Disruption of the delicate balance between beneficial and pathogenic commensals, known as dysbiosis, contributes to a variety of chronic immunologic and metabolic diseases. Complicating this paradigm are bacterial strains that can operate paradoxically both as instigators and attenuators of inflammatory responses, depending on host background. Here, we review the role of several strains in the genus Lactobacillus within the context of autoimmune and other chronic disorders with a predominant focus on L. reuteri. While strains within this species have been shown to provide immune health benefits, they have also been demonstrated to act as a pathobiont in autoimmune-prone hosts. Beneficial functions in healthy hosts include competing with pathogenic microbes, promoting regulatory T cell development, and protecting the integrity of the gut barrier. On the other hand, certain strains can also break through a dysfunctional gut barrier, colonize internal tissues such as the spleen or liver and promote inflammatory responses in host tissues that lead to autoimmune disease. This review summarizes the manifold roles that these commensals play in the context of health and disease.
Collapse
|
110
|
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease, ulcerative colitis, and pouchitis, are chronic, relapsing intestinal inflammatory disorders mediated by dysregulated immune responses to resident microbiota. Current standard therapies that block immune activation with oral immunosuppressives or biologic agents are generally effective, but each therapy induces a sustained remission in only a minority of patients. Furthermore, these approaches can have severe adverse events. Recent compelling evidence of a role of unbalanced microbiota (dysbiosis) driving immune dysfunction and inflammation in IBD supports the therapeutic rationale for manipulating the dysbiotic microbiota. Traditional approaches using currently available antibiotics, probiotics, prebiotics, and synbiotics have not produced optimal results, but promising outcomes with fecal microbiota transplant provide a proof of principle for targeting the resident microbiota. Rationally designed oral biotherapeutic products (LBPs) composed of mixtures of protective commensal bacterial strains demonstrate impressive preclinical results. Resident microbial-based and microbial-targeted therapies are currently being studied with increasing intensity for IBD primary therapy with favorable early results. This review presents current evidence and therapeutic mechanisms of microbiota modulation, emphasizing clinical studies, and outlines prospects for future IBD treatment using new approaches, such as LBPs, bacteriophages, bacterial function-editing substrates, and engineered bacteria. We believe that the optimal clinical use of microbial manipulation may be as adjuvants to immunosuppressive for accelerated and improved induction of deep remission and as potential safer solo approaches to sustained remission using personalized regimens based on an individual patient's microbial profile.
Collapse
Affiliation(s)
- Akihiko Oka
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- National Gnotobiotic Rodent Resource Center, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
111
|
Lin R, Sun Y, Mu P, Zheng T, Mu H, Deng F, Deng Y, Wen J. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice. Biochem Pharmacol 2020; 175:113868. [PMID: 32088259 DOI: 10.1016/j.bcp.2020.113868] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/18/2020] [Indexed: 01/01/2023]
Abstract
Deoxynivalenol (DON) is the most common mycotoxin in grains, and DON exposure causes gastrointestinal inflammation and systemic immunosuppression. The immunosuppression caused by DON has raised serious concerns about whether it is safe to use probiotics in immunocompromised hosts. Gut microbiota remodeling by Lactobacillus is a potential effective strategy to prevent DON exposure. The athymic nude mice were chose as the model of immunocompromised animals. We tested the effect of the probiotic Lactobacillus rhamnosus GG (LGG) or Lactobacillus acidophilus (LA) supplementation on host protection against DON exposure and the underlying mechanisms in nude mice. DON exposure induced endoplasmic reticulum (ER) stress and impaired intestinal barrier function and microbiota, which were relieved by LGG supplementation but not LA supplementation. LGG supplementation significantly enhanced the intestinal barrier function, increased the body weight and the survival rate in nude mice that exposed to DON for two weeks. Furthermore, LGG supplementation modulated the gut microbiota by increasing the abundance of Bacteroidetes and the levels of the butyrate-producing genes But and Buk to promote butyrate production. Butyrate inhibited the IRE1α/XBP1 signaling pathway to reduce DON-induced intestine injury. In conclusion, LGG supplementation modulated the gut microbiota to promote butyrate production, protecting against DON exposure in nude mice. Both LGG and butyrate show promise for use in protecting against DON exposure.
Collapse
Affiliation(s)
- Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Ting Zheng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Haibin Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Fengru Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
112
|
Bischoff SC, Escher J, Hébuterne X, Kłęk S, Krznaric Z, Schneider S, Shamir R, Stardelova K, Wierdsma N, Wiskin AE, Forbes A. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. Clin Nutr 2020; 39:632-653. [PMID: 32029281 DOI: 10.1016/j.clnu.2019.11.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
The present guideline is the first of a new series of "practical guidelines" based on more detailed scientific guidelines produced by ESPEN during the last few years. The guidelines have been shortened and now include flow charts that connect the individual recommendations to logical care pathways and allow rapid navigation through the guideline. The purpose of the present practical guideline is to provide an easy-to-use tool to guide nutritional support and primary nutritional therapy in inflammatory bowel disease (IBD). The guideline is aimed at professionals working in clinical practice, either in hospitals or in outpatient medicine, and treating patients with IBD. In 40 recommendations, general aspects of care in patients with IBD, and specific aspects during active disease and in remission are addressed. All recommendations are equipped with evidence grades, consensus rates, short commentaries and links to cited literature.
Collapse
Affiliation(s)
- Stephan C Bischoff
- University of Hohenheim, Institute of Nutritional Medicine, Stuttgart, Germany.
| | - Johanna Escher
- Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Xavier Hébuterne
- Gastroentérologie et Nutrition Clinique, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Stanisław Kłęk
- General and Oncology Surgery Unit, Stanley Dudrick's Memorial Hospital, Krakow, Poland
| | - Zeljko Krznaric
- Clinical Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Stéphane Schneider
- Gastroentérologie et Nutrition Clinique, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Raanan Shamir
- Tel-Aviv University, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel
| | - Kalina Stardelova
- University Clinic for Gasrtroenterohepatology, Clinal Centre "Mother Therese", Skopje, Macedonia
| | | | - Anthony E Wiskin
- Pediatric Gastroenterology & Nutrition Unit, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Alastair Forbes
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
113
|
Naseer M, Poola S, Ali S, Samiullah S, Tahan V. Prebiotics and Probiotics in Inflammatory Bowel Disease: Where are we now and where are we going? CURRENT CLINICAL PHARMACOLOGY 2020; 15:216-233. [PMID: 32164516 DOI: 10.2174/1574884715666200312100237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
The incidence, prevalence, and cost of care associated with diagnosis and management of inflammatory bowel disease are on the rise. The role of gut microbiota in the causation of Crohn's disease and ulcerative colitis has not been established yet. Nevertheless, several animal models and human studies point towards the association. Targeting intestinal dysbiosis for remission induction, maintenance, and relapse prevention is an attractive treatment approach with minimal adverse effects. However, the data is still conflicting. The purpose of this article is to provide the most comprehensive and updated review on the utility of prebiotics and probiotics in the management of active Crohn's disease and ulcerative colitis/pouchitis and their role in the remission induction, maintenance, and relapse prevention. A thorough literature review was performed on PubMed, Ovid Medline, and EMBASE using the terms "prebiotics AND ulcerative colitis", "probiotics AND ulcerative colitis", "prebiotics AND Crohn's disease", "probiotics AND Crohn's disease", "probiotics AND acute pouchitis", "probiotics AND chronic pouchitis" and "prebiotics AND pouchitis". Observational studies and clinical trials conducted on humans and published in the English language were included. A total of 71 clinical trials evaluating the utility of prebiotics and probiotics in the management of inflammatory bowel disease were reviewed and the findings were summarized. Most of these studies on probiotics evaluated lactobacillus, De Simone Formulation or Escherichia coli Nissle 1917 and there is some evidence supporting these agents for induction and maintenance of remission in ulcerative colitis and prevention of pouchitis relapse with minimal adverse effects. The efficacy of prebiotics such as fructooligosaccharides and Plantago ovata seeds in ulcerative colitis are inconclusive and the data regarding the utility of prebiotics in pouchitis is limited. The results of the clinical trials for remission induction and maintenance in active Crohn's disease or post-operative relapse with probiotics and prebiotics are inadequate and not very convincing. Prebiotics and probiotics are safe, effective and have great therapeutic potential. However, better designed clinical trials in the multicenter setting with a large sample and long duration of intervention are needed to identify the specific strain or combination of probiotics and prebiotics which will be more beneficial and effective in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Maliha Naseer
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shiva Poola
- Department of Internal and Pediatric Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Syed Ali
- Department of Internal Medicine, University of Missouri, Columbia, MO 65211, United States
| | - Sami Samiullah
- Assistant Professor of Clinical Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| | - Veysel Tahan
- Assistant Professor of Clinical Medicine, University of Missouri, Division of Gastroenterology and Hepatology, Columbia, MO 65211, United States
| |
Collapse
|
114
|
|
115
|
Lee Y, Sugihara K, Gillilland MG, Jon S, Kamada N, Moon JJ. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. NATURE MATERIALS 2020; 19:118-126. [PMID: 31427744 PMCID: PMC6923573 DOI: 10.1038/s41563-019-0462-9] [Citation(s) in RCA: 452] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 07/10/2019] [Indexed: 05/06/2023]
Abstract
While conventional approaches for inflammatory bowel diseases mainly focus on suppressing hyperactive immune responses, it remains unclear how to address disrupted intestinal barriers, dysbiosis of the gut commensal microbiota and dysregulated mucosal immune responses in inflammatory bowel diseases. Moreover, immunosuppressive agents can cause off-target systemic side effects and complications. Here, we report the development of hyaluronic acid-bilirubin nanomedicine (HABN) that accumulates in inflamed colonic epithelium and restores the epithelium barriers in a murine model of acute colitis. Surprisingly, HABN also modulates the gut microbiota, increasing the overall richness and diversity and markedly augmenting the abundance of Akkermansia muciniphila and Clostridium XIVα, which are microorganisms with crucial roles in gut homeostasis. Importantly, HABN associated with pro-inflammatory macrophages, regulated innate immune responses and exerted potent therapeutic efficacy against colitis. Our work sheds light on the impact of nanotherapeutics on gut homeostasis, microbiome and innate immune responses for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Kohei Sugihara
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Merritt G Gillilland
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
116
|
Hall AE, Engevik MA, Oezguen N, Haag A, Versalovic J. ClC transporter activity modulates histidine catabolism in Lactobacillus reuteri by altering intracellular pH and membrane potential. Microb Cell Fact 2019; 18:212. [PMID: 31830990 PMCID: PMC6909576 DOI: 10.1186/s12934-019-1264-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Histamine is a key mediator of the anti-inflammatory activity conferred by the probiotic organism Lactobacillus reuteri ATCC PTA 6475 in animal models of colitis and colorectal cancer. In L. reuteri, histamine synthesis and secretion requires L-histidine decarboxylase and a L-histidine/histamine exchanger. Chloride channel (ClC)-family proton/chloride antiporters have been proposed to act as electrochemical shunts in conjunction with amino acid decarboxylase systems, correcting ion imbalances generated by decarboxylation through fixed ratio exchange of two chloride ions for one proton. This family is unique among transporters by facilitating ion flux in either direction. Here we examine the histidine decarboxylase system in relation to ClC antiporters in the probiotic organism Lactobacillus reuteri. RESULTS In silico analyses reveal that L. reuteri possesses two ClC transporters, EriC and EriC2, as well as a complete histidine decarboxylase gene cluster (HDC) for the synthesis and export of histamine. When the transport activity of either proton/chloride antiporter is disrupted by genetic manipulation, bacterial histamine output is reduced. Using fluorescent reporter assays, we further show that ClC transporters affect histamine output by altering intracellular pH and membrane potential. ClC transport also alters the expression and activity of two key HDC genes: the histidine decarboxylase (hdcA) and the histidine/histamine exchanger (hdcP). CONCLUSIONS Histamine production is a potentially beneficial feature for intestinal microbes by promoting long-term colonization and suppression of inflammation and host immune responses. ClC transporters may serve as tunable modulators for histamine production by L. reuteri and other gut microbes.
Collapse
Affiliation(s)
- Anne E Hall
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, 77030, USA
- Infectious Disease Laboratories, Akron Children's Hospital, Akron, OH, 44308, USA
| | - Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Numan Oezguen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Anthony Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pathology, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
117
|
Dore MP, Bibbò S, Fresi G, Bassotti G, Pes GM. Side Effects Associated with Probiotic Use in Adult Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019; 11:2913. [PMID: 31810233 PMCID: PMC6950558 DOI: 10.3390/nu11122913] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Probiotics demonstrated to be effective in the treatment of inflammatory bowel disease (IBD). However, the safety profile of probiotics is insufficiently explored. In the present systematic review and meta-analysis, we examined the occurrence of side effects related to probiotic/synbiotic use in randomized controlled trials (RCTs) of IBD patients as compared with placebo. Eligible RCTs in adult patients with IBD were identified by accessing the Medline database via PubMed, EMBASE, CENTRAL and the Cochrane central register of controlled trials up to December 2018. Occurrence of side effects was retrieved and recorded. Data were pooled and the relative risks (RRs) with their 95% confidence intervals (CIs) were calculated. The low-moderate study heterogeneity, assessed by the I2 statistic, allowed to use of a fixed-effects modelling for meta-analysis. Nine RCTs among 2337, including 826 patients (442 treated with probiotics/symbiotic and 384 with placebo) were analyzed. Eight were double-blind RCTs, and six enrolled ulcerative colitis (UC) patients. Although the risk for the overall side effects (RR 1.35, 95%CI 0.93-1.94; I2 = 25%) and for gastrointestinal symptoms (RR 1.78, 95%CI 0.99-3.20; I2 = 20%) was higher in IBD patients taking probiotics than in those exposed to placebo, statistical significance was achieved only for abdominal pain (RR 2.59, 95%CI 1.28-5.22; I2 = 40%). In conclusion, despite the small number of RCTs and the variety of probiotic used and schedule across studies, these findings highlight the level of research effort still required to identify the most appropriate use of probiotics in IBD.
Collapse
Affiliation(s)
- Maria Pina Dore
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefano Bibbò
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
| | - Gianni Fresi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
| | - Gabrio Bassotti
- Gastroenterology and Hepatology Section, Department of Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (M.P.D.); (S.B.); (G.F.)
| |
Collapse
|
118
|
Zhai Q, Zhang Q, Tian F, Zhao J, Zhang H, Chen W. The synergistic effect of Lactobacillus plantarum CCFM242 and zinc on ulcerative colitis through modulating intestinal homeostasis. Food Funct 2019; 10:6147-6156. [PMID: 31498347 DOI: 10.1039/c9fo00926d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The beneficial effects of the essential metal zinc (Zn) and probiotics on gut health have been well documented, but how they synergistically affect intestinal physiology is not thoroughly understood. In this study, the Zn-enriching ability of 33 probiotics in a medium or an aqueous solution was evaluated. A Lactobacillus plantarum strain, CCFM242, with a superior Zn-enriching ability was screened. Among the cellular components, the cell wall played the most important role in the Zn binding of L. plantarum CCFM242. The carboxyl and amino groups on the surface of the strain were also vital for Zn enrichment. Upon optimization of the Zn-enriching procedure, the Zn-binding ability of this strain reached 24.89 ± 0.50 mg g-1 dry biomass. Compared to the treatment of ZnSO4 or L. plantarum CCFM242, oral supplementation with Zn-enriched L. plantarum CCFM242 resulted in a higher serum Zn level, enhanced levels of mRNA expression of colonic tight junctions, increased levels of short-chain fatty acids (SCFAs) in colonic contents, and stronger modulatory effects on the anti-oxidant and immune defense systems in the gut of normal mice. Zn-Enriched L. plantarum CCFM242 treatment also offered more significant protective effects against dextran sodium sulfate (DSS)-induced colitis in mice compared to the treatment of ZnSO4 or L. plantarum CCFM242 alone. The synergistic effect of Zn-enriched L. plantarum CCFM242 may be due to the increased tolerance of the strain to the gastrointestinal tract conditions and the higher bioavailability of Zn after the metal-enrichment process.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Centre for Functional Food, Wuxi, Jiangsu 214122, China and Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and National Engineering Research Centre for Functional Food, Wuxi, Jiangsu 214122, China and Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
119
|
Sireswar S, Ghosh I, Dey G. First and second generation probiotic therapeutics for Inflammatory Bowel Disease. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
120
|
Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019; 8:pathogens8030126. [PMID: 31412603 PMCID: PMC6789542 DOI: 10.3390/pathogens8030126] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic complex inflammatory gut pathological condition, examples of which include Crohn’s disease (CD) and ulcerative colitis (UC), which is associated with significant morbidity. Although the etiology of IBD is unknown, gut microbiota alteration (dysbiosis) is considered a novel factor involved in the pathogenesis of IBD. The gut microbiota acts as a metabolic organ and contributes to human health by performing various physiological functions; deviation in the gut flora composition is involved in various disease pathologies, including IBD. This review aims to summarize the current knowledge of gut microbiota alteration in IBD and how this contributes to intestinal inflammation, as well as explore the potential role of gut microbiota-based treatment approaches for the prevention and treatment of IBD. The current literature has clearly demonstrated a perturbation of the gut microbiota in IBD patients and mice colitis models, but a clear causal link of cause and effect has not yet been presented. In addition, gut microbiota-based therapeutic approaches have also shown good evidence of their effects in the amelioration of colitis in animal models (mice) and IBD patients, which indicates that gut flora might be a new promising therapeutic target for the treatment of IBD. However, insufficient data and confusing results from previous studies have led to a failure to define a core microbiome associated with IBD and the hidden mechanism of pathogenesis, which suggests that well-designed randomized control trials and mouse models are required for further research. In addition, a better understanding of this ecosystem will also determine the role of prebiotics and probiotics as therapeutic agents in the management of IBD.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Ashiq Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China.
| |
Collapse
|
121
|
Sales-Campos H, Soares SC, Oliveira CJF. An introduction of the role of probiotics in human infections and autoimmune diseases. Crit Rev Microbiol 2019; 45:413-432. [PMID: 31157574 DOI: 10.1080/1040841x.2019.1621261] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last decades, studies exploring the role of microorganisms inhabiting human body in different scenarios have demonstrated the great potential of modulating them to treat and prevent diseases. Among the most outstanding applications, probiotics have been used for over a century to treat infections and inflammation. Despite the beneficial role of other probiotics, Lactobacillus and Bifidobacterium species are the most frequently used, and have been effective as a therapeutic option in the treatment/prevention of dental caries, periodontal diseases, urogenital infections, and gastrointestinal infections. Additionally, as gastrointestinal tract harbors a great diversity of microbial species that directly or indirectly modulate host metabolism and immune response, the influence of intestinal microbiota, one of the targets of therapies using probiotics, on the biology of immune cells can be explored to treat inflammatory disorders or immune-mediated diseases. Thus, it is not surprising that probiotics have presented promising results in modulating human inflammatory diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis and inflammatory bowel disease, among others. Hence, the purpose of this review is to discuss the potential of therapeutic approaches using probiotics to constrain infection and development of inflammation on human subjects.
Collapse
Affiliation(s)
- Helioswilton Sales-Campos
- Laboratory of Immunology and Bioinformatics, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro , Uberaba , Minas Gerais , Brazil.,Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiás , Goiânia , Brazil
| | - Siomar Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro , Uberaba , Minas Gerais , Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro , Uberaba , Minas Gerais , Brazil
| |
Collapse
|
122
|
Feng LW, Zhao Y. Efficacy and safety of probiotics in adults with ulcerative colitis: A meta-analysis of placebo-controlled trials. Shijie Huaren Xiaohua Zazhi 2019; 27:367-375. [DOI: 10.11569/wcjd.v27.i6.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In clinical work, probiotics are often used to treat ulcerative colitis (UC). However, it is unclear how and at which stage probiotics play a role in the treatment of UC.
AIM To evaluate the efficacy and safety of probiotics vs placebo in the treatment of UC.
METHODS PubMed, EMBASE, Cochrane Library, WanFang Database, and the Chinese Biomedical Database were searched. Data were extracted and selected using strict criteria.
RESULTS Fourteen randomized controlled trials (RCTs) involving a total of 869 participants to investigate the effects of probiotics (n = 465) vs placebo (n = 404) on UC were included, of which nine evaluated the remission rate, and five estimated the recurrence rate. Compared with the placebo group, the remission rate of UC patients who received probiotics was significantly better (relative risk = 1.36; 95%CI: 1.11-1.66, P = 0.002). When comparing the recurrence rate of UC between the probiotics and placebo groups, it was found that there was a significant heterogeneity (P = 0.09, I2 = 72%). Subgroup analysis showed that probiotics alone were better than placebo (P = 0.004), while combined with others drugs, there was no significant between the probiotics and placebo groups (P = 0.95). Four RCTs compared the safety, which showed that there was no significant difference between the two groups (P = 0.86).
CONCLUSION Probiotics have better effects in UC maintenance therapy than placebo. However, with regard to the recurrence rate of UC, probiotics alone have benefits in UC than placebo, while combined with other drugs, probiotics are not better than placebo.
Collapse
Affiliation(s)
- Li-Wei Feng
- Department of ICU, the Second Hospital of Tianjin Medical University, Tianjin 300211, China,College of Nursing, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- College of Nursing, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
123
|
Abraham B, Quigley EMM. Antibiotics and probiotics in inflammatory bowel disease: when to use them? Frontline Gastroenterol 2019; 11:62-69. [PMID: 31885842 PMCID: PMC6914299 DOI: 10.1136/flgastro-2018-101057] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 02/04/2023] Open
Abstract
Antibiotics and probiotics are often used as adjunctive therapy in inflammatory bowel disease. However, data are limited and randomised controlled trials are too inconsistent to provide generalised recommendations for their use in all patients with ulcerative colitis or Crohn's disease. Antibiotics are best used in the management of infectious complications and fistulas in Crohn's disease and, perhaps, in reducing the intensity of inflammation in luminal disease. Ciprofloxacin, metronidazole and rifaximin have been most widely used and studied. On the other hand, there appears to be a limited role for antibiotics in ulcerative colitis (UC). Probiotics are most effective in pouchitis, and may have a role in the initial therapy and maintenance of remission in mild UC; the probiotic cocktail VSL#3 has been the most widely studied. There is scant evidence of efficacy for probiotics in Crohn's disease.
Collapse
Affiliation(s)
- Bincy Abraham
- Gastroenterology and Hepatology, Houston Methodist, Houston, Texas, USA
| | | |
Collapse
|
124
|
Meng X, Zhou HY, Shen HH, Lufumpa E, Li XM, Guo B, Li BZ. Microbe-metabolite-host axis, two-way action in the pathogenesis and treatment of human autoimmunity. Autoimmun Rev 2019; 18:455-475. [PMID: 30844549 DOI: 10.1016/j.autrev.2019.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
Abstract
The role of microorganism in human diseases cannot be ignored. These microorganisms have evolved together with humans and worked together with body's mechanism to maintain immune and metabolic function. Emerging evidence shows that gut microbe and their metabolites open up new doors for the study of human response mechanism. The complexity and interdependence of these microbe-metabolite-host interactions are rapidly being elucidated. There are various changes of microbial levels in models or in patients of various autoimmune diseases (AIDs). In addition, the relevant metabolites involved in mechanism mainly include short-chain fatty acids (SCFAs), bile acids (BAs), and polysaccharide A (PSA). Meanwhile, the interaction between microbes and host genes is also a factor that must be considered. It has been demonstrated that human microbes are involved in the development of a variety of AIDs, including organ-specific AIDs and systemic AIDs. At the same time, microbes or related products can be used to remodel body's response to alleviate or cure diseases. This review summarizes the latest research of microbes and their related metabolites in AIDs. More importantly, it highlights novel and potential therapeutics, including fecal microbial transplantation, probiotics, prebiotics, and synbiotics. Nonetheless, exact mechanisms still remain elusive, and future research will focus on finding a specific strain that can act as a biomarker of an autoimmune disease.
Collapse
Affiliation(s)
- Xiang Meng
- School of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Anhui, Hefei, China
| | - Eniya Lufumpa
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Xiao-Mei Li
- Department of Rheumatology & Immunology, Anhui Provincial Hospital, Anhui, Hefei, China
| | - Biao Guo
- The Second Affiliated Hospital of Anhui Medical University, Anhui, Hefei, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
125
|
Abstract
Complementary and alternative medicine (CAM) consists of products and practices that are not considered to be a part of conventional medicine. This article reviews pediatric studies on CAM in inflammatory bowel disease (IBD) along with relevant adult studies. Prevalence of CAM use ranges from 22% to 84% in children with IBD all over the world. CAM use in IBD includes diet changes, supplements, herbals, botanicals, and mind-body therapies. Common reasons for using CAM include severe disease and concern for adverse effects of conventional medicines. Despite widespread use, there are limited studies on efficacy and safety of CAM in children. Small studies suggest a favorable evidence for use of probiotics, fish oil, marijuana, and mind-body therapy in IBD. Adverse effects of CAM are reported but are rare. The article provides current state of knowledge on the topic and provides guidance to physicians to address CAM use in pediatric patients with IBD.
Collapse
|
126
|
Astó E, Méndez I, Audivert S, Farran-Codina A, Espadaler J. The Efficacy of Probiotics, Prebiotic Inulin-Type Fructans, and Synbiotics in Human Ulcerative Colitis: A Systematic Review and Meta-Analysis. Nutrients 2019; 11:nu11020293. [PMID: 30704039 PMCID: PMC6412539 DOI: 10.3390/nu11020293] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
Studies of probiotics, fructan-type prebiotics, and synbiotics in patients with ulcerative colitis (UC) show significant heterogeneity in methodology and results. Here, we study the efficacy of such interventions and the reasons for the heterogeneity of their results. Eligible random controlled trials were collected from the PUBMED and SCOPUS databases. A total of 18 placebo-controlled and active treatment-controlled (i.e., mesalazine) studies were selected with a Jadad score ≥ 3, including 1491 patients with UC. Data for prebiotics and synbiotics were sparse and consequently these studies were excluded from the meta-analysis. The UC remission efficacy of probiotics was measured in terms of relative risk (RR) and odds ratio (OR). Significant effects were observed in patients with active UC whenever probiotics containing bifidobacteria were used, or when adopting the US Food and Drug Administration (FDA)-recommended scales (UC Disease Activity Index and Disease Activity Index). By the FDA recommended scales, the RR was 1.55 (CI95%: 1.13–2.15, p-value = 0.007, I2 = 29%); for bifidobacteria-containing probiotics, the RR was 1.73 (CI95%: 1.23–2.43, p-value = 0.002, I2 = 35%). No significant effects were observed on the maintenance of remission for placebo-controlled or mesalazine-controlled studies. We conclude that a validated scale is necessary to determine the state of patients with UC. However, probiotics containing bifidobacteria are promising for the treatment of active UC.
Collapse
Affiliation(s)
- Erola Astó
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| | - Iago Méndez
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| | - Sergi Audivert
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| | - Andreu Farran-Codina
- Department of Nutrition, Food Science, and Gastronomy, XaRTA ⁻ INSA, Faculty of Pharmacy, University of Barcelona, Campus de l'Alimentació de Torribera, Av. Prat de la Riba, 171, Santa Coloma de Gramenet, E-08921 Barcelona, Spain.
| | - Jordi Espadaler
- AB-Biotics, S.A., ESADE Creapolis, Av. Torre Blanca, 57, Sant Cugat del Vallès, E-08172 Barcelona, Spain.
| |
Collapse
|
127
|
Basso PJ, Câmara NOS, Sales-Campos H. Microbial-Based Therapies in the Treatment of Inflammatory Bowel Disease - An Overview of Human Studies. Front Pharmacol 2019; 9:1571. [PMID: 30687107 PMCID: PMC6335320 DOI: 10.3389/fphar.2018.01571] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of multifactorial and inflammatory infirmities comprised of two main entities: Ulcerative colitis (UC) and Crohn's disease (CD). Classic strategies to treat IBD are focused on decreasing inflammation besides inducing and extending disease remission. However, these approaches have several limitations such as low responsiveness, excessive immunosuppression, and refractoriness. Despite the multifactorial causality of IBD, immune disturbances and intestinal dysbiosis have been suggested as the central players in disease pathogenesis. Hence, therapies aiming at modulating intestinal microbial composition may represent a promising strategy in IBD control. Fecal microbiota transplantation (FMT) and probiotics have been explored as promising candidates to reestablish microbial balance in several immune-mediated diseases such as IBD. These microbial-based therapies have demonstrated the ability to reduce both the dysbiotic environment and production of inflammatory mediators, thus inducing remission, especially in UC. Despite these promising results, there is still no consensus on the relevance of such treatments in IBD as a potential clinical strategy. Thus, this review aims to critically review and describe the use of FMT and probiotics to treat patients with IBD.
Collapse
Affiliation(s)
- Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
128
|
Guandalini S, Sansotta N. Probiotics in the Treatment of Inflammatory Bowel Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:101-107. [PMID: 30632114 DOI: 10.1007/5584_2018_319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While considerable progress has been made in the treatment of inflammatory bowel diseases (IBD), alternative options are constantly sought by adult patients as well as frustrated parents of young patients. These include dietary modifications, food supplements, and, more recently, probiotics.Their potential use is based on the demonstrated role of the altered mucosal immune response to bacterial agents that eventually leads to the chronic intestinal inflammation that characterized IBD. In fact, probiotics might conceivably be beneficial due to multiple mechanisms: stimulation of anti-inflammatory cytokines, inhibition of inflammatory cytokines, strengthening of intestinal barrier, and antagonistic action on pathogens. Such mechanisms have been largely extensively investigated in animal models both in vitro and in vivo.Despite such premise, a relatively scarce number of clinical trials are available, and of them only a handful in pediatric age. Overall, available evidence is very disappointing in the treatment of Crohn's disease (CD), where no recommendation for probiotic use can be made. In ulcerative colitis (UC), on the other hand, there is clinical evidence of efficacy for some specific strains and especially for multi-strain preparations.In summary, more data are needed very likely to yield a better understanding on what strains and in what doses should be used in different specific clinical settings.
Collapse
Affiliation(s)
- Stefano Guandalini
- Section of Gastroenterology, Hepatology and Nutrition Department of Pediatrics, University of Chicago, Chicago, IL, USA.
| | - Naire Sansotta
- Section of Gastroenterology, Hepatology and Nutrition Department of Pediatrics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
129
|
Yang YJ, Ni YH. Gut microbiota and pediatric obesity/non-alcoholic fatty liver disease. J Formos Med Assoc 2018; 118 Suppl 1:S55-S61. [PMID: 30509561 DOI: 10.1016/j.jfma.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023] Open
Abstract
Huge amount microorganisms resides in human intestine, and many contribute to the maturation and homeostasis of immune system. The diversity of gut ecology are affected by the gestational age, delivery type, feeding sources, and antibiotics use in neonates. Recent studies pointed out that disturbance of gut microbiota, so called dysbiosis, could result in several pediatric diseases including obesity, non-alcoholic fatty liver disease (NAFLD), metabolic syndromes, allergic diseases, and inflammatory bowel diseases. However, there are no single species can be proven to play a key factor in pediatric obesity and NAFLD at present. Various probiotics may confer benefit to these gut microbiota-related pediatric diseases. The clinical application is still limited. This review article aimed to elucidate evidently the relationship between gut microbiota and pediatric obesity/NAFLD and to discuss the potential probiotics use in pediatric obesity and NAFLD.
Collapse
Affiliation(s)
- Yao-Jong Yang
- Department of Pediatrics, Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
130
|
Bozzi Cionci N, Baffoni L, Gaggìa F, Di Gioia D. Therapeutic Microbiology: The Role of Bifidobacterium breve as Food Supplement for the Prevention/Treatment of Paediatric Diseases. Nutrients 2018; 10:E1723. [PMID: 30423810 PMCID: PMC6265827 DOI: 10.3390/nu10111723] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
The human intestinal microbiota, establishing a symbiotic relationship with the host, plays a significant role for human health. It is also well known that a disease status is frequently characterized by a dysbiotic condition of the gut microbiota. A probiotic treatment can represent an alternative therapy for enteric disorders and human pathologies not apparently linked to the gastrointestinal tract. Among bifidobacteria, strains of the species Bifidobacterium breve are widely used in paediatrics. B. breve is the dominant species in the gut of breast-fed infants and it has also been isolated from human milk. It has antimicrobial activity against human pathogens, it does not possess transmissible antibiotic resistance traits, it is not cytotoxic and it has immuno-stimulating abilities. This review describes the applications of B. breve strains mainly for the prevention/treatment of paediatric pathologies. The target pathologies range from widespread gut diseases, including diarrhoea and infant colics, to celiac disease, obesity, allergic and neurological disorders. Moreover, B. breve strains are used for the prevention of side infections in preterm newborns and during antibiotic treatments or chemotherapy. With this documentation, we hope to increase knowledge on this species to boost the interest in the emerging discipline known as "therapeutic microbiology".
Collapse
Affiliation(s)
- Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - Francesca Gaggìa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-Università di Bologna, Viale Fanin 42, 40127 Bologna, Italy.
| |
Collapse
|
131
|
Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol 2018; 7:135-156. [PMID: 30510995 PMCID: PMC6260383 DOI: 10.1016/j.jcmgh.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Psoriasis and inflammatory bowel disease (IBD) are both chronic inflammatory diseases occurring in the skin and gut, respectively. It is well established that psoriasis and IBD have high concordance rates, and similar changes in immune cells and microbiome composition have been reported in both conditions. To study this connection, we used a combination murine model of psoriatic dermatitis and colitis in which mice were treated topically with the Toll-like receptor 7 agonist imiquimod (IMQ) and fed dextran sulfate sodium (DSS). METHODS We applied IMQ topically to B6 mice (IMQ mice) and subsequently fed them 2% DSS in their drinking water. Disease activity and immune cell phenotypes were analyzed, and the microbial composition of fecal samples was investigated using 16S ribosomal RNA sequencing. We transplanted feces from IMQ mice to germ-free IQI/Jic (IQI) mice and fed them DSS to assess the effect of the gut microbiome on disease. RESULTS We first confirmed that IMQ mice showed accelerated DSS colitis. IMQ mice had decreased numbers of IgD+ and IgM+ B cells and increased numbers of non-cytokine-producing macrophages in the gut. Moreover, the gut microbiomes of IMQ mice were perturbed, with significant reductions of Lactobacillus johnsonii and Lactobacillus reuteri populations. Germ-free mice transplanted with feces from IMQ mice, but not with feces from untreated mice, also developed exacerbated DSS colitis. CONCLUSIONS These results suggest that skin inflammation may contribute to pathogenic conditions in the gut via immunologic and microbiological changes. Our finding of a novel potential skin-gut interaction provides new insights into the coincidence of psoriasis and IBD.
Collapse
Key Words
- Abx, antibiotics
- BM, bone marrow
- BSA, bovine serum albumin
- DAI, disease activity index
- DSS, dextran sulfate sodium
- Dermatitis
- FITC, fluorescein isothiocyanate
- GF, germ-free
- Gut Microbiome
- HBSS, Hank’s balanced salt solution
- IBD, inflammatory bowel disease
- IFN, interferon
- IL, interleukin
- ILC, innate lymphoid cell
- IMQ, imiquimod
- IP, intraperitoneally
- IQI, IQI/Jic
- Inflammatory Bowel Disease
- LP, lamina propria
- NLRP3, NACHT, LRR, and PYD domains-containing protein 3
- OTU, operational taxonomic unit
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PE, phycoerythrin
- PMA, phorbol 12-myristate-13-acetate
- SPF, specific pathogen-free
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- Th, T helper
- Treg, regulatory T cells
- WT, wild-type
- ZO-1, zonula occludens-1
- dLN, draining lymph node
- gnoto, gnotobiote
- pDC, plasmacytoid dendritic cell
- rRNA, ribosomal RNA
Collapse
|
132
|
Turner D, Ruemmele FM, Orlanski-Meyer E, Griffiths AM, de Carpi JM, Bronsky J, Veres G, Aloi M, Strisciuglio C, Braegger CP, Assa A, Romano C, Hussey S, Stanton M, Pakarinen M, de Ridder L, Katsanos K, Croft N, Navas-López V, Wilson DC, Lawrence S, Russell RK. Management of Paediatric Ulcerative Colitis, Part 1: Ambulatory Care-An Evidence-based Guideline From European Crohn's and Colitis Organization and European Society of Paediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018; 67:257-291. [PMID: 30044357 DOI: 10.1097/mpg.0000000000002035] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The contemporary management of ambulatory ulcerative colitis (UC) continues to be challenging with ∼20% of children needing a colectomy within childhood years. We thus aimed to standardize daily treatment of pediatric UC and inflammatory bowel diseases (IBD)-unclassified through detailed recommendations and practice points. METHODS These guidelines are a joint effort of the European Crohn's and Colitis Organization (ECCO) and the Paediatric IBD Porto group of European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN). An extensive literature search with subsequent evidence appraisal using robust methodology was performed before 2 face-to-face meetings. All 40 included recommendations and 86 practice points were endorsed by 43 experts in Paediatric IBD with at least an 88% consensus rate. RESULTS These guidelines discuss how to optimize the use of mesalamine (including topical), systemic and locally active steroids, thiopurines and, for more severe disease, biologics. The use of other emerging therapies and the role of surgery are also covered. Algorithms are provided to aid therapeutic decision-making based on clinical assessment and the Paediatric UC Activity Index (PUCAI). Advice on contemporary therapeutic targets incorporating the use of calprotectin and the role of therapeutic drug monitoring are presented, as well as other management considerations around pouchitis, extraintestinal manifestations, nutrition, growth, psychology, and transition. A brief section on disease classification using the PIBD-classes criteria and IBD-unclassified is also part of these guidelines. CONCLUSIONS These guidelines provide a guide to clinicians managing children with UC and IBD-unclassified management to provide modern management strategies while maintaining vigilance around appropriate outcomes and safety issues.
Collapse
Affiliation(s)
- Dan Turner
- Shaare Zedek Medical Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Frank M Ruemmele
- Université Paris Descartes, Sorbonne Paris Cité, APHP, Hôpital Necker Enfants Malades, Paris, France
| | | | - Anne M Griffiths
- The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Jiri Bronsky
- Department of Paediatrics, University Hospital Motol, Prague, Czech Republic
| | - Gabor Veres
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania "Luigi Vanvitelli," Napoli, Italy
| | | | - Amit Assa
- Schneider Children's Hospital, Petach Tikva, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Claudio Romano
- Pediatric Department, University of Messina, Messina, Italy
| | - Séamus Hussey
- National Children's Research Centre, Royal College of Surgeons of Ireland and University College Dublin, Dublin, Ireland
| | | | - Mikko Pakarinen
- Helsinki University Children's Hospital, Department of Pediatric Surgery, Helsinki, Finland
| | - Lissy de Ridder
- Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Nick Croft
- Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Victor Navas-López
- Pediatric Gastroenterology and Nutrition Unit. Hospital Materno, IBIMA, Málaga, Spain
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, UK
| | - Sally Lawrence
- BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
133
|
Costanzo M, Cesi V, Palone F, Pierdomenico M, Colantoni E, Leter B, Vitali R, Negroni A, Cucchiara S, Stronati L. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Benef Microbes 2018; 9:389-399. [PMID: 29633636 DOI: 10.3920/bm2017.0078] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current research into original therapies to treat intestinal inflammation is focusing on no-drug therapies. KLD is a mixture of krill oil (KO), probiotic Lactobacillus reuteri (LR), and vitamin D (VitD3). The aim of this study was to assess in vitro and in vivo the potential cooperative effects of KLD in reducing gut inflammation. Colorectal adenocarcinoma cell lines, CACO2 and HT29, and C57BL/6 mice were used for in vitro and in vivo analyses, respectively. Cells were exposed to cytomix (interferon gamma + tumour necrosis factor alpha (TNF-α)) to induce inflammation or co-exposed to cytomix and KO, LR and VitD3 alone or to cytomix and KLD. Animals were treated for 7 days with dextran sodium sulphate (DSS) to induce colitis or with DSS and KLD. In vitro assays: F-actin expression was analysed by immunofluorescence; scratch test and trans-epithelial electric resistance test were performed to measure wound healing; adhesion/invasion assays of adhesive and invasive Escherichia coli (AIEC) bacteria were made; mRNA expression of TNF-α, interleukin (IL)-8 and vitamin D receptor (VDR) was detected by quantitative PCR. In vivo assays: body weight, clinical score, histological score and large intestine weight and length were estimated; mRNA expression of TNF-α, IL-1β, IL-6, IL-10 by quantitative PCR; VDR expression was detected by quantitative PCR and immunohistochemistry. In vitro: KLD restores epithelial cell-cell adhesion and mucosal healing during inflammation, while decreases the adhesiveness and invasiveness of AIEC bacteria and TNF-α and IL-8 mRNA expression and increases VDR expression. In vivo: KLD significantly improves body weight, clinical score, histological score and large intestine length of mice with DSS-induced colitis and reduces TNF-α, IL-1β and IL-6 mRNA levels, while increases IL-10 mRNA and VDR levels. KLD has significant effects on the intestinal mucosa, strongly decreasing inflammation, increasing epithelial restitution and reducing pathogenicity of harmful commensal bacteria.
Collapse
Affiliation(s)
- M Costanzo
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - V Cesi
- 2 Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Via Angullarese 301, 00123 Rome, Italy
| | - F Palone
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - M Pierdomenico
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - E Colantoni
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - B Leter
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - R Vitali
- 2 Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Via Angullarese 301, 00123 Rome, Italy
| | - A Negroni
- 2 Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Via Angullarese 301, 00123 Rome, Italy
| | - S Cucchiara
- 1 Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - L Stronati
- 3 Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
134
|
Miele E, Shamir R, Aloi M, Assa A, Braegger C, Bronsky J, de Ridder L, Escher JC, Hojsak I, Kolaček S, Koletzko S, Levine A, Lionetti P, Martinelli M, Ruemmele F, Russell RK, Boneh RS, van Limbergen J, Veereman G, Staiano A. Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2018; 66:687-708. [PMID: 29570147 DOI: 10.1097/mpg.0000000000001896] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS A growing body of evidence supports the need for detailed attention to nutrition and diet in children with inflammatory bowel disease (IBD). We aimed to define the steps in instituting dietary or nutritional management in light of the current evidence and to offer a useful and practical guide to physicians and dieticians involved in the care of pediatric IBD patients. METHODS A group of 20 experts in pediatric IBD participated in an iterative consensus process including 2 face-to-face meetings, following an open call to Nutrition Committee of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition Porto, IBD Interest, and Nutrition Committee. A list of 41 predefined questions was addressed by working subgroups based on a systematic review of the literature. RESULTS A total of 53 formal recommendations and 47 practice points were endorsed with a consensus rate of at least 80% on the following topics: nutritional assessment; macronutrients needs; trace elements, minerals, and vitamins; nutrition as a primary therapy of pediatric IBD; probiotics and prebiotics; specific dietary restrictions; and dietary compounds and the risk of IBD. CONCLUSIONS This position paper represents a useful guide to help the clinicians in the management of nutrition issues in children with IBD.
Collapse
Affiliation(s)
- Erasmo Miele
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II," Naples, Italy
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Amit Assa
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Christian Braegger
- Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jiri Bronsky
- Gastroenterology and Nutrition Unit, Department of Paediatrics, 2nd Faculty of Medicine, Charles, University and Motol University Hospital, Prague, Czech Republic
| | - Lissy de Ridder
- Department of Paediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Johanna C Escher
- Department of Paediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Iva Hojsak
- Department of Gastroenterology, Children Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sanja Kolaček
- Department of Gastroenterology, Children Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Arie Levine
- Wolfson Medical Center, Sackler School of Medicine, Tel-Aviv, Israel
| | - Paolo Lionetti
- Meyer Children Hospital, University of Florence, Florence, Italy
| | - Massimo Martinelli
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II," Naples, Italy
| | - Frank Ruemmele
- Université Sorbonne Paris Cité, Université Paris Descartes, and Assistance publique-hôpitaux de Paris, Hôpital Necker-Enfants malades, Service de gastroentérologie pédiatrique, Paris, France
| | - Richard K Russell
- Department of Paediatric Gastroenterology, The Royal Hospital for Children, Glasgow, Scotland
| | | | - Johan van Limbergen
- Department of Pediatrics, Division of Pediatric Gastroenterology & Nutrition, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gigi Veereman
- Department of Paediatric Gastroenterology and Nutrition, University Hospital Brussels, Free University Brussels, Brussels, Belgium
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
135
|
Di Nardo G, Cremon C, Frediani S, Lucarelli S, Villa MP, Stanghellini V, La Torre G, Martemucci L, Barbara G. Allergic Proctocolitis Is a Risk Factor for Functional Gastrointestinal Disorders in Children. J Pediatr 2018; 195:128-133.e1. [PMID: 29352590 DOI: 10.1016/j.jpeds.2017.10.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/23/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To test the hypothesis that allergic proctocolitis, a cause of self-limiting rectal bleeding in infants, can predispose to the development of functional gastrointestinal disorders (FGIDs) later in childhood. STUDY DESIGN We studied a cohort of 80 consecutive patients diagnosed with allergic proctocolitis. Their sibling or matched children presenting to the same hospital for minor trauma served as controls. Parents of the patients with allergic proctocolitis and controls participated in a telephone interview every 12 months until the child was at least 4 years old. At that time, they were asked to complete the parental Questionnaire on Pediatric Gastrointestinal Symptoms, Rome III version. RESULTS Sixteen of the 160 subjects (10.0%) included in the study met the Rome III criteria for FGIDs. Among the 80 patients with allergic proctocolitis, 12 (15.0%) reported FGIDs, compared with 4 of 80 (5.0%) controls (P = .035). After adjustment for age and sex, the OR for FGIDs in allergic proctocolitis group was 4.39 (95% CI, 1.03-18.68). FGIDs were significantly associated with iron deficiency anemia, duration of hematochezia, and younger age at presentation. In a multivariate analysis, only the duration of hematochezia was significantly associated with the development of FGIDs (OR, 3.14; 95% CI,1.72-5.74). CONCLUSIONS We have identified allergic proctocolitis as a new risk factor for the development of FGIDs in children. Our data suggest that not only infection, but also a transient early-life allergic inflammatory trigger may induce persistent digestive symptoms, supporting the existence of "postinflammatory" FGIDs.
Collapse
Affiliation(s)
- Giovanni Di Nardo
- Pediatric Gastroenterology Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy; Pediatric Gastroenterology Unit, International Hospital Salvator Mundi, Rome, Italy
| | - Cesare Cremon
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Simone Frediani
- Pediatric Gastroenterology Unit, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Sandra Lucarelli
- Pediatric Gastroenterology Unit, Sapienza University of Rome, Umberto I Hospital, Rome, Italy
| | - Maria Pia Villa
- Pediatric Unit, School of Medicine and Psychology, Sapienza University of Rome, S. Andrea Hospital, Rome, Italy
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Giuseppe La Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Martemucci
- Pediatric Gastroenterology Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy.
| |
Collapse
|
136
|
Shen ZH, Zhu CX, Quan YS, Yang ZY, Wu S, Luo WW, Tan B, Wang XY. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 2018; 24:5-14. [PMID: 29358877 PMCID: PMC5757125 DOI: 10.3748/wjg.v24.i1.5] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/07/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory disease that mainly affects the colon and rectum. It is believed that genetic factors, host immune system disorders, intestinal microbiota dysbiosis, and environmental factors contribute to the pathogenesis of UC. However, studies on the role of intestinal microbiota in the pathogenesis of UC have been inconclusive. Studies have shown that probiotics improve intestinal mucosa barrier function and immune system function and promote secretion of anti-inflammatory factors, thereby inhibiting the growth of harmful bacteria in the intestine. Fecal microbiota transplantation (FMT) can reduce bowel permeability and thus the severity of disease by increasing the production of short-chain fatty acids, especially butyrate, which help maintain the integrity of the epithelial barrier. FMT can also restore immune dysbiosis by inhibiting Th1 differentiation, activity of T cells, leukocyte adhesion, and production of inflammatory factors. Probiotics and FMT are being increasingly used to treat UC, but their use is controversial because of uncertain efficacy. Here, we briefly review the role of intestinal microbiota in the pathogenesis and treatment of UC.
Collapse
Affiliation(s)
- Zhao-Hua Shen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Chang-Xin Zhu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Yong-Sheng Quan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Zhen-Yu Yang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Shuai Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Wei-Wei Luo
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Bei Tan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410008, Hunan Province, China
| |
Collapse
|
137
|
Scarpato E, Russo M, Staiano A. Probiotics in Pediatric Gastroenterology: Emerging Indications: Inflammatory Bowel Diseases. J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S7-S9. [PMID: 30036240 DOI: 10.1097/mcg.0000000000001095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Etiology of inflammatory bowel disease (IBD) is not yet completely understood, but it is hypothesized that a disruption of the immune tolerance to gut microbiota, due to several potential factors like an abnormal gut microbiota composition and activity, may lead to IBD occurrence. Manipulation of the intestinal microbiota is an attractive target for the management of IBD, and probiotics could be useful to influence the disease's course. However, the existing literature on the usefulness of probiotics in IBD is relatively limited. At present, there is no evidence of efficacy for any bacterial strain in the induction or maintenance of remission in pediatric Crohn's disease, while there is limited evidence for the use of VSL#3 and Lactobacillus reuteri ATCC 55730, in addition to standard therapy, for the induction of remission in pediatric ulcerative colitis. Moreover, current data assessing the therapeutic efficacy of probiotics in IBD do not fulfill evidence-based standards, with long-term maintenance studies and larger prospective randomized controlled trials still lacking.
Collapse
Affiliation(s)
- Elena Scarpato
- Department of Translational Medical Sciences, Section of Paediatrics, University Federico II of Naples, Naples, Italy
| | | | | |
Collapse
|
138
|
Serena G, Fasano A. Use of Probiotics to Prevent Celiac Disease and IBD in Pediatrics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1125:69-81. [PMID: 30565165 DOI: 10.1007/5584_2018_317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of chronic inflammatory diseases (CIDs) is increasing worldwide. Their dramatic rise associated with limited effective strategies to slow down these epidemics calls for a better understanding of their pathophysiology in order to decrease the burdens on childhood. Several cross-sectional studies have demonstrated the association between intestinal dysbiosis and active diseases. Although informative, these studies do not mechanistically link alterations of the microflora with disease pathogenesis and, therefore, with potential therapeutic targets. More prospective studies are needed to determine whether intestinal dysbiosis plays a causative role in the onset and development of CIDs. Furthermore, given the complexity of the microflora interaction with the host, it is necessary to design a systems-level model of interactions between the host and the development of disease by integrating microbiome, metagenomics, metatranscriptomics, and metabolomics with either clinical either environmental data.In this chapter we will discuss the current knowledge regarding the microbiome's contribution to celiac disease and inflammatory bowel disease with a particular focus on how probiotics may be used as potential preventive therapy for CIDs.
Collapse
Affiliation(s)
- Gloria Serena
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children - Harvard Medical School, Boston, MA, USA.
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children - Harvard Medical School, Boston, MA, USA
| |
Collapse
|
139
|
Abstract
Evidence indicates that the gut microbiota and/or interactions between the microbiota and the host immune system are involved in the pathogenesis of inflammatory bowel disease (IBD). Strategies that target the microbiota have emerged as potential therapies and, of these, probiotics have gained the greatest attention. Data derived from animal models of IBD have revealed the potential of several bacterial strains to modify the natural history of IBD. However, thought there is some evidence for efficacy in ulcerative colitis and in pouchitis, in particular, there has been little indication that probiotics exert any benefit in Crohn disease. More targeted approaches involving live bacteria, genetically modified bacteria, and bacterial products are now being evaluated.
Collapse
Affiliation(s)
- Bincy P Abraham
- Fondren Inflammatory Bowel Disease Program, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Weill Cornell Medical College, 6550 Fannin Street, SM 1201, Houston, TX 77030, USA; Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Weill Cornell Medical College, 6550 Fannin Street, SM 1201, Houston, TX 77030, USA
| | - Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Weill Cornell Medical College, 6550 Fannin Street, SM 1201, Houston, TX 77030, USA.
| |
Collapse
|
140
|
Zoumpopoulou G, Tsakalidou E, Thomas L. An Overview of Probiotic Research. PROBIOTIC DAIRY PRODUCTS 2017:293-357. [DOI: 10.1002/9781119214137.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
141
|
Zhang M, Sun K, Wu Y, Yang Y, Tso P, Wu Z. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Front Immunol 2017; 8:942. [PMID: 28855901 PMCID: PMC5558048 DOI: 10.3389/fimmu.2017.00942] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract. Although the etiology and pathogenesis of IBD remain unclear, both genetic susceptibility and environmental factors are implicated in the initiation and progression of IBD. Recent studies with experimental animal models and clinical patients indicated that the intestinal microbiota is one of the critical environmental factors that influence nutrient metabolism, immune responses, and the health of the host in various intestinal diseases, including ulcerative colitis and Crohn’s disease. The objective of this review is to highlight the crosstalk between gut microbiota and host immune response and the contribution of this interaction to the pathogenesis of IBD. In addition, potential therapeutic strategies targeting the intestinal micro-ecosystem in IBD are discussed.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
142
|
Currò D, Ianiro G, Pecere S, Bibbò S, Cammarota G. Probiotics, fibre and herbal medicinal products for functional and inflammatory bowel disorders. Br J Pharmacol 2017; 174:1426-1449. [PMID: 27696378 PMCID: PMC5429330 DOI: 10.1111/bph.13632] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/11/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Functional bowel disorders (FBD), mainly irritable bowel syndrome (IBS) and functional constipation (FC, also called chronic idiopathic constipation), are very common worldwide. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, although less common, has a strong impact on patients' quality of life, as well as being highly expensive for our healthcare. A definite cure for those disorders is still yet to come. Over the years, several therapeutic approaches complementary or alternative to traditional pharmacological treatments, including probiotics, prebiotics, synbiotics, fibre and herbal medicinal products, have been investigated for the management of both groups of diseases. However, most available studies are biased by several drawbacks, including small samples and poor methodological quality. Probiotics, in particular Saccharomyces boulardii and Lactobacilli (among which Lactobacillus rhamnosus), synbiotics, psyllium, and some herbal medicinal products, primarily peppermint oil, seem to be effective in ameliorating IBS symptoms. Synbiotics and fibre seem to be beneficial in FC patients. The probiotic combination VSL#3 may be effective in inducing remission in patients with mild-to-moderate ulcerative colitis, in whom Escherichia coli Nissle 1917 seems to be as effective as mesalamine in maintaining remission. No definite conclusions can be drawn as to the efficacy of fibre and herbal medicinal products in IBD patients due to the low number of studies and the lack of randomized controlled trials that replicate the results obtained in the individual studies conducted so far. Thus, further, well-designed studies are needed to address the real role of these therapeutic options in the management of both FBD and IBD. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Diego Currò
- Institute of PharmacologySchool of Medicine, Catholic University of the Sacred HeartL.go F. Vito 100168RomeItaly
| | - Gianluca Ianiro
- Department of Internal MedicineSchool of Medicine, Catholic University of the Sacred HeartL.go F. Vito 100168RomeItaly
| | - Silvia Pecere
- Department of Internal MedicineSchool of Medicine, Catholic University of the Sacred HeartL.go F. Vito 100168RomeItaly
| | - Stefano Bibbò
- Department of Clinical and Experimental MedicineUniversity of SassariV.le S. Pietro, 807100SassariItaly
| | - Giovanni Cammarota
- Department of Internal MedicineSchool of Medicine, Catholic University of the Sacred HeartL.go F. Vito 100168RomeItaly
| |
Collapse
|
143
|
Ganji-Arjenaki M, Rafieian-Kopaei M. Probiotics are a good choice in remission of inflammatory bowel diseases: A meta analysis and systematic review. J Cell Physiol 2017; 233:2091-2103. [PMID: 28294322 DOI: 10.1002/jcp.25911] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
Altered gut bacteria and bacterial metabolic pathways are two important factors in initiation and progression of inflammatory bowel disease (IBD). However, efficacy of probiotics in remission of patients with IBD has not been characterized. This study was performed on the studies that specifically assessed the efficacy of probiotics in attaining clinical response on patients with various types of IBD. The efficacy of variant species of probiotics in different conditions and the influence of study quality in outcomes of randomized controlled trials (RCTs) were also assessed. The RCTs were collected by searching in MEDLINE Web of Science and Google scholar. Then all studies were abstracted in abstraction form and the outcomes were analyzed with fixed-effect and mixed-effect models for assessment of efficacy of variant species of probiotics in subgroups of IBDs. Analysis of 9 trials showed that probiotics had not significant effect on Crohn's disease (CD) (p = 0.07) but analysis of 3 trials in children with IBD revealed a significant advantage (p < 0.01). Analysis of 18 trials revealed that probiotics in patients with Ulcerative colitis (UC) in different conditions have significant effects (p = 0.007). VSL#3 probiotics in patients with UC had significant effect (p < 0.01). Combination of Lactobacillus probiotic, prebiotics had significant effect (p = 0.03) only in patients with UC. Combination of Saccharomyces boulardii, Lactobacillus, and VSL#3 probiotics in CD had also a trend for efficiency (p = 0.057). In children with IBD, the combination of Lactobacillus with VSL#3 probiotics had significant effect (p < 0.01). Probiotics are beneficial in IBD, especially the combination ones in UC.
Collapse
|
144
|
Slingerland AE, Schwabkey Z, Wiesnoski DH, Jenq RR. Clinical Evidence for the Microbiome in Inflammatory Diseases. Front Immunol 2017; 8:400. [PMID: 28446909 PMCID: PMC5388779 DOI: 10.3389/fimmu.2017.00400] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 12/11/2022] Open
Abstract
Clinical evidence is accumulating for a role of the microbiome in contributing to or modulating severity of inflammatory diseases. These studies can be organized by various organ systems involved, as well as type of study approach utilized, whether investigators compared the microbiome of cases versus controls, followed patients longitudinally, or intervened with antibiotics, prebiotics, or bacterial introduction. In this review, we summarize the clinical evidence supporting the microbiome as an important mechanism in the onset and maintenance of inflammation.
Collapse
Affiliation(s)
- Ann E Slingerland
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaker Schwabkey
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diana H Wiesnoski
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
145
|
Seo S, Shin JS, Lee WS, Rhee YK, Cho CW, Hong HD, Lee KT. Anti-colitis effect of Lactobacillus sakei K040706 via suppression of inflammatory responses in the dextran sulfate sodium-induced colitis mice model. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
146
|
Shigemori S, Shimosato T. Applications of Genetically Modified Immunobiotics with High Immunoregulatory Capacity for Treatment of Inflammatory Bowel Diseases. Front Immunol 2017; 8:22. [PMID: 28179904 PMCID: PMC5263139 DOI: 10.3389/fimmu.2017.00022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, are chronic inflammatory diseases characterized by dysregulated immune responses of the gastrointestinal tract. In recent years, the incidence of IBDs has increased in developed nations, but their prophylaxis/treatment is not yet established. Site-directed delivery of molecules showing anti-inflammatory properties using genetically modified (gm)-probiotics shows promise as a new strategy for the prevention and treatment of IBD. Advantages of gm-probiotics include (1) the ability to use bacteria as a delivery vehicle, enabling safe and long-term use by humans, (2) decreased risks of side effects, and (3) reduced costs. The intestinal delivery of anti-inflammatory proteins such as cytokines and enzymes using Lactococcus lactis has been shown to regulate host intestinal homeostasis depending on the delivered protein-specific machinery. Additionally, clinical experience using interleukin 10-secreting Lc. lactis has been shown to be safe and to facilitate biological containment in IBD therapy. On the other hand, some preclinical studies have demonstrated that gm-strains of immunobiotics (probiotic strains able to beneficially regulate the mucosal immunity) provide beneficial effects on intestinal inflammation as a result of the synergy between the immunoregulatory effects of the bacterium itself and the anti-inflammatory effects of the delivered recombinant proteins. In this review, we discuss the rapid progression in the development of strategies for the prophylaxis and treatment of IBD using gm-probiotics that exhibit immune regulation effects (gm-immunobiotics). In particular, we discuss the type of strains used as delivery agents.
Collapse
Affiliation(s)
- Suguru Shigemori
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takeshi Shimosato
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan; Supramolecular Complexes Unit, Research Center for Fungal and Microbial Dynamism, Shinshu University, Nagano, Japan
| |
Collapse
|
147
|
Forbes A, Escher J, Hébuterne X, Kłęk S, Krznaric Z, Schneider S, Shamir R, Stardelova K, Wierdsma N, Wiskin AE, Bischoff SC. ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Clin Nutr 2016; 36:321-347. [PMID: 28131521 DOI: 10.1016/j.clnu.2016.12.027] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The ESPEN guideline presents a multidisciplinary focus on clinical nutrition in inflammatory bowel disease (IBD). METHODOLOGY The guideline is based on extensive systematic review of the literature, but relies on expert opinion when objective data were lacking or inconclusive. The conclusions and 64 recommendations have been subject to full peer review and a Delphi process in which uniformly positive responses (agree or strongly agree) were required. RESULTS IBD is increasingly common and potential dietary factors in its aetiology are briefly reviewed. Malnutrition is highly prevalent in IBD - especially in Crohn's disease. Increased energy and protein requirements are observed in some patients. The management of malnutrition in IBD is considered within the general context of support for malnourished patients. Treatment of iron deficiency (parenterally if necessary) is strongly recommended. Routine provision of a special diet in IBD is not however supported. Parenteral nutrition is indicated only when enteral nutrition has failed or is impossible. The recommended perioperative management of patients with IBD undergoing surgery accords with general ESPEN guidance for patients having abdominal surgery. Probiotics may be helpful in UC but not Crohn's disease. Primary therapy using nutrition to treat IBD is not supported in ulcerative colitis, but is moderately well supported in Crohn's disease, especially in children where the adverse consequences of steroid therapy are proportionally greater. However, exclusion diets are generally not recommended and there is little evidence to support any particular formula feed when nutritional regimens are constructed. CONCLUSIONS Available objective data to guide nutritional support and primary nutritional therapy in IBD are presented as 64 recommendations, of which 9 are very strong recommendations (grade A), 22 are strong recommendations (grade B) and 12 are based only on sparse evidence (grade 0); 21 recommendations are good practice points (GPP).
Collapse
Affiliation(s)
- Alastair Forbes
- Norwich Medical School, University of East Anglia, Bob Champion Building, James Watson Road, Norwich, NR4 7UQ, United Kingdom.
| | - Johanna Escher
- Erasmus Medical Center - Sophia Children's Hospital, Office Sp-3460, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| | - Xavier Hébuterne
- Gastroentérologie et Nutrition Clinique, CHU de Nice, Université Côte d'Azur, Nice, France.
| | - Stanisław Kłęk
- General and Oncology Surgery Unit, Stanley Dudrick's Memorial Hospital, 15 Tyniecka Street, 32-050, Skawina, Krakau, Poland.
| | - Zeljko Krznaric
- Clinical Hospital Centre Zagreb, University of Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia.
| | - Stéphane Schneider
- Gastroentérologie et Nutrition Clinique, CHU de Nice, Université Côte d'Azur, Nice, France.
| | - Raanan Shamir
- Tel-Aviv University, Schneider Children's Medical Center of Israel, 14 Kaplan St., Petach-Tikva, 49202, Israel.
| | - Kalina Stardelova
- University Clinic for Gastroenterohepatology, Clinical Centre "Mother Therese", Mother Therese Str No 18, Skopje, Republic of Macedonia.
| | - Nicolette Wierdsma
- VU University Medical Center, Department of Nutrition and Dietetics, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Anthony E Wiskin
- Paediatric Gastroenterology & Nutrition Unit, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, BS2 8BJ, United Kingdom.
| | - Stephan C Bischoff
- Institut für Ernährungsmedizin (180) Universität Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany.
| |
Collapse
|
148
|
Gong D, Gong X, Wang L, Yu X, Dong Q. Involvement of Reduced Microbial Diversity in Inflammatory Bowel Disease. Gastroenterol Res Pract 2016; 2016:6951091. [PMID: 28074093 PMCID: PMC5198157 DOI: 10.1155/2016/6951091] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
A considerable number of studies have been conducted to study the microbial profiles in inflammatory conditions. A common phenomenon in inflammatory bowel disease (IBD) is the reduction of the diversity of microbiota, which demonstrates that microbial diversity negatively correlates with disease severity in IBD. Increased microbial diversity is known to occur in disease remission. Species diversity plays an important role in maintaining the stability of the intestinal ecosystem as well as normal ecological function. A reduction in microbial diversity corresponds to a decrease in the stability of the ecosystem and can impair ecological function. Fecal microbiota transplantation (FMT), probiotics, and prebiotics, which aim to modulate the microbiota and restore its normal diversity, have been shown to be clinically efficacious. In this study, we hypothesized that a reduction in microbial diversity could play a role in the development of IBD.
Collapse
Affiliation(s)
- Dawei Gong
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Xiaojie Gong
- Department of Emergency Surgery, The Fifth People's Hospital of Ji'nan, Ji'nan 250022, China
| | - Lili Wang
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Xinjuan Yu
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Quanjiang Dong
- Department of Central Laboratories and Gastroenterology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
149
|
Qiao YQ, Cai CW, Ran ZH. Therapeutic modulation of gut microbiota in inflammatory bowel disease: More questions to be answered. J Dig Dis 2016; 17:800-810. [PMID: 27743467 DOI: 10.1111/1751-2980.12422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023]
Abstract
Patients with inflammatory bowel disease (IBD) exhibit impaired control of the microbiome in the gut, and 'dysbiosis' is commonly observed. Western diet is a risk factor for the development of IBD, but it may have different effects on gut microbiota between IBD and non-IBD individuals. Exclusive enteral nutrition (EEN) can induce remission in pediatric Crohn's disease with a decrease in gut microbial diversity. Although there are some theoretical benefits, actual treatment effects of prebiotics and probiotics in IBD vary. High-quality studies have shown that VSL#3 (a high-potency probiotic medical food containing eight different strains) exhibits benefits in treating ulcerative colitis, and gut microbial diversity is reduced after treated with VSL#3 in animal models. The effect of fecal microbiome transplantation on IBD is controversial. Increasing microbial diversity compared with impaired handling of bacteria presents a dilemma. Antibiotics are the strongest factors in the reduction of microbiome ecological diversity. Some antibiotics may help to induce remission of the disease. Microbiome alteration has been suggested to be an intrinsic property of IBD and a potential predictor in diagnosis and prognosis. However, the effects of therapeutic modulations are variable; thus, more questions remain to be answered.
Collapse
Affiliation(s)
- Yu Qi Qiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Chen Wen Cai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi Hua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
150
|
Kamdar K, Khakpour S, Chen J, Leone V, Brulc J, Mangatu T, Antonopoulos DA, Chang EB, Kahn SA, Kirschner BS, Young G, DePaolo RW. Genetic and Metabolic Signals during Acute Enteric Bacterial Infection Alter the Microbiota and Drive Progression to Chronic Inflammatory Disease. Cell Host Microbe 2016; 19:21-31. [PMID: 26764594 DOI: 10.1016/j.chom.2015.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/20/2015] [Accepted: 12/21/2015] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.
Collapse
Affiliation(s)
- Karishma Kamdar
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samira Khakpour
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637, USA
| | - Jingyu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - Vanessa Leone
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637, USA
| | | | - Thomas Mangatu
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics Section of Pediatric Gastroenterology, Hepatology, & Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Dionysios A Antonopoulos
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637, USA; Argonne National Laboratory, Argonne, IL 60439, USA
| | - Eugene B Chang
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637, USA
| | - Stacy A Kahn
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics Section of Pediatric Gastroenterology, Hepatology, & Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Barbara S Kirschner
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics Section of Pediatric Gastroenterology, Hepatology, & Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Glenn Young
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - R William DePaolo
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|