101
|
Hecht L. The importance of considering age when quantifying wild animals' welfare. Biol Rev Camb Philos Soc 2021; 96:2602-2616. [PMID: 34155749 DOI: 10.1111/brv.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/18/2023]
Abstract
Wild animals experience different challenges and opportunities as they mature, and this variety of experiences can lead to different levels of welfare characterizing the day-to-day lives of individuals of different ages. At the same time, most wild animals who are born do not survive to adulthood. Individuals who die as juveniles do not simply experience a homogeneous fraction of the lifetimes of older members of their species; rather, their truncated lives may be characterized by very different levels of welfare. Here, I propose the concept of welfare expectancy as a framework for quantifying wild animal welfare at a population level, given individual-level data on average welfare with respect to age. This concept fits conveniently alongside methods of analysis already used in population ecology, such as demographic sensitivity analysis, and is applicable to evaluating the welfare consequences of human interventions and natural pressures that disproportionately affect individuals of different ages. In order to understand better and improve the state of wild animal welfare, more attention should be directed towards young animals and the particular challenges they face.
Collapse
Affiliation(s)
- Luke Hecht
- Wild Animal Initiative, 115 Elm Street, Suite I, PMB 2321, Farmington, MN, 55024, U.S.A.,Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, U.K
| |
Collapse
|
102
|
Independent duplications of the Golgi phosphoprotein 3 oncogene in birds. Sci Rep 2021; 11:12483. [PMID: 34127736 PMCID: PMC8203631 DOI: 10.1038/s41598-021-91909-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) was the first reported oncoprotein of the Golgi apparatus. It was identified as an evolutionarily conserved protein upon its discovery about 20 years ago, but its function remains puzzling in normal and cancer cells. The GOLPH3 gene is part of a group of genes that also includes the GOLPH3L gene. Because cancer has deep roots in multicellular evolution, studying the evolution of the GOLPH3 gene family in non-model species represents an opportunity to identify new model systems that could help better understand the biology behind this group of genes. The main goal of this study is to explore the evolution of the GOLPH3 gene family in birds as a starting point to understand the evolutionary history of this oncoprotein. We identified a repertoire of three GOLPH3 genes in birds. We found duplicated copies of the GOLPH3 gene in all main groups of birds other than paleognaths, and a single copy of the GOLPH3L gene. We suggest there were at least three independent origins for GOLPH3 duplicates. Amino acid divergence estimates show that most of the variation is located in the N-terminal region of the protein. Our transcript abundance estimations show that one paralog is highly and ubiquitously expressed, and the others were variable. Our results are an example of the significance of understanding the evolution of the GOLPH3 gene family, especially for unraveling its structural and functional attributes.
Collapse
|
103
|
Huang X, Sun D, Wu T, Liu X, Xu S, Yang G. Genomic insights into body size evolution in Carnivora support Peto's paradox. BMC Genomics 2021; 22:429. [PMID: 34107880 PMCID: PMC8191207 DOI: 10.1186/s12864-021-07732-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background The range of body sizes in Carnivora is unparalleled in any other mammalian order—the heaviest species is 130,000 times heavier than the lightest and the longest species is 50 times longer than the shortest. However, the molecular mechanisms underlying these huge differences in body size have not been explored. Results Herein, we performed a comparative genomics analysis of 20 carnivores to explore the evolutionary basis of the order’s great variations in body size. Phylogenetic generalized least squares (PGLS) revealed that 337 genes were significantly related to both head body length and body mass; these genes were defined as body size associated genes (BSAGs). Fourteen positively-related BSAGs were found to be associated with obesity, and three of these were under rapid evolution in the extremely large carnivores, suggesting that these obesity-related BSAGs might have driven the body size expansion in carnivores. Interestingly, 100 BSAGs were statistically significantly enriched in cancer control in carnivores, and 15 of which were found to be under rapid evolution in extremely large carnivores. These results suggested that large carnivores might have evolved an effective mechanism to resist cancer, which could be regarded as molecular evidence to support Peto’s paradox. For small carnivores, we identified 15 rapidly evolving genes and found six genes with fixed amino acid changes that were reported to reduce body size. Conclusions This study brings new insights into the molecular mechanisms that drove the diversifying evolution of body size in carnivores, and provides new target genes for exploring the mysteries of body size evolution in mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07732-w.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Tianzhen Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Xing Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 210023, Nanjing, China.
| |
Collapse
|
104
|
Yu Z, Seim I, Yin M, Tian R, Sun D, Ren W, Yang G, Xu S. Comparative analyses of aging-related genes in long-lived mammals provide insights into natural longevity. Innovation (N Y) 2021; 2:100108. [PMID: 34557758 PMCID: PMC8454735 DOI: 10.1016/j.xinn.2021.100108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Extreme longevity has evolved multiple times during the evolution of mammals, yet its underlying molecular mechanisms remain largely underexplored. Here, we compared the evolution of 115 aging-related genes in 11 long-lived species and 25 mammals with non-increased lifespan (control group) in the hopes of better understanding the common molecular mechanisms behind longevity. We identified 16 unique positively selected genes and 23 rapidly evolving genes in long-lived species, which included nine genes involved in regulating lifespan through the insulin/IGF-1 signaling (IIS) pathway and 11 genes highly enriched in immune-response-related pathways, suggesting that the IIS pathway and immune response play a particularly important role in exceptional mammalian longevity. Interestingly, 11 genes related to cancer progression, including four positively selected genes and seven genes with convergent amino acid changes, were shared by two or more long-lived lineages, indicating that long-lived mammals might have evolved convergent or similar mechanisms of cancer resistance that extended their lifespan. This suggestion was further corroborated by our identification of 12 robust candidates for longevity-related genes closely related to cancer. Evolution analyses of 115 aging-related genes exploring natural longevity in mammals Positively selected genes & rapidly evolved genes enriched in IIS and immune pathways Convergent mutations in genes associated with cancer in long-lived species Evolution of longevity through cancer resistance in long-lived mammals
Collapse
Affiliation(s)
- Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Inge Seim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.,School of Biology and Environmental Science, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mengxin Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Di Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
105
|
Drzewińska-Chańko J, Włodarczyk R, Gajewski A, Rudnicka K, Dunn PO, Minias P. Immunocompetent birds choose larger breeding colonies. J Anim Ecol 2021; 90:2325-2335. [PMID: 34028816 DOI: 10.1111/1365-2656.13540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
Optimal size of social groups may vary between individuals, depending on their phenotypic traits, such as dominance status, age or personality. Larger social groups often enhance transmission rates of pathogens and should be avoided by individuals with poor immune defences. In contrast, more immunocompetent individuals are expected to take advantage of larger group sizes (e.g. better protection, information transfer) with smaller extra costs from pathogen or parasite pressure. Here, we hypothesized that immunocompetence may be a key determinant of group size choice and tested this hypothesis in a colonial waterbird, the common tern Sterna hirundo. We used a unique experimental framework, where formation of breeding colonies of different sizes was induced under uniform environmental conditions. For this purpose, different-size patches of attractive nesting substrate (artificial floating rafts) were provided at a single site with limited availability of natural nesting habitat. Colony size was identified as the only significant predictor of both innate (natural antibody-mediated complement activation) and adaptive (immunoglobulin concentrations) immunological traits in the common terns, as more immunocompetent birds settled in larger experimental colonies. In contrast, we found no significant associations between colony size and genetic diversity of key pathogen-recognition receptors, toll-like receptors (TLRs) and the Major Histocompatibility Complex (MHC) or genome-wide heterozygosity. We conclude that settlement decisions may be flexible within individuals and, thus, are likely to be primarily determined by the current immunological status, rather than fixed immunogenetic traits. Our study sheds new light on the complex interface between immunity and sociality in animals.
Collapse
Affiliation(s)
- Joanna Drzewińska-Chańko
- Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Radosław Włodarczyk
- Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Łódź, Łódź, Poland
| | - Karolina Rudnicka
- Faculty of Biology and Environmental Protection, Department of Immunology and Infectious Biology, University of Łódź, Łódź, Poland
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Piotr Minias
- Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation, University of Łódź, Łódź, Poland
| |
Collapse
|
106
|
Hao Z, Xu L, Zhao L, He J, Li G, Li J. Transcriptome analysis of the liver of Eospalax fontanierii under hypoxia. PeerJ 2021; 9:e11166. [PMID: 33981491 PMCID: PMC8071069 DOI: 10.7717/peerj.11166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
Abstract
Hypoxia can induce cell damage, inflammation, carcinogenesis, and inhibit liver regeneration in non-adapted species. Because of their excellent hypoxia adaptation features, subterranean rodents have been widely studied to clarify the mechanism of hypoxia adaptation. Eospalax fontanierii, which is a subterranean rodent found in China, can survive for more than 10 h under 4% O2 without observable injury, while Sprague-Dawley rats can survive for less than 6 h under the same conditions. To explore the potential mechanism of hypoxia responses in E. fontanierii, we performed RNA-seq analysis of the liver in E. fontanierii exposed to different oxygen levels (6.5% 6h, 10.5% 44h, and 21%). Based on the bioinformatics analysis, 39,439 unigenes were assembled, and 56.78% unigenes were annotated using public databases (Nr, GO, Swiss-Prot, KEGG, and Pfam). In total, 725 differentially expressed genes (DEGs) were identified in the response to hypoxia; six with important functions were validated by qPCR. Those DEGs were mainly involved in processes related to lipid metabolism, steroid catabolism, glycolysis/gluconeogenesis, and the AMPK and PPAR signaling pathway. By analyzing the expression patterns of important genes related to energy associated metabolism under hypoxia, we found that fatty acid oxidation and gluconeogenesis were increased, while protein synthesis and fatty acid synthesis were decreased. Furthermore, the upregulated expression of specific genes with anti-apoptosis or anti-oxidation functions under hypoxia may contribute to the mechanism by which E. fontanierii tolerates hypoxia. Our results provide an understanding of the response to hypoxia in E. fontanierii, and have potential value for biomedical studies.
Collapse
Affiliation(s)
- Zhiqiang Hao
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Lulu Xu
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Li Zhao
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Guanglin Li
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jingang Li
- College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
107
|
Robert Burger J, Hou C, A S Hall C, Brown JH. Universal rules of life: metabolic rates, biological times and the equal fitness paradigm. Ecol Lett 2021; 24:1262-1281. [PMID: 33884749 DOI: 10.1111/ele.13715] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
Here we review and extend the equal fitness paradigm (EFP) as an important step in developing and testing a synthetic theory of ecology and evolution based on energy and metabolism. The EFP states that all organisms are equally fit at steady state, because they allocate the same quantity of energy, ~ 22.4 kJ/g/generation to the production of offspring. On the one hand, the EFP may seem tautological, because equal fitness is necessary for the origin and persistence of biodiversity. On the other hand, the EFP reflects universal laws of life: how biological metabolism - the uptake, transformation and allocation of energy - links ecological and evolutionary patterns and processes across levels of organisation from: (1) structure and function of individual organisms, (2) life history and dynamics of populations, and (3) interactions and coevolution of species in ecosystems. The physics and biology of metabolism have facilitated the evolution of millions of species with idiosyncratic anatomy, physiology, behaviour and ecology but also with many shared traits and tradeoffs that reflect the single origin and universal rules of life.
Collapse
Affiliation(s)
- Joseph Robert Burger
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.,Arizona Institutes for Resilience, University of Arizona, Tucson, AZ, 85721, USA
| | - Chen Hou
- Department of Biological Science, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | - Charles A S Hall
- Department of Environmental and Forest Biology and Program in Environmental Science, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, 13210, USA
| | - James H Brown
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
108
|
Analysis of longevity in Chordata identifies species with exceptional longevity among taxa and points to the evolution of longer lifespans. Biogerontology 2021; 22:329-343. [PMID: 33818680 DOI: 10.1007/s10522-021-09919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022]
Abstract
Animals have a considerable variation in their longevity. This fundamental life-history trait is shaped by both intrinsic and extrinsic mortality pressures, influenced by multiple parameters including ecological variables and mode-of-life traits. Here, we examined the distribution of maximum age at multiple taxonomic ranks (class, order and family) in Chordata, and identified species with exceptional longevity within various taxa. We used a curated dataset of maximum longevity of animals from AnAge database, containing a total of 2542 chordates following our filtering criteria. We determined shapes of maximum age distributions at class, order and family taxonomic ranks, and calculated skewness values for each distribution, in R programming environment. We identified species with exceptional longevity compared to other species belonging to the same taxa, based on our definition of outliers. We collected data on ecological variables and mode-of-life traits which might possibly contribute, at least in part, to the exceptional lifespans of certain chordates. We found that 23, 12 and 4 species have exceptional longevity when we grouped chordates by their class, order and family, respectively. Almost all distributions of maximum age among taxa were positively skewed (towards increased longevity), possibly showing the emergence of longer lifespans in contrast to shorter lifespans, through the course of evolution. However, potential biases in the collection of data should be taken into account. Most of the identified species in the current study have not been previously studied in the context of animal longevity. Our analyses point that certain chordates may have evolved to have longer lifespans compared to other species belonging to the same taxa, and that among taxa, outliers in terms of maximum age have always longer lifespans, not shorter. Future research is required to understand how and why increased longevity have arose in certain species.
Collapse
|
109
|
Kumar SA, Albrecht T, Kauzál O, Tomášek O. No Evidence for Trade-Offs Between Lifespan, Fecundity, and Basal Metabolic Rate Mediated by Liver Fatty Acid Composition in Birds. Front Cell Dev Biol 2021; 9:638501. [PMID: 33869185 PMCID: PMC8045231 DOI: 10.3389/fcell.2021.638501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/23/2021] [Indexed: 01/03/2023] Open
Abstract
The fatty acid composition of biological membranes has been hypothesised to be a key molecular adaptation associated with the evolution of metabolic rates, ageing, and life span – the basis of the membrane pacemaker hypothesis (MPH). MPH proposes that highly unsaturated membranes enhance cellular metabolic processes while being more prone to oxidative damage, thereby increasing the rates of metabolism and ageing. MPH could, therefore, provide a mechanistic explanation for trade-offs between longevity, fecundity, and metabolic rates, predicting that short-lived species with fast metabolic rates and higher fecundity would have greater levels of membrane unsaturation. However, previous comparative studies testing MPH provide mixed evidence regarding the direction of covariation between fatty acid unsaturation and life span or metabolic rate. Moreover, some empirical studies suggest that an n-3/n-6 PUFA ratio or the fatty acid chain length, rather than the overall unsaturation, could be the key traits coevolving with life span. In this study, we tested the coevolution of liver fatty acid composition with maximum life span, annual fecundity, and basal metabolic rate (BMR), using a recently published data set comprising liver fatty acid composition of 106 avian species. While statistically controlling for the confounding effects of body mass and phylogeny, we found no support for long life span evolving with low fatty acid unsaturation and only very weak support for fatty acid unsaturation acting as a pacemaker of BMR. Moreover, our analysis provided no evidence for the previously reported links between life span and n-3 PUFA/total PUFA or MUFA proportion. Our results rather suggest that long life span evolves with long-chain fatty acids irrespective of their degree of unsaturation as life span was positively associated with at least one long-chain fatty acid of each type (i.e., SFA, MUFA, n-6 PUFA, and n-3 PUFA). Importantly, maximum life span, annual fecundity, and BMR were associated with different fatty acids or fatty acid indices, indicating that longevity, fecundity, and BMR coevolve with different aspects of fatty acid composition. Therefore, in addition to posing significant challenges to MPH, our results imply that fatty acid composition does not pose an evolutionary constraint underpinning life-history trade-offs at the molecular level.
Collapse
Affiliation(s)
- Sampath A Kumar
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
110
|
Barbier M, Wojcik L, Loreau M. A macro‐ecological approach to predation density‐dependence. OIKOS 2021. [DOI: 10.1111/oik.08043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Matthieu Barbier
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, UMR 5321, CNRS and Paul Sabatier Univ. Moulis France
| | - Laurie Wojcik
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, UMR 5321, CNRS and Paul Sabatier Univ. Moulis France
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, UMR 5321, CNRS and Paul Sabatier Univ. Moulis France
| |
Collapse
|
111
|
Borchman D. Lipid conformational order and the etiology of cataract and dry eye. J Lipid Res 2021; 62:100039. [PMID: 32554545 PMCID: PMC7910524 DOI: 10.1194/jlr.tr120000874] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lens and tear film lipids are as unique as the systems they reside in. The major lipid of the human lens is dihydrosphingomylein, found in quantity only in the lens. The lens contains a cholesterol to phospholipid molar ratio as high as 10:1, more than anywhere else in the body. Lens lipids contribute to maintaining lens clarity, and alterations in lens lipid composition due to age are likely to contribute to cataract. Lens lipid composition reflects adaptations to the unique characteristics of the lens: no turnover of lens lipids or proteins; the lowest amount of oxygen of any tissue; and contains almost no intracellular organelles. The tear film lipid layer (TFLL) is also unique. The TFLL is a thin (100 nm) layer of lipid on the surface of tears covering the cornea that contributes to tear film stability. The major lipids of the TFLL are wax esters and cholesterol esters that are not found in the lens. The hydrocarbon chains associated with the esters are longer than those found anywhere else in the body (as long as 32 carbons), and many are branched. Changes in the composition and structure of the 30,000 different moieties of TFLL contribute to the instability of tears. The focus of the current review is how spectroscopy has been used to elucidate the relationships between lipid composition, conformational order and function, and the etiology of cataract and dry eye.
Collapse
Affiliation(s)
- Douglas Borchman
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202.
| |
Collapse
|
112
|
Mikami T, Iwasaki W. The flipping
t
‐ratio test: Phylogenetically informed assessment of the Pareto theory for phenotypic evolution. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tomoyuki Mikami
- Department of Biological Sciences Graduate School of Science The University of Tokyo Tokyo Japan
| | - Wataru Iwasaki
- Department of Biological Sciences Graduate School of Science The University of Tokyo Tokyo Japan
- Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences The University of Tokyo Kashiwa Japan
- Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan
- Institute for Quantitative Biosciences The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| |
Collapse
|
113
|
Siciliano-Martina L, Light JE, Lawing AM. Cranial morphology of captive mammals: a meta-analysis. Front Zool 2021; 18:4. [PMID: 33485360 PMCID: PMC7825229 DOI: 10.1186/s12983-021-00386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Captive facilities such as zoos are uniquely instrumental in conservation efforts. To fulfill their potential as bastions for conservation, zoos must preserve captive populations as appropriate proxies for their wild conspecifics; doing so will help to promote successful reintroduction efforts. Morphological changes within captive populations may be detrimental to the fitness of individual animals because these changes can influence functionality; thus, it is imperative to understand the breadth and depth of morphological changes occurring in captive populations. Here, we conduct a meta-analysis of scientific literature reporting comparisons of cranial measures between captive and wild populations of mammals. We investigate the pervasiveness of cranial differences and whether cranial morphological changes are associated with ecological covariates specific to individual species, such as trophic level, dietary breadth, and home range size. RESULTS Cranial measures of skull length, skull width, and the ratio of skull length-to-width differed significantly between many captive and wild populations of mammals reported in the literature. Roughly half of captive populations differed from wild populations in at least one cranial measure, although the degree of changes varied. Carnivorous species with a limited dietary breadth displayed the most consistent changes associated with skull widening. Species with a more generalized diet displayed less morphological changes in captivity. CONCLUSIONS Wild and captive populations of mammals differed in cranial morphology, but the nature and magnitude of their cranial differences varied considerably across taxa. Although changes in cranial morphology occur in captivity, specific changes cannot be generalized for all captive mammal populations. The nature of cranial changes in captivity may be specific to particular taxonomic groups; thus, it may be possible to establish expectations across smaller taxonomic units, or even disparate groups that utilize their cranial morphology in a similar way. Given that morphological changes occurring in captive environments like zoos have the potential to limit reintroduction success, our results call for a critical evaluation of current captive husbandry practices to prevent unnecessary morphological changes.
Collapse
Affiliation(s)
- Leila Siciliano-Martina
- Interdisciplinary Program in Ecology & Evolutionary Biology, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Jessica E Light
- Interdisciplinary Program in Ecology & Evolutionary Biology, Texas A&M University, College Station, TX, 77843, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| | - A Michelle Lawing
- Interdisciplinary Program in Ecology & Evolutionary Biology, Texas A&M University, College Station, TX, 77843, USA
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
114
|
Heldstab SA. Latitude, life history and sexual size dimorphism correlate with reproductive seasonality in rodents. Mamm Rev 2021. [DOI: 10.1111/mam.12231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra A. Heldstab
- Department of Anthropology University of Zurich Winterthurerstrasse 190 Zurich8057Switzerland
- Clinic for Zoo Animals, Exotic Pets and Wildlife Vetsuisse Faculty University of Zurich Winterthurerstrasse 260 Zurich8057Switzerland
| |
Collapse
|
115
|
Schoenle LA, Zimmer C, Miller ET, Vitousek MN. Does variation in glucocorticoid concentrations predict fitness? A phylogenetic meta-analysis. Gen Comp Endocrinol 2021; 300:113611. [PMID: 32950580 DOI: 10.1016/j.ygcen.2020.113611] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/07/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Glucocorticoid hormones (GCs) are central mediators of metabolism and the response to challenges. Because circulating GC levels increase in response to challenges, within-population variation in GCs could reflect among-individual variation in condition or experience. At the same time, individual variation in GC regulation could have causal effects on energetic balance or stress coping capacity in ways that influence fitness. Although a number of studies in vertebrates have tested whether variation in GCs among individuals predicts components of fitness, it is not clear whether there are consistent patterns across taxa. Here we present the first phylogenetic meta-analysis testing whether variation in GCs is associated with survival and reproductive success across vertebrates. At the same time, we introduce and test predictions about a potentially important mediator of GC-fitness relationships: life history context. We suggest that strong context-dependence in the fitness benefit of maintaining elevated GCs could obscure consistent patterns between GCs and fitness across taxa. Meta-analyses revealed that baseline and stress-induced GCs were consistently negatively correlated with reproductive success. This relationship did not differ depending on life history context. In contrast, the relationships between GCs and survival were highly context dependent, differing according to life history strategy. Both baseline and stress-induced GCs were more strongly negatively associated with survival in longer-lived populations and species. Stress-induced GCs were also more positively associated with survival in organisms that engage in relatively more valuable reproductive attempts. Fecal GCs did not correlate with survival or reproductive success. We also found that experimental increases in GCs reduced both survival and reproductive success; however, evidence of publication bias and the small sample size suggest that more data is required to confirm this conclusion. Overall, these results support the prediction that GC-fitness relationships can be strongly context dependent, and suggest that incorporating life history may be particularly important for understanding GC-survival relationships.
Collapse
Affiliation(s)
- Laura A Schoenle
- Office of Undergraduate Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca NY 14850, USA
| |
Collapse
|
116
|
Place NJ, Prado AM, Faykoo-Martinez M, Brieño-Enriquez MA, Albertini DF, Holmes MM. Germ cell nests in adult ovaries and an unusually large ovarian reserve in the naked mole-rat. Reproduction 2021; 161:89-98. [PMID: 33151901 DOI: 10.1530/rep-20-0304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Abstract
The naked mole-rat (NMR, Heterocephalus glaber) is renowned for its eusociality and exceptionally long lifespan (> 30 y) relative to its small body size (35-40 g). A NMR phenomenon that has received far less attention is that females show no decline in fertility or fecundity into their third decade of life. The age of onset of reproductive decline in many mammalian species is closely associated with the number of germ cells remaining at the age of sexual maturity. We quantified ovarian reserve size in NMRs at the youngest age (6 months) when subordinate females can begin to ovulate after removal from the queen's suppression. We then compared the NMR ovarian reserve size to values for 19 other mammalian species that were previously reported. The NMR ovarian reserve at 6 months of age is exceptionally large at 108,588 ± 69,890 primordial follicles, which is more than 10-fold larger than in mammals of a comparable size. We also observed germ cell nests in ovaries from 6-month-old NMRs, which is highly unusual since breakdown of germ cell nests and the formation of primordial follicles is generally complete by early postnatal life in other mammals. Additionally, we found germ cell nests in young adult NMRs between 1.25 and 3.75 years of age, in both reproductively activated and suppressed females. The unusually large NMR ovarian reserve provides one mechanism to account for this species' protracted fertility. Whether germ cell nests in adult ovaries contribute to the NMR's long reproductive lifespan remains to be determined.
Collapse
Affiliation(s)
- Ned J Place
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Alexandra M Prado
- Department of Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | | | - Miguel Angel Brieño-Enriquez
- Department of Obstetrics, Gynecology & Reproductive Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David F Albertini
- Department of Reproductive Biology, Bedford Research Foundation, Bedford, Massachusetts, USA
| | - Melissa M Holmes
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
117
|
Evidence for the 'rate-of-living' hypothesis between mammals and lizards, but not in birds, with field metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110867. [PMID: 33307204 DOI: 10.1016/j.cbpa.2020.110867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023]
Abstract
Longevity, an important life-history trait, is determined by extrinsic and/or intrinsic causing mortality. Here, we used body mass (BM), field metabolic rate (FMR), longevity, and female maturity data reported from 300 amniote species to test whether 1) longevity was related to BM, FMR and female maturity, and 2) FMR, female maturity, or both, had a direct effect on longevity and whether an indirect effect of FMR on female maturity improved model fit. The results showed that BM was positively correlated with longevity and FMR, but negatively correlated with mass-specific FMR (mFMR) in amniotes. Phylogenetic confirmatory path analysis showed that, in the best model, longevity had a direct negative correlation with mFMR in lizards, and an indirect negative correlation with mFMR through female maturity in mammals. However, longevity had a direct positive correlation with mFMR in birds. Furthermore, longevity was positively correlated with female maturity in endotherms (birds and mammals) but weakly correlated with female maturity in ectotherms (lizards). Thus, our results are consistent with the life-history theory and the "rate-of-living" hypothesis in lizards and mammals but not support them in birds.
Collapse
|
118
|
Li R, Yang P, Li M, Fang W, Yue X, Nanaei HA, Gan S, Du D, Cai Y, Dai X, Yang Q, Cao C, Deng W, He S, Li W, Ma R, Liu M, Jiang Y. A Hu sheep genome with the first ovine Y chromosome reveal introgression history after sheep domestication. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1116-1130. [PMID: 32997330 DOI: 10.1007/s11427-020-1807-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023]
Abstract
The Y chromosome plays key roles in male fertility and reflects the evolutionary history of paternal lineages. Here, we present a de novo genome assembly of the Hu sheep with the first draft assembly of ovine Y chromosome (oMSY), using nanopore sequencing and Hi-C technologies. The oMSY that we generated spans 10.6 Mb from which 775 Y-SNPs were identified by applying a large panel of whole genome sequences from worldwide sheep and wild Iranian mouflons. Three major paternal lineages (HY1a, HY1b and HY2) were defined across domestic sheep, of which HY2 was newly detected. Surprisingly, HY2 forms a monophyletic clade with the Iranian mouflons and is highly divergent from both HY1a and HY1b. Demographic analysis of Y chromosomes, mitochondrial and nuclear genomes confirmed that HY2 and the maternal counterpart of lineage C represented a distinct wild mouflon population in Iran that diverge from the direct ancestor of domestic sheep, the wild mouflons in Southeastern Anatolia. Our results suggest that wild Iranian mouflons had introgressed into domestic sheep and thereby introduced this Iranian mouflon specific lineage carrying HY2 to both East Asian and Africa sheep populations.
Collapse
Affiliation(s)
- Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Peng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wenwen Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China
| | - Duo Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qimeng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chunna Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunan Agricultural University, Kunming, 650201, China
| | - Sangang He
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, 830026, China
| | - Wenrong Li
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, 830026, China
| | - Runlin Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingjun Liu
- Key Laboratory of Genetics Breeding and Reproduction of Grass feeding Livestock, Ministry of Agriculture, Animal Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi, 830026, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
119
|
Vinogradov AE, Anatskaya OV. Systemic evolutionary changes in mammalian gene expression. Biosystems 2020; 198:104256. [PMID: 32976926 DOI: 10.1016/j.biosystems.2020.104256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Changes in gene expression play an important role in evolution and can be relevant to evolutionary medicine. In this work, a strong relationship was found between the statistical significance of evolutionary changes in the expression of orthologous genes in the five or six homologous mammalian tissues and the across-tissues unidirectionality of changes (i.e., they occur in the same direction in different tissues -- all upward or all downward). In the area of highly significant changes, the fraction of unidirectionally changed genes (UCG) was above 0.9 (random expectation is 0.03). This observation indicates that the most pronounced evolutionary changes in mammalian gene expression are systemic (i.e., they operate at the whole-organism level). The UCG are strongly enriched in the housekeeping genes. More specifically, in the human-chimpanzee comparison, the UCG are enriched in the pathways belonging to gene expression (translation is prominent), cell cycle control, ubiquitin-dependent protein degradation (mostly related to cell cycle control), apoptosis, and Parkinson's disease. In the human-macaque comparison, the two other neurodegenerative diseases (Alzheimer's and Huntington's) are added to the enriched pathways. The consolidation of gene expression changes at the level of pathways indicates that they are not neutral but functional. The systemic expression changes probably maintain the across-tissues balance of basic physiological processes in the course of evolution (e.g., during the movement along the fast-slow life axis). These results can be useful for understanding the variation in longevity and susceptibility to cancer and widespread neurodegenerative diseases. This approach can also guide the choice of prospective genes for studies aiming to decipher cis-regulatory code (the gene list is provided).
Collapse
Affiliation(s)
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
120
|
Heldstab SA, van Schaik CP, Müller DWH, Rensch E, Lackey LB, Zerbe P, Hatt JM, Clauss M, Matsuda I. Reproductive seasonality in primates: patterns, concepts and unsolved questions. Biol Rev Camb Philos Soc 2020; 96:66-88. [PMID: 32964610 DOI: 10.1111/brv.12646] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/23/2023]
Abstract
Primates, like other mammals, exhibit an annual reproductive pattern that ranges from strictly seasonal breeding to giving birth in all months of the year, but factors mediating this variation are not fully understood. We applied both a categorical description and quantitative measures of the birth peak breadth based on daily observations in zoos to characterise reproductive seasonality in 141 primate species with an average of 941 birth events per species. Absolute day length at the beginning of the mating season in seasonally reproducing species was not correlated between populations from natural habitats and zoos. The mid-point of latitudinal range was a major factor associated with reproductive seasonality, indicating a correlation with photoperiod. Gestation length, annual mean temperature, natural diet and Malagasy origin were other important factors associated with reproductive seasonality. Birth seasons were shorter with increasing latitude of geographical origin, corresponding to the decreasing length of the favourable season. Species with longer gestation periods were less seasonal than species with shorter ones, possibly because shorter gestation periods more easily facilitate the synchronisation of reproductive activity with annual cycles. Habitat conditions with higher mean annual temperature were also linked to less-seasonal reproduction, independently of the latitude effect. Species with a high percentage of leaves in their natural diet were generally non-seasonal, potentially because the availability of mature leaves is comparatively independent of seasons. Malagasy primates were more seasonal in their births than species from other regions. This might be due to the low resting metabolism of Malagasy primates, the comparatively high degree of temporal predictability of Malagasy ecosystems, or historical constraints peculiar to Malagasy primates. Latitudinal range showed a weaker but also significant association with reproductive seasonality. Amongst species with seasonal reproduction in their natural habitats, smaller primate species were more likely than larger species to shift to non-seasonal breeding in captivity. The percentage of species that changed their breeding pattern in zoos was higher in primates (30%) than in previous studies on Carnivora and Ruminantia (13 and 10%, respectively), reflecting a higher concentration of primate species in the tropics. When comparing only species that showed seasonal reproduction in natural habitats at absolute latitudes ≤11.75°, primates did not differ significantly from these two other taxa in the proportion of species that changed to a less-seasonal pattern in zoos. However, in this latitude range, natural populations of primates and Carnivora had a significantly higher proportion of seasonally reproducing species than Ruminantia, suggesting that in spite of their generally more flexible diets, both primates and Carnivora are more exposed to resource fluctuation than ruminants.
Collapse
Affiliation(s)
- Sandra A Heldstab
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland.,Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Carel P van Schaik
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Dennis W H Müller
- Zoological Garden Halle (Saale), Fasanenstrasse 5a, 06114, Halle (Saale), Germany
| | - Eberhard Rensch
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Laurie Bingaman Lackey
- World Association of Zoos and Aquariums (WAZA), Carrer de Roger de Llúria, 2, 2-2, Barcelona, Spain
| | - Philipp Zerbe
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland
| | - Ikki Matsuda
- Chubu University Academy of Emerging Sciences, 1200, Matsumoto-cho, Kasugai-shi, Aichi, 487-8501, Japan.,Wildlife Research Center of Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo, Kyoto, 606-8203, Japan.,Japan Monkey Centre, Inuyama, Aichi, 484-0081, Japan.,Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
121
|
Barth E, Sieber P, Stark H, Schuster S. Robustness during Aging-Molecular Biological and Physiological Aspects. Cells 2020; 9:E1862. [PMID: 32784503 PMCID: PMC7465392 DOI: 10.3390/cells9081862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the process of aging is still an important challenge to enable healthy aging and to prevent age-related diseases. Most studies in age research investigate the decline in organ functionality and gene activity with age. The focus on decline can even be considered a paradigm in that field. However, there are certain aspects that remain surprisingly stable and keep the organism robust. Here, we present and discuss various properties of robust behavior during human and animal aging, including physiological and molecular biological features, such as the hematocrit, body temperature, immunity against infectious diseases and others. We examine, in the context of robustness, the different theories of how aging occurs. We regard the role of aging in the light of evolution.
Collapse
Affiliation(s)
- Emanuel Barth
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Patricia Sieber
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Stefan Schuster
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| |
Collapse
|
122
|
Mayne B, Tucker AD, Berry O, Jarman S. Lifespan estimation in marine turtles using genomic promoter CpG density. PLoS One 2020; 15:e0236888. [PMID: 32735637 PMCID: PMC7394378 DOI: 10.1371/journal.pone.0236888] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Maximum lifespan for most animal species is difficult to define. This is challenging for wildlife management as it is critical for estimating important aspects of population biology such as mortality rate, population viability, and period of reproductive potential. Recently, it has been shown cytosine-phosphate-guanine (CpG) density is predictive of maximum lifespan in vertebrates. This has made it possible to predict lifespan in long-lived species, which are generally the most intractable. In this study, we use gene promoter CpG density to predict the lifespan of five marine turtle species. Marine turtles are a particularly difficult group for lifespan estimation because of their migratory behaviour, longevity and high juvenile mortality rates, which all restrict individual tracking over their lifespan. Sanger sequencing was used to determine the CpG density in selected promoters. We predicted the lifespans for marine turtle species ranged from 50.4 years (flatback turtle, Natator depressus) to 90.4 years (leatherback turtle, Dermochelys coriacea). These lifespan predictions have broad applications in marine turtle research such as better understanding life cycles and determining population viability.
Collapse
Affiliation(s)
- Benjamin Mayne
- Environomics Future Science Platform, Indian Oceans Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation, Crawley, Western Australia, Australia
- * E-mail:
| | - Anton D. Tucker
- Department of Biodiversity, Conservation and Attractions, Marine Science Program, Kensington, Western Australia, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Oceans Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation, Crawley, Western Australia, Australia
| | - Simon Jarman
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
123
|
Gutiérrez‐Cánovas C, Moleón M, Mateo‐Tomás P, Olea PP, Sebastián‐González E, Sánchez‐Zapata JA. Large home range scavengers support higher rates of carcass removal. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cayetano Gutiérrez‐Cánovas
- Freshwater Ecology, Hydrology and Management (FEHM) Lab Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Facultat de Biologia Universitat de Barcelona, Diagonal Barcelona Spain
- Centre of Molecular and Environmental Biology (CBMA) Department of Biology University of Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| | - Marcos Moleón
- Department of Zoology University of Granada Granada Spain
| | - Patricia Mateo‐Tomás
- Research Unit of Biodiversity (UO/CSIC/PA) Oviedo University Mieres Spain
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Pedro P. Olea
- Departamento de Ecología Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid Madrid Spain
| | | | | |
Collapse
|
124
|
Constant T, Giroud S, Viblanc VA, Tissier ML, Bergeron P, Dobson FS, Habold C. Integrating Mortality Risk and the Adaptiveness of Hibernation. Front Physiol 2020; 11:706. [PMID: 32754044 PMCID: PMC7366871 DOI: 10.3389/fphys.2020.00706] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
Low mortality rate is often associated with slow life history, and so far, has mainly been assessed through examinations of specific adaptations and lifestyles that limit mortality risk. However, the organization of activity time budgets also needs to be considered, since some activities and the time afforded for performing them may expose animals to higher mortality risks such as increased predation and/or increased metabolic stress. We examined the extent of activity time budgets contribution to explaining variation in life history traits in mammals. We specifically focused on hibernating species because of their marked seasonal cycle of activity/inactivity associated with very different mortality risks. Hibernation is considered a seasonal adaptation to prolonged periods of food shortage and cold. This inactivity period may also reduce both extrinsic and intrinsic mortality risks, by decreasing exposure to predators and drastically reducing metabolic rate. In turn, reduction in mortality may explain why hibernators have slower life history traits than non-hibernators of the same size. Using phylogenetically controlled models, we tested the hypothesis that longevity was positively correlated with the hibernation season duration (the time spent between immergence and emergence from the hibernaculum or den) across 82 different mammalian species. We found that longevity increased significantly with hibernation season duration, an effect that was particularly strong in small hibernators (<1.5 kg) especially for bats. These results confirm that hibernation not only allows mammals to survive periods of energy scarcity, but further suggest that activity time budgets may be selected to reduce mortality risks according to life history pace.
Collapse
Affiliation(s)
- Théo Constant
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vincent A. Viblanc
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
| | - Mathilde L. Tissier
- Department of Biological Sciences, Bishop’s University, Sherbrooke, QC, Canada
| | - Patrick Bergeron
- Department of Biological Sciences, Bishop’s University, Sherbrooke, QC, Canada
| | - F. Stephen Dobson
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Caroline Habold
- UMR 7178, Centre National de la Recherche Scientifique, Institut Pluridisciplinaire Hubert CURIEN, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
125
|
Lukas D, Clutton-Brock T. Monotocy and the evolution of plural breeding in mammals. Behav Ecol 2020; 31:943-949. [PMID: 32760176 PMCID: PMC7390990 DOI: 10.1093/beheco/araa039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/06/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022] Open
Abstract
In many mammals, breeding females are intolerant of each other and seldom associate closely but, in some, they aggregate in groups that vary in size, stability, and kinship structure. Aggregation frequently increases competition for food, and interspecific differences in female sociality among mammals are commonly attributed to contrasts in ecological parameters, including variation in activity timing, the distribution of resources, as well as the risk of predation. However, there is increasing indication that differences in female sociality are also associated with phylogenetic relationships and with contrasts in life-history parameters. We show here that evolutionary transitions from systems where breeding females usually occupy separate ranges ("singular breeding") to systems where breeding females usually aggregate ("plural breeding") have occurred more frequently in monotocous lineages where females produce single young than in polytocous ones where they produce litters. A likely explanation of this association is that competition between breeding females for resources is reduced where they produce single young and is more intense where they produce litters. Our findings reinforce evidence that variation in life-history parameters plays an important role in shaping the evolution of social behavior.
Collapse
Affiliation(s)
- Dieter Lukas
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | |
Collapse
|
126
|
Jiang M, Shi L, Li X, Dong Q, Sun H, Du Y, Zhang Y, Shao T, Cheng H, Chen W, Wang Z. Genome-wide adaptive evolution to underground stresses in subterranean mammals: Hypoxia adaption, immunity promotion, and sensory specialization. Ecol Evol 2020; 10:7377-7388. [PMID: 32760535 PMCID: PMC7391338 DOI: 10.1002/ece3.6462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Life underground has provided remarkable examples of adaptive evolution in subterranean mammals; however, genome-wide adaptive evolution to underground stresses still needs further research. There are approximately 250 species of subterranean mammals across three suborders and six families. These species not only inhabit hypoxic and dark burrows but also exhibit evolved adaptation to hypoxia, cancer resistance, and specialized sensory systems, making them an excellent model of evolution. The adaptive evolution of subterranean mammals has attracted great attention and needs further study. In the present study, phylogenetic analysis of 5,853 single-copy orthologous gene families of five subterranean mammals (Nannospalax galili, Heterocephalus glaber, Fukomys damarensis, Condylura cristata, and Chrysochloris asiatica) showed that they formed fou distinct clusters. This result is consistent with the traditional systematics of these species. Furthermore, comparison of the high-quality genomes of these five subterranean mammalian species led to the identification of the genomic signatures of adaptive evolution. Our results show that the five subterranean mammalian did not share positively selected genes but had similar functional enrichment categories, including hypoxia tolerance, immunity promotion, and sensory specialization, which adapted to the environment of underground stresses. Moreover, variations in soil hardness, climate, and lifestyles have resulted in different molecular mechanisms of adaptation to the hypoxic environment and different degrees of visual degradation. These results provide insights into the genome-wide adaptive evolution to underground stresses in subterranean mammals, with special focus on the characteristics of hypoxia adaption, immunity promotion, and sensory specialization response to the life underground.
Collapse
Affiliation(s)
- Mengwan Jiang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Luye Shi
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Xiujuan Li
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qianqian Dong
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yimeng Du
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yifeng Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Weihua Chen
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
127
|
Boddy AM, Abegglen LM, Pessier AP, Aktipis A, Schiffman JD, Maley CC, Witte C. Lifetime cancer prevalence and life history traits in mammals. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:187-195. [PMID: 33209304 PMCID: PMC7652303 DOI: 10.1093/emph/eoaa015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Background Cancer is a common diagnosis in many mammalian species, yet they vary in their vulnerability to cancer. The factors driving this variation are unknown, but life history theory offers potential explanations to why cancer defense mechanisms are not equal across species. Methodology Here we report the prevalence of neoplasia and malignancy in 37 mammalian species, representing 11 mammalian orders, using 42 years of well curated necropsy data from the San Diego Zoo and San Diego Zoo Safari Park. We collected data on life history components of these species and tested for associations between life history traits and both neoplasia and malignancy, while controlling for phylogenetic history. Results These results support Peto's paradox, in that we find no association between lifespan and/or body mass and the prevalence of neoplasia or malignancy. However, a positive relationship exists between litter size and prevalence of malignancy (P = 0.005, Adj. R2 = 0.212), suggesting that a species' life history strategy may influence cancer vulnerabilities. Lastly, we tested for the relationship between placental invasiveness and malignancy. We find no evidence for an association between placental depth and malignancy prevalence (P = 0.618, Adj. R2 = 0.068). Conclusions Life history theory offers a powerful framework to understand variation in cancer defenses across the tree of life. These findings provide insight into the relationship between life history traits and cancer vulnerabilities, which suggest a trade-off between reproduction and cancer defenses. Lay summary Why are some mammals more vulnerable to cancer than others? We test whether life history trade-offs may explain this variation in cancer risk. Bigger, longer-lived animals do not develop more cancer compared to smaller, shorter-lived animals. However, we find a positive association between litter size and cancer prevalence in mammals.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Allan P Pessier
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ.,Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Carmel Witte
- Institute for Conservation Research, San Diego Zoo Global, CA, USA
| |
Collapse
|
128
|
Lehtonen J. Longevity and the drift barrier: Bridging the gap between Medawar and Hamilton. Evol Lett 2020; 4:382-393. [PMID: 32774886 PMCID: PMC7403686 DOI: 10.1002/evl3.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/31/2020] [Indexed: 11/10/2022] Open
Abstract
Most organisms have finite life spans. The maximum life span of mammals, for example, is at most some years, decades, or centuries. Why not thousands of years or more? Can we explain and predict maximum life spans theoretically, based on other traits of organisms and associated ecological constraints? Existing theory provides reasons for the prevalence of ageing, but making explicit quantitative predictions of life spans is difficult. Here, I show that there are important unappreciated differences between two backbones of the theory of senescence: Peter Medawar's verbal model, and William Hamilton's subsequent mathematical model. I construct a mathematical model corresponding more closely to Medawar's verbal description, incorporating mutations of large effect and finite population size. In this model, the drift barrier provides a standard by which the limits of natural selection on age‐specific mutations can be measured. The resulting model reveals an approximate quantitative explanation for typical maximum life spans. Although maximum life span is expected to increase with population size, it does so extremely slowly, so that even the largest populations imaginable have limited ability to maintain long life spans. Extreme life spans that are observed in some organisms are explicable when indefinite growth or clonal reproduction is included in the model.
Collapse
Affiliation(s)
- Jussi Lehtonen
- Faculty of Science School of Life and Environmental Sciences The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
129
|
Thorley J. The case for extended lifespan in cooperatively breeding mammals: a re-appraisal. PeerJ 2020; 8:e9214. [PMID: 32477839 PMCID: PMC7243813 DOI: 10.7717/peerj.9214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/27/2020] [Indexed: 12/04/2022] Open
Abstract
Recent comparative studies have suggested that cooperative breeding is associated with increases in maximum lifespan among mammals, replicating a pattern also seen in birds and insects. In this study, we re-examine the case for increased lifespan in mammalian cooperative breeders by analysing a large dataset of maximum longevity records. We did not find any consistent, strong evidence that cooperative breeders have longer lifespans than other mammals after having controlled for variation in body mass, mode of life and data quality. The only possible exception to this general trend is found in the African mole-rats (the Bathyergid family), where all members are relatively long-lived, but where the social, cooperatively breeding species appear to be much longer-lived than the solitary species. However, solitary mole-rat species have rarely been kept in captivity or followed longitudinally in the wild and so it seems likely that their maximum lifespan has been underestimated when compared to the highly researched social species. Although few subterranean mammals have received much attention in a captive or wild setting, current data instead supports a causal role of subterranean living on lifespan extension in mammals.
Collapse
Affiliation(s)
- Jack Thorley
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
130
|
Zheng Z, Wang X, Li M, Li Y, Yang Z, Wang X, Pan X, Gong M, Zhang Y, Guo Y, Wang Y, Liu J, Cai Y, Chen Q, Okpeku M, Colli L, Cai D, Wang K, Huang S, Sonstegard TS, Esmailizadeh A, Zhang W, Zhang T, Xu Y, Xu N, Yang Y, Han J, Chen L, Lesur J, Daly KG, Bradley DG, Heller R, Zhang G, Wang W, Chen Y, Jiang Y. The origin of domestication genes in goats. SCIENCE ADVANCES 2020; 6:eaaz5216. [PMID: 32671210 PMCID: PMC7314551 DOI: 10.1126/sciadv.aaz5216] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/06/2020] [Indexed: 05/22/2023]
Abstract
Goat domestication was critical for agriculture and civilization, but its underlying genetic changes and selection regimes remain unclear. Here, we analyze the genomes of worldwide domestic goats, wild caprid species, and historical remains, providing evidence of an ancient introgression event from a West Caucasian tur-like species to the ancestor of domestic goats. One introgressed locus with a strong signature of selection harbors the MUC6 gene, which encodes a gastrointestinally secreted mucin. Experiments revealed that the nearly fixed introgressed haplotype confers enhanced immune resistance to gastrointestinal pathogens. Another locus with a strong signal of selection may be related to behavior. The selected alleles at these two loci emerged in domestic goats at least 7200 and 8100 years ago, respectively, and increased to high frequencies concurrent with the expansion of the ubiquitous modern mitochondrial haplogroup A. Tracking these archaeologically cryptic evolutionary transformations provides new insights into the mechanisms of animal domestication.
Collapse
Affiliation(s)
- Zhuqing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yunjia Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhirui Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yingwei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiuming Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Moses Okpeku
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Discipline of Genetics, School of Life Science, University of Kwazulu-Natal, Durban 4000, South Africa
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, via Emilia Parmense n. 84, 29122, Piacenza (PC), Italy
- BioDNA–Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, via Emilia Parmense n. 84, 29122, Piacenza (PC), Italy
| | - Dawei Cai
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun 130012, China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shisheng Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | | | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tingting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Naiyi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Lei Chen
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | | | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
131
|
Zafar-ul Islam M, Volmer R, al Boug A, Shehri AA, Gavashelishvili A. Modelling the effect of competition for prey and poaching on the population of the Arabian Leopard, Panthera pardus nimr, in Saudi Arabia (Mammalia: Felidae). ZOOLOGY IN THE MIDDLE EAST 2020. [DOI: 10.1080/09397140.2020.1757911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M. Zafar-ul Islam
- Prince Saud al Faisal Wildlife Research Center, Taif, Saudi Arabia
- Center of Biodiversity Studies, Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Rebbeka Volmer
- Department for Sociology and Anthropology, Ateneo de Manila University, Quezon City, Metro Manila, Philippines
| | - Ahmed al Boug
- Prince Saud al Faisal Wildlife Research Center, Taif, Saudi Arabia
| | | | | |
Collapse
|
132
|
Campos FA, Kalbitzer U, Melin AD, Hogan JD, Cheves SE, Murillo-Chacon E, Guadamuz A, Myers MS, Schaffner CM, Jack KM, Aureli F, Fedigan LM. Differential impact of severe drought on infant mortality in two sympatric neotropical primates. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200302. [PMID: 32431912 PMCID: PMC7211846 DOI: 10.1098/rsos.200302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 05/06/2023]
Abstract
Extreme climate events can have important consequences for the dynamics of natural populations, and severe droughts are predicted to become more common and intense due to climate change. We analysed infant mortality in relation to drought in two primate species (white-faced capuchins, Cebus capucinus imitator, and Geoffroy's spider monkeys, Ateles geoffroyi) in a tropical dry forest in northwestern Costa Rica. Our survival analyses combine several rare and valuable long-term datasets, including long-term primate life-history, landscape-scale fruit abundance, food-tree mortality, and climate conditions. Infant capuchins showed a threshold mortality response to drought, with exceptionally high mortality during a period of intense drought, but not during periods of moderate water shortage. By contrast, spider monkey females stopped reproducing during severe drought, and the mortality of infant spider monkeys peaked later during a period of low fruit abundance and high food-tree mortality linked to the drought. These divergent patterns implicate differing physiology, behaviour or associated factors in shaping species-specific drought responses. Our findings link predictions about the Earth's changing climate to environmental influences on primate mortality risk and thereby improve our understanding of how the increasing severity and frequency of droughts will affect the dynamics and conservation of wild primates.
Collapse
Affiliation(s)
- Fernando A. Campos
- Department of Anthropology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Urs Kalbitzer
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Amanda D. Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jeremy D. Hogan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | - Filippo Aureli
- Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Mexico
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Linda M. Fedigan
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
133
|
Schofield G, Klaassen M, Papafitsoros K, Lilley MKS, Katselidis KA, Hays GC. Long-term photo-id and satellite tracking reveal sex-biased survival linked to movements in an endangered species. Ecology 2020; 101:e03027. [PMID: 32096220 DOI: 10.1002/ecy.3027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
Sex-biased survival linked to anthropogenic threats places populations at risk. We show the utility of long-term multidecadal photo-identification (photo-id) combined with long-term high-resolution (Fastloc-GPS) satellite telemetry to investigate the links between mortality rates and patterns of movement for a wide-ranging, endangered marine vertebrate. Using a photo-identification database of 947 loggerhead turtles (Caretta caretta) compiled over 18 yr, we estimated greater annual survival rates of females (0.89; 95% confidence interval [CI] 0.87-0.90) compared to males (0.73; 95% CI 0.67-0.78). For males satellite-tracked across multiple breeding seasons, 100% (26 of 26) returned to the same breeding site, suggesting the calculated lower male survival rate was likely not due to emigration to breed elsewhere. 10,111 and 2,524 tracking days for males (n = 39 individuals) and females (n = 18 individuals), respectively, revealed different habitat-use patterns outside the breeding season: males tended to occupy foraging sites closer to shore and closer to breeding sites but, due to their generally annual breeding, compared to biennial breeding for females, males migrated further per year on average. These differences in movement patterns likely contribute to higher mortality in males through increased interaction with anthropogenic threats. Long-term identification coupled with tracking offers great promise for estimating the survival rates of other wide-ranging species.
Collapse
Affiliation(s)
- Gail Schofield
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Marcel Klaassen
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3280, Australia
| | - Kostas Papafitsoros
- Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117, Berlin, Germany.,ARCHELON, The Sea Turtle Protection Society of Greece, Solomou 57, GR-10432, Athens, Greece
| | - Martin K S Lilley
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon, EX4 4QD, UK
| | - Kostas A Katselidis
- National Marine Park of Zakynthos, 1 Eleftheriou Venizelou Street GR29100, Zakynthos, Greece
| | - Graeme C Hays
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3280, Australia
| |
Collapse
|
134
|
Abstract
Blood oxygen-carrying capacity is one of the important determinants of the amount of oxygen supplied to the tissue per unit time and plays a key role in oxidative metabolism. In wild vertebrates, blood oxygen-carrying capacity is most commonly measured with the total blood hemoglobin concentration (Hb) and hematocrit (Hct), which is the volume percentage of red blood cells in blood. Here, I used published estimates of avian Hb and Hct (nearly 1,000 estimates from 300 species) to examine macroevolutionary patterns in the oxygen-carrying capacity of blood in birds. Phylogenetically informed comparative analysis indicated that blood oxygen-carrying capacity was primarily determined by species distribution (latitude and elevation) and morphological constraints (body mass). I found little support for the effect of life-history components on blood oxygen-carrying capacity except for a positive association of Hct with clutch size. Hb was also positively associated with diving behavior, but I found no effect of migratoriness on either Hb or Hct. Fluctuating selection was identified as the major force shaping the evolution of blood oxygen-carrying capacity. The results offer novel insights into the evolution of Hb and Hct in birds, and they provide a general, phylogenetically robust support for some long-standing hypotheses in avian ecophysiology.
Collapse
|
135
|
Sandom CJ, Middleton O, Lundgren E, Rowan J, Schowanek SD, Svenning JC, Faurby S. Trophic rewilding presents regionally specific opportunities for mitigating climate change. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190125. [PMID: 31983340 PMCID: PMC7017765 DOI: 10.1098/rstb.2019.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 01/09/2023] Open
Abstract
Large-bodied mammalian herbivores can influence processes that exacerbate or mitigate climate change. Herbivore impacts are, in turn, influenced by predators that place top-down forcing on prey species within a given body size range. Here, we explore how the functional composition of terrestrial large-herbivore and -carnivore guilds varies between three mammal distribution scenarios: Present-Natural, Current-Day and Extant-Native Trophic (ENT) Rewilding. Considering the effects of herbivore species weakly influenced by top-down forcing, we quantify the relative influence keystone large-herbivore guilds have on methane emissions, woody vegetation expansion, fire dynamics, large-seed dispersal, and nitrogen and phosphorus transport potential. We find strong regional differences in the number of herbivores under weak top-down regulation between our three scenarios, with important implications for how they will influence climate change relevant processes. Under the Present-Natural non-ruminant, megaherbivore, browsers were a particularly important guild across much of the world. Megaherbivore extinction and range contraction and the arrival of livestock mean large, ruminant, grazers have become more dominant. ENT Rewilding can restore the Afrotropics and the Indo-Malay realm to the Present-Natural benchmark, but causes top-down forcing of the largest herbivores to become commonplace elsewhere. ENT Rewilding will reduce methane emissions, but does not maximize natural climate solution potential. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.
Collapse
Affiliation(s)
- Christopher J. Sandom
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
- Sussex Sustainability Research Programme (SSRP), University of Sussex, Brighton BN1 9QG, UK
| | - Owen Middleton
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Erick Lundgren
- Centre for Compassionate Conservation, School of Life Sciences, University of Technology, Sydney, Australia
| | - John Rowan
- Department of Anthropology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Simon D. Schowanek
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE 405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE 405 30, Göteborg, Sweden
| |
Collapse
|
136
|
Anile S, Devillard S, Nielsen CK, Lo Valvo M. Record of a 10-year old European Wildcat Felis silvestris silvestris Schreber, 1777 (Mammalia: Carnivora: Felidae) from Mt. Etna, Sicily, Italy. JOURNAL OF THREATENED TAXA 2020. [DOI: 10.11609/jott.5484.12.2.15272-15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Longevity data for wild felids are lacking in the literature. Here we report a camera trap recapture of a European Wildcat Felis silvestris at Mt. Etna in Sicily, Italy after nine years. This individual was clearly identifiable as its tail ended with a white ring rather than the typical black ring and had a unique shape of the dorsal stripe. At first capture on 26 May 2009, this cat was assessed as an adult, so that the likely minimum age of this individual at the time of recapture on 10 June 2018 must have been be at least 10 years. This finding represents the oldest known European Wildcat in the wild and provides insight into age structure in wildcat populations.
Collapse
|
137
|
Zipple MN. When will the Bruce effect evolve? The roles of infanticide, feticide and maternal death. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2019.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
138
|
Khan N, Kim SK, Gagneux P, Dugan L, Varki A. Maximum reproductive lifespan correlates with CD33rSIGLEC gene number: Implications for NADPH oxidase-derived reactive oxygen species in aging. FASEB J 2020; 34:1928-1938. [PMID: 31907986 PMCID: PMC7018541 DOI: 10.1096/fj.201902116r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Abstract
Humans and orcas are among the very rare species that have a prolonged post-reproductive lifespan (PRLS), during which the aging process continues. Reactive oxygen species (ROS) derived from mitochondria and from the NADPH oxidase (NOX) enzymes of innate immune cells are known to contribute to aging, with the former thought to be dominant. CD33-related-Siglecs are immune receptors that recognize self-associated-molecular-patterns and modulate NOX-derived-ROS. We herewith demonstrate a strong correlation of lifespan with CD33rSIGLEC gene number in 26 species, independent of body weight or phylogeny. The correlation is stronger when considering total CD33rSIGLEC gene number rather than those encoding inhibitory and activating subsets, suggesting that lifetime balancing of ROS is important. Combining independent lines of evidence including the short half-life and spontaneous activation of neutrophils, we calculate that even without inter-current inflammation, a major source of lifetime ROS exposure may actually be neutrophil NOX-derived. However, genomes of human supercentenarians (>110 years) do not harbor a significantly higher number of functional CD33rSIGLEC genes. Instead, lifespan correlation with CD33rSIGLEC gene number was markedly strengthened by excluding the post-reproductive lifespan of humans and orcas (R2 = 0.83; P < .0001). Thus, CD33rSIGLEC modulation of ROS likely contributes to maximum reproductive lifespan, but other unknown mechanisms could be important to PRLS.
Collapse
Affiliation(s)
- Naazneen Khan
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, 94305, United States
| | - Pascal Gagneux
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Laura Dugan
- VA Tennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| |
Collapse
|
139
|
Boyce AJ, Mouton JC, Lloyd P, Wolf BO, Martin TE. Metabolic rate is negatively linked to adult survival but does not explain latitudinal differences in songbirds. Ecol Lett 2020; 23:642-652. [PMID: 31990148 DOI: 10.1111/ele.13464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/02/2020] [Indexed: 01/11/2023]
Abstract
Survival rates vary dramatically among species and predictably across latitudes, but causes of this variation are unclear. The rate-of-living hypothesis posits that physiological damage from metabolism causes species with faster metabolic rates to exhibit lower survival rates. However, whether increased survival commonly observed in tropical and south temperate latitudes is associated with slower metabolic rate remains unclear. We compared metabolic rates and annual survival rates that we measured across 46 species, and from literature data across 147 species of birds in northern, southern and tropical latitudes. High metabolic rates were associated with lower survival but survival varied substantially among latitudinal regions independent of metabolism. The inability of metabolic rate to explain latitudinal variation in survival suggests (1) species may evolve physiological mechanisms that mitigate physiological damage from cellular metabolism and (2) extrinsic rather than intrinsic sources of mortality are the primary causes of latitudinal differences in survival.
Collapse
Affiliation(s)
- Andy J Boyce
- Montana Cooperative Wildlife Research Unit, Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - James C Mouton
- Montana Cooperative Wildlife Research Unit, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Penn Lloyd
- FitzPatrick Institute of African Ornithology, Department of Science and Technology/National Research Foundation Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| | - Blair O Wolf
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Thomas E Martin
- U.S. Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT, USA
| |
Collapse
|
140
|
Bernard C, Compagnoni A, Salguero‐Gómez R. Testing Finch's hypothesis: The role of organismal modularity on the escape from actuarial senescence. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Aldo Compagnoni
- Martin Luther University Halle‐Wittenberg German Centre for Integrative Biodiversity Research Leipzig Germany
| | - Roberto Salguero‐Gómez
- Department of Zoology University of Oxford Oxford UK
- Centre for Biodiversity and Conservation Science University of Queensland St. Lucia QLD Australia
- Evolutionary Demography laboratory Max Plank Institute for Demographic Research Rostock Germany
| |
Collapse
|
141
|
Hoekstra LA, Schwartz TS, Sparkman AM, Miller DAW, Bronikowski AM. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct Ecol 2020; 34:38-54. [PMID: 32921868 PMCID: PMC7480806 DOI: 10.1111/1365-2435.13450] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
1. The field of comparative aging biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analyzed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of aging. 2. We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of aging in reptiles consistent with canonical hallmarks of aging in model systems? What are the knowledge gaps in our understanding of reptile aging? 3. We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower aging than other orders, but data on crocodilians and tuatara are sparse. Sex-specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals. 4. Reptiles share many physiological and molecular pathways of aging with mammals, birds, and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical aging phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signaling, and DNA repair. 5. To overcome challenges to the study of reptile aging, we recommend extending and expanding long-term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life-history axes, and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all aging biology.
Collapse
Affiliation(s)
- Luke A Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Amanda M Sparkman
- Department of Biology, Westmont College, Santa Barbara, California, 93108, USA
| | - David A W Miller
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50010, USA
| |
Collapse
|
142
|
Abstract
Biological ageing and its mechanistic underpinnings are of immense biomedical and ecological significance. Ageing involves the decline of diverse biological functions and places a limit on a species’ maximum lifespan. Ageing is associated with epigenetic changes involving DNA methylation. Furthermore, an analysis of mammals showed that the density of CpG sites in gene promoters, which are targets for DNA methylation, is correlated with lifespan. Using 252 whole genomes and databases of animal age and promotor sequences, we show a pattern across vertebrates. We also derive a predictive lifespan clock based on CpG density in a selected set of promoters. The lifespan clock accurately predicts maximum lifespan in vertebrates (R2 = 0.76) from the density of CpG sites within only 42 selected promoters. Our lifespan clock provides a wholly new method for accurately estimating lifespan using genome sequences alone and enables estimation of this challenging parameter for both poorly understood and extinct species.
Collapse
|
143
|
Bakewell AT, Davis KE, Freckleton RP, Isaac NJB, Mayhew PJ. Comparing Life Histories across Taxonomic Groups in Multiple Dimensions: How Mammal-Like Are Insects? Am Nat 2019; 195:70-81. [PMID: 31868535 DOI: 10.1086/706195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Explaining variation in life histories remains a major challenge because they are multidimensional and there are many competing explanatory theories and paradigms. An influential concept in life-history theory is the fast-slow continuum, exemplified by mammals. Determining the utility of such concepts across taxonomic groups requires comparison of the groups' life histories in multidimensional space. Insects display enormous species richness and phenotypic diversity, but testing hypotheses like the fast-slow continuum has been inhibited by incomplete trait data. We use phylogenetic imputation to generate complete data sets of seven life-history traits in orthopterans (grasshoppers and crickets) and examine the robustness of these imputations for our findings. Three phylogenetic principal components explain 83%-96% of variation in these data. We find consistent evidence of an axis mostly following expectations of a fast-slow continuum, except that "slow" species produce larger, not smaller, clutches of eggs. We show that the principal axes of variation in orthopterans and reptiles are mutually explanatory, as are those of mammals and birds. Essentially, trait covariation in Orthoptera, with "slow" species producing larger clutches, is more reptilelike than mammal-like or birdlike. We conclude that the fast-slow continuum is less pronounced in Orthoptera than it is in birds and mammals, reducing the universal relevance of this pattern and the theories that predict it.
Collapse
|
144
|
Evolution of placental invasion and cancer metastasis are causally linked. Nat Ecol Evol 2019; 3:1743-1753. [PMID: 31768023 PMCID: PMC7340496 DOI: 10.1038/s41559-019-1046-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Among mammals, placental invasion is correlated with vulnerability to malignancy. Animals with more invasive placentation (e.g. humans) are more vulnerable to malignancy. To explain this correlation, we propose the hypothesis of Evolved Levels of Invasibility: the evolution of invasibility of stromal tissue affects both, placental and cancer invasion. We provide evidence for this hypothesis using an in vitro model. We find that bovine endometrial and skin fibroblasts are more resistant to invasion than their human counterparts. Gene expression profiling identified genes with high expression in human but not in bovine fibroblasts. Knocking down a subset of them in human fibroblasts leads to stronger resistance to cancer cell invasion. Identifying the evolutionary determinants of stromal invasibility can provide significant insights to develop rational anti-metastatic therapeutics.
Collapse
|
145
|
Kruempel JC, Howington MB, Leiser SF. Computational tools for geroscience. TRANSLATIONAL MEDICINE OF AGING 2019; 3:132-143. [PMID: 33241167 PMCID: PMC7685266 DOI: 10.1016/j.tma.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The rapid progress of the past three decades has led the geroscience field near a point where human interventions in aging are plausible. Advances across scientific areas, such as high throughput "-omics" approaches, have led to an exponentially increasing quantity of data available for biogerontologists. To best translate the lifespan and healthspan extending interventions discovered by basic scientists into preventative medicine, it is imperative that the current data are comprehensively utilized to generate testable hypotheses about translational interventions. Building a translational pipeline for geroscience will require both systematic efforts to identify interventions that extend healthspan across taxa and diagnostics that can identify patients who may benefit from interventions prior to the onset of an age-related morbidity. Databases and computational tools that organize and analyze both the wealth of information available on basic biogerontology research and clinical data on aging populations will be critical in developing such a pipeline. Here, we review the current landscape of databases and computational resources available for translational aging research. We discuss key platforms and tools available for aging research, with a focus on how each tool can be used in concert with hypothesis driven experiments to move closer to human interventions in aging.
Collapse
Affiliation(s)
- Joseph C.P. Kruempel
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marshall B. Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F. Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
146
|
Ronget V, Gaillard J. Assessing ageing patterns for comparative analyses of mortality curves: Going beyond the use of maximum longevity. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Victor Ronget
- Université Lyon 1 CNRS Laboratoire de Biométrie et Biologie Évolutive UMR 5558 University of Lyon Villeurbanne France
| | - Jean‐Michel Gaillard
- Université Lyon 1 CNRS Laboratoire de Biométrie et Biologie Évolutive UMR 5558 University of Lyon Villeurbanne France
| |
Collapse
|
147
|
Age-related differences in physiology and survival of northern red-backed voles (Myodes rutilus) in captivity. Biogerontology 2019; 21:133-142. [PMID: 31654315 DOI: 10.1007/s10522-019-09847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
Age-related deterioration of physiological functions is one of the most evident manifestations of ageing. In wild populations of some species, including murid rodents, lifespans are substantially modified by environmental signals that affect an individual's response to such challenges as unfavourable climatic conditions, parasitic load etc. But the real impact of ageing on natural mortality of most species remains obscure. To clarify how age affects the responsiveness of organisms to environmental challenges, we performed longitudinal laboratory observations of wild-derived northern red-backed voles (Myodes rutilus). We fixed individual longevity and measured metabolic indexes (basal and maximal metabolic rates), ability to maintain body temperature under acute cooling, plasma corticosterone, indexes of acquired and innate immunity in the same individuals of 3-4, 6-7 and 9-10 months old. The maximum estimated lifespan was about 2 years 8 months, which is considerably older than in nature, but less than 30% of individuals passed the one-year milestone. Regardless of the intense mortality, in the first year of life, animals did not demonstrate any age-related deterioration in physiological functions, except leucocyte number. No consistency in any individual physiological index was found. As the individual longevity of red-backed voles varied between years of captivity, we suggest that the welfare and lifespan of wild animals in captivity may be affected by the environmental conditions in the period preceding removal of the animal from the wild.
Collapse
|
148
|
New C-Terminal Conserved Regions of Tafazzin, a Catalyst of Cardiolipin Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2901057. [PMID: 31781330 PMCID: PMC6855050 DOI: 10.1155/2019/2901057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Cardiolipin interacts with many proteins of the mitochondrial inner membrane and, together with cytochrome C and creatine kinase, activates them. It can be considered as an integrating factor for components of the mitochondrial respiratory chain, which provides for an efficient transfer of electrons and protons. The major, if not the only, factor of cardiolipin maturation is tafazzin. Variations of isoform proportions of this enzyme can cause severe diseases such as Barth syndrome. Using bioinformatic methods, we have found conserved C-terminal regions in many tafazzin isoforms and identified new mammalian species that acquired exon 5 as well as rare occasions of intron retention between exons 8 and 9. The regions in the C-terminal part arise from frameshifts relative to the full-length TAZ transcript after skipping exon 9 or retention of the intron between exons 10 and 11. These modifications demonstrate specific distribution among the orders of mammals. The dependence of the species maximum lifespan, body weight, and mitochondrial metabolic rate on the modifications has been demonstrated. Arguably, unconventional tafazzin isoforms provide for the optimal balance between the increased biochemical activity of mitochondria (resulting from specific environmental or nutritional conditions) and lifespan maintenance; and the functional role of such isoforms is linked to the modification of the primary and secondary structures at their C-termini.
Collapse
|
149
|
Longevity and mortality of captive chimpanzees in Japan from 1921 to 2018. Primates 2019; 60:525-535. [DOI: 10.1007/s10329-019-00755-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/09/2019] [Indexed: 10/25/2022]
|
150
|
Tezel G, Timur SS, Bozkurt İ, Türkoğlu ÖF, Eroğlu İ, Nemutlu E, Öner L, Eroğlu H. A Snapshot on the Current Status of Alzheimer’s Disease, Treatment Perspectives, in-Vitro and in-Vivo Research Studies and Future Opportunities. Chem Pharm Bull (Tokyo) 2019; 67:1030-1041. [DOI: 10.1248/cpb.c19-00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Gizem Tezel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| | - Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| | | | - Ö. Faruk Türkoğlu
- Department of Neurosurgery, Ankara Atatürk Research and Education Hospital
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University
| |
Collapse
|