101
|
Sewal RK, Modi M, Saikia UN, Chakrabarti A, Medhi B. Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides. Epilepsy Res 2017; 135:176-186. [DOI: 10.1016/j.eplepsyres.2017.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/07/2017] [Accepted: 05/19/2017] [Indexed: 02/02/2023]
|
102
|
Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ, Xu H, Lau LA, Dulla CG, Caldarone BJ, Robson SC, Weiner HL. Disruption of the ATP/adenosine balance in CD39 -/- mice is associated with handling-induced seizures. Immunology 2017; 152:589-601. [PMID: 28742222 DOI: 10.1111/imm.12798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/15/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022] Open
Abstract
Seizures are due to excessive, synchronous neuronal firing in the brain and are characteristic of epilepsy, the fourth most prevalent neurological disease. We report handling-induced and spontaneous seizures in mice deficient for CD39, a cell-surface ATPase highly expressed on microglial cells. CD39-/- mice with handling-induced seizures had normal input-output curves and paired-pulse ratio measured from hippocampal slices and lacked microgliosis, astrogliosis or overt cell loss in the hippocampus and cortex. As expected, however, the cerebrospinal fluid of CD39-/- mice contained increased levels of ATP and decreased levels of adenosine. To determine if immune activation was involved in seizure progression, we challenged mice with lipopolysaccharide (LPS) and measured the effect on microglia activation and seizure severity. Systemic LPS challenge resulted in increased cortical staining of Iba1/CD68 and gene array data from purified microglia predicted increased expression of interleukin-8, triggering receptor expressed on myeloid cells 1, p38, pattern recognition receptors, death receptor, nuclear factor-κB , complement, acute phase, and interleukin-6 signalling pathways in CD39-/- versus CD39+/+ mice. However, LPS treatment did not affect handling-induced seizures. In addition, microglia-specific CD39 deletion in adult mice was not sufficient to cause seizures, suggesting instead that altered expression of CD39 during development or on non-microglial cells such as vascular endothelial cells may promote the seizure phenotype. In summary, we show a correlation between altered extracellular ATP/adenosine ratio and a previously unreported seizure phenotype in CD39-/- mice. This work provides groundwork for further elucidation of the underlying mechanisms of epilepsy.
Collapse
Affiliation(s)
- Amanda J Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul J Lorello
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dustin J Donnelly
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huixin Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A Lau
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Barbara J Caldarone
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
103
|
Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood-Brain Barrier Driven Pharmacoresistance in Amyotrophic Lateral Sclerosis and Challenges for Effective Drug Therapies. AAPS JOURNAL 2017; 19:1600-1614. [PMID: 28779378 DOI: 10.1208/s12248-017-0120-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is essential for proper neuronal function, homeostasis, and protection of the central nervous system (CNS) microenvironment from blood-borne pathogens and neurotoxins. The BBB is also an impediment for CNS penetration of drugs. In some neurologic conditions, such as epilepsy and brain tumors, overexpression of P-glycoprotein, an efflux transporter whose physiological function is to expel catabolites and xenobiotics from the CNS into the blood stream, has been reported. Recent studies reported that overexpression of P-glycoprotein and increase in its activity at the BBB drives a progressive resistance to CNS penetration and persistence of riluzole, the only drug approved thus far for treatment of amyotrophic lateral sclerosis (ALS), rapidly progressive and mostly fatal neurologic disease. This review will discuss the impact of transporter-mediated pharmacoresistance for ALS drug therapy and the potential therapeutic strategies to improve the outcome of ALS clinical trials and efficacy of current and future drug treatments.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA.
| | - Shashirekha Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
104
|
Finding a Balance between Protection and Pathology: The Dual Role of Perforin in Human Disease. Int J Mol Sci 2017; 18:ijms18081608. [PMID: 28757574 PMCID: PMC5578000 DOI: 10.3390/ijms18081608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Perforin is critical for controlling viral infection and tumor surveillance. Clinically, mutations in perforin are viewed as unfavorable, as lack of this pore-forming protein results in lethal, childhood disease, familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). However, many mutations in the coding region of PRF1 are not yet associated with disease. Animal models of viral-associated blood–brain barrier (BBB) disruption and experimental cerebral malaria (ECM) have identified perforin as critical for inducing pathologic central nervous system CNS vascular permeability. This review focuses on the role of perforin in both protecting and promoting human disease. It concludes with a novel hypothesis that diversity observed in the PRF1 gene may be an example of selective advantage that protects an individual from perforin-mediated pathology, such as BBB disruption.
Collapse
|
105
|
Bar-Klein G, Lublinsky S, Kamintsky L, Noyman I, Veksler R, Dalipaj H, Senatorov VV, Swissa E, Rosenbach D, Elazary N, Milikovsky DZ, Milk N, Kassirer M, Rosman Y, Serlin Y, Eisenkraft A, Chassidim Y, Parmet Y, Kaufer D, Friedman A. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis. Brain 2017; 140:1692-1705. [PMID: 28444141 DOI: 10.1093/brain/awx073] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P < 0.0001) for epilepsy, while diffused pathology is associated with a lower risk. Early treatments with either isoflurane anaesthesia or losartan prevented early microvascular damage and late epilepsy. We suggest quantitative assessment of blood-brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy.
Collapse
Affiliation(s)
- Guy Bar-Klein
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Lublinsky
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lyn Kamintsky
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Iris Noyman
- Pediatric Neurology and Epilepsy, Pediatric Division, Soroka Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronel Veksler
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hotjensa Dalipaj
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vladimir V Senatorov
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Evyatar Swissa
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dror Rosenbach
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Netta Elazary
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Z Milikovsky
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Milk
- The Israel Defense Force Medical Corps, Tel Hashomer, Israel
| | | | - Yossi Rosman
- The Israel Defense Force Medical Corps, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv Uneversity, Tel Aviv, Israel
| | - Yonatan Serlin
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arik Eisenkraft
- The Israel Defense Force Medical Corps, Tel Hashomer, Israel.,NBC Protection Division, Ministry of Defense, Tel-Aviv, Israel.,The Institute for Research in Military Medicine, Hebrew University, Jerusalem, Israel
| | - Yoash Chassidim
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yisrael Parmet
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniela Kaufer
- Department of Integrative Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlowotski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
106
|
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017; 120:11-19. [PMID: 26979921 PMCID: PMC5820030 DOI: 10.1016/j.neuropharm.2016.03.021] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/14/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into useful medical advances. In the field of neuropharmacology this requires understanding disease mechanisms as well as the effects of drugs and other compounds on neuronal function. Our hope is that this information will result in new or improved treatment for CNS disease. Despite great progress in our understanding of the structure and functions of the CNS, the discovery of new drugs and their clinical development for many CNS disorders has been problematic. As a result, CNS drug discovery and development programs have been subjected to significant cutbacks and eliminations over the last decade. While there has been recent resurgence of interest in CNS targets, these past changes in priority of the pharmaceutical and biotech industries reflect several well-documented realities. CNS drugs in general have higher failure rates than non-CNS drugs, both preclinically and clinically, and in some areas, such as the major neurodegenerative diseases, the clinical failure rate for disease-modifying treatments has been 100%. The development times for CNS drugs are significantly longer for those drugs that are approved, and post-development regulatory review is longer. In this introduction we review some of the reasons for failure, delineating both scientific and technical realities, some unique to the CNS, that have contributed to this. We will focus on major neurodegenerative disorders, which affect millions, attract most of the headlines, and yet have witnessed the fewest successes. We will suggest some changes that, when coupled with the approaches discussed in the rest of this special volume, may improve outcomes in future CNS-targeted drug discovery and development efforts. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
107
|
Lu JQ, Steve TA, Wheatley M, Gross DW. Immune Cell Infiltrates in Hippocampal Sclerosis: Correlation With Neuronal Loss. J Neuropathol Exp Neurol 2017; 76:206-215. [PMID: 28395090 DOI: 10.1093/jnen/nlx001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune mechanisms have been increasingly recognized in the pathogenesis of hippocampal sclerosis (HS), but infiltration of cytotoxic T-cells and its pathological significance in patients with HS has not been explored. We examined 30 cases of surgically resected hippocampi, including 16 International League Against Epilepsy (ILAE) type 1, 9 ILAE type 2, 1 ILAE type 3 HS, and 4 ILAE No-HS, as well as 6 autopsy No-HS hippocampi. The HS hippocampi showed sparse to scattered CD8-positive T-cells, rare CD4-positive T-cells, and a modest increase in CD68-positive microglia/macrophages, which were significantly more numerous than those in the No-HS controls. The infiltration of CD8-positive T-cells was significantly greater in the CA1 subfield than other subfields of type 1 and type 2 HS. The numbers of CD8-positive T-cells positively correlated with those of CD4-positive T-cells; there was a lower ratio of CD4/CD8-positive T-cells. There were positive correlations between these cells and scores of neuronal loss but no significant correlation between the infiltration of these cells and epilepsy disease duration or age of epilepsy onset. These findings suggest that an autoimmune process may be involved in the pathogenesis of HS and infiltration of immune cells, particularly CD8-positive cytotoxic T-cells, may contribute to neuronal loss in HS.
Collapse
Affiliation(s)
- Jian-Qiang Lu
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Trevor A Steve
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Matt Wheatley
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Donald W Gross
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
108
|
Clossen BL, Reddy DS. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1519-1538. [PMID: 28179120 PMCID: PMC5474195 DOI: 10.1016/j.bbadis.2017.02.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
Abstract
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
109
|
|
110
|
Wang H, Huang Y, Coman D, Munbodh R, Dhaher R, Zaveri HP, Hyder F, Eid T. Network evolution in mesial temporal lobe epilepsy revealed by diffusion tensor imaging. Epilepsia 2017; 58:824-834. [PMID: 28378878 DOI: 10.1111/epi.13731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of the present study is to identify novel, time-indexed imaging biomarkers of epileptogenesis in mesial temporal lobe epilepsy (MTLE). METHODS We used high-resolution brain diffusion tensor imaging (DTI) of the translationally relevant methionine sulfoximine (MSO) brain infusion model of MTLE. MSO inhibits astroglial glutamine synthetase, which is deficient in the epileptogenic hippocampal formation of patients with MTLE. MSO-infused (epileptogenic) rats were compared with phosphate-buffered saline (PBS)-infused (nonepileptogenic) rats at early (3-4 days) and late (6-9 weeks) time points during epileptogenesis. RESULTS The epileptogenic rats exhibited significant changes in DTI-measured fractional anisotropy (FA) in numerous brain regions versus nonepileptogenic rats. Changes included decreases and increases in FA in regions such as the entorhinal-hippocampal area, amygdala, corpus callosum, thalamus, striatum, accumbens, and neocortex. The FA changes evolved over time as animals transitioned from early to late epileptogenesis. For example, some areas with significant decreases in FA early in epileptogenesis changed to significant increases late in epileptogenesis. Finally, the FA changes significantly correlated with the seizure load. SIGNIFICANCE Our results suggest (1) that high-resolution DTI can be used for early identification and tracking of the epileptogenic process in MTLE, and (2) that the process identified by DTI is present in multiple brain areas, even though infusion of MSO is restricted to the unilateral entorhinal-hippocampal region.
Collapse
Affiliation(s)
- Helen Wang
- Department of Laboratory Medicine, Yale University, New Haven, CT, U.S.A
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, U.S.A
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, U.S.A
| | - Reshma Munbodh
- School of Informatics, Informatics Forum, University of Edinburgh, Edinburgh, United Kingdom
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale University, New Haven, CT, U.S.A
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, U.S.A
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, U.S.A.,Department of Biomedical Engineering, Yale University, New Haven, CT, U.S.A
| | - Tore Eid
- Department of Laboratory Medicine, Yale University, New Haven, CT, U.S.A
| |
Collapse
|
111
|
Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Mol Neurobiol 2017; 55:1773-1785. [PMID: 28224478 DOI: 10.1007/s12035-017-0456-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
As an essential component of cellular defense against a variety of endogenous and exogenous stresses, nuclear factor erythroid 2-related factor 2 (Nrf2) has received increased attention in the past decades. Multiple studies indicate that Nrf2 acts not only as an important protective factor in injury models but also as a downstream target of therapeutic agents. Activation of Nrf2 has increasingly been linked to many human diseases, especially in central nervous system (CNS) injury such as traumatic brain injury (TBI). Several researches have deciphered that activation of Nrf2 exerts antioxidative stress, antiapoptosis, and antiinflammation influence in TBI via different molecules and pathways including heme oxygenase-1 (HO-1), NADPH:quinine oxidoreductase-1 (NQO-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Hence, Nrf2 shows great promise as a molecular target in TBI. In the present article, we provide an updated review of the current state of our knowledge about relationship between Nrf2 and TBI, highlighting the specific roles of Nrf2 in TBI.
Collapse
|
112
|
Simultaneous Intracranial EEG-fMRI Shows Inter-Modality Correlation in Time-Resolved Connectivity Within Normal Areas but Not Within Epileptic Regions. Brain Topogr 2017; 30:639-655. [DOI: 10.1007/s10548-017-0551-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
|
113
|
Liu C, Russin J, Heck C, Kawata K, Adiga R, Yen W, Lambert J, Stear B, Law M, Marquez Y, Crino P, Millett D, Langford D. Dysregulation of PINCH signaling in mesial temporal epilepsy. J Clin Neurosci 2017; 36:43-52. [PMID: 27838154 PMCID: PMC6492941 DOI: 10.1016/j.jocn.2016.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 01/15/2023]
Abstract
Mounting evidence suggests that inflammation is important in epileptogenesis. Particularly Interesting New Cysteine Histidine-rich (PINCH) protein is a highly conserved, LIM-domain protein known to interact with hyperphosphorylated Tau. We assessed PINCH expression in resected epileptogenic human hippocampi and further explored the relationships among PINCH, hpTau and associated kinases. Resected hippocampal tissue from 7 patients with mesial temporal lobe epilepsy (MTLE) was assessed by Western analyses to measure levels of PINCH and hyperphosphorylated Tau, as well as changes in phosphorylation levels of associated kinases AKT and GSK3β in comparison to normal control tissue. Immunolabeling was also conducted to evaluate PINCH and hpTau patterns of expression, co-localization and cell-type specific expression. Hippocampal PINCH was increased by 2.6 fold in the epilepsy cases over controls and hpTau was increased 10 fold over control. Decreased phospho-AKT and phospho-GSK3β in epilepsy tissue suggested involvement of this pathway in MTLE. PINCH and hpTau co-localized in some neurons in MTLE tissue. While PINCH was expressed by both neurons and astrocytes in MTLE tissue, hpTau was extracellular or associated with neurons. PINCH was absent from the serum of control subjects but readily detectable from the serum of patients with chronic epilepsy. Our study describes the expression of PINCH and points to AKT/GSK3β signaling dysregulation as a possible pathway in hpTau formation in MTLE. In view of the interactions between hpTau and PINCH, understanding the role of PINCH in MTLE may provide increased understanding of mechanisms leading to inflammation and MTLE epileptogenesis and a potential biomarker for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon Russin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christianne Heck
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keisuke Kawata
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA; Department of Kinesiology, College of Public Health, Philadelphia, PA, USA; Department of Kinesiology, University of Indiana, Philadelphia, PA, USA
| | - Radhika Adiga
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - William Yen
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jonathan Lambert
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Benjamin Stear
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Meng Law
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yvette Marquez
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter Crino
- Department of Neurology, Temple University School of Medicine, and Shriners Hospitals Pediatric Research Center, Philadelphia, PA, USA
| | - David Millett
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
114
|
Zisimopoulou V, Mamali M, Katsavos S, Siatouni A, Tavernarakis A, Gatzonis S. Cerebrospinal fluid analysis after unprovoked first seizure. FUNCTIONAL NEUROLOGY 2017; 31:101-7. [PMID: 27358223 DOI: 10.11138/fneur/2016.31.2.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of this study was to determine cerebrospinal fluid (CSF) characteristics after an unprovoked first seizure (UFS). We reviewed the medical records of 71 patients with UFS who underwent lumbar puncture, and examined the CSF parameters. Each CSF parameter was evaluated separately for potential correlations with the other study variables. We observed an overall frequency of CSF abnormalities of 35.2%. CSF protein was the most common abnormal parameter (31%) and showed significant positive correlations with male gender (p=0.037) and older age (p=0.007). Only seven patients (9.9%) had an abnormal cell count (5-40 cells/μl). Higher CSF cell counts were found to predict a longer hospitalization period (p=0.005). No relationship with abnormal EEG findings could be established (p=0.169). This study is one of the few to evaluate postictal CSF parameters in a clinical setting, and to our knowledge the first to investigate these parameters specifically in the emergency department. The development of a rapid, easy-to-use test that does not require extensive laboratory equipment to differentiate UFS from other conditions could be of great value in everyday clinical practice.
Collapse
|
115
|
Sterile Neuroinflammation and Strategies for Therapeutic Intervention. Int J Inflam 2017; 2017:8385961. [PMID: 28127491 PMCID: PMC5239986 DOI: 10.1155/2017/8385961] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Sterile neuroinflammation is essential for the proper brain development and tissue repair. However, uncontrolled neuroinflammation plays a major role in the pathogenesis of various disease processes. The endogenous intracellular molecules so called damage-associated molecular patterns or alarmins or damage signals that are released by activated or necrotic cells are thought to play a crucial role in initiating an immune response. Sterile inflammatory response that occurs in Alzheimer's disease (AD), Parkinson's disease (PD), stroke, hemorrhage, epilepsy, or traumatic brain injury (TBI) creates a vicious cycle of unrestrained inflammation, driving progressive neurodegeneration. Neuroinflammation is a key mechanism in the progression (e.g., AD and PD) or secondary injury development (e.g., stroke, hemorrhage, stress, and TBI) of multiple brain conditions. Hence, it provides an opportunity for the therapeutic intervention to prevent progressive tissue damage and loss of function. The key for developing anti-neuroinflammatory treatment is to minimize the detrimental and neurotoxic effects of inflammation while promoting the beneficial and neurotropic effects, thereby creating ideal conditions for regeneration and repair. This review outlines how inflammation is involved in the pathogenesis of major nonpathogenic neuroinflammatory conditions and discusses the complex response of glial cells to damage signals. In addition, emerging experimental anti-neuroinflammatory drug treatment strategies are discussed.
Collapse
|
116
|
A. Richard S, Min W, Su Z, Xu HX. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
117
|
Farrell JS, Wolff MD, Teskey GC. Neurodegeneration and Pathology in Epilepsy: Clinical and Basic Perspectives. ADVANCES IN NEUROBIOLOGY 2017; 15:317-334. [PMID: 28674987 DOI: 10.1007/978-3-319-57193-5_12] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is commonly associated with a number of neurodegenerative and pathological alterations in those areas of the brain that are involved in repeated electrographic seizures. These most prominently include neuron loss and an increase in astrocyte number and size but may also include enhanced blood-brain barrier permeability, the formation of new capillaries, axonal sprouting, and central inflammation. In animal models in which seizures are either repeatedly elicited or are self-generated, a similar set of neurodegenerative and pathological alterations in brain anatomy are observed. The primary causal agent responsible for these alterations may be the cascade of events that follow a seizure and lead to an hypoperfusion/hypoxic episode. While epilepsy has long and correctly been considered an electrical disorder, the vascular system likely plays an important causal role in the neurodegeneration and pathology that occur as a consequence of repeated seizures.
Collapse
Affiliation(s)
- Jordan S Farrell
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
118
|
Uckermann O, Galli R, Leupold S, Coras R, Meinhardt M, Hallmeyer-Elgner S, Mayer T, Storch A, Schackert G, Koch E, Blümcke I, Steiner G, Kirsch M. Label-free multiphoton microscopy reveals altered tissue architecture in hippocampal sclerosis. Epilepsia 2016; 58:e1-e5. [PMID: 28064458 DOI: 10.1111/epi.13598] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
The properties and structure of tissue can be visualized without labeling or preparation by multiphoton microscopy combining coherent anti-Stokes Raman scattering (CARS), addressing lipid content, second harmonic generation (SHG) showing collagen, and two-photon excited fluorescence (TPEF) of endogenous fluorophores. We compared samples of sclerotic and nonsclerotic human hippocampus to detect pathologic changes in the brain of patients with pharmacoresistant temporomesial epilepsy (n = 15). Multiphoton microscopy of cryosections and bulk tissue revealed hippocampal layering and micromorphologic details in accordance with reference histology: CARS displayed white and gray matter layering and allowed the assessment of axonal myelin. SHG visualized blood vessels based on adventitial collagen. In addition, corpora amylacea (CoA) were found to be SHG-active. Pyramidal cell bodies were characterized by intense cytoplasmic endogenous TPEF. Furthermore, diffuse TPEF around blood vessels was observed that co-localized with positive albumin immunohistochemistry and might indicate degeneration-associated vascular leakage. We present a label-free and fast optical approach that analyzes pathologic aspects of HS. Hippocampal layering, loss of pyramidal cells, and presence of CoA indicative of sclerosis are visualized. Label-free multiphoton microscopy has the potential to extend the histopathologic armamentarium for ex vivo assessment of changes of the hippocampal formation on fresh tissue and prospectively in vivo.
Collapse
Affiliation(s)
- Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Clinic of Anesthesiology and Intensive Care Therapy, Medical Faculty, TU Dresden, Dresden, Germany
| | - Susann Leupold
- Neurosurgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Matthias Meinhardt
- Neuropathology, Institute of Pathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Susanne Hallmeyer-Elgner
- Neurology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Epilepsy surgery, Dresden, Germany
| | - Thomas Mayer
- Center for Epilepsy surgery, Dresden, Germany.,Sächsisches Epilepsiezentrum Radeberg/Kleinwachau, Radeberg, Germany
| | - Alexander Storch
- Neurology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Epilepsy surgery, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Clinic of Anesthesiology and Intensive Care Therapy, Medical Faculty, TU Dresden, Dresden, Germany.,Center for Regenerative Therapies, TU Dresden, Dresden, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Clinic of Anesthesiology and Intensive Care Therapy, Medical Faculty, TU Dresden, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Epilepsy surgery, Dresden, Germany.,Center for Regenerative Therapies, TU Dresden, Dresden, Germany
| |
Collapse
|
119
|
Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation 2016; 13:270. [PMID: 27737716 PMCID: PMC5064886 DOI: 10.1186/s12974-016-0727-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background Epilepsy patients have distinct immune/inflammatory cell profiles and inflammatory mediator levels in the blood. Although the neural origin of inflammatory cells and mediators has been implied, few studies have measured these inflammatory components in the human brain itself. This study examines the brain levels of chemokines (8), cytokines (14), and vascular injury mediators (3) suspected of being altered in epilepsy. Methods Soluble protein extracts of fresh frozen resected hippocampus, entorhinal cortex, and temporal cortex from 58 medically refractory mesial temporal lobe epilepsy subjects and 4 nonepileptic neurosurgical subjects were assayed for 25 inflammation-related mediators using ultrasensitive low-density arrays. Results Brain mediator levels were compared between regions and between epileptic and nonepileptic cases, showing a number of regional and possible epilepsy-associated differences. Eotaxin, interferon-γ, interleukin (IL)-2, IL-4, IL-12 p70, IL-17A, tumor necrosis factor-α, and intercellular adhesion molecule (ICAM)-1 levels were highest in the hippocampus, the presumptive site of epileptogenesis. Surprisingly, IL-1β and IL-1α were lowest in the hippocampus, compared to cortical regions. In the temporal cortex, IL-1β, IL-8, and MIP-1α levels were highest, compared to the entorhinal cortex and the hippocampus. The most pronounced epilepsy-associated differences were decreased levels of eotaxin, IL-1β, C-reactive protein, and vascular cell adhesion molecule (VCAM)-1 and increased IL-12 p70 levels. Caution must be used in interpreting these results, however, because nonepileptic subjects were emergent neurosurgical cases, not a control group. Correlation analyses of each mediator in each brain region yielded valuable insights into the regulation of these mediator levels in the brain. Over 70 % of the associations identified were between different mediators in a single brain region, providing support for local control of mediator levels. Correlations of different mediators in different brain regions suggested more distributed control mechanisms, particularly in the hippocampus. Interestingly, only four mediators showed robust correlations between the brain regions, yet levels in three of these were significantly different between regions, indicating both global and local controls for these mediators. Conclusions Both brain region-specific and epilepsy-associated changes in inflammation-related mediators were detected. Correlations in mediator levels within and between brain regions indicated local and global regulation, respectively. The hippocampus showed the majority of interregional associations, suggesting a focus of inflammatory control between these regions. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0727-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kenneth I Strauss
- College of Human Medicine, Michigan State University, 333 Bostwick Ave NE, Grand Rapids, MI, USA.
| | - Kost V Elisevich
- Department of Clinical Neurosciences, Spectrum Health System, Grand Rapids, MI, USA.,Division of Neurosurgery, Michigan State University, East Lansing, USA
| |
Collapse
|
120
|
Wise TL. Changes in insulin-like growth factor signaling alter phenotypes in Fragile X Mice. GENES BRAIN AND BEHAVIOR 2016; 16:241-249. [DOI: 10.1111/gbb.12340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- T. L. Wise
- Department of Human Genetics; New York State Institute for Basic Research in Developmental Disabilities; Staten Island NY USA
| |
Collapse
|
121
|
Farhang A, Javanmard SH, Mehvari J, Zare M, Saadatnia M. Inflammation and endothelium response in epileptic patients: A case-control study. Adv Biomed Res 2016; 5:131. [PMID: 27656600 PMCID: PMC5025927 DOI: 10.4103/2277-9175.187370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 11/18/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Blood brain barrier (BBB) permeability plays an important role in the brain impairments. The barrier is composed of endothelium cells, due to the presence of tight junctions that connect endothelium cells. The failure of BBB function has triggering chronic or acute seizures through brain inflammation and BBB permeability. Seizure induces vasodilation, BBB leakage and up-regulation of vascular cell adhesion molecules which able to bind integrins blood leukocytes. MATERIALS AND METHODS In this case-control study we included 40 epileptic patients who were sampled during a seizure as a case group and 20 healthy subjects as a healthy control group. Plasma levels of the inflammation and endothelium markers including intercellular adhesion molecule (ICAM), vascular adhesion molecule (VCAM), interleukin 1 beta (IL-1β) and C-reactive protein (CRP) were measured by enzyme-linked immunosorbent assays (ELISAs). RESULTS The ICAM and VCAM concentration in the epileptic patients (135.8 ± 5.35) (52.04 ± 4.24) were significantly higher than healthy control group (110.32 ± 5.04) (23.38 ± 3.01) (P < 0.005). IL-1 beta concentration was not significantly different between groups (P = 0.594). However, CRP level was significantly up-regulated in epileptic patients (P < 0.005). CONCLUSION Epileptic patients have BBB leakage and dysfunction as the up-regulation of the endothelium cytokines showed. The BBB leakage may be the result of the inflammatory impairment.
Collapse
Affiliation(s)
- Amir Farhang
- Department of Physiology, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Mehvari
- Isfahan Neurosciences Research Center, Isfahan Medical Education Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Zare
- Isfahan Neurosciences Research Center, Isfahan Medical Education Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Saadatnia
- Isfahan Neurosciences Research Center, Isfahan Medical Education Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
122
|
Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 2016; 126:157-84. [PMID: 27505294 DOI: 10.1016/j.eplepsyres.2016.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Animal seizure and epilepsy models continue to play an important role in the early discovery of new therapies for the symptomatic treatment of epilepsy. Since 1937, with the discovery of phenytoin, almost all anti-seizure drugs (ASDs) have been identified by their effects in animal models, and millions of patients world-wide have benefited from the successful translation of animal data into the clinic. However, several unmet clinical needs remain, including resistance to ASDs in about 30% of patients with epilepsy, adverse effects of ASDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk following brain injury. The aim of this review is to critically discuss the translational value of currently used animal models of seizures and epilepsy, particularly what animal models can tell us about epilepsy therapies in patients and which limitations exist. Principles of translational medicine will be used for this discussion. An essential requirement for translational medicine to improve success in drug development is the availability of animal models with high predictive validity for a therapeutic drug response. For this requirement, the model, by definition, does not need to be a perfect replication of the clinical condition, but it is important that the validation provided for a given model is fit for purpose. The present review should guide researchers in both academia and industry what can and cannot be expected from animal models in preclinical development of epilepsy therapies, which models are best suited for which purpose, and for which aspects suitable models are as yet not available. Overall further development is needed to improve and validate animal models for the diverse areas in epilepsy research where suitable fit for purpose models are urgently needed in the search for more effective treatments.
Collapse
|
123
|
Walker LE, Janigro D, Heinemann U, Riikonen R, Bernard C, Patel M. WONOEP appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia 2016; 57:1354-62. [PMID: 27374986 DOI: 10.1111/epi.13460] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Peripheral biomarkers have myriad potential uses for treatment, prediction, prognostication, and pharmacovigilance in epilepsy. To date, no single peripheral biomarker has demonstrated proven effectiveness, although multiple candidates are in development. In this review, we discuss the major areas of focus including inflammation, blood-brain barrier dysfunction, redox alterations, metabolism, hormones and growth factors.
Collapse
Affiliation(s)
- Lauren E Walker
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Damir Janigro
- Flocel, Inc., Case Western Reserve University Cleveland, Cleveland, Ohio, U.S.A
| | - Uwe Heinemann
- Neuroscience Research Center Charité, Berlin, Germany
| | - Raili Riikonen
- University of Kuopio, University of Eastern Finland, Kuopio, Finland
| | | | - Manisha Patel
- Department of Pharmaceutical Science, University of Colorado, Aurora, Colorado, U.S.A
| |
Collapse
|
124
|
Özdemir HH, Akil E, Acar A, Tamam Y, Varol S, Cevik MU, Arikanoglu A. Changes in serum albumin levels and neutrophil-lymphocyte ratio in patients with convulsive status epilepticus. Int J Neurosci 2016; 127:417-420. [PMID: 27161531 DOI: 10.1080/00207454.2016.1187606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Inflammation may be involved in the ictogenesis and development of some partial epilepsies. Serum albumin levels and the neutrophil-lymphocyte ratio (NLR) are markers of inflammation. The aim of this study was to investigate the ability of serum albumin levels and NLR to predict inflammation in patients with convulsive status epilepticus (CSE). METHODS This retrospective study was conducted on 58 patients who were diagnosed with CSE and control group comprised of 58 healthy individuals. Albumin levels and NLR were evaluated during both the acute and subacute periods of CSE. RESULTS The average serum albumin levels were 3.27 ± 0.62 g/dL during the acute period and 3.4 ± 0.67 g/dL in the subacute period in the patient group and 3.92 ± 0.52 g/dL in the control group. Neutrophil counts were higher in patients in the acute phase of CSE, but lymphocyte counts were lower compared to the control group and the subacute phase. The average NLR values were 4.83 ± 5.1 in the acute period, 3.07 ± 3.02 during the subacute period and 1.98 ± 0.42 in the control group. Serum albumin and NLR levels were significantly different between the patients in the subacute and acute periods of CSE and the control group (p < 0.05). There were significant negative correlational relationships between serum albumin and NLR levels (p < 0.05). CONCLUSION We found serum albumin levels were significantly lower and the NLR was significantly higher in the acute period of CSE. Neutrophil-mediated inflammation may be important in the aetiopathogenesis of CSE.
Collapse
Affiliation(s)
- Hasan H Özdemir
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Esref Akil
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Abdullah Acar
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Yusuf Tamam
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | - Sefer Varol
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| | | | - Adalet Arikanoglu
- a Faculty of Medicine, Department of Neurology , Dicle University , Diyarbakir , Turkey
| |
Collapse
|
125
|
Noé FM, Bellistri E, Colciaghi F, Cipelletti B, Battaglia G, de Curtis M, Librizzi L. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016; 57:967-76. [PMID: 27173148 DOI: 10.1111/epi.13394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. METHODS Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. RESULTS KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. SIGNIFICANCE Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation.
Collapse
Affiliation(s)
- Francesco M Noé
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Elisa Bellistri
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Francesca Colciaghi
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Barbara Cipelletti
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Giorgio Battaglia
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Marco de Curtis
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Laura Librizzi
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| |
Collapse
|
126
|
Early Stage of Hyperintense Acute Reperfusion Marker on Contrast-Enhanced FLAIR Images in Patients With Acute Stroke. AJR Am J Roentgenol 2016; 206:1272-5. [PMID: 27010867 DOI: 10.2214/ajr.15.14857] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Hyperintense acute reperfusion marker (HARM) is defined as delayed CSF enhancement on FLAIR images in patients with acute stroke and was observed in follow-up FLAIR images after initial MRI with contrast material administration. We hypothesized that different imaging findings of HARM could be present depending on the timing of FLAIR imaging after contrast material administration. SUBJECTS AND METHODS Of 218 consecutive patients with acute stroke or transient ischemic attack over 3 months, 12 with linear contrast enhancement on the cortical surface in initial FLAIR images underwent serial FLAIR imaging. Initial FLAIR images were obtained 5 minutes after contrast material administration, and follow-up unenhanced FLAIR images were obtained 2.5-29 hours (mean, 13.2 hours) after initial FLAIR imaging. The enhancement patterns between initial and follow-up FLAIR images were compared. RESULTS In all 12 patients, initial contrast-enhanced FLAIR images showed focal or multifocal linear contrast enhancement along the cortical surface near acute infarctions. On follow-up unenhanced FLAIR images, initial cortical enhancement spread diffusely and filled the subarachnoid space. CONCLUSION HARM in acute stroke can be detected earlier than previously reported on initial contrast-enhanced FLAIR images. Different imaging findings of HARM depend on the timing of FLAIR imaging after contrast material administration.
Collapse
|
127
|
Simão F, Habekost Oliveira V, Nunes ML. Enhanced susceptibility to seizures modulated by high interleukin‐1β levels during early life malnutrition. Dev Neurobiol 2016; 76:1150-9. [DOI: 10.1002/dneu.22381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/13/2015] [Accepted: 01/13/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Fabrício Simão
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| | - Victória Habekost Oliveira
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| | - Magda Lahourgue Nunes
- Neuroscience LaboratoryBiomedical Research Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
- School of Medicine and Brain Institute (InsCer)Pontifical Catholic University of Rio Grande Do Sul (PUCRS)Porto Alegre RS Brazil
| |
Collapse
|
128
|
Chen X, Sun FJ, Wei YJ, Wang LK, Zang ZL, Chen B, Li S, Liu SY, Yang H. Increased Expression of Transient Receptor Potential Vanilloid 4 in Cortical Lesions of Patients with Focal Cortical Dysplasia. CNS Neurosci Ther 2016; 22:280-90. [PMID: 26842013 DOI: 10.1111/cns.12494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022] Open
Abstract
AIM Focal cortical dysplasia (FCD) represents a well-known cause of medically intractable epilepsy. Studies found that transient receptor potential vanilloid receptor 4 (TRPV4) may participate in the occurrence of seizures. This study investigated the expression patterns of TRPV4 in FCD and the cascade that regulate functional state of TRPV4 in cortical neurons. METHODS Thirty-nine surgical specimens from FCD patients and 10 age-matched control samples from autopsies were included in this study. Protein expression and distribution were detected by Western blot, immunohistochemistry, and immunofluorescence staining. Calcium imaging was used to detect the TRPV4-mediated Ca(2+) influx in cortical neurons. RESULTS (1) The protein levels of TRPV4 and of an upstream factor, protein kinase C (PKC), were markedly elevated in FCD. (2) TRPV4 staining was stronger in the dysplastic cortices of FCD and mainly observed in neuronal microcolumns and malformed cells. (3) The activation of TRPV4 was central for [Ca(2+)]i elevation in cortical neurons, and this activity of TRPV4 in cortical neurons was regulated by the PKC, but not the PKA, pathway. CONCLUSION The overexpression and altered cellular distribution of TRPV4 in FCD suggest that TRPV4 may potentially contribute to the epileptogenesis of FCD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fei-Ji Sun
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu-Jia Wei
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu-Kang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhen-Le Zang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Song Li
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Shi-Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
129
|
Rosa DV, Rezende VB, Costa BS, Mudado F, Schütze M, Torres KC, Martins LC, Moreira-Filho CA, Miranda DM, Romano-Silva MA. Circulating CD4 and CD8 T cells expressing pro-inflammatory cytokines in a cohort of mesial temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Res 2016; 120:1-6. [DOI: 10.1016/j.eplepsyres.2015.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/28/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
|
130
|
Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI. Neural Plast 2016; 2016:2412958. [PMID: 26925269 PMCID: PMC4748095 DOI: 10.1155/2016/2412958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/27/2015] [Accepted: 01/03/2016] [Indexed: 12/18/2022] Open
Abstract
Purpose. Although active targeting of drugs using a magnetic-targeted drug delivery system (MTDS) with superparamagnetic iron oxide nanoparticles (SPIONs) is a very effective treatment approach for tumors and other illnesses, successful results of drug-resistant temporal lobe epilepsy (TLE) are unprecedented. A hallmark in the neuropathology of TLE is brain inflammation, in particular the activation of interleukin-1β (IL-1β) induced by activated glial cells, which has been considered a new mechanistic target for treatment. The purpose of this study was to determine the feasibility of the functionalized SPIONs with anti-IL-1β monoclonal antibody (mAb) attached to render MRI diagnoses and simultaneously provide targeted therapy with the neutralization of IL-1β overexpressed in epileptogenic zone of an acute rat model of TLE. Experimental Design. The anti-IL-1β mAb-SPIONs were studied in vivo versus plain SPIONs and saline. Lithium-chloride pilocarpine-induced TLE models (n = 60) were followed by Western blot, Perl's iron staining, Nissl staining, and immunofluorescent double-label staining after MRI examination. Results. The magnetic anti-IL-1β mAb-SPION administered intravenously, which crossed the BBB and was concentrated in the astrocytes and neurons in epileptogenic tissues, rendered these tissues visible on MRI and simultaneously delivered anti-IL-1β mAb to the epileptogenic focus. Conclusions. Our study provides the first evidence that the novel approach enhanced accumulation and the therapeutic effect of anti-IL-1β mAb by MTDS using SPIONs.
Collapse
|
131
|
Deracinois B, Lenfant AM, Dehouck MP, Flahaut C. Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain. Subcell Biochem 2016. [PMID: 26219710 DOI: 10.1007/978-94-017-7197-9_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microvessels of the brain represent around 3-4 % of the brain compartment but constitute the most important length (400 miles) and surface of exchange (20 m(2)) between the blood and the parenchyma of brain. Under influence of surrounding tissues, the brain microvessel endothelium expresses a specific phenotype that regulates and restricts the entry of compounds and cells from blood to brain, and defined the so-called blood-brain barrier (BBB). Evidences that alkaline phosphatase (AP) is a characteristic feature of the BBB phenotype that allows differentiating capillary endothelial cells from brain to those of the periphery have rapidly emerge. Thenceforth, AP has been rapidly used as a biomarker of the blood-brain barrier phenotype. In fact, brain capillary endothelial cells (BCECs) express exclusively tissue non-specific alkaline phosphatase (TNAP). There are several lines of evidence in favour of an important role for TNAP in brain function. TNAP is thought to be responsible for the control of transport of some compounds across the plasma membrane of the BCECs. Here, we report that levamisole-mediated inhibition of TNAP provokes an increase of the permeability to Lucifer Yellow of the endothelial monolayer. Moreover, we illustrate the disruption of the cytoskeleton organization. Interestingly, all observed effects were reversible 24 h after levamisole removal and correlated with the return of a full activity of the TNAP. This reversible effect remains to be studied in details to evaluate the potentiality of a levamisole treatment to enhance the entry of drugs in the brain parenchyma.
Collapse
|
132
|
Hypoxia and Inflammation-Induced Disruptions of the Blood-Brain and Blood-Cerebrospinal Fluid Barriers Assessed Using a Novel T1-Based MRI Method. ACTA NEUROCHIRURGICA SUPPLEMENT 2016; 121:23-8. [DOI: 10.1007/978-3-319-18497-5_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
133
|
Abstract
Posttraumatic epilepsy (PTE) is one of the most common and devastating complications of traumatic brain injury (TBI). Currently, the etiopathology and mechanisms of PTE are poorly understood and as a result, there is no effective treatment or means to prevent it. Antiepileptic drugs remain common preventive strategies in the management of TBI to control acute posttraumatic seizures and to prevent the development of PTE, although their efficacy in the latter case is disputed. Different strategies of PTE prophylaxis have been showing promise in preclinical models, but their translation to the clinic still remains elusive due in part to the variability of these models and the fact they do not recapitulate all complex pathologies associated with human TBI. TBI is a multifaceted disorder reflected in several potentially epileptogenic alterations in the brain, including mechanical neuronal and vascular damage, parenchymal and subarachnoid hemorrhage, subsequent toxicity caused by iron-rich hemoglobin breakdown products, and energy disruption resulting in secondary injuries, including excitotoxicity, gliosis, and neuroinflammation, often coexisting to a different degree. Several in vivo models have been developed to reproduce the acute TBI cascade of events, to reflect its anatomical pathologies, and to replicate neurological deficits. Although acute and chronic recurrent posttraumatic seizures are well-recognized phenomena in these models, there is only a limited number of studies focused on PTE. The most used mechanical TBI models with documented electroencephalographic and behavioral seizures with remote epileptogenesis include fluid percussion, controlled cortical impact, and weight-drop. This chapter describes the most popular models of PTE-induced TBI models, focusing on the controlled cortical impact and the fluid percussion injury models, the methods of behavioral and electroencephalogram seizure assessments, and other approaches to detect epileptogenic properties, and discusses their potential application for translational research.
Collapse
|
134
|
Naik P, Cucullo L. Pathobiology of tobacco smoking and neurovascular disorders: untied strings and alternative products. Fluids Barriers CNS 2015; 12:25. [PMID: 26520792 PMCID: PMC4628383 DOI: 10.1186/s12987-015-0022-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/20/2015] [Indexed: 12/27/2022] Open
Abstract
Tobacco smoke (TS) is the leading cause of preventable deaths worldwide. In addition to a host of well characterized diseases including chronic obstructive pulmonary disease, oral and peripheral cancers and cardiovascular complications, epidemiological evidence suggests that chronic smokers are at equal risk to develop neurological and neurovascular complications such as multiple sclerosis, Alzheimer's disease, stroke, vascular dementia and small vessel ischemic disease (SVID). Unfortunately, few direct neurotoxicology studies of tobacco smoking and its pathogenic pathways have been produced so far. A major link between TS and CNS disorders is the blood-brain barrier (BBB). In this review article, we summarize the current understanding of the toxicological impact of TS on BBB physiology and function and major compensatory mechanisms such as nrf2- ARE signaling and anti-inflammatory pathways activated by TS. In the same context, we discuss the controversial role of antioxidant supplementation as a prophylactic and/or therapeutic approach in delaying or decreasing the disease complications in smokers. Further, we cover a number of toxicological studies associated with "reduced exposure" cigarette products including electronic cigarettes. Finally, we provide insights on possible avenues for future research including mechanistic studies using direct inhalation rodent models.
Collapse
Affiliation(s)
- Pooja Naik
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, 1300 S. Coulter Street, Amarillo, TX, 79106, USA.
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
135
|
Srivastava A, Dixit AB, Banerjee J, Tripathi M, Sarat Chandra P. Role of inflammation and its miRNA based regulation in epilepsy: Implications for therapy. Clin Chim Acta 2015; 452:1-9. [PMID: 26506013 DOI: 10.1016/j.cca.2015.10.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
There is a need to develop innovative therapeutic strategies to counteract epilepsy, a common disabling neurological disorder. Despite the recent advent of additional antiepileptic drugs and respective surgery, the treatment of epilepsy remains a major challenge. The available therapies are largely based on symptoms, and these approaches do not affect the underlying disease processes and are also associated frequently with severe side effects. This is mainly because of the lack of well-defined targets in epilepsy. The discovery that inflammatory mediators significantly contribute to the onset and recurrence of seizures in experimental seizure models, as well as the presence of inflammatory molecules in human epileptogenic tissue, highlights the possibility of targeting specific inflammation related pathways to control seizures that are otherwise resistant to the available AEDs. Emerging studies suggest that miRNAs have a significant role in regulating inflammatory pathways shown to be involved in epilepsy. These miRNAs can possibly be used as novel therapeutic targets in the treatment of epilepsy as well as serve as diagnostic biomarkers of epileptogenesis. This review highlights the immunological features underlying the pathogenesis of epileptic seizures and the possible miRNA mediated approaches for drug resistant epilepsies that modulate the immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Arpna Srivastava
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
136
|
Johnson AC, Cipolla MJ. The cerebral circulation during pregnancy: adapting to preserve normalcy. Physiology (Bethesda) 2015; 30:139-47. [PMID: 25729059 DOI: 10.1152/physiol.00048.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adaptation of the brain and cerebral circulation to pregnancy are unique compared with other organs and circulatory systems, ultimately functioning to maintain brain homeostasis. In this review, the effect of pregnancy on critical functions of the cerebral circulation is discussed, including changes occurring at the endothelium and blood-brain barrier, and changes in the structure and function of cerebral arteries and arterioles, hemodynamics, and cerebral blood flow autoregulation.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
137
|
Chen Y, Yue Z, Moulton SE, Hayes P, Cook MJ, Wallace GG. A simple and versatile method for microencapsulation of anti-epileptic drugs for focal therapy of epilepsy. J Mater Chem B 2015; 3:7255-7261. [PMID: 32262833 DOI: 10.1039/c5tb00675a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nearly 30% of epilepsy cases cannot be adequately controlled with current medical treatments. The reasons for this are still not well understood, but there is a significant body of evidence pointing to the blood-brain barrier. Resective surgery can provide an alternative method of epilepsy control; however this treatment option is not suitable for most epilepsy sufferers. Local drug delivery through micro-injection to or implantation into the brain provides an innovative approach to bypass the blood-brain barrier for epilepsy treatment. In order to develop effective local delivery systems for anti-epilepsy drug (AED), we have prepared a variety of core-shell microcapsules via electrojetting, where a more hydrophobic polymer shell acts as a physical barrier to control the rate of drug release from the drug-loaded polymeric core. The resulting microcapsules demonstrate highly drug encapsulation efficiency, narrow size distribution and uniform morphology. Moreover, the release rate of AED can be modulated by controlling the morphologies of the core-shell microcapsules.
Collapse
Affiliation(s)
- Yu Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Innovation Campus, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | |
Collapse
|
138
|
Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 2015; 49:13-6. [PMID: 25958228 DOI: 10.1016/j.yebeh.2015.04.047] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 11/15/2022]
Abstract
Over the last 15 years, attention has been focused on dysfunction of the cerebral vasculature and inflammation as important players in epileptogenic processes, with a specific emphasis on failure of the blood-brain barrier (BBB; Fig. 1) (Seiffert et al., 2004; Marchi et al., 2007; Oby and Janigro, 2006; van Vliet et al., 2014; Vezzani et al., 2011) [3-7]. Here, we discuss how the BBB is disrupted as a consequence of SE and how this BBB breakdown may be involved in epileptogenesis. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Erwin A van Vliet
- Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Academic Medical Center, Department of (Neuro)Pathology, University of Amsterdam, Amsterdam, The Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| |
Collapse
|
139
|
Abstract
Eclampsia, clinically defined as unexplained seizure in a woman with preeclampsia, is a life threatening complication unique to the pregnant state. However, a subpopulation of women with seemingly uncomplicated pregnancies experience de novo seizure without preeclamptic signs or symptoms, suggesting pregnancy alone may predispose the brain to seizure. Here, we hypothesized that normal pregnancy lowers seizure threshold and investigated mechanisms by which pregnancy may affect seizure susceptibility, including neuroinflammation and plasticity of gamma-aminobutyric acid type A receptor (GABAAR) subunit expression. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ) required to elicit electrical seizure in Sprague Dawley rats that were either nonpregnant (Nonpreg, n = 7) or pregnant (Preg; d20, n = 6). Seizure-induced vasogenic edema was also measured. Further, activation of microglia, a measure of neuroinflammation (n = 6-8/group), and GABAAR δ- and γ2-subunit protein expression in the cerebral cortex and hippocampus (n = 6/group) was determined. Seizure threshold was lower in Preg compared to Nonpreg rats (36.7±9.6 vs. 65.0±14.5 mg/kg PTZ; p<0.01) that was associated with greater vasogenic edema formation (78.55±0.11 vs. 78.04±0.19% water; p<0.05). The % of active microglia was similar between groups; however, pregnancy was associated with downregulation of cortical GABAAR-δ and hippocampal GABAAR-γ2 expression. Overall, pregnancy appears to be a state of increased seizure susceptibility that is not due to neuroinflammation, but rather is associated with reduced expression of GABAAR subunits and greater edema. Understanding neurophysiological changes occurring in normal pregnancy could allow for better prevention and management of de novo seizure, including pathologic states such as eclampsia.
Collapse
Affiliation(s)
- Abbie Chapman Johnson
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Keith J. Nagle
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Sarah M. Tremble
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Marilyn J. Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- * E-mail:
| |
Collapse
|
140
|
Ho YH, Lin YT, Wu CWJ, Chao YM, Chang AYW, Chan JYH. Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci 2015; 22:46. [PMID: 26100815 PMCID: PMC4477313 DOI: 10.1186/s12929-015-0157-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/13/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Neuroinflammation with activation of microglia and production of proinflammatory cytokines in the brain plays an active role in epileptic disorders. Brain oxidative stress has also been implicated in the pathogenesis of epilepsy. Damage in the hippocampus is associated with temporal lobe epilepsy, a common form of epilepsy in human. Peripheral inflammation may exacerbate neuroinflammation and brain oxidative stress. This study examined the impact of peripheral inflammation on seizure susceptibility and the involvement of neuroinflammation and oxidative stress in the hippocampus. RESULTS In male, adult Sprague-Dawley rats, peripheral inflammation was induced by the infusion of Escherichia coli lipopolysaccharide (LPS, 2.5 mg/kg/day) into the peritoneal cavity for 7 days via an osmotic minipump. Pharmacological agents were delivered via intracerebroventricular (i.c.v.) infusion with an osmotic minipump. The level of cytokine in plasma or hippocampus was analyzed by ELISA. Redox-related protein expression in hippocampus was evaluated by Western blot. Seizure susceptibility was tested by intraperitoneal (i.p.) injection of kainic acid (KA, 10 mg/kg). We found that i.p. infusion of LPS for 7 days induced peripheral inflammation characterized by the increases in plasma levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). This is associated with a significant increase in number of the activated microglia (Iba-1(+) cells), enhanced production of proinflammatory cytokines (including IL-1β, IL-6 and TNF-α), and tissue oxidative stress (upregulations of the NADPH oxidase subunits) in the hippocampus. These cellular and molecular responses to peripheral inflammation were notably blunted by i.c.v. infusion of a cycloxygenase-2 inhibitor, NS398 (5 μg/μl/h). The i.c.v. infusion of tempol (2.5 μg/μl/h), a reactive oxygen species scavenger, protected the hippocampus from oxidative damage with no apparent effect on microglia activation or cytokine production after peripheral inflammation. In the KA-induced seizure model, i.c.v. infusion of both NS398 and tempol ameliorated the increase in seizure susceptibility in animals succumbed to the LPS-induced peripheral inflammation. CONCLUSIONS Together these results indicated that LPS-induced peripheral inflammation evoked neuroinflammation and the subsequent oxidative stress in the hippocampus, resulting in the increase in KA-induced seizure susceptibility. Moreover, protection from neuroinflammation and oxidative stress in the hippocampus exerted beneficial effect on seizure susceptibility following peripheral inflammation.
Collapse
Affiliation(s)
- Ying-Hao Ho
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan.
| | - Yu-Te Lin
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan.
| | - Chih-Wei J Wu
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
| | - Yung-Mei Chao
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
| | - Alice Y W Chang
- Department of Physiology and Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Julie Y H Chan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.
| |
Collapse
|
141
|
Blood-brain barrier, bulk flow, and interstitial clearance in epilepsy. J Neurosci Methods 2015; 260:118-24. [PMID: 26093166 DOI: 10.1016/j.jneumeth.2015.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/21/2022]
Abstract
Understanding the pathophysiology of epilepsy implies elucidating the neurovascular modifications occurring before or at time of seizures. Cerebrovascular dysfunction provokes or sustains seizures and loss of selective blood-brain barrier (BBB) permeability is a modulator of seizure threshold. However, cerebrovascular pathology in epilepsy extends beyond BBB "leakage" to encompass vascular and parenchymal events. Whenever abnormal accumulation of protein is observed surrounding brain blood vessels, BBB disruption (BBBD) was invoked. Recent clinical and laboratory findings challenged an exclusive role of BBBD in perivascular accumulation of serum-derived products. The circulation of interstitial fluid (ISF) and its bulk flow have emerged as candidate mechanisms which play a role in clearance of CNS waste. Although controversy exists, changes of ISF flow may contribute to CNS disorders through a mechanism encompassing incomplete parenchymal clearance and accompanying accumulation of toxic byproducts. We summarize the evidence in favor and against ISF bulk flow and propose a scenario where abnormal ISF in the epileptic brain allows accumulation of brain protein, sustaining pathophysiology and altering the pharmacology of antiepileptic drugs. We also describe the methods routinely used to dissect out the contribution of BBB-dependent, vascular or paracellular mechanisms to altered neuronal excitability.
Collapse
|
142
|
Esposito S, Di Pietro GM, Madini B, Mastrolia MV, Rigante D. A spectrum of inflammation and demyelination in acute disseminated encephalomyelitis (ADEM) of children. Autoimmun Rev 2015; 14:923-9. [PMID: 26079482 PMCID: PMC7105213 DOI: 10.1016/j.autrev.2015.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/15/2022]
Abstract
Acute disseminated encephalomyelitis (ADEM) is an inflammatory demyelinating disease of the central nervous system that involves multifocal areas of the white matter, rarely the gray matter and spinal cord, mainly affecting children and mostly occurring 1-2weeks after infections or more rarely after vaccinations. Though a specific etiologic agent is not constantly identified, to evaluate carefully patient's clinical history and obtain adequate samples for the search of a potential ADEM causal agent is crucial. In the case of a prompt diagnosis and adequate treatment, most children with ADEM have a favorable outcome with full recovery, but in the case of diagnostic delays or inappropriate treatment some patients might display neurological sequelae and persistent deficits or even show an evolution to multiple sclerosis. The suspicion of ADEM rises on a clinical basis and derives from systemic and neurologic signs combined with magnetic resonance imaging of the central nervous system. Other advanced imaging techniques may help an appropriate differential diagnosis and definition of exact disease extension. Although there is no standardized protocol or management for ADEM, corticosteroids, intravenous immunoglobulin, and plasmapheresis have been successfully used. There is no marker that permits to identify the subset of children with worse prognosis and future studies should try to detect any biological clue for prevision of neurologic damage as well as should optimize treatment strategies using an approach based on the effective risk of negative evolution.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Giada Maria Di Pietro
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Madini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Vincenza Mastrolia
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
143
|
Rosas-Hernandez H, Ramirez M, Ramirez-Lee MA, Ali SF, Gonzalez C. Inhibition of prolactin with bromocriptine for 28days increases blood-brain barrier permeability in the rat. Neuroscience 2015; 301:61-70. [PMID: 26047726 DOI: 10.1016/j.neuroscience.2015.05.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023]
Abstract
The blood-brain barrier (BBB) is necessary for the proper function of the brain. Its maintenance is regulated by endogenous factors. Recent evidences suggest prolactin (PRL) regulates the BBB properties in vitro, nevertheless no evidence of these effects have been reported in vivo. The aim of this study was to evaluate the role of PRL in the maintenance of the BBB in the rat. Male Wistar rats were treated with Bromocriptine (Bromo) to inhibit PRL production for 28days in the absence or presence of lipopolysaccharide (LPS). BBB permeability was evaluated through the Evans Blue dye and fluorescein-dextran extravasation as well as through edema formation. The expression of claudin-5, occludin, glial fibrillary acidic protein (GFAP) and the PRL receptor (PRLR) was evaluated through western blot. Bromo reduced the physiological levels of PRL at 28days. At the same time, Bromo increased BBB permeability and edema formation associated with a decrement in claudin-5 and occludin and potentiated the increase in BBB permeability induced by LPS. However, no neuroinflammation was detected, since the expression of GFAP was unchanged, as well as the expression of the PRLR. These data provide the first evidence that inhibition of PRL with Bromo affects the maintenance of the BBB through modulating the expression of tight junction proteins in vivo.
Collapse
Affiliation(s)
- H Rosas-Hernandez
- Laboratorio de Fisiologia Celular, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Colonia Universitaria, San Luis Potosi, SLP 78210, Mexico
| | - M Ramirez
- Laboratorio de Fisiologia Celular, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Colonia Universitaria, San Luis Potosi, SLP 78210, Mexico
| | - M A Ramirez-Lee
- Laboratorio de Fisiologia Celular, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Colonia Universitaria, San Luis Potosi, SLP 78210, Mexico
| | - S F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - C Gonzalez
- Laboratorio de Fisiologia Celular, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, Colonia Universitaria, San Luis Potosi, SLP 78210, Mexico.
| |
Collapse
|
144
|
Serrano E, Kanner AM. Recent treatment advances and novel therapeutic approaches in epilepsy. F1000PRIME REPORTS 2015; 7:61. [PMID: 26097734 PMCID: PMC4447056 DOI: 10.12703/p7-61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this article is to review recent advances in the treatment of epilepsy. It includes five antiepileptic drugs that have been recently added to the pharmacologic armamentarium and surgical techniques that have been developed in the last few years. Finally, we review ongoing research that may have a potential role in future treatments of epilepsy.
Collapse
|
145
|
Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis 2015; 78:68-76. [PMID: 25843668 DOI: 10.1016/j.nbd.2015.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/28/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Clinical observations and studies on different animal models of acquired epilepsy consistently demonstrate that blood-brain barrier (BBB) leakage can be an important risk factor for developing recurrent seizures. However, the involved signaling pathways remain largely unclear. Given the important role of thrombin and its major receptor in the brain, protease-activated receptor 1 (PAR1), in the pathophysiology of neurological injury, we hypothesized that PAR1 may contribute to status epilepticus (SE)-induced epileptogenesis and that its inhibition shortly after SE will have neuroprotective and antiepileptogenic effects. Adult rats subjected to lithium-pilocarpine SE were administrated with SCH79797 (a PAR1 selective antagonist) after SE termination. Thrombin and PAR1 levels and neuronal cell survival were evaluated 48h following SE. The effect of PAR1 inhibition on animal survival, interictal spikes (IIS) and electrographic seizures during the first two weeks after SE and behavioral seizures during the chronic period was evaluated. SE resulted in a high mortality rate and incidence of IIS and seizures in the surviving animals. There was a marked increase in thrombin, decrease in PAR1 immunoreactivity and hippocampal cell loss in the SE-treated rats. Inhibition of PAR1 following SE resulted in a decrease in mortality and morbidity, increase in neuronal cell survival in the hippocampus and suppression of IIS, electrographic and behavioral seizures following SE. These data suggest that the PAR1 signaling pathway contributes to epileptogenesis following SE. Because breakdown of the BBB occurs frequently in brain injuries, PAR1 inhibition may have beneficial effects in a variety of acquired injuries leading to epilepsy.
Collapse
|
146
|
Pourcyrous M, Basuroy S, Tcheranova D, Arheart KL, Elabiad MT, Leffler CW, Parfenova H. Brain-derived circulating endothelial cells in peripheral blood of newborn infants with seizures: a potential biomarker for cerebrovascular injury. Physiol Rep 2015; 3:3/3/e12345. [PMID: 25804265 PMCID: PMC4393173 DOI: 10.14814/phy2.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal seizures have been associated with cerebrovascular endothelial injury and neurological disabilities. In a piglet model, the long-term loss of endothelial regulation of cerebral blood flow coincides with the surge of brain-derived circulating endothelial cells (BCECs) in blood. We hypothesized that BCECs could serve as a noninvasive biomarker of cerebrovascular injury in neonates with seizures. In a prospective pilot feasibility study, we enrolled newborn infants with confirmed diagnoses of perinatal asphyxia and intraventricular hemorrhage (IVH); both are commonly associated with seizures. Infants without clinical evidence of cerebrovascular injuries were representative of the control group. BCECs were detected in the CD45-negative fraction of peripheral blood mononuclear cells by coexpression of CD31 (common endothelial antigen) and GLUT1 (blood-brain barrier antigen) via automated flow cytometry method. In Infants with asphyxia (n = 12) and those with IVH grade III/IV (n = 5), the BCEC levels were 9.9 ± 0.9% and 19.0 ± 2.0%, respectively. These levels were significantly higher than the control group (n = 27), 0.9 ± 0.2%, P < 0.001. BCECs in infants with cerebrovascular insults with documented clinical seizures (n = 10; 16.8 ± 1.3%) were significantly higher than infants with cerebrovascular insults with subclinical or no seizures (n = 7; 9.5 ± 1.2%); P < 0.001. BCEC levels decreased with seizure control. BCECs levels were elevated in infants with seizures caused by severe IVH and perinatal asphyxia. We suggest that monitoring BCEC levels in peripheral blood can potentially offer a biological marker that reflects cerebrovascular insult and recovery. Further studies with a larger number of patients are required to support these findings.
Collapse
Affiliation(s)
- Massroor Pourcyrous
- Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee Department of Physiology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee Department of Neuroscience Institute, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee Department of Obstetrics and Gynecology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Shyamali Basuroy
- Department of Physiology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Dilyara Tcheranova
- Department of Physiology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Kristopher L Arheart
- Division of Biostatistics and Pediatrics, Department of Public Health Sciences, Miller School of Medicine University of Miami, Coral Gables, Florida
| | - Mohamad T Elabiad
- Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Charles W Leffler
- Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee Department of Physiology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee Department of Neuroscience Institute, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| | - Helena Parfenova
- Department of Physiology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee Department of Neuroscience Institute, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee
| |
Collapse
|
147
|
Northrop NA, Yamamoto BK. Methamphetamine effects on blood-brain barrier structure and function. Front Neurosci 2015; 9:69. [PMID: 25788874 PMCID: PMC4349189 DOI: 10.3389/fnins.2015.00069] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Methamphetamine (Meth) is a widely abuse psychostimulant. Traditionally, studies have focused on the neurotoxic effects of Meth on monoaminergic neurotransmitter terminals. Recently, both in vitro and in vivo studies have investigated the effects of Meth on the BBB and found that Meth produces a decrease in BBB structural proteins and an increase in BBB permeability to various molecules. Moreover, preclinical studies are validated by clinical studies in which human Meth users have increased concentrations of toxins in the brain. Therefore, this review will focus on the structural and functional disruption of the BBB caused by Meth and the mechanisms that contribute to Meth-induced BBB disruption. The review will reveal that the mechanisms by which Meth damages dopamine and serotonin terminals are similar to the mechanisms by which the blood-brain barrier (BBB) is damaged. Furthermore, this review will cover the factors that are known to potentiate the effects of Meth (McCann et al., 1998) on the BBB, such as stress and HIV, both of which are co-morbid conditions associated with Meth abuse. Overall, the goal of this review is to demonstrate that the scope of damage produced by Meth goes beyond damage to monoaminergic neurotransmitter systems to include BBB disruption as well as provide a rationale for investigating therapeutics to treat Meth-induced BBB disruption. Since a breach of the BBB can have a multitude of consequences, therapies directed toward the treatment of BBB disruption may help to ameliorate the long-term neurodegeneration and cognitive deficits produced by Meth and possibly even Meth addiction.
Collapse
Affiliation(s)
- Nicole A Northrop
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine Toledo, OH, USA
| |
Collapse
|
148
|
Immune System Related Markers: Changes in childhood Neuropsychiatry Disorders Cause and Consequence. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-13602-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
149
|
Abstract
Epilepsy is a common, serious neurological disease characterized by recurring seizures. Such abnormal, excessive synchronous firing of neurons arises in part because of imbalances in excitation and inhibition in the brain. The process of epileptogenesis, during which the normal brain is transformed after injury to one capable of generating spontaneous seizures, is associated with large-scale changes in gene expression. These contribute to the remodelling of brain networks that permanently alters excitability. Components of the microRNA (miRNA) biogenesis pathway have been found to be altered in brain tissue from epilepsy patients and experimental epileptogenic insults result in select changes to miRNAs regulating neuronal microstructure, cell death, inflammation, and ion channels. Targeting key miRNAs has been shown to alter brain excitability and suppress or exacerbate seizures, indicating potential for miRNA-based therapeutics in epilepsy. Altered miRNA profiles in biofluids may be potentially useful biomarkers of epileptogenesis. In summary, miRNAs represent an important layer of gene expression control in epilepsy with therapeutic and biomarker potential.
Collapse
|
150
|
Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One 2014; 9:e113670. [PMID: 25409522 PMCID: PMC4237502 DOI: 10.1371/journal.pone.0113670] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022] Open
Abstract
Eclampsia, defined as unexplained seizure in a woman with preeclampsia, is a life-threatening complication of pregnancy with unclear etiology. Magnesium sulfate (MgSO4) is the leading eclamptic seizure prophylactic, yet its mechanism of action remains unclear. Here, we hypothesized severe preeclampsia is a state of increased seizure susceptibility due to blood-brain barrier (BBB) disruption and neuroinflammation that lowers seizure threshold. Further, MgSO4 decreases seizure susceptibility by protecting the BBB and preventing neuroinflammation. To model severe preeclampsia, placental ischemia (reduced uteroplacental perfusion pressure; RUPP) was combined with a high cholesterol diet (HC) to cause maternal endothelial dysfunction. RUPP+HC rats developed symptoms associated with severe preeclampsia, including hypertension, oxidative stress, endothelial dysfunction and fetal and placental growth restriction. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ; mg/kg) required to elicit seizure in RUPP+HC±MgSO4 and compared to normal pregnant controls (n = 6/group; gestational day 20). RUPP+HC rats were more sensitive to PTZ with seizure threshold being ∼65% lower vs. control (12.4±1.7 vs. 36.7±3.9 mg/kg PTZ; p<0.05) that was reversed by MgSO4 (45.7±8.7 mg/kg PTZ; p<0.05 vs. RUPP+HC). BBB permeability to sodium fluorescein, measured in-vivo (n = 5–7/group), was increased in RUPP+HC vs. control rats, with more tracer passing into the brain (15.9±1.0 vs. 12.2±0.3 counts/gram ×1000; p<0.05) and was unaffected by MgSO4 (15.6±1.0 counts/gram ×1000; p<0.05 vs. controls). In addition, RUPP+HC rats were in a state of neuroinflammation, indicated by 35±2% of microglia being active compared to 9±2% in normal pregnancy (p<0.01; n = 3–8/group). MgSO4 treatment reversed neuroinflammation, reducing microglial activation to 6±2% (p<0.01 vs. RUPP+HC). Overall, RUPP+HC rats were in a state of augmented seizure susceptibility potentially due to increased BBB permeability and neuroinflammation. MgSO4 treatment reversed this, increasing seizure threshold and decreasing neuroinflammation, without affecting BBB permeability. Thus, reducing neuroinflammation may be one mechanism by which MgSO4 prevents eclampsia during severe preeclampsia.
Collapse
|