101
|
Yamada H, Yamamoto A, Yodozawa S, Kozaki S, Takahashi M, Morita M, Michibata H, Furuichi T, Mikoshiba K, Moriyama Y. Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes. J Pineal Res 1996; 21:175-91. [PMID: 8981262 DOI: 10.1111/j.1600-079x.1996.tb00285.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian pinealocytes are neuroendocrine cells that synthesize and secrete melatonin, these processes being positively controlled by norepinephrine derived from innervating sympathetic neurons. Previously, we showed that pinealocytes contain a large number of microvesicles (MVs) that specifically accumulate L-glutamate through a vesicular glutamate transporter and contain proteins for exocytosis such as synaptobrevin 2 (VAMP2). These findings suggested that the MVs are counterparts of synaptic vesicles and are involved in paracrine-like chemical transduction in the pineal gland. Here, we show that pinealocytes actually secrete glutamate upon stimulation by KCl in the presence of Ca2+ at 37 degrees C. The ability of glutamate secretion disappeared when the cells were incubated at below 20 degrees C. Loss of the activity was also observed on successive stimulation, but it was recovered after 12 hr incubation. A low concentration of cadmium chloride or omega-conotoxin GVIA inhibited the secretion. Botulinum neurotoxin E cleaved synaptic vesicle-associated protein 25 (SNAP-25) and thus inhibited the secretion. The released L-glutamate stimulated pinealocytes themselves via glutamate receptor(s) and inhibited norepinephrine-stimulated melatonin secretion. These results strongly suggest that pinealocytes are glutaminergic paraneurons, and that the glutaminergic system regulates negatively the synthesis and secretion of melatonin. The MV-mediated paracrine-like chemical transduction seems to be a novel mechanism that regulates hormonal secretion by neuroendocrine cells.
Collapse
Affiliation(s)
- H Yamada
- Division of Marine Molecular Biology, Graduate School of Gene Sciences, Hiroshima University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Pettersson E, Herrera-Marschitz M, Rodriguez-Puertas R, Xu ZQ, You ZB, Hughes J, Elde RP, Ungerstedt U, Hökfelt T. Evidence for aspartate-immunoreactive neurons in the neostriatum of the rat: modulation by the mesencephalic dopamine pathway via D1-subtype of receptor. Neuroscience 1996; 74:51-66. [PMID: 8843077 DOI: 10.1016/0306-4522(96)00124-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aspartate-like immunoreactivity was visualized in the neostriatum of rats using indirect immunofluorescence techniques and antibodies raised against aspartate conjugated to keyhole limpet hemocyanine. In normal rats only a few aspartate-positive cell bodies with limited processes were observed. A moderate increase was seen after treatment with (+)methamphetamine and haloperidol. A dramatic increase in the number and fluorescence intensity was observed in the unilaterally 6-hydroxy-dopamine lesioned rats after multiple injections of the D1-dopamine receptor agonist SKF 38393. In these rats strongly fluorescent processes as well as extensive terminal varicose fibre networks were observed. This increase could partly be blocked by the D1-dopamine receptor antagonist SCH 23390. Using a modified technique the aspartate-positive cell bodies and processes were observed even when the antiserum was diluted 1:80,000. Positive cell bodies and fibres were also seen on the ipsilateral side outside the neostriatum, for example in the islet of Calleja and in the piriform cortex. The aspartate-positive cells were negative for dopamine- and cyclic AMP-regulated phosphoprotein-32, a marker for neurons bearing dopamine D1-receptor subtype. A proportion of the aspartate-positive neurons (20%) contained neuropeptide tyrosine-like immunoreactivity. On adjacent sections there was a marked up-regulation of preprodynorphin-like immunoreactivity. The up-regulation of dynorphin and aspartate was only observed when there was an almost complete denervation of the neostriatum as visualized with antiserum to tyrosine hydroxylase, a marker for dopamine fibres. The present results raise the possibility that aspartate may act as a neurotransmitter released from interneurons in the neostriatum.
Collapse
Affiliation(s)
- E Pettersson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Obrenovitch TP, Zilkha E, Urenjak J. Evidence against high extracellular glutamate promoting the elicitation of spreading depression by potassium. J Cereb Blood Flow Metab 1996; 16:923-31. [PMID: 8784236 DOI: 10.1097/00004647-199609000-00016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study ascertains whether high extracellular glutamate contributes to the initiation of spreading depression (SD) by K+. Two microdialysis probes, each incorporating an electrode to record the extracellular direct current (DC) potential at the elicitation site, were implanted symmetrically in the cortex of anesthetized rats. Recurrent SD was triggered by perfusion of 130 mM K+ through the microdialysis probe for 20 min. On one side, this medium was supplemented with increasing concentrations of glutamate (0.1-1 mM) or of the selective glutamate uptake inhibitor 1-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC: 1-10 mM). The effects of L-trans-PDC on extracellular glutamate and basal DC potential were studied in separate experiments. Application of K+ for 20 min consistently elicited five to seven waves of SD. Increasing the concentration of glutamate in the perfusion medium did not alter SD elicitation. Application of L-trans-PDC concentration dependently increased the dialysate levels of glutamate (by approximately 19-fold with 10 mM L-trans-PDC) but, unexpectedly, reduced SD elicitation. These data do not support the hypothesis that SD is elicited because high extracellular glutamate resulting from exocytosis and/or reversal of glutamate uptake depolarizes adjacent neurons. As SD elicitation requires activation of N-methyl-D-aspartate (NMDA) receptors, these results also illustrate that sensitivity of a pathological or experimental event to NMDA receptor antagonists does not necessarily imply involvement of increased extracellular glutamate. This does not rule out a selective action of glutamate, transiently released from presynaptic vesicles, on immediately juxtaposed postsynaptic receptors.
Collapse
Affiliation(s)
- T P Obrenovitch
- Gough-Cooper Department of Neurological Surgery, Institute of Neurology, London, England
| | | | | |
Collapse
|
104
|
Gonçalves ML, Ribeiro JA. Adenosine A2 receptor activation facilitates 45Ca2+ uptake by rat brain synaptosomes. Eur J Pharmacol 1996; 310:257-61. [PMID: 8884224 DOI: 10.1016/0014-2999(96)00383-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adenosine has been shown to increase the release of neurotransmitters by stimulation of adenosine A2 receptors. This effect probably depends on Ca2+ entry into presynaptic nerve terminals. In the present work the ability of the mixed adenosine A1/A2 agonist, 2-chloroadenosine, to stimulate Ca2+ uptake into rat brain synaptosomes was investigated. 45Ca2+ uptake was induced by 20 microM veratridine. In the absence of other drugs, 2-chloroadenosine (1 microM) decreased 45Ca2+ uptake into synaptosomes. Blocking the adenosine A1 receptor with 100 nM of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), 2-chloroadenosine (1 microM) increased rather than decreased the uptake of 45Ca2+ into synaptosomes. The excitatory effect of 2-chloroadenosine observed in the presence of DPCPX was reversed by 200 nM of omega-agatoxin-IVA, a specific P-type Ca2+ channel antagonist, but not by L-type (nifedipine, 100 nM to 1 microM; methoxyverapamil 1-10 microM) or N-type (omega-conotoxin GVIA, 500 nM) Ca2+ channel antagonists. The adenosine A2A selective agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethyl-carboxamido-adenosi ne (CGS 21680), did not significantly modify Ca2+ uptake induced by veratridine. In contrast, the selective adenosine A2 receptor agonist, N6-(2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl)-adenosine (DPMA), in concentrations ranging from 10 nM to 1 microM increased Ca2+ uptake induced by veratridine. The selective adenosine A2 receptor antagonist 3,7-dimethyl-1-propargylxanthine (DMPX) at a concentration of 10 microM antagonized the stimulatory effect of DPMA (0.1 microM) on 45Ca2+ uptake. In conclusion, activation of adenosine A2 receptors increases Ca2+ uptake by synaptosomes depolarized by veratridine, which could explain the increase of neurotransmitter release observed when A2 receptors are activated.
Collapse
Affiliation(s)
- M L Gonçalves
- Laboratory of Pharmacology, Gulbenkian Institute of Science, Oeiras, Portugal
| | | |
Collapse
|
105
|
Phillis JW, O'Regan MH. Mechanisms of glutamate and aspartate release in the ischemic rat cerebral cortex. Brain Res 1996; 730:150-64. [PMID: 8883899 DOI: 10.1016/0006-8993(96)00434-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elevated levels of glutamate and aspartate have been implicated in the pathogenesis of neural injury and death induced by ischemia. The mechanism(s) whereby they escape into the extracellular environment have been a subject of controversy. This study evaluated the contribution of phospholipases and protein kinases to ischemia-evoked glutamate and aspartate release from the ischemic/reperfused rat cerebral cortex. Changes in the extracellular levels of these amino acids during four-vessel occlusion elicited global cerebral ischemia were examined using a cortical cup technique. Ischemia-evoked amino acid release was compared in control vs. drug treated animals, in which selective inhibitors of phospholipases and protein kinases were applied topically onto the cerebral cortex. The phospholipase inhibitors tested included 4-bromophenacyl bromide, a non-selective inhibitor; 7,7-dimethyleicosadienoic (DEDA), an inhibitor of secretory type phospholipase A2 (PLA2); AACOCF3, an inhibitor of the Ca2(+)-dependent cytoplasmic form of PLA2, HELSS, which inhibits a Ca(2+)-independent cytoplasmic PLA2, and U73122, a selective inhibitor of phospholipase C (PLC). All five phospholipase inhibitors significantly attenuated glutamate and aspartate release into the extracellular milieu, indicating the possibility that several forms of the enzyme are likely to be involved. The protein kinase C (PKC) inhibitor, chelerythrine chloride, also reduced excitatory amino acid efflux, wheres the PKC activator phorbol 12-myristate 13-acetate (PMA) enhanced their release. The non-selective kinase inhibitor, staurosporine, and H-89, which selectively inhibits protein kinase A, did not reduce ischemia-evoked amino acid efflux. These results suggest that ischemia-evoked release of the excitatory transmitters amino acids is a result, in part, of the activation of phospholipases A2 and C, with PKC involvement in the transduction process. Destabilization and deterioration of the plasma membrane, as a consequence of phospholipid hydrolysis, may allow these transmitter amino acids to diffuse down their concentration gradients into the extracellular fluid.
Collapse
Affiliation(s)
- J W Phillis
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
106
|
Rodríguez R, Sitges M. Nigericin-induced Na+/H+ and K+/H+ exchange in synaptosomes: effect on [3H]GABA release. Neurochem Res 1996; 21:889-95. [PMID: 8895841 DOI: 10.1007/bf02532337] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Nai]), the internal pH (pHi), the internal Ca2+ concentration ([Cai]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFI-AM), 2',7'-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM, fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 microM) elevates [Nai] from 20 to 50 mM, increases the pHi, 0.16 pH units, elevates four fold the [Cai] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Nai]), the same concentration (0.5 microM) of nigericin causes the opposite effect on the pHi (acidifies the synaptosomal interior), does not modify the [Nai] and is practically unable to elevate the [Cai] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 microM the ionophore is able to elevate the [Cai] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.
Collapse
Affiliation(s)
- R Rodríguez
- Depto. de Biología Celular, UNAM, Ciudad Universitaria, México, D.F., México
| | | |
Collapse
|
107
|
Ohta K, Araki N, Shibata M, Hamada J, Komatsumoto S, Shimazu K, Fukuuchi Y. Correlation of in vivo nitric oxide and cGMP with glutamate/glutamine metabolism in the rat striatum. Neurosci Res 1996; 25:379-84. [PMID: 8866518 DOI: 10.1016/0168-0102(96)01064-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have examined how the suppression of endogenous production of nitric oxide (NO) in the striatal tissue affects release of glutamate (GLU) and glutamine (GLN) in pentobarbital-anesthetized male Sprague-Dawley rats. For the quantitative measurement of tissue NO production and amino acid release, an in vivo assay system for extracellular nitrite (NO2-) and amino acids was employed using an in vivo microdialysis technique. An NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME) in concentrations ranging between 4-40 mM was perfused into the rat striatum using the assay system. Tissue NO production was found to be inversely proportional to the L-NAME concentration. L-NAME likewise decreased striatal levels of GLU and GLN. Furthermore, tissue NO production showed a positive correlation with GLU (R = 0.62, P < 0.02) and GLN (R = 0.86, P < 0.001) concentrations. Exogenous application of NO and cGMP by intrastriatal perfusion with 0.1-2.5 mM hydroxylamine and 0.4-10 mM 8-bromo-cGMP, respectively, increased striatal GLU release in a dose-related manner. Hydroxylamine reduced GLN release, and 8-bromo-cGMP showed a tendency to decrease GLN. In conclusion, striatal GLU/GLN metabolism is a function of the tissue concentration of NO. Normal endogenous concentration of NO causes GLU to be released at a consistent basal level, and enhanced tissue NO production facilitates GLU release via pathways including cGMP formation. We hypothesize that NO may suppress GLN formation by astrocytes.
Collapse
Affiliation(s)
- K Ohta
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Takahashi M, Hashimoto M. Depolarization with high-K+ causes Ca(2+)-independent but partially Cl(-)-dependent glutamate release in rat hippocampal slice cultures. Neurosci Res 1996; 25:399-402. [PMID: 8866521 DOI: 10.1016/0168-0102(96)01069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the neurotoxic glutamate release induced by high-K+ depolarization in rat hippocampal slice cultures. Depolarization with 90 mM K+ for 30 min caused a significant, three-fold increase in glutamate release. This release was not inhibited by removing extracellular Ca2+, but was significantly inhibited by replacement of extracellular Cl- with SO4(2-). These findings suggest that glutamate is released by mechanisms other than conventional vesicular release under the high-K+ condition.
Collapse
Affiliation(s)
- M Takahashi
- Tsukuba Research Laboratories, Upjohn Pharmaceuticals Limited, Ibaraki, Japan
| | | |
Collapse
|
109
|
Maneuf YP, Nash JE, Crossman AR, Brotchie JM. Activation of the cannabinoid receptor by delta 9-tetrahydrocannabinol reduces gamma-aminobutyric acid uptake in the globus pallidus. Eur J Pharmacol 1996; 308:161-4. [PMID: 8840127 DOI: 10.1016/0014-2999(96)00326-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction between GABA (gamma-aminobutyric acid) and cannabinoids in the globus pallidus was investigated by evaluating the effects of delta 9-tetrahydrocannabinol on [3H]GABA uptake into slices of rat globus pallidus. delta 9-Tetrahydrocannabinol caused a concentration-dependent decrease in GABA uptake (51% decrease at 100 microM delta 9-tetrahydrocannabinol, IC50 = 18.95 microM). This effect was reversed in a concentration-dependent manner (IC50 = 11.9 microM) by the cannabinoid receptor antagonist SR 141716A (N-(piperidin-1-yl-)5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1 H-pyrazole-3-arboxiamidehydrochloride. SR 141716A alone did not affect GABA uptake. These results show that cannabinoid receptor activation reduces GABA uptake in the globus pallidus.
Collapse
Affiliation(s)
- Y P Maneuf
- Division of Neuroscience, School of Biological Sciences, University of Manchester, UK
| | | | | | | |
Collapse
|
110
|
Zuiderwijk M, Veenstra E, Lopes da Silva FH, Ghijsen WE. Effects of uptake carrier blockers SK & F 89976-A and L-trans-PDC on in vivo release of amino acids in rat hippocampus. Eur J Pharmacol 1996; 307:275-82. [PMID: 8836615 DOI: 10.1016/0014-2999(96)00284-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This report describes the in vivo effects of the uptake carrier blockers 1-(4,4-diphenyl-3-butenyl)-3-piperidine carboxylic acid hydrochloride (SK & F 89976-A) and L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) on basal and K(+)-evoked extracellular levels of gamma-aminobutyric acid (GABA), glutamate, aspartate and taurine in the hippocampus of anaesthetised rats, using the microdialysis technique. SK & F 89976-A increased extracellular GABA levels under K(+)-depolarised conditions and did not affect extracellular glutamate, aspartate and taurine levels, indicating its selective effect on GABA uptake L-trans-PDC dose dependently increased basal and K(+)-evoked extracellular glutamate levels, and did not affect extracellular GABA levels, but increased basal aspartate and taurine levels. The K(+)-evoked release of GABA and glutamate, measured in the presence of both SK & F 89976-A and L-trans-PDC, was Ca(2+)-dependent for about 50% and 65%, respectively. In contrast, the release of the putative amino acid transmitters aspartate and taurine was not Ca(2+)-dependent. These results indicate that (1) in rat hippocampus uptake carriers actively regulate extracellular GABA and glutamate levels, (2) the GABA and glutamate released by K+ was derived from both Ca(2+)-dependent (presumably vesicular) and Ca(2+)-independent (presumably cytosolic) pools, whereas aspartate and taurine release was exclusively from Ca(2+)-independent pools.
Collapse
Affiliation(s)
- M Zuiderwijk
- Graduate School for the Neurosciences, University of Amsterdam, Netherlands.
| | | | | | | |
Collapse
|
111
|
Nie F, Wong-Riley MT. Metabolic and neurochemical plasticity of gamma-aminobutyric acid-immunoreactive neurons in the adult macaque striate cortex following monocular impulse blockade: quantitative electron microscopic analysis. J Comp Neurol 1996; 370:350-66. [PMID: 8799861 DOI: 10.1002/(sici)1096-9861(19960701)370:3<350::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of the present study was to examine the effects of retinal impulse blockade on gamma-aminobutyric acid (GABA)-immunoreactive (GABA-IR) neurons in cytochrome oxidase (CO)-rich puffs of the adult monkey striate cortex. Specifically, we wished to know if changes occurred in their CO activity, GABA immunoreactivity, and synaptic organization. A double-labeling technique, which combined CO histochemistry and postembedding GABA immunocytochemistry on the same ultrathin sections, was used to reveal simultaneously the distribution of the two markers. We quantitatively compared changes in GABA-IR neurons of deprived puffs (DPs) with respect to non-deprived puffs (NPs) 2 weeks after monocular tetrodotoxin treatment. We found that the proportion of darkly CO reactive mitochondria in GABA-IR neurons of DPs drastically decreased to about half of those in NPs. There was a greater reduction of CO levels in GABA-IR axon terminals than in their cell bodies and dendrites. In contrast, most non-GABA-IR neurons displayed no significant change in their CO levels. Morphologically, GABA-IR neurons and axon terminals in DPs showed a significant shrinkage in their mean size. GABA immunoreactivity, as indicated by the density of immunogold particles in GABA-IR neurons, declined in DPs, and a greater decrease was also found in axon terminals than in cell bodies or dendrites. Moreover, the numerical density of GABA-IR axon terminals and synapses in DPs was significantly reduced without changes in that of asymmetric and symmetric synapses. Thus, the present results support the following conclusions: 1) Oxidative metabolism and neurotransmitter expression in GABA-IR neurons are tightly regulated by neuronal activity in adult monkey striate cortex; 2) GABA-IR neurons are much more vulnerable to functional deprivation than non-GABA-IR ones, suggesting that these inhibitory neurons have stringent requirement for sustained excitatory input to maintain their heightened oxidative capacity; and 3) intracortical inhibition mediated by GABA transmission following afferent deprivation may be decreased in deprived puffs, because the oxidative capacity and transmitter level in GABAergic neurons, especially in their axon terminals, are dramatically reduced.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
112
|
Duarte CB, Santos PF, Sánchez-Prieto J, Carvalho AP. On-line detection of glutamate release from cultured chick retinospheroids. Vision Res 1996; 36:1867-72. [PMID: 8759425 DOI: 10.1016/0042-6989(95)00309-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A continuous fluorometric assay was adapted to measure the release of endogenous glutamate from cultured chick retinospheroids. The results obtained with this technique are compared with the release of [3H]D-aspartate from monolayer cultures of chick retina cells. It is shown that although excitatory amino acids may be released in a Ca(2+)-dependent manner, most of the neurotransmitter release from cultured retina cells occurs by reversal of the glutamate transporter. The presence of extracellular Ca2+ may actually inhibit glutamate release by the cells present in the retinospheroids, or the [3H]D-aspartate release by cells in monolayers, when veratridine is the depolarizing agent.
Collapse
Affiliation(s)
- C B Duarte
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Portugal.
| | | | | | | |
Collapse
|
113
|
Nie F, Wong-Riley MT. Differential glutamatergic innervation in cytochrome oxidase-rich and -poor regions of the macaque striate cortex: quantitative EM analysis of neurons and neuropil. J Comp Neurol 1996; 369:571-90. [PMID: 8761929 DOI: 10.1002/(sici)1096-9861(19960610)369:4<571::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase (CO)-rich puffs and CO-poor interpuffs in its supragranular layers. However, the neurochemical basis for their differences in metabolic activity and physiological properties is not well understood. The goals of the present study were to determine whether CO levels in postsynaptic neuronal compartments were correlated with the proportion of excitatory glutamate-immunoreactive (Glu-IR) synapses they received and if Glu-IR terminals and synapses in puffs differed from those in interpuffs. By combining CO histochemistry and postembedding Glu immunocytochemistry on the same ultrathin sections, the simultaneous distribution of the two markers in individual neuronal profiles was quantitatively analyzed. As a comparison, adjacent sections were identically processed for the double labeling of CO and GABA, an inhibitory neurotransmitter. In both puffs and interpuffs, most axon terminals forming asymmetric synapses (84%)--but not symmetric ones, which were GABA-IR--were intensely immunoreactive for Glu. GABA-IR neurons received mainly Glu-IR synapses on their cell bodies, and they had three times as many mitochondria darkly reactive for CO than Glu-rich neurons, which received only GABA-IR axosomatic synapses. In puffs, GABA-IR neurons received a significantly higher ratio of Glu-IR to GABA-IR axosomatic synapses and contained about twice as many darkly CO-reactive mitochondria than those in interpuffs. There were significantly more Glu-IR synapses and a higher ratio of Glu- to GABA-IR synapses in the neuropil of puffs than of interpuffs. Moreover, Glu-IR axon terminals in puffs contained approximately three times more darkly CO-reactive mitochondria than those in interpuffs, suggesting that the former may be synaptically more active. Thus, the present results are consistent with our hypothesis that the levels of oxidative metabolism in postsynaptic neurons and neuropil are positively correlated with the proportion of excitatory synapses they receive. Our findings also suggest that excitatory synaptic activity may be more prominent in puffs than in interpuffs, and that the neurochemical and synaptic differences may constitute one of the bases for physiological and functional diversities between the two regions.
Collapse
Affiliation(s)
- F Nie
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | |
Collapse
|
114
|
Santos MS, Moreno AJ, Carvalho AP. Relationships between ATP depletion, membrane potential, and the release of neurotransmitters in rat nerve terminals. An in vitro study under conditions that mimic anoxia, hypoglycemia, and ischemia. Stroke 1996; 27:941-50. [PMID: 8623117 DOI: 10.1161/01.str.27.5.941] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND PURPOSE It is known that the extracellular accumulation of glutamate during anoxia/ischemia is responsible for initiating neuronal injury. However, little information is available on the release of monoamines and whether the mechanism of its release resembles that of glutamate, which may itself influence the release of monoamines by activating presynaptic receptors. This study was designed to characterize the release of both amino acids and monoamines under chemical conditions that mimic anoxia, hypoglycemia, and ischemia. METHODS The contents of synaptosomes in adenine nucleotides (ATP, ADP, and AMP), amino acids (aspartate, glutamate, taurine, and gamma-aminobutyric acid), and monoamines (dopamine, noradrenaline, and 5-hydroxytryptamine) were measured by high-performance liquid chromatography, after the synaptosomes were subjected to anoxia (KCN + oligomycin), hypoglycemia (2 mmol/L 2-deoxyglucose in glucose-free medium), and ischemia (anoxia plus hypoglycemia). RESULTS The anoxia- and ischemia-induced release or noradrenaline, dopamine, 5-hydroxytryptamine, and glutamate correlated well with ATP depletion. The correlation observed between glutamate levels and the release of dopamine and 5-hydroxytryptamine in ischemic conditions suggests a functional linkage between the two transmitter systems. However, the antagonists of presynaptic glutamate receptors failed to alter the amount of monoamines released. The inhibition of Na+,K+-ATPase by ouabain had an effect similar to that produced by ischemia. CONCLUSIONS The decrease in Na+ and K+ gradients resulting from the energy depletion of the synaptosomes under ischemic conditions or resulting from the inhibition of Na+, K+-ATPase by ouabain promotes the reversal of the neurotransmitter transporters. The decrease in uptake of neurotransmitters may also contribute to the rise in the extracellular concentration of different transmitters observed during brain ischemia.
Collapse
Affiliation(s)
- M S Santos
- Centro de Neurociências de Coimbra, Departamento de Zoologia, Universidade de Coimbra, Portugal
| | | | | |
Collapse
|
115
|
Svarna R, Georgopoulos A, Palaiologos G. Effectors of D-[3H]aspartate release from rat cerebellum. Neurochem Res 1996; 21:603-8. [PMID: 8726969 DOI: 10.1007/bf02527759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of aminooxyacetic acid (AOAA), NH4+, phenylsuccinate (Phs), ketone bodies (KB) and glutamine (Gln), that might interfere with the biosynthesis of neurotransmitter glutamate on the K(+)-evoked Ca(2+)-dependent release of D-[3H]aspartate from rat cerebellar slices was studied. Therefore slices were preincubated in a Krebs-Ringer-bicarbonate-glucose (KR) buffer, loaded with D-[3H]aspartate and superfused in the presence of Ca2+ or when Ca2+ was replaced by Mg2+ or in some cases by EGTA. AOAA, NH4+ and Phs increase the K(+)-evoked Ca(2+)-dependent release of radioactivity by 30%, 68% and 188% compared to the control respectively indicating that these agents are inhibitors of the K(+)-evoked Ca(2+)-dependent release of glutamate. KB and Gln had no effect on the Ca(2+)-dependent release of radioactivity. AOAA, NH4+, Phs and KB but not Gln increase the total release of radioactivity by 43%, 69%, 139%, and 37% respectively. AOAA, NH4+ and KB but not Phs or Gln increase the Ca(2+)-independent release (Mg2+ replacing Ca2+) of radioactivity by 71%, 71% and 108% respectively. The present results indicate that in the cerebellum: 1) Neurotransmitter glutamate is mostly synthesized through the phosphate activated glutaminase (PAG) reaction 2) It is further supported that glutamate released in Ca(2+)-dependent manner before entering its pool in the cytosol has to move into the mitochondrial matrix.
Collapse
Affiliation(s)
- R Svarna
- Laboratory of Biological Chemistry, Medical School, University of Athens, Greece
| | | | | |
Collapse
|
116
|
Tong YC, Hung YC, Lin SN, Cheng JT. Isolation of synaptosomes from the rat urinary bladder. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 58:76-80. [PMID: 8740663 DOI: 10.1016/0165-1838(95)00122-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Synaptosomes are nerve-end particles (NEP) isolated by using the technique of differential centrifugation. The synaptosome offers a good model for biochemical and pharmacological studies of the nerve endings. No report has been made on synaptosome isolation from the urinary bladder. The purpose of our work was to develop the use of synaptosome in the research of neurophysiology and neuropharmacology of the urinary bladder. Synaptosome-rich fraction was prepared from tissue homogenate of male Wistar rat urinary bladder by differential centrifugation (1000, 17,000 and 100,000 g) with discontinuous sucrose gradient. Electron microscopy showed synaptosomes as thin-walled bags containing a large number of synaptic vesicles. Two types of synaptosomes were easily discerned: those containing small agranular vesicles, and those containing dense-cored vesicles. The acetylcholine, norepinephrine, epinephrine and dopamine contents in the preparation were measured by the method of high-performance liquid chromatography. The respective concentrations were 300.4 +/- 30.1, 962.8 +/- 58.5, 617.3 +/- 59.8 and 1354.8 +/- 144.2 pmol/mg synaptosomal protein. In conclusion, it has been demonstrated that synaptosome-rich fractions can be prepared from the rat urinary bladder. Thus it is possible to apply this methodology for the investigation of the neurobiology of urinary bladders.
Collapse
Affiliation(s)
- Y C Tong
- Department of Urology, National Cheng Kung University, Medical College, Tainan, Taiwan, Republic of China
| | | | | | | |
Collapse
|
117
|
Collard KJ. On the significance of perfusion rate in the study of glutamate release from superfused synaptosomes. Neurochem Res 1996; 21:319-22. [PMID: 9139237 DOI: 10.1007/bf02531647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of perfusion rate on the apparent release of [(3)H]glutamate from prelabelled and superfused rat cortical synaptosomes was examined. The proportion of tissue [(3)H]glutamate released in response to a 4 ml depolarizing pulse of 15 mM K+ increased almost linearly with perfusion rates from 1 ml min(-1) to 10 ml min(-1). Release did not increase markedly between 10 ml min(-1) and 20 ml min(-1). The basal efflux of [(3)H]glutamate also increased with perfusion rate. The increase in both basal efflux and (K+)-induced release is interpreted as being due to a greater amount of released transmitter avoiding recapture by uptake processes as perfusion rate increases. This is supported by the observation that increasing the potential number of uptake sites in the tissue decreases both the basal and (K+)-evoked release of the transmitter. The significance of this with respect to optimal perfusion rates for studies on the regulation of glutamate release is discussed.
Collapse
Affiliation(s)
- K J Collard
- Physiology Unit, School of Molecular and Medical Bioscience, University of Wales Cardiff, United Kingdom
| |
Collapse
|
118
|
Ohkuma S, Katsura M, Chen DZ, Narihara H, Kuriyama K. Nitric oxide-evoked [3H] gamma-aminobutyric acid release is mediated by two distinct release mechanisms. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 36:137-44. [PMID: 9011749 DOI: 10.1016/0169-328x(95)00256-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanisms underlying the release of [3H] gamma-aminobutyric acid (GABA) evoked by nitric oxide (NO) were investigated by use of primary cultured neurons prepared from the mouse cerebral cortex. NO generators such as sodium nitroprusside (SNP) and S-nitroso-N-a etylpenicillamine (SNAP) increased both [3H]GABA release from the neurons and [45Ca2+] influx into the neurons in a dose-dependent manner, which was significantly diminished by hemoglobin. The removal of Ca2+ significantly reduced the NO-induced [3H]GABA release by about 50%. Nipecotic acid and 1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1, 2, 5, 6-tetrahydro-3- pyridinecarboxylic acid (NO-711), GABA uptake inhibitors dose-dependently inhibited the NO-evoked [3H]GABA release in either the presence or absence of Ca2+. The concentration of these GABA uptake inhibitors to suppress the NO-induced release of [3H]GABA was sufficiently lower than that to exhibit the inhibition of [3H]GABA transport into the neurons. In addition, the NO-evoked [3H]GABA release was reduced by approximately 50% when total Na+ in incubation buffer was replaced with equimolar choline, and was also completely abolished by the removal of both Ca2+ and Na+. These results indicate that the release of [3H]GABA evoked by NO is mediated by two release mechanisms, a Ca2+ -dependent release system and the reverse process of the Ca2+ -independent and Na+ -dependent carrier-mediated GABA uptake system.
Collapse
Affiliation(s)
- S Ohkuma
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | |
Collapse
|
119
|
Salt TE, Eaton SA. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Prog Neurobiol 1996; 48:55-72. [PMID: 8830348 DOI: 10.1016/0301-0082(95)00047-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thalamic relay nuclei play a pivotal role in gating and processing sensory information en route to the cerebral cortex. The major ascending sensory afferents and the descending cortico-fugal afferents to the thalamus almost certainly use the excitatory amino acid L-glutamate as their transmitter. This paper reviews the nature of this transmission in terms of the receptor types which may be used (NMDA, AMPA, kainate and metabotropic glutamate receptors), their electrophysiological and pharmacological properties, and their differential location in the thalamus on neurones, terminals and glial elements. Whilst AMPA receptors, probably of more than one variety, are likely to mediate fast transmission in the thalamus, the contributions of NMDA receptors and metabotropic glutamate receptors to sensory responses under different stimulus conditions may be more varied. This is discussed in the context of the possible functional significance of the interplay of L-glutamate-gated currents with intrinsic membrane currents of thalamic neurones. The interaction of L-glutamate transmission with other modulators (acetylcholine, noradrenaline, serotonin, glycine, D-serine, nitric oxide, arginine, redox agents) is considered.
Collapse
Affiliation(s)
- T E Salt
- Department of Visual Science, University College London, U.K
| | | |
Collapse
|
120
|
Hackney CM, Osen KK, Ottersen OP, Storm-Mathisen J, Manjaly G. Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: a quantitative study in the guinea-pig anteroventral cochlear nucleus. Eur J Neurosci 1996; 8:79-91. [PMID: 8713452 DOI: 10.1111/j.1460-9568.1996.tb01169.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The large so-called type I afferents of the cochlear nerve carry the majority of the auditory input from the cochlea to the cochlear nuclei in the brainstem. These fibres are excitatory and previous studies have suggested they may use glutamate as their neurotransmitter. In the present investigation therefore, antibodies to glutamate and to the glutamate precursor, glutamine, were applied to resin sections of perfusion-fixed brains and of in vitro brain slices subjected to depolarizing levels of potassium before fixation to study glutamate handling and synaptic release. Ultrathin sections were labelled by the immunogold technique, and the immunoreactivity was quantified by recording the density of gold particles over the various tissue profiles. Non-primary, presumably inhibitory, terminals and glial processes were used as reference structures. The cochlear primary terminals proved to be strongly immunoreactive for glutamate. The density of glutamate labelling was higher in primary terminals than in non-primary ones, and lowest in glial processes. The ratio between the mean glutamate and glutamine labelling densities was also higher in primary terminals than in non-primary ones, and lowest in glial processes in each case. In the primary terminals, the glutamate immunoreactivity was higher over vesicle-containing regions than over vesicle-free regions, whilst glutamine was evenly distributed throughout. The in vitro brain slices showed a potassium-induced, partly calcium-dependent depletion of glutamate from the primary terminals but not from the non-primary ones. These observations strongly support the conclusion that glutamate is a neurotransmitter of type I cochlear afferents.
Collapse
Affiliation(s)
- C M Hackney
- Department of Communication and Neuroscience, Keele University, Staffordshire, UK
| | | | | | | | | |
Collapse
|
121
|
Affiliation(s)
- R M Marchbanks
- Department of Neuroscience, Institute of Psychiatry, London, U.K
| |
Collapse
|
122
|
Lewin L, Mattsson MO, Sellström A. Differences in the release of L-glutamate and D-aspartate from primary neuronal chick cultures. Neurochem Res 1996; 21:79-85. [PMID: 8833227 DOI: 10.1007/bf02527675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primary neuronal cultures were made from eight-day-old embryonic chick telencephalon. Ten-day-old cultures were used to study the release of D-[3H]aspartate and L-[3H]glutamate. The D[3H]aspartate release was stimulated by increasing potassium concentrations, but it was not calcium dependent. In contrast, the potassium dependent L-[3H]glutamate release was calcium dependent, and furthermore L-[3H]glutamate release was optimal at potassium concentrations < 30 mM. The inhibitors of glutamate uptake, dihydrokainate and 1-aminocyclobutane-trans-1,3-dicarboxylic acid (CACB), also referred to as cis-1 -aminocyclobutane-1,3-dicarboxylate, were used in the release experiments. Dihydrokainate had no effect on aspartate release, whereas CACB increased both the basal efflux of D-[3H]aspartate and the potassium evoked release. CACB had no effect on the potassium stimulated L-glutamate release. We believe that L-glutamate is released mainly by a vesicular mechanism from the presumably glutamatergic neurons present in our culture. D-aspartate release observed by us, could be mediated by a transporter protein. The cellular origin of this release remains to be assessed.
Collapse
Affiliation(s)
- L Lewin
- Department of Cellular and Developmental Biology, Umeå University, Sweden
| | | | | |
Collapse
|
123
|
Choi KT, Chung JK, Kwak CS, Kim HK. Effect of hypocapnia on extracellular glutamate and glycine concentrations during the periischemic period in rabbit hippocampus. Ann N Y Acad Sci 1995; 765:86-97. [PMID: 7486647 DOI: 10.1111/j.1749-6632.1995.tb16563.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glutamate (GLU) is a neurotransmitter. Massive release of GLU and glycine (GLY) into the brain's extracellular space may be triggered by ischemia, and may result in acute neuronal lysis or delayed neuronal death. The aim of this study was to evaluate the possible relationship between hyperventilation and the level of GLU and GLY during brain ischemia. Rabbits were anesthetized with halothane and oxygen. Group 1 was allowed to hyperventilate (PaCO2 25-35 mmHg). PaCO2 was maintained throughout the study. Group 2 was a normal control group that maintained normocapnia. Two global cerebral ischemic episodes were produced. Microdialysate was collected during the periischemic and reperfusion periods from the dorsal hippocampus. GLU and GLY concentrations were determined using high-performance liquid chromatography. In the control group, GLU and GLY were significantly elevated during each episode of ischemia; these levels returned to baseline within 10 minutes after reperfusion. In contrast, in the hyperventilation group GLU and GLY concentrations increased during ischemia, but they were not statistically significant. Two way ANOVA for the periischemic periods (t = 15,80; p = 0.06) revealed lower GLU values for the hyperventilated animals. A similar analysis for periischemic GLY concentrations revealed significantly lower values in the hyperventilated group (t = 10,15,75,80: p = 0.03) as compared to normal controls. We were able to demonstrate that hypocapnia during periischemic period lowered extracellular GLU and GLY concentrations. These results can explain a part of the protective action of hypocapnia during cerebral ischemia.
Collapse
Affiliation(s)
- K T Choi
- Department of Anesthesiology, Keimyung University School of Medicine, Taegu, Korea
| | | | | | | |
Collapse
|
124
|
Huston E, Cullen GP, Burley JR, Dolphin AC. The involvement of multiple calcium channel sub-types in glutamate release from cerebellar granule cells and its modulation by GABAB receptor activation. Neuroscience 1995; 68:465-78. [PMID: 7477957 DOI: 10.1016/0306-4522(95)00172-f] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we have examined both the ability of various Ca2+ channel sub-types to support the release of [3H]glutamate from cerebellar granule neurons and the mechanism of action involved in the modulation of glutamate release by the GABAB receptor agonist, (-)-baclofen. Cerebellar granule neurons were stimulated to release newly synthesized [3H]glutamate by K(+)-evoked depolarization. Stimulated release was entirely calcium-dependent and abolished by the presence of 200 microM cadmium. Release of glutamate was not affected by either tetrodotoxin or 5-aminophosphonovaleric acid but was potentiated by dihydrokainate and inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione. Stimulated glutamate release was partially inhibited by both the L-type calcium channel blocker, nicardipine, and the N-type calcium channel blocker, omega-conotoxin GVIA; however, the P/Q-type calcium channel blocker omega-agatoxin IVA inhibited release of glutamate only after pre-incubation of cells with omega-conotoxin GVIA. K(+)-stimulated release of glutamate was observed when stimulated either in the presence of Ca2+ or of Ba2+ and similar inhibition of release by (-)-baclofen was seen under both conditions. In contrast to these results, ionomycin-evoked glutamate release was greatly reduced as compared to K(+)-evoked release and was not modulated by (-)-baclofen. In the presence of omega-conotoxin GVIA alone, inhibition of release by (-)-baclofen was attenuated but not abolished. Following block of nicardipine-sensitive channels, inhibition of release by (-)-baclofen was still present, and after prior block of omega-conotoxin GVIA-sensitive channels the presence of nicardipine restored the ability of (-)-baclofen to inhibit residual release of glutamate. Modulation of glutamate release by (-)-baclofen was unaffected by the presence of omega-agatoxin IVA alone; however, after block of both omega-conotoxin GVIA- and omega-agatoxin IVA-sensitive channels, inhibition of release by (-)-baclofen was completely abolished. These results indicate that multiple sub-types of voltage-dependent calcium channels are present on the presynaptic terminals of cerebellar granule neurons and support K(+)-stimulated release of [3H]glutamate. Modulation of release by GABAB receptor activation appears to be dependent upon interaction of this receptor with a number of voltage-sensitive calcium channels, including omega-conotoxin GVIA-sensitive and omega-agatoxin IVA-sensitive channels.
Collapse
Affiliation(s)
- E Huston
- Department of Pharmacology, Royal Free Hospital Medical School, London, U.K
| | | | | | | |
Collapse
|
125
|
Sitges M, Chiu LM. omega-Aga IVA selectively inhibits the calcium-dependent fraction of the evoked release of [3H]GABA from synaptosomes. Neurochem Res 1995; 20:1065-71. [PMID: 8570011 DOI: 10.1007/bf00995561] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of omega-Aga IVA, a P-type Ca2+ channel blocker, on the release of the inhibitory neurotransmitter GABA and on the elevation of Cai induced by depolarization was investigated in [3H]GABA and fura-2 preloaded mouse brain synaptosomes, respectively. Two strategies (i.e. 20 mM external K+ and veratridine) that depolarize by different mechanisms the preparation were used. High K+ elevates Cai and induces [3H]GABA release in the absence of external Na+ and in the presence of TTX, conditions that abolish veratridine induced responses. The effect of omega-Aga IVA on the Ca2+ and Na+ dependent fractions of the depolarization evoked release of [3H]GABA were separately investigated in synaptosomes depolarized with high K+ in the absence of external Na+ and with veratridine in the absence of external Ca2+, respectively. The Ca2+ dependent fraction of the evoked release of [3H]GABA and the elevation of Ca2+ induced by high K+ are markedly inhibited (about 50%) in synaptosomes exposed to omega-Aga IVA (300 nM) for 3 min before depolarization, whereas the Na+ dependent, Ca2+ independent carrier mediated release of [3H]GABA induced by veratridine, which is sensitive to verapamil and amiloride, is not modified by omega-Aga IVA. Our results indicate that an omega-Aga IVA sensitive type of Ca2+ channel is highly involved in GABA exocytosis.
Collapse
Affiliation(s)
- M Sitges
- Instituto de Investigaciones Biomédicas, México, D.F
| | | |
Collapse
|
126
|
Díaz L, Gómez A, Bustos G. Lidocaine reduces the hypoxia-induced release of an excitatory amino acid analog from rat striatal slices in superfusion. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19:943-53. [PMID: 8539430 DOI: 10.1016/0278-5846(95)00122-c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1. Lidocaine has been extensively investigated as a potential neuroprotective drug against ischemia-induced neurodegeneration without reaching any satisfactory conclusion. 2. The present work evaluates the effect of lidocaine -17 microM- on the hypoxia-induced release of tritiated D-aspartate from rat striatal slices in superfusion. 3. Hypoxia resulted in a significant increase in the amount of D-aspartate released from striatal slices preloaded with the tritiated excitatory amino acid analog. 4. The addition of lidocaine to the superfusion solution resulted in a drastic reduction in the amount of D-aspartate release evoked by hypoxia, rendering it close to normal values.
Collapse
Affiliation(s)
- L Díaz
- Departamento de Ciencias Neurológicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
127
|
Dijk SN, Francis PT, Stratmann GC, Bowen DM. NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist. Br J Pharmacol 1995; 115:1169-74. [PMID: 7582540 PMCID: PMC1908786 DOI: 10.1111/j.1476-5381.1995.tb15020.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. We have investigated an aspect of the regulation of cortical pyramidal neurone activity. Microdialysis was used to assess whether topical application of drugs (in 10 microliter) to fill a burr hole over the frontal cortex, where part of the corticostriatal pathway originates, would change concentrations of the excitatory amino acids glutamate and aspartate in the striatum of the anaesthetized rat. 2. Topical application of N-methyl-D-aspartate (NMDA, 2 and 20 mM) dose-dependently increased glutamate and aspartate concentrations in the striatum. Coapplication of tetrodotoxin (10 microM) blocked the NMDA-evoked rise in these amino acids. A calcium-free medium, perfused through the probe also blocked the rise, indicating that it was due to an exocytotic mechanism in the striatum. 3. It was hypothesized that the rise observed was due to an increase in the activity of the corticostriatal pathway. As 5-hydroxytryptamine1A (5-HT1A) receptors are enriched on cell bodies of corticostriatal neurones, a selective 5-HT1A-antagonist (WAY 100135) was coapplied with the lower dose of NMDA. Compared to NMDA alone, coapplication of 50 microM WAY 100135 significantly increased glutamate release. This effect was sensitive to tetrodotoxin and calcium-dependent. Application of 50 microM WAY 100135 alone significantly enhanced glutamate release above baseline; this was also tested at 100 microM (not significant). 4. Compared to NMDA alone, coapplication of WAY 100135 (20 microM) significantly enhanced aspartate release; the mean value was also increased (not significantly) with 50 microM. This rise was calcium-dependent, but not tetrodotoxin-sensitive. WAY 100135 (100 microM) reduced NMDA-induced aspartate release. WAY 100135 (100 microM) reduced NMDA-induced aspartate release. Application of the drug alone had no effect on basal aspartate release.5. Coapplication of the 5-HT1A agonist, 8-OHDPAT (5 sanM) with NMDA did not affect the NMDA evoked increase in glutamate and aspartate.6. Topical application of high potassium (100 sanM) to the surface of the cortex did not result in a detectable rise in striatal glutamate or aspartate.7. Perfusion of WAY 100135 (tested at 50 microM) through the dialysis probe did not affect glutamate oraspartate concentrations.8. It was concluded that a selective 5-HT1A-antagonist can increase the activity of corticostriatal pyramidal neurones. As in Alzheimer's disease hypoactivity of pyramidal neurones almost certainly exists, a selective 5-HT1A-antagonist may be potentially useful in the treatment of the cognitive symptoms of this disease.
Collapse
Affiliation(s)
- S N Dijk
- Miriam Marks Department of Neurochemistry, Institute of Neurology, London
| | | | | | | |
Collapse
|
128
|
Belousov AB, Godfraind JM, Krnjević K. Internal Ca2+ stores involved in anoxic responses of rat hippocampal neurons. J Physiol 1995; 486 ( Pt 3):547-56. [PMID: 7473218 PMCID: PMC1156545 DOI: 10.1113/jphysiol.1995.sp020833] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
1. During whole-cell recordings from CA1 neurons of rat brain slices with electrodes containing only KMeSO4 and Hepes, brief anoxia (2-3 min) consistently evoked a hyperpolarization (delta V approximately 14 mV) and reduction in input resistance (delta R approximately -20%). 2. As in previous intracellular recordings, Dantrolene sodium (10 microM) suppressed the anoxic delta V and delta R, confirming the release of internal Ca2+ is a major component of the anoxic response. 3. To identify the relevant intracellular Ca2+ store, other blockers of Ca2+ release were applied either externally (in the bath) or internally, by addition to the contents of the recording electrode. 4. The anoxic hyperpolarization was abolished or much reduced by heparin (10-20 micrograms ml-1, internal), thapsigargin (10 microM, external), Ruthenium Red (50 microM, internal) and external procaine (0.5-2 mM), but not by internal procaine (0.5-1 mM) or ryanodine (10 microM, external). 5. The anoxic fall in resistance was also abolished or reduced by heparin, thapsigargin and external procaine, but not by ryanodine, internal procaine or Ruthenium Red. 6. In addition, external procaine (0.5-2 mM) eliminated the early (transient) depolarization and reduced the post-anoxic hyperpolarization by 60 +/- 22%. 7. None of these agents consistently changed the resting potential, but the input resistance was significantly increased by Dantrolene and external procaine. 8. In view of the marked effects of heparin and thapsigargin, but not ryanodine and internal procaine, we conclude that the anoxic response seen in such whole-cell recordings is initiated predominantly by Ca2+ release from an internal store that is InsP3 sensitive rather than Ca2+ sensitive. 9. Comparable but less pronounced effects of external procaine were seen during intracellular recordings with 3 M KCl-containing electrodes. The dose-dependent suppression of various features of the anoxic response by external procaine (EC50 approximately 0.2 mM) is presumed to be mediated by a superficial membrane trigger or modulating site.
Collapse
Affiliation(s)
- A B Belousov
- Anaesthesia Research Department, McGill University, Montréal, Canada
| | | | | |
Collapse
|
129
|
Pinault D. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1995; 21:42-92. [PMID: 8547954 DOI: 10.1016/0165-0173(95)00004-m] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review deals with the fascinating complexity of presynaptic axon terminals that are characterized by a high degree of functional distinctiveness. In vertebrate and invertebrate neurons, all-or-none APs can take off not only from the axon hillock, but also from ectopic axonal loci including terminals. Invertebrate neurons display EAPs, for instance alternating with somatic APs, during survival functions. In vertebrate, EAPs have been recorded in the peripheral and central nervous systems in time relationship with physiological or pathological neuronal activities. In motor or sensory axon, EAP generation may be the cause of motor dysfunctioning or sensory perceptions and pain respectively. Locomotion is associated with rhythmic depolarizations of the presynaptic axonal membrane of primary afferents, which are ridden by robust EAP bursts. In central axons lying within an epileptic tissue EAP discharges, coinciding with paroxysmal ECoG waves, get longer as somatic discharges get shorter during seizure progression. Once invaded by an orthodromic burst, an ectopic axonal locus can display an EAP after discharge. Such loci can also fire during hyperpolarization or the postinhibitory excitatory period of the parent somata, but not during their tonic excitation. Neurons are thus endowed with electrophysiological intrinsic properties making possible the alternate discharges of somatic APs and EAPs. In invertebrate and vertebrate neurons, ectopic axonal loci fire while the parent somata stop firing, further suggesting that axon terminal networks are unique and individual functional entities. The functional importance of EAPs in the nervous systems is, however, not yet well understood. Ectopically generated axonal APs propagate backwards and forwards along the axon, thus acting as a retrograde and anterograde signal. In invertebrate neurons, somatically and ectopically generated APs cannot have the same effect on the postsynaptic membrane. As suggested by studies related to the dorsal root reflex, EAPs may not only be implied in the presynaptic modulation of transmitter release but also contribute significantly during their backpropagation to a powerful control (collision process) of incoming volleys. From experimental data related to epileptiform activities it is proposed that EAPs, once orthodromically conducted, might potentiate synapses, initiate, spread or maintain epileptic cellular processes. For instance, paroxysmal discharges of EAPs would exert, like a booster-driver, a powerful synchronizing synaptic drive upon a large number of excitatory and inhibitory postsynaptic neurons. We have proposed that, once backpropagated, EAPs are likewise capable of initiating (and anticipating) threshold and low-threshold somatodendritic depolarizations. Interestingly, an antidromic EAP can modulate the excitability of the parent soma.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Pinault
- Université Laval, Centre de Recherches en Neurobiologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| |
Collapse
|
130
|
Carvalho AP, Ferreira IL, Carvalho AL, Duarte CB. Glutamate receptor modulation of [3H]GABA release and intracellular calcium in chick retina cells. Ann N Y Acad Sci 1995; 757:439-56. [PMID: 7611702 DOI: 10.1111/j.1749-6632.1995.tb17504.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A P Carvalho
- Department of Zoology, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
131
|
Fleischmann A, Makman MH, Etgen AM. GABAA receptor activation induces GABA and glutamate release from preoptic area. Life Sci 1995; 56:1665-78. [PMID: 7723596 DOI: 10.1016/0024-3205(95)98573-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of GABA receptor agonists on release in vitro of radiolabeled GABA and glutamate was studied using a crude preparation of isolated nerve terminals (neurosomes). GABA agonists were incubated (2 min, 37 degrees C) with neurosomes prepared from hypothalamus, preoptic area (POA) and frontal cortex tissues. Under these conditions, GABA and the GABAA receptor agonist muscimol, but not the GABAB receptor agonist baclofen, stimulated 3H-GABA and 3H-glutamate release from POA but not hypothalamic or cortical neurosomes of gonadally intact male rats. These effects were inhibited by the GABAA receptor antagonists picrotoxin, bicuculline and SR-95531. Significant efflux of 3H-glutamate could be elicited from cortical neurosomes following longer (5 min) incubations with 500 microM GABA and 400 microM muscimol. Muscimol-induced release of 3H-glutamate and 3H-GABA was dependent on extracellular calcium. Muscimol and GABA failed to release 3H-GABA or 3H-glutamate from POA neurosomes of ovariectomized female rats. However, administration of estradiol and progesterone to ovariectomized females prior to sacrifice caused the appearance of muscimol induced-release of amino acids from POA neurosomes comparable to that obtained in male rats. GABA-induced release of 3H-glutamate was similarly dependent on pretreatment of ovariectomized rats with ovarian steroids. GABAA receptor-induced release of amino acids is therefore brain region-specific and modified by hormonal status.
Collapse
Affiliation(s)
- A Fleischmann
- Dept of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
132
|
Sepúlveda C, Bustos G, Gysling K, Seguel M, Labarca R. Effects of in vitro ethanol and chronic ethanol consumption on the release of excitatory amino acids in the rat hippocampus. Brain Res 1995; 674:104-6. [PMID: 7773676 DOI: 10.1016/0006-8993(95)00072-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In CA1-CA3 hippocampal slices, in vitro ethanol (EtOH) (10-100 mM) evoked, as a function of EtOH concentration, a differential release of aspartate (Asp) and glutamate (Glu). Omission of Ca2+ ions from the superfusion media completely abolished the EtOH-induced release of Asp but not that of Glu. In addition, at 20 mM, EtOH enhanced K(+)-evoked release only of Asp. Finally, delayed changes were observed on NMDA-evoked release of [3H]noradrenaline (NA) in the dentate gyrus (DG) after withdrawal from EtOH for 30 days.
Collapse
Affiliation(s)
- C Sepúlveda
- Laboratory of Molecular Psychiatry, CIM, Catholic University of Chile, Santiago
| | | | | | | | | |
Collapse
|
133
|
Ghribi O, Callebert J, Verrecchia C, Plotkine M, Boulu RG. Blockers of NMDA-operated channels decrease glutamate and aspartate extracellular accumulation in striatum during forebrain ischaemia in rats. Fundam Clin Pharmacol 1995; 9:141-6. [PMID: 7628826 DOI: 10.1111/j.1472-8206.1995.tb00273.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Brain microdialysis was used to study changes in the glutamate and aspartate extracellular concentrations in the striatum of conscious rats submitted to 30 minutes cerebral ischaemia, using the four-vessel occlusion model. Perfusion of the N-methyl-D-aspartate (NMDA) receptor channel blockers, dizocilpine (MK-801; 75 microM) and Mg2+ (2.5 mM), inhibited the ischaemia-induced accumulation of glutamate and aspartate. The AMPA/kainate receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamylbenzo (F) quinoxaline (NBQX; 15 microM and 450 microM) had no effect on glutamate and aspartate levels during ischaemia. On the other hand, omission of Ca2+ from the perfusing solution did not alter the increases in glutamate and aspartate induced by ischaemia. These results suggest that the glutamate and aspartate accumulation in four-vessel occlusion ischaemia is mediated by activation of NMDA receptors in a Ca2+ independent manner.
Collapse
Affiliation(s)
- O Ghribi
- Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université René-Descartes, Paris, France
| | | | | | | | | |
Collapse
|
134
|
Abarca J, Gysling K, Roth RH, Bustos G. Changes in extracellular levels of glutamate and aspartate in rat substantia nigra induced by dopamine receptor ligands: in vivo microdialysis studies. Neurochem Res 1995; 20:159-69. [PMID: 7783840 DOI: 10.1007/bf00970540] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The microdialysis technique was utilized to study the local effects of D1 and D2 family type dopamine (DA) receptor (R) ligands on the in vivo release of endogenous glutamate (GLU) and aspartate (ASP) from rat substantia nigra (SN). Addition to the dialysis perfusion solution of either D1-R and D2-R agonists, such as SKF-38393 (50 and 100 microM) and Quinpirole (5 and 10 microM), resulted in dose-dependent increases in extracellular concentrations of GLU and ASP, respectively. The SKF-38393 and Quinpirole-induced effects were reduced by SCH-23390 (0.5 microM), a D1-R antagonist, and by Spiperone (1.0 microM), a D2-R antagonist, respectively. However, SCH-23390 and Spiperone did increase GLU and ASP extracellular concentrations. Local infusion with Tetrodotoxin (TTX) (1.0 microM), a blocker of voltage-dependent Na+ channels, increased basal extracellular levels of GLU. In addition, co-infusion of TTX and SKF-38393 evoked increases in extracellular GLU levels higher than those observed after SKF-38393 alone. Finally, chemical lesions of nigral DA cells with 6-OH-DA increased the basal extracellular levels of GLU. It is proposed that the release of GLU and ASP from SN may be regulated by D1- and D2-receptors present in this basal ganglia structure. In addition, part of the D1 receptors present in SN might be located presynaptically on GLU-containing nerve endings.
Collapse
Affiliation(s)
- J Abarca
- Department of Cell and Molecular Biology, Catholic University of Chile, Santiago
| | | | | | | |
Collapse
|
135
|
Gonçalves PP, Carvalho AP. Characterization of the carrier-mediated [3H]GABA release from isolated synaptic plasma membrane vesicles. Neurochem Res 1995; 20:177-86. [PMID: 7783842 DOI: 10.1007/bf00970542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synaptic plasma membrane (SPM) vesicles were isolated under conditions which preserve most of their biochemical properties. Therefore, they appeared particularly useful to study the cytoplasmic GABA release mechanism through its neuronal transporter without interference of the exocytotic mechanism. In this work, we utilized SPM vesicles isolated from sheep brain cortex to investigate the process of [3H]GABA release induced by ouabain, veratridine and Na+ substitution by other monovalent cations (K+, Rb+, Li+, and choline). We observed that ouabain is unable to release [3H]GABA previously accumulated in the vesicles and, in our experimental conditions, it does not act as a depolarizing agent. In contrast, synaptic plasma membrane vesicles release [3H]GABA when veratridine is present in the external medium, and this process is sensitive to extravesicular Na+ and it is inhibited by extravesicular Ca2+ (1mM) under conditions which appear to permit its entry. However, veratridine-induced [3H]GABA release does not require membrane depolarization, since this drug does not induce any significant alteration in the membrane potential, which is determined by the magnitude of the ionic gradients artificially imposed to the vesicles. The substitution of Na+ by other monovalent cations promotes [3H]GABA release by altering the Na+ concentration gradient and the membrane potential of SPM vesicles. In the case of choline and Li+, we observed that the fraction of [3H]GABA released relatively to the total amount of neurotransmitter released by K+ or Rb+ is about 28% and 68%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P P Gonçalves
- Departamento de Biologia, Universidade de Aveiro, Portugal
| | | |
Collapse
|
136
|
Semba J, Kito S, Toru M. Characterisation of extracellular amino acids in striatum of freely moving rats by in vivo microdialysis. J Neural Transm (Vienna) 1995; 100:39-52. [PMID: 8748662 DOI: 10.1007/bf01276864] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the characteristics of extracellular amino acids released from the striatum, we performed in vivo microdialysis in non-anaesthetised, freely moving rats. Amino acids were determined after precolumn derivatisation with o-phthalaldehyde by high-performance liquid chromatography and fluorescence detection. The omission of Ca2+ in the perfusion medium partially decreased the basal concentration of aspartate and glutamate. This shows that a small fraction of basal concentration of aspartate and glutamate is of neuronal origin. The effect of high K+ and veratrine stimulation was evaluated in the presence or absence of Ca2+ or tetrodotoxin (1 microM). High K+ and veratrine caused a remarkable increase in the aspartate and glutamate efflux. The omission of Ca2+ only partially decreased K(+)-stimulated aspartate and glutamate efflux. Tetrodotoxin completely antagonised veratrine-stimulated aspartate and glutamate efflux. Although glycine and taurine releases were stimulated by high K+ and veratrine, their release was not always antagonised with Ca2+ omission or tetrodotoxin inclusion. Thus, the neuronal origin of stimulated release of glycine and taurine is unclear. Although tetrodotoxin sensitivity and Ca2(+)-dependency are regarded as a basic criterion for classical neurotransmitters in microdialysis experiments, they should not be adapted to the physiological characteristics of the release of amino acids.
Collapse
Affiliation(s)
- J Semba
- Division of Health Sciences, University of the Air, Chiba, Japan
| | | | | |
Collapse
|
137
|
Porter JT, McCarthy KD. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 1995; 13:101-12. [PMID: 7544323 DOI: 10.1002/glia.440130204] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is becoming increasingly clear that astrocytes play very dynamic and interactive roles that are important for the normal functioning of the central nervous system. In culture, astrocytes express many receptors coupled to increases in intracellular calcium ([Ca2+]i). In vivo, it is likely that these receptors are important for the modulation of astrocytic functions such as the uptake of neurotransmitters and ions. Currently, however, very little is known about the expression or stimulation of such astrocytic receptors in vivo. To address this issue, confocal microscopy and calcium-sensitive fluorescent dyes were used to examine the dynamic changes in astrocytic [Ca2+]i within acutely isolated hippocampal slices. Astrocytes were subsequently identified by immunocytochemistry for glial fibrillary acidic protein. In this paper, we present data indicating that hippocampal astrocytes in situ respond to glutamate, kainate, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), 1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), N-methyl-D-aspartate (NMDA), and depolarization with increases in [Ca2+]i. The increases in [Ca2+]i occurred in both the astrocytic cell bodies and the processes. Temporally the changes in [Ca2+]i were very dynamic, and various patterns ranging from sustained elevations to oscillations of [Ca2+]i were observed. Individual astrocytes responded to neuroligands selective for both ionotropic and metabotropic glutamate receptors with increases in [Ca2+]i. These findings indicate that astrocytes in vivo contain glutamatergic receptors coupled to increases in [Ca2+]i and are able to respond to neuronally released neurotransmitters.
Collapse
Affiliation(s)
- J T Porter
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | |
Collapse
|
138
|
Lecharny JB, Salord F, Henzel D, Desmonts JM, Mantz J. Effects of thiopental, halothane and isoflurane on the calcium-dependent and -independent release of GABA from striatal synaptosomes in the rat. Brain Res 1995; 670:308-12. [PMID: 7743195 DOI: 10.1016/0006-8993(94)01350-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of the anesthetic agents thiopental, halothane and isoflurane on the release of GABA induced by depolarization and/or reversal of the GABA carrier were investigated in a synaptosomal preparation obtained from the rat striatum. Veratridine (1 microM) and KCl (9 mM) elicited a significant, Ca(2+)-dependent release of [3H]GABA. The KCl-evoked release was not significantly modified in the presence of nipecotic acid (10(-5) M), a selective blocker of the neuronal GABA carrier. The [3H]GABA release was significantly decreased by omega-conotoxin (10(-7) M, a blocker of the N voltage-dependent Ca2+ channels, but was affected by neither nifedipine (10(-4) M) nor omega-Aga-IVA (10(-7) M which block the L and P Ca2+ channels, respectively. Thiopental application (10(-5) to 10(-3) M) was followed by a dose-related, significant, decrease in both the veratridine and KCl-induced releases, whether nipecotic acid was present or not. In contrast, halothane and isoflurane (1-3%) failed to alter [3H]GABA release. Altogether, these results suggest that reduction of the depolarization-evoked GABA release might contribute to thiopental anesthesia, but this seems unlikely for volatile anesthetics.
Collapse
Affiliation(s)
- J B Lecharny
- Institut National de la Santé et de la Recherche Médicale (INSERM U408), Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | | | |
Collapse
|
139
|
Servidei T, Iavarone A, Lasorella A, Mastrangelo S, Riccardi R. Release mechanisms of [125I]meta-iodobenzylguanidine in neuroblastoma cells: evidence of a carrier-mediated efflux. Eur J Cancer 1995; 31A:591-5. [PMID: 7576975 DOI: 10.1016/0959-8049(95)00042-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
[131I]metaiodobenzylguanidine ([131I]MIBG) is selectively taken up and stored by tumours derived from the neural crest, and is used for diagnosis and treatment of neuroblastoma (NB). The antitumoral effect of [131I]MIBG is closely related to the intracellular level of the radiopharmaceutical compound, which is dependent on uptake and storage/release mechanisms. While MIBG uptake is well characterised, storage and release mechanisms are still controversial. In order to better characterise [125I]MIBG release mechanisms, we studied the basal and stimulated efflux of [125I]MIBG in the human NB cell line, SH-SY5Y, preloaded with 0.1 microM [125I]MIBG for 1 h. We found that [125I]MIBG basal efflux is highly temperature-dependent, that [125I]MIBG release, induced by cell depolarisation with high potassium, is mainly calcium-independent, and induced by exchange with cold MIBG or noradrenaline, inversion of the sodium gradient across the cell membrane by veratridine by substitution of sodium chloride with equimolar concentration of lithium chloride. The exposure of NB cells to imipramine, an Uptake-1 inhibitor, also produces a net stimulatory effect on [125I]MIBG release. However, when used in association with other releasing stimuli, such as higher levels of intracellular sodium or external agonists, imipramine abolishes the consequent increase of [125I]MIBG release. Our findings suggest that stimulated [125I]MIBG release is mediated by a carrier, most probably the uptake carrier working in a reverse mode, while a minimal fraction of [125I]MIBG is released by an exocytotic mechanism.
Collapse
Affiliation(s)
- T Servidei
- Division of Pediatric Oncology, Catholic University, Rome, Italy
| | | | | | | | | |
Collapse
|
140
|
Tzavara E, Svarna R, Palaiologos G. Haloperidol reduces K(+)-evoked Ca(2+)-dependent D-[3H]aspartate release from rat hippocampal slices. Neurochem Res 1995; 20:17-22. [PMID: 7739754 DOI: 10.1007/bf00995147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Rat hippocampal slices preloaded with D-[3H]aspartate, a non metabolizable analogue of L-glutamate, were superfused with artificial CSF. Depolarization was induced by 53.5 mM K+, in the presence of Ca2+ (1.3 mM) or Mg2+ (5 mM) to determine the Ca2+ dependent release. Haloperidol added in the superfusion medium at 100 microM reduced by about 60% the Ca2+ dependent release of D-[3H]aspartate. This drug at 20 microM or 100 microM inhibited the non-activated glutamate dehydrogenase (GDH) but had no effect on GDH activated by ADP (2 mM) or leucine (5 mM). In addition no effect was observed on phosphate activated glutaminase (PAG) in the presence either of 20 mM or 5 mM phosphate. These results indicate that the effect of haloperidol is exerted on presynaptic mechanisms regulating neurotransmitter release.
Collapse
Affiliation(s)
- E Tzavara
- Laboratory of Biological Chemistry, Medical School University of Athens, Greece
| | | | | |
Collapse
|
141
|
Potassium channel activators decrease endogenous glutamate release from rat cerebellar slices. Amino Acids 1995; 8:159-69. [DOI: 10.1007/bf00806489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/1993] [Accepted: 12/13/1993] [Indexed: 10/26/2022]
|
142
|
Georgopoulos A, Svarna R, Palaiologos G. Regulatory sites and effectors of D-[3H]aspartate release from rat cerebral cortex. Neurochem Res 1995; 20:45-9. [PMID: 7739758 DOI: 10.1007/bf00995151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To study the effect of agents interfering with the biosynthesis and/or the K(+)-evoked Ca(2+)-dependent release of neurotransmitter glutamate, rat cerebral slices were preincubated with Krebs-Ringer-HEPES-glucose-glutamine buffer (KRH buffer), loaded with D-[3H]aspartate and superfused with the preincubation medium in the presence or in the absence of Ca2+. The difference in radioactivity release divided by the basal release per min under the two conditions represented the K(+)-evoked Ca(2+)-dependent release. The agents used were: 1) Aminooxyacetic acid (AOAA), the inhibitor of transaminases, 2) Leucine (Leu), the inhibitor of phosphate activated glutaminase (PAG), 3) NH4+, the inhibitor of PAG, 4) Phenylsuccinic acid (Phs), the inhibitor of the mitochondrial ketodicarboxylate carrier, 5) ketone bodies, the inhibitors of glycolysis, 6) the absence of glutamine, the substrate of PAG. The results show that Leu, NH4+, Phs and the absence of Gln significantly increase the K(+)-evoked Ca(2+)-dependent release of radioactivity by 64%, 200%, 95% and 147% respectively, indicating that these agents are inhibitors of the K(+)-evoked Ca(2+)-dependent release of glutamate. Ketone bodies and AOAA had no effect. These results indicate that the major if not the exclusive biosynthetic pathway of neurotransmitter glutamate in rat cerebral cortex is through the PAG reaction and support a model for the pathway followed by neurotransmitter glutamate i.e. glutamate formed outside the inner mitochondrial membrane has to enter the mitochondrial matrix or is formed within it from where it can be extruded to supply the transmitter pool in exchange of GABA.
Collapse
Affiliation(s)
- A Georgopoulos
- Laboratory of Biological Chemistry, Medical School, University of Athens, Greece
| | | | | |
Collapse
|
143
|
Kardos J, Elster L, Damgaard I, Krogsgaard-Larsen P, Schousboe A. Role of GABAB receptors in intracellular Ca2+ homeostasis and possible interaction between GABAA and GABAB receptors in regulation of transmitter release in cerebellar granule neurons. J Neurosci Res 1994; 39:646-55. [PMID: 7897700 DOI: 10.1002/jnr.490390604] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of GABAB receptors in cultured mouse cerebellar granule cells was investigated in binding experiments using [3H](S,R)-baclofen as well as in functional assessment of the ability of (R)-baclofen to interact with depolarization (15-40 mM KCl) coupled changes in intracellular Ca2+ homeostasis and neurotransmitter release. In the latter case a possible functional coupling between GABAA and GABAB receptors was investigated. The binding studies showed that the granule cells express specific binding sites for (R)-baclofen. The number of binding sites could be increased by exposure of the cells to the GABAA receptor agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) during the culture period. Pretreatment of the neurons with pertussis toxin showed that the GABAB receptors are coupled to G-proteins. This coupling was, however, less pronounced when the cells had been cultured in the presence of THIP. When 45Ca2+ uptake was measured or the intracellular Ca2+ concentration ([Ca2+]i) determined using the fluorescent Ca2+ chelator Fluo-3 it could be demonstrated that culturing the neurons in THIP influences intracellular Ca2+ homeostasis. Moreover, this homeostasis was found to be functionally coupled to the GABAB receptors as (R)-baclofen inhibited depolarization-induced increases in 45Ca2+ uptake and [Ca2+]i. (R)-Baclofen also inhibited K(+)-induced transmitter release from the neurons as monitored by the use of [3H]D-aspartate which labels the neurotransmitter pool of glutamate. Using the selective GABAA receptor agonist isoguvacine it could be demonstrated that the GABAB receptors are functionally coupled to GABAA receptors in the neurons leading to a disinhibitory action of GABAB receptor agonists.
Collapse
Affiliation(s)
- J Kardos
- Department of Biological Sciences, PharmaBiotec Research Center, Royal Danish School of Pharmacy, Copenhagen
| | | | | | | | | |
Collapse
|
144
|
Kardos J, Kovács I, Blandl T, Cash DJ. Modulation of GABA flux across rat brain membranes resolved by a rapid quenched incubation technique. Neurosci Lett 1994; 182:73-6. [PMID: 7891893 DOI: 10.1016/0304-3940(94)90209-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The progress and inhibition of [3H]GABA influx in native plasma membrane vesicles from the rat cerebral cortex was studied on a subsecond to minute time scale under different conditions by applying a rapid quenched incubation technique. In the absence of Ca2+ ([Ca2+]free = 10(-8) M), the progress of influx followed by the addition of 10 nM [3H]GABA to the membrane vesicle suspension with time (500 ms to 15 min) can be described by a first-order rate equation giving an overall rate constant, k, of 3.93 +/- 0.48 x 10(-3) s-1 and equilibrium influx value, INFe, of 8.84 +/- 0.41 pmol [3H]GABA/mg protein. In the presence of Ca2+ ([Ca2+]free = 2.4 x 10(-3) M) a significant increase in the INFe value was observed (k = 4.64 +/- 0.41 x 10(-3) s-1 and INFe = 13.9 +/- 0.40 pmol [3H]GABA/mg protein). Multiplicity of GABA transporters was indicated in the time-dependent inhibition of [3H]GABA influx by different uptake blockers. In the absence of Ca2+, depolarization (75 mM KCl) inhibited the influx of [3H]GABA into the vesicles by approximately 70% and initiated the efflux from vesicles loaded with [3H]GABA. Different uptake blockers inhibited the Ca(2+)-independent translocation of [3H]GABA in both directions with similar specificities.
Collapse
Affiliation(s)
- J Kardos
- Department of Molecular Pharmacology, Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest
| | | | | | | |
Collapse
|
145
|
Oliveira CR, Agostinho P, Caseiro P, Duarte CB, Carvalho AP. Reactive oxygen species on GABA release. Ann N Y Acad Sci 1994; 738:130-40. [PMID: 7832423 DOI: 10.1111/j.1749-6632.1994.tb21798.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C R Oliveira
- Centro de Neurociências, Universidade de Coimbra, Portugal
| | | | | | | | | |
Collapse
|
146
|
Larsen M, Grøndahl TO, Haugstad TS, Langmoen IA. The effect of the volatile anesthetic isoflurane on Ca(2+)-dependent glutamate release from rat cerebral cortex. Brain Res 1994; 663:335-7. [PMID: 7874520 DOI: 10.1016/0006-8993(94)91282-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A major effect of volatile anesthetics is to reduce excitatory synaptic transmission. In the present study the stimulated release of glutamate under the influence of increasing concentrations of isoflurane was studied in vitro by utilizing hippocampal slices from Wistar rats. Ca(2+)-dependent release was calculated by subtracting stimulated release with blocked synaptic transmission (50 mM K+, 0 mM Ca2+ and 4 mM Mg2+) from total evoked release (50 mM K+, 2 mM Ca2+ and 1 mM Mg2+). Isoflurane 0.5, 1.5 and 3% reduced Ca(2+)-dependent release of glutamate to 69, 58 and 49%, respectively (P < 0.05 for all related to control). These results are in agreement with the possibility of reduced release of transmitter as a mechanism of action of volatile anesthetics.
Collapse
Affiliation(s)
- M Larsen
- Institute for Surgical Research, Rikshospitalet, University of Oslo, Norway
| | | | | | | |
Collapse
|
147
|
Affiliation(s)
- L Kragie
- Division of Cardio-Renal Drug Products, Rockville, MD 20852
| |
Collapse
|
148
|
Siddiqui F, Iqbal Z. Regulation of N-methyl-D-aspartate receptor-mediated calcium transport and norepinephrine release in rat hippocampus synaptosomes by polyamines. Neurochem Res 1994; 19:1421-9. [PMID: 7898610 DOI: 10.1007/bf00972471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of polyamines (PA) synthesis in NMDA receptor-mediated 45Ca2+ fluxes and norepinephrine release was studied in rat hippocampal synaptosomes. NMDA (50 microM) caused a sharp (> 2-fold) transient increase in PA synthesis regulating enzyme, ornithine decarboxylase (ODC) activity with concomitant elevation in PA levels in the order putrescine > spermidine > spermine. ODC inhibitor, alpha-difluoromethylornithine (DFMO), and NMDA antagonist, 2-amino-5-phosphonovaleric acid (D-AP5), both blocked increases in ODC activity and PA levels. Activation of NMDA receptors induced a sharp (3 to 4-fold) and quick (15 seconds) increase in 45Ca2+ uptake by synaptosomes within 15 seconds of exposure at 37 degrees C. The efflux of 45Ca2+ and 3H-norepinephrine (NE) release at 22 degrees C from pre-loaded synaptosomes was also significantly (2 to 4-fold) enhanced by NMDA within 15 seconds. These NMDA receptor-mediated effects on calcium fluxes and NE release were blocked by NMDA receptor-antagonists (DAP-5 and MK-801) and PA synthesis inhibitor, DFMO and the DFMO inhibition nullified by exogenous putrescine. These observations establish that ODC/PA cascade play an important role in transduction of excitatory amino acid mediated signals at NMDA receptors.
Collapse
Affiliation(s)
- F Siddiqui
- Department of Neurology, Northwestern University Medical School, Illinois 60611-3008
| | | |
Collapse
|
149
|
Osborne PG, Onoe H, Watanabe Y. GABAergic system inducing hyperthermia in the rat preoptic area: its independence of prostaglandin E2 system. Brain Res 1994; 661:237-42. [PMID: 7834374 DOI: 10.1016/0006-8993(94)91200-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Brain temperature of conscious freely moving rats was recorded during perfusion of the preoptic area (POA) with neuroactive compounds using the microdialysis technique. Unilateral perfusion of the POA with the sodium channel blocking agent, tetrodotoxin (1 microM), induced a pronounced hyperthermia. Of the neuroactive compounds examined, the greatest thermogenic response to local perfusion of the POA was elicited by the GABAergic agonist, muscimol. Muscimol (10, 20 and 100 microM) exhibited a dose-dependent and reversible hyperthermia. This hyperthermia was attenuated by co-perfusion with the GABAergic antagonist, bicuculline (10 microM). Muscimol-induced hyperthermia was independent of prostaglandin biosynthesis, and additive with prostaglandin E2 (10 microM)-induced hyperthermia. Prostaglandin E2-induced hyperthermia was not affected by co-perfusion with bicuculline. These data suggest the existence of two independent neurochemical systems for genesis of hyperthermia colocalized within the POA.
Collapse
Affiliation(s)
- P G Osborne
- Department of Neuroscience, Osaka Bioscience Institute, Research Development Corporation of Japan
| | | | | |
Collapse
|
150
|
Gaur S, Newcomb R, Rivnay B, Bell JR, Yamashiro D, Ramachandran J, Miljanich GP. Calcium channel antagonist peptides define several components of transmitter release in the hippocampus. Neuropharmacology 1994; 33:1211-9. [PMID: 7862257 DOI: 10.1016/s0028-3908(05)80012-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The use of subtype-selective voltage-sensitive calcium channel (VSCC) antagonists has established that neurotransmitter release in mammalian brain is mediated by N-like and P-like VSCCs, and that other subtypes also contribute significantly. To determine the roles presynaptic VSCCs play in nervous system function and to evaluate the therapeutic potential of their selective inhibition, it is necessary to define further the contributions of VSCC subtypes to neurotransmitter release. The novel conopeptide, SNX-230 (omega-conopeptide MVIIC), has revealed a new VSCC subtype, the Q-type, in cerebellar granule cells. We have compared the effects of SNX-230 on release of tritiated D-aspartate ([3H]D-Asp; a non-metabolizable analog of glutamate), gamma-aminobutyric acid ([3H]GABA), and norepinephrine ([3H]NE) from rat hippocampal slices to those of the N-type VSCC blocker, SNX-111 (omega-conopeptide MVIIA), and the P-type blocker, omega-agatoxin-IVA (AgaIVA). SNX-230 blocks both [3H]D-Asp and [3H]GABA release completely, whereas AgaIVA blocks them potently but partially and SNX-111 has no effect. These results suggest that glutamate and GABA release are mediated by two VSCC subtypes, a P-type and another, perhaps Q-like. SNX-111 blocks [3H]NE release potently but partially, while SNX-230 blockade is complete, consisting of one very potent phase and one less potent phase. AgaIVA also blocks [3H]NE release potently but partially. These results suggest that at least two VSCC subtypes, an N-type and a novel non-N-type, mediate NE release. Pair-wise combinations of the three ligands indicate that at least three pharmacologically distinct components comprise [3H]NE release in the hippocampus.
Collapse
Affiliation(s)
- S Gaur
- Neurex Corporation, Menlo Park, CA 94025
| | | | | | | | | | | | | |
Collapse
|