101
|
de Vries JJ, Laan DM, Frey F, Koenderink GH, de Maat MPM. A systematic review and comparison of automated tools for quantification of fibrous networks. Acta Biomater 2023; 157:263-274. [PMID: 36509400 DOI: 10.1016/j.actbio.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fibrous networks are essential structural components of biological and engineered materials. Accordingly, many approaches have been developed to quantify their structural properties, which define their material properties. However, a comprehensive overview and comparison of methods is lacking. Therefore, we systematically searched for automated tools quantifying network characteristics in confocal, stimulated emission depletion (STED) or scanning electron microscopy (SEM) images and compared these tools by applying them to fibrin, a prototypical fibrous network in thrombi. Structural properties of fibrin such as fiber diameter and alignment are clinically relevant, since they influence the risk of thrombosis. Based on a systematic comparison of the automated tools with each other, manual measurements, and simulated networks, we provide guidance to choose appropriate tools for fibrous network quantification depending on imaging modality and structural parameter. These tools are often able to reliably measure relative changes in network characteristics, but absolute numbers should be interpreted with care. STATEMENT OF SIGNIFICANCE: Structural properties of fibrous networks define material properties of many biological and engineered materials. Many methods exist to automatically quantify structural properties, but an overview and comparison is lacking. In this work, we systematically searched for all publicly available automated analysis tools that can quantify structural properties of fibrous networks. Next, we compared them by applying them to microscopy images of fibrin networks. We also benchmarked the automated tools against manual measurements or synthetic images. As a result, we give advice on which automated analysis tools to use for specific structural properties. We anticipate that researchers from a large variety of fields, ranging from thrombosis and hemostasis to cancer research, and materials science, can benefit from our work.
Collapse
Affiliation(s)
- Judith J de Vries
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne M Laan
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
102
|
Jagtap A, Mangalekar SB, Kamble P. Clinical Evaluation of Coronally Advanced Flap With or Without Advance-Platelet Rich Fibrin Membrane in the Treatment of Miller's Class-II Localized Gingival Recession: A Clinical Study. Cureus 2023; 15:e34919. [PMID: 36938230 PMCID: PMC10015754 DOI: 10.7759/cureus.34919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Periodontal treatment focuses on maintaining a patient's natural teeth and gums. The gingival margin recedes to a point apical to the tooth in 20%-100% of people. Coronally advanced flap (CAF) is one of several effective treatments for this condition. This surgery covers the tooth root with gingiva. The predictability of this surgery depends on the blood supply, donor tissue, and surgical skills. Platelet concentrates, which include platelet-rich fibrin (PRF), majority of the time is used for various regenerative therapies. Since no bovine thrombin or anticoagulant is needed, its manufacturing is simpler, cheaper, and less biochemically modified than PRP. Platelet-rich fibrin (PRF) is a fibrin matrix that progressively releases platelet cells and cytokines. AIM The present study aimed to evaluate the efficacy of CAF with and without A-PRF in the treatment of Miller's class-II localized gingival recession. MATERIALS AND METHODS Twenty patients were chosen who had Miller's class-II localized gingival recession. A random number generator was used to place patients into either the "test" or "control" group. Treatment for both Groups A and B included a coronally advanced flap, but only Group A additionally got autologous platelet-rich fibrin (A-PRF). After receiving a detailed explanation of the treatment process, the patient signed an informed consent form. Complete medical and dental histories were taken to see whether there were any absolute or relative contraindications. RESULTS Following treatment with either method in the current study, gingival thickness improved considerably. The percentage of root coverage did not change considerably between the two groups. The clinical result might likely have been different if other factors, such as platelet concentration and PRF consistency, had been examined in the current investigation. Furthermore, there was no histological examination of the healing process. As a result, we are unsure of the extent to which PRF affects how effectively connective tissue attaches. CONCLUSION The additional use of A-PRF membrane did not provide additional benefits in terms of root coverage outcomes compared with CAF alone. The use of A-PRF membranes significantly reduced the recession depth.
Collapse
Affiliation(s)
- Anuja Jagtap
- Department of Periodontology, Bharati Vidyapeeth Dental College and Hospital, Sangli, IND
| | - Sachin B Mangalekar
- Department of Periodontology, Bharati Vidyapeeth Dental College and Hospital, Sangli, IND
| | - Pallavi Kamble
- Department of Periodontology, Bharati Vidyapeeth Dental College and Hospital, Sangli, IND
| |
Collapse
|
103
|
Loureiro C, Buzalaf MAR, Ventura TMO, Pelá VT, Rodrigues GWL, Andrade JG, Pessan JP, Jacinto RC. Teeth with acute apical abscess vs. teeth with chronic apical periodontitis: a quantitative and qualitative proteomic analysis. Clin Oral Investig 2023; 27:591-601. [PMID: 36445466 DOI: 10.1007/s00784-022-04754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To quantitatively and qualitatively analyze the proteomic profile of teeth with acute apical abscesses (AAA) compared with teeth with chronic apical periodontitis (CAP) and to correlate the expression of detected human proteins with their main biological functions. MATERIALS AND METHODS Samples were obtained from root canals of 9 patients diagnosed with AAA and 9 with CAP. Samples were analyzed by reversed-phase liquid chromatography coupled to mass spectrometry. Label-free quantitative proteomic analysis was performed by Protein Lynx Global Service software. Differences in protein expression were calculated using the t-test (p < 0.05). RESULTS In total, 246 human proteins were identified from all samples. Proteins exclusively found in the AAA group were mainly associated with the immunoinflammatory response and oxidative stress response. In the quantitative analysis, 17 proteins were upregulated (p < 0.05) in the AAA group, including alpha-1-acid glycoprotein, hemopexin, fibrinogen gamma chain, and immunoglobulin. Additionally, 61 proteins were downregulated (p < 0.05), comprising cathepsin G, moesin, gelsolin, and transketolase. Most of the proteins were from the extracellular matrix, cytoplasm, and nucleus. CONCLUSIONS The common proteins between the groups were mainly associated with the immune response at both expression levels. Upregulated proteins mostly belonged to the acute-phase proteins, while the downregulated proteins were associated with DNA/RNA regulation and repair, and structural function. CLINICAL RELEVANCE The host response is directly related to the development of apical abscesses. Thus, understanding the behavior of human proteins against the endodontic pathogens involved in this condition might contribute to the study of new approaches related to the treatment of this disease.
Collapse
Affiliation(s)
- Caroline Loureiro
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | | | | | - Vinícius Taioqui Pelá
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, SP, Brazil
| | - Gladiston William Lobo Rodrigues
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | - Júlia Guerra Andrade
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | - Rogério Castilho Jacinto
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil.
| |
Collapse
|
104
|
Abdelrasoul A, Zhu N, Doan H, Shoker A. In-situ synchrotron quantitative analysis of competitive adsorption tendency of human serum proteins on polyether sulfone clinical hemodialysis membrane. Sci Rep 2023; 13:1692. [PMID: 36717597 PMCID: PMC9886930 DOI: 10.1038/s41598-023-27596-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Comprehensive understanding of protein adsorption phenomenon on membrane surface during hemodialysis (HD) is one of the key moments for development of hemocompatible HD membrane. Though many mechanisms and kinetics of protein adsorption on some surface have been studied, we are still far away from complete understanding and control of this process, which results in a series of biochemical reactions that causes severe complications with health and even the death among HD patients. The aim of this study is to conduct quantitative analysis of competitive adsorption tendency of human serum protein on polyether sulfone (PES) clinical dialysis membrane. In situ synchrotron radiation micro-computed tomography (SR-µCT) imaging available at the Canadian Light Source (CLS) was conducted to assess human serum proteinbinding and undertake the corresponding quantitative analysis.The competitive adsorption of Human protein albumin (HSA), fibrinogen (FB) and transferrin (TRF) were tested from single and multiple protein solution. Furthermore, in-vitro human serum protein adsorption on clinical dialyzers was investigated using UV-Visible to confirm the competitive adsorption tendency. Results showed that when proteins were adsorbed from their mixture, FB content (among proteins) in the adsorbed layer increased from 3.6% mass (content in the initial solution) to 18% mass and 12%, in case of in situ quantitative and invitro analysis, respectively. The increase in FB content was accompanied by the decrease in the HSA content, while TRF remained on approximately on the same level for both cases. Overall, the percentage of HSA adsorption ratio onto the HD membrane has dropped approximately 10 times when HSA was adsorbed in competition with other proteins, compared to the adsorption from single HSA solution. The substitution of HSA with FB was especially noticeable when HSA adsorption from its single solution was compared with the case of the protein mixture. Moreover, SR-µCT has revealed that FB when adsorbed from a protein mixture solution is located predominately in the middle of the membrane, whereas the peak of the distribution is shifted to membrane bottom layers when adsorption from FB single solution takes place. Results showed that HSA FB and TRF adsorption behavior observations are similar on both in-situ small scale and clinical dialyzer of the PES membrane.
Collapse
Affiliation(s)
- Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada. .,Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada.
| | - Ning Zhu
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK, S7N 2V3, Canada
| | - Huu Doan
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Ahmed Shoker
- Nephrology Division, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK, S7N 5E5, Canada.,Saskatchewan Transplant Program, St. Paul's Hospital, 1702 20Th Street West, Saskatoon, SK, S7M 0Z9, Canada
| |
Collapse
|
105
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
106
|
Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics 2023; 15:255. [PMID: 36678884 PMCID: PMC9861443 DOI: 10.3390/pharmaceutics15010255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The fast-developing field of 3D bio-printing has been extensively used to improve the usability and performance of scaffolds filled with cells. Over the last few decades, a variety of tissues and organs including skin, blood vessels, and hearts, etc., have all been produced in large quantities via 3D bio-printing. These tissues and organs are not only able to serve as building blocks for the ultimate goal of repair and regeneration, but they can also be utilized as in vitro models for pharmacokinetics, drug screening, and other purposes. To further 3D-printing uses in tissue engineering, research on novel, suitable biomaterials with quick cross-linking capabilities is a prerequisite. A wider variety of acceptable 3D-printed materials are still needed, as well as better printing resolution (particularly at the nanoscale range), speed, and biomaterial compatibility. The aim of this study is to provide expertise in the most prevalent and new biomaterials used in 3D bio-printing as well as an introduction to the associated approaches that are frequently considered by researchers. Furthermore, an effort has been made to convey the most pertinent implementations of 3D bio-printing processes, such as tissue regeneration, etc., by providing the most significant research together with a comprehensive list of material selection guidelines, constraints, and future prospects.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144001, India
| | - Arvina Assad
- Bibi Halima College of Nursing and Medical Technology, Srinagar 190010, India
| | - Ashish Kumar
- Nalanda College of Engineering, Department of Science and Technology, Government of Bihar, Patna 803108, India
| |
Collapse
|
107
|
Zhang J, Zeng F, Jiang S, Tang H, Zhang J. Preoperative prediction model of microvascular invasion in patients with hepatocellular carcinoma. HPB (Oxford) 2023; 25:45-53. [PMID: 36085261 DOI: 10.1016/j.hpb.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Microvascular invasion (MVI) is an adverse factor for the prognosis of patients with hepatocellular carcinoma (HCC). We aimed to construct a preoperative prediction model for MVI, thereby providing a reference for clinicians in formulating treatment options for HCC. METHODS A total of 360 patients with non-metastatic HCC were retrospectively enrolled. We used logistic regression analysis to screen out independent risk factors for MVI and further constructed a predictive model for MVI. The performance of the model was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). RESULTS Logistic regression analysis revealed that fibrinogen (>4 g/L) (OR: 6.529), alpha-fetoprotein (≥ 400 ng/mL) (OR: 2.676), cirrhosis (OR: 2.25), tumor size (OR: 1.239), and poor tumor border (OR: 3.126) were independent risk factors of MVI. The prediction model of MVI had C-index of 0.746 and 0.772 in the training and validation cohorts, respectively. The calibration curves showed good agreement between actual and predicted MVI risk. Finally, DCA reveals that this model has good clinical utility. CONCLUSION The nomogram-based model we established can predict the preoperative MVI well and provides reference for surgeons to make clinical treatment decisions.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Fanxin Zeng
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Shijie Jiang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China
| | - Hui Tang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| | - Jian Zhang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, China.
| |
Collapse
|
108
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
109
|
Stohnii Y, Yatsenko T, Nikulina V, Kucheriavyi Y, Hrabovskyi O, Slominskyi O, Savchenko K, Garmanchuk L, Varbanets L, Tykhomyrov A, Chernyshenko V. Functional properties of individual sub-domains of the fibrin(ogen) αC-domains. BBA ADVANCES 2023; 3:100072. [PMID: 37082262 PMCID: PMC10074951 DOI: 10.1016/j.bbadva.2023.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Background Fibrinogen is a large polyfunctional plasma protein consisting of a number of structural and functional domains. Among them, two αC-domains, each formed by the amino acid residues Аα392-610, are involved in fibrin polymerization, activation of fibrinolysis, platelet aggregation, and interaction with different cell types. Previous study revealed that each fibrinogen αC-domain consists of the N-terminal and C-terminal sub-domains. The major objections of the present study were to test functional role of these sub-domains in the above mentioned processes. Methods To achieve these objections, we used specific proteases to prepare two truncated forms of fibrinogen, fibrinogen desAα505-610 and fibrinogen desAα414-610, missing their N-terminal and both N- and C-terminal sub-domains, respectively. Results Our study with these truncated forms using turbidity measurements and electron microscopy revealed that the N- and C-terminal subdomains both contribute to protofibril formation and their lateral aggregation into fibers during fibrin polymerization process. These two sub-domains also contributed to platelet aggregation with the N-terminal sub-domains playing a more significant role in this process. At the same time, the C-terminal sub-domains make the major contribution to the plasminogen activation process. Further, our experiments revealed that the C-terminal sub-domains are involved in endothelial cell viability and migration of cancer cells. Conclusions Thus, the results obtained establish the functional role of individual sub-domains of the αC-domains in fibrin polymerization, activation of fibrinolytic system, platelet aggregation, and cellular interactions. General significance The present study expands our understanding of the functional role of individual fibrinogen domains and their specific portions in various fibrin(ogen)-dependent processes.
Collapse
|
110
|
Santos Beato P, Poologasundarampillai G, Nommeots-Nomm A, Kalaskar DM. Materials for 3D printing in medicine: metals, polymers, ceramics, and hydrogels. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
111
|
Hetz M, Juratli T, Tiebel O, Giesecke MT, Tsitsilonis S, Held HC, Beyer F, Kleber C. Acquired Factor XIII Deficiency in Patients with Multiple Trauma. Injury 2022; 54:1257-1264. [PMID: 36577625 DOI: 10.1016/j.injury.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Fibrin stabilizing factor (FXIII) plays a crucial role in blood clotting, tissue repair, and immune defense. FXIII deficiency after trauma can lead to prolonged wound healing due to persistent infections or coagulation disorders. The aim of this study was to describe the prevalence of acquired FXIII deficiency after trauma and to provide a description of the time-course changes of important coagulation parameters in relation to FXIII activity. In this context, patient characteristics, laboratory data, and treatment modalities were examined with respect to their influence on FXIII activity. Furthermore, the effects of in vitro administration of FXIII on clot firmness and outcomes in patients with severe traumatic brain injury were investigated. PATIENTS AND METHODS Two trauma cohorts (A and B) were examined prospectively in a two-center study, and another (cohort C) was examined retrospectively. In cohort A (trauma patients, n=880) routine laboratory tests were conducted, and FXIII activity was measured. In cohort B (polytrauma patients, n=26), additional clinical parameters were collected, and in-vitro FXIII administration and rotational thromboelastometry (ROTEM) analyses were performed. In cohort C (polytrauma patients with severe traumatic brain injury [sTBI], n=84), the impact of initially measured FXIII activity on clinical outcomes after sTBI was investigated using the modified Rankin Scale (mRS) at least 6 months after trauma. RESULTS The prevalence of FXIII activity <70% in cohort A was 12.4%, with significant differences in age, Hb, fibrinogen, and Hct levels, platelet count, aPTT, and INR (vs. prevalence of FXIII activity >70%). Cohort B showed a decrease in FXIII activity from 85% to 58% after 7 days. FXIII deficiency correlated with time after trauma, aPTT, and fibrinogen level, lactate, and Hb levels. In-vitro administration of FXIII showed a positive influence on clot firmness due to improved maximum clot firmness (MCF in FIBTEM) and reduced maximum lysis (ML in EXTEM). Finally, a significant difference in FXIII activity between patients after sTBI with good and poor clinical outcomes was observed 6 months after trauma. CONCLUSION We demonstrated that trauma-associated FXIII deficiency is a common coagulation disorder, with FXIII deficiency increasing further in the first 7 days after trauma, the period of early surgical care. In vitro administration of FXIII was able to demonstrate significant clot stabilizing effects. For trauma patients with sTBI, FXIII activity could serve as a prognostic parameter, as it differed significantly between patients with good and poor clinical outcomes.
Collapse
Affiliation(s)
- Michael Hetz
- Department of Operative Medicine (DOPM), Clinic and Polyclinic for Orthopedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig AöR, Liebigstr. 20, 04103 Leipzig, Germany.
| | - Tareq Juratli
- Clinic and Polyclinic for Neurosurgery, University Hospital Carl Gustav Carus of the Technical University of Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Oliver Tiebel
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus of the Technical University of Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Moritz Tobias Giesecke
- Department of Operative Orthopedics and Trauma Surgery, Vivantes Klinikum Spandau, Ringstraße 101B, 12203 Berlin, Germany.
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery (CMSC), Charité - University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Hanns-Christoph Held
- Clinic and Polyclinic for Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus of the Technical University of Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Franziska Beyer
- UniversityCenter for Orthopedics, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus of the Technical University of Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | - Christian Kleber
- Head of Trauma Surgery, Department of Operative Medicine (DOPM), Clinic and Polyclinic for Orthopedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig AöR, Germany.
| |
Collapse
|
112
|
In Vitro Probiotic Characterization and Safety Assessment of Lactic Acid Bacteria Isolated from Raw Milk of Japanese-Saanen Goat ( Capra hircus). Animals (Basel) 2022; 13:ani13010007. [PMID: 36611617 PMCID: PMC9817676 DOI: 10.3390/ani13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Two novel probiotic strains of lactic acid bacteria were successfully isolated from the raw milk of dairy Japanese-Saanen goats. Selection criteria for positive candidates were grown on de Man-Rogosa-Sharpe or M17 selective medium at 30, 35, or 42 °C anaerobically, and characterized based on Gram reaction, catalase test, and tolerance to low pH and bile salts. Among the 101 isolated positive candidates, two strains, YM2-1 and YM2-3, were selected and identified as Lacticaseibacillus rhamnosus using 16S rDNA sequence similarity. Culture supernatants of the two strains exhibited antipathogenic activity against Salmonella enterica subsp. enterica serovar. Typhimurium, Shigella sonnei, methicillin-resistant Staphylococcus aureus, methicillin-sensitive Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli O157. The antipathogenic activities were retained to some extent after neutralization, indicating the presence of antipathogenic substances other than organic acids in the culture supernatants. The two strains were sensitive with coincidental minimum inhibition concentrations (indicated in the parentheses hereafter) to ampicillin (0.25 μg/mL), chloramphenicol (4 μg/mL), gentamycin (4 μg/mL), kanamycin (64 μg/mL), streptomycin (16 μg/mL), and tetracycline (4 μg/mL). Furthermore, the two strains were resistant to clindamycin (16 μg/mL) and erythromycin (4 μg/mL). In addition, both YM2-1 and YM2-3 strains showed less unfavorable activities, including bile acid bioconversion, carcinogenic-related enzymes, mucin degradation, plasminogen activation, and hemolysis, than the detection limits of in vitro evaluation methods used in this study. In summary, L. rhamnosus YM2-1 and YM2-3 are highly safe and promising probiotic strains applicable in the dairy industry, and were first isolated from the raw milk of Japanese-Saanen goats.
Collapse
|
113
|
A newly detected c.180 + 1G > A variant causes a decrease of FGA transcription in patients with congenital hypo-dysfibrinogenemia. J Hematop 2022. [DOI: 10.1007/s12308-022-00518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
114
|
Lu H, Xiao L, Wang W, Li X, Ma Y, Zhang Y, Wang X. Fibrinolysis Regulation: A Promising Approach to Promote Osteogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1192-1208. [PMID: 35442086 DOI: 10.1089/ten.teb.2021.0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soon after bone fracture, the initiation of the coagulation cascade results in the formation of a blood clot, which acts as a natural material to facilitate cell migration and osteogenic differentiation at the fracture site. The existence of hematoma is important in early stage of bone healing, but the persistence of hematoma is considered harmful for bone regeneration. Fibrinolysis is recently regarded as a period of critical transition in angiogenic-osteogenic coupling, it thereby is vital for the complete healing of the bone. Moreover, the enhanced fibrinolysis is proposed to boost bone regeneration through promoting the formation of blood vessels, and fibrinolysis system as well as the products of fibrinolysis also play crucial roles in the bone healing process. Therefore, the purpose of this review is to elucidate the fibrinolysis-derived effects on osteogenesis and summarize the potential approaches-improving bone healing by regulating fibrinolysis, with the purpose to further understand the integral roles of fibrinolysis in bone regeneration and to provide theoretical knowledge for potential fibrinolysis-related osteogenesis strategies. Impact statement Fibrinolysis emerging as a new and viable therapeutic intervention to be contained within osteogenesis strategies, however to now, there have been no review articles which collates the information between fibrinolysis and osteogenesis. This review, therefore, focusses on the effects that fibrinolysis exerts on bone healing, with a purpose to provide theoretical reference to develop new strategies to modulate fibrinolysis to accelerate fibrinolysis thus enhancing bone healing.
Collapse
Affiliation(s)
- Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuyan Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| |
Collapse
|
115
|
García-Arnáez I, Romero-Gavilán F, Cerqueira A, Elortza F, Azkargorta M, Muñoz F, Mata M, de Llano JM, Suay J, Gurruchaga M, Goñi I. Correlation between biological responses in vitro and in vivo to Ca-doped sol-gel coatings assessed using proteomic analysis. Colloids Surf B Biointerfaces 2022; 220:112962. [DOI: 10.1016/j.colsurfb.2022.112962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
|
116
|
Fibrinogen-to-Albumin Ratio Predicts Postcontrast Acute Kidney Injury in Patients with Non-ST Elevation Acute Coronary Syndrome after Implantation of Drug-Eluting Stents. J Renin Angiotensin Aldosterone Syst 2022; 2022:9833509. [PMID: 36568875 PMCID: PMC9711978 DOI: 10.1155/2022/9833509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/27/2022] Open
Abstract
Background Postcontrast acute kidney injury (PC-AKI) is an adverse reaction to iodinated contrast agents. In this study, we investigated the use of fibrinogen-to-albumin ratio (FAR) as a novel inflammatory marker to track the development and progression of PC-AKI in patients with non-ST elevation acute coronary syndrome (NSTE-ACS) after the implantation of drug-eluting stents (DESs). Methods A total of 872 patients with NSTE-ACS were enrolled in this study. PC-AKI was identified when serum creatinine (SCr) levels increased >26.5 mol/L (0.3 mg/dL) or was 1.5 times the baseline level within 48-72 h of exposure to an iodinated contrast agent. The effects of different variables on PC-AKI were evaluated using univariate regression analysis. Multivariate logistic regression analysis was used to determine the independent predictors of PC-AKI. The predictive value of FAR was assessed by estimating the area under the receiver operating characteristic (ROC) curve. Results In total, 114 (13.1%) patients developed PC-AKI. The patients with PC-AKI had lower albumin levels (40.5 ± 3.4 vs. 39.0 ± 3.5, P < 0.001), higher fibrinogen levels (3.7 ± 0.6 vs. 4.1 ± 0.5, P < 0.001), and higher FAR levels (9.2 ± 1.7 vs. 10.5 ± 1.7, P < 0.001) than those with non-PC-AKI. There were no significant differences in the preoperative SCr levels between the two groups. After adjusting for confounding factors, FAR was found to be an independent predictor of PC-AKI (OR = 1.478, 95% CI = 1.298-1.684, P < 0.001). ROC analysis revealed that for PC-AKI prediction, the area under the curve for FAR was 0.702. The optimum cut-off value of FAR was 10.0, with a sensitivity of 64.9% and a specificity of 69.8%. Moreover, FAR had a higher predictive value for PC-AKI than the Mehran score (0.702 vs. 0.645). Conclusion Our study showed that elevated preoperative FAR was closely associated with the development of PC-AKI in patients with NSTE-ACS after implantation of DESs. Therefore, it may be worth monitoring FAR as a guide for using preventive measures to avoid the development of PC-AKI.
Collapse
|
117
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
118
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
119
|
Jiang C, Li Y, Li Y, Liu L, Wang XA, Wu W, Bao R, Weng H, Li M, Geng Y, Shu Y, Liu Y. Fibrinogen promotes gallbladder cancer cell metastasis and extravasation by inducing ICAM1 expression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:10. [PMID: 36352295 DOI: 10.1007/s12032-022-01874-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Fibrinogen plays an important role in tumor progression. Here, we explored the role of fibrinogen in gallbladder cancer (GBC) metastasis. The plasma fibrinogen level in M1 GBC patients was higher than in M0 GBC patients, indicating that fibrinogen may participate in GBC metastasis. Treatment of GBC cell lines with fibrinogen promoted metastasis and induced the expression of intercellular adhesion molecule 1 (ICAM1). ICAM1 overexpression promoted metastasis and knockdown inhibited it. The cell adhesion and transendothelial migration of GBC cells were enhanced by fibrinogen treatment and ICAM1 overexpression. In addition, the medium of fibrinogen-treated and overexpression-ICAM1 NOZ cells exhibited enhanced macrophages recruitment. This may work in concert to promote angiogenesis. Immunohistochemistry results on clinical specimens showed that higher fibrinogen levels, higher ICAM1 expression, higher blood vessel density, and higher macrophage levels were present simultaneously. Collectively, this study indicates fibrinogen promotes metastasis and extravasation by inducing ICAM1 expression to enhance tumor cell migration, cell adhesion, transendothelial migration and promote angiogenesis and increase vascular endothelial permeability.
Collapse
Affiliation(s)
- Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Xu-An Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Wenguang Wu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Runfa Bao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Hao Weng
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| | - Yijun Shu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China. .,Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory for Oncogenes and Related Genes, Shanghai, 200127, China. .,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China. .,Shanghai Research Center of Biliary Tract Disease, Shanghai, 200092, China.
| |
Collapse
|
120
|
Dorgalaleh A, Bahraini M, Shams M, Parhizkari F, Dabbagh A, Naderi T, Fallah A, Fazeli A, Ahmadi SE, Samii A, Daneshi M, Heydari F, Tabibian S, Tavasoli B, Noroozi-Aghideh A, Tabatabaei T, Gholami MS. Molecular basis of rare congenital bleeding disorders. Blood Rev 2022; 59:101029. [PMID: 36369145 DOI: 10.1016/j.blre.2022.101029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
Rare bleeding disorders (RBDs), including factor (F) I, FII, FV, FVII, combined FV and FVIII (CF5F8), FXI, FXIII and vitamin-K dependent coagulation factors (VKCF) deficiencies, are a heterogeneous group of hemorrhagic disorder with a variable bleeding tendency. RBDs are due to mutation in underlying coagulation factors genes, except for CF5F8 and VKCF deficiencies. FVII deficiency is the most common RBD with >330 variants in the F7 gene, while only 63 variants have been identified in the F2 gene. Most detected variants in the affected genes are missense (>50% of all RBDs), while large deletions are the rarest, having been reported in FVII, FX, FXI and FXIII deficiencies. Most were located in the catalytic and activated domains of FXI, FX, FXIII and prothrombin deficiencies. Understanding the proper molecular basis of RBDs not only can help achieve a timely and cost-effective diagnosis, but also can help to phenotype properties of the disorders.
Collapse
|
121
|
NAKAE R, MURAI Y, TAKAYAMA Y, NAMATAME K, MATSUMOTO Y, KANAYA T, FUJIKI Y, ONDA H, SUZUKI G, KANEKO J, ARAKI T, NAOE Y, SATO H, UNEMOTO K, MORITA A, YOKOTA H, YOKOBORI S. Neurointensive Care of Traumatic Brain Injury Patients Based on Coagulation and Fibrinolytic Parameter Monitoring. Neurol Med Chir (Tokyo) 2022; 62:535-541. [PMID: 36223950 PMCID: PMC9831625 DOI: 10.2176/jns-nmc.2022-0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coagulopathy, a common complication of traumatic brain injury (TBI), is characterized by a hypercoagulable state developing immediately after injury, with hyperfibrinolysis and bleeding tendency peaking 3 h after injury, followed by fibrinolysis shutdown. Reflecting this timeframe, the coagulation factor fibrinogen is first consumed and then degraded after TBI, its concentration rapidly decreasing by 3 h post-TBI. The fibrinolytic marker D-dimer reaches its maximum concentration at the same time. Hyperfibrinolysis in the acute phase of TBI is associated with poor prognosis via hematoma expansion. In the acute phase, the coagulation and fibrinolysis parameters must be monitored to determine the treatment strategy. The combination of D-dimer plasma level at admission and the level of consciousness upon arrival at the hospital can be used to predict the patients who will "talk and deteriorate." Fibrinogen and D-dimer levels should determine case selection and the amount of fresh frozen plasma required for transfusion. Surgery around 3 h after injury, when fibrinolysis and bleeding diathesis peak, should be avoided if possible. In recent years, attempts have been made to estimate the time of injury from the time course of coagulation and fibrinolysis parameter levels, which has been particularly useful in some cases of pediatric abusive head trauma patients.
Collapse
Affiliation(s)
- Ryuta NAKAE
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Yasuo MURAI
- Department of Neurological Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Yasuhiro TAKAYAMA
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Kaoru NAMATAME
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiyuki MATSUMOTO
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Takahiro KANAYA
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Yu FUJIKI
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Kawaguchi, Saitama, Japan
| | - Hidetaka ONDA
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Go SUZUKI
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Kawaguchi, Saitama, Japan
| | - Junya KANEKO
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Takashi ARAKI
- Department of Traumatology, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Yasutaka NAOE
- Emergency and Critical Care Center, Kawaguchi Municipal Medical Center, Kawaguchi, Saitama, Japan
| | - Hidetaka SATO
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Kyoko UNEMOTO
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Akio MORITA
- Department of Neurological Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Hiroyuki YOKOTA
- Graduate School of Medical and Health Science, Nippon Sport Science University, Yokohama, Kanagawa, Japan
| | - Shoji YOKOBORI
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
122
|
Parisi R, Panzera T, Russo L, Gamba S, De Curtis A, Di Castelnuovo A, Marchetti M, Cerletti C, Falanga A, de Gaetano G, Donati MB, Iacoviello L, Costanzo S. Fibrinogen levels in relation to colorectal cancer onset: A nested case-cohort study from the Moli-sani cohort. Front Cardiovasc Med 2022; 9:1009926. [PMID: 36312278 PMCID: PMC9606318 DOI: 10.3389/fcvm.2022.1009926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients with cancer are commonly characterized by abnormalities in laboratory coagulation tests, underlying a subclinical hypercoagulable condition. Due to the involvement of the hemostatic system in cancer patients, some of its biomarkers, such as fibrinogen, could be a useful tool in predicting cancer risk. We performed a case-cohort study to evaluate the relationship among fibrinogen levels and colorectal cancer (CRC). Methods In the framework of Moli-sani Study (N = 24,325, enrolled 2005-2010) a subcohort of 1,290 individuals (55.0% women; mean age 55.0 ± 12.0 years) was selected and compared with 126 CRC cases identified during a follow-up of 4.3 years. Incident cases of colorectal cancer were ascertained by direct linkage with hospital discharge forms according to the International Classification of Disease (ICD-9-CM) codes: 153-154. Events were validated through medical records and confirmed by histological reports. Fibrinogen levels were measured in frozen citrated plasma samples. Hazard Ratio (HR) and 95% confidence interval (CI), adjusted by relevant covariates were estimated by a Cox regression model using Prentice method. Results Individuals with levels of fibrinogen ≥400 mg/dL had a higher hazard to develop colorectal cancer when compared to those with lower levels after adjustment for sex and age (HR: 1.81; 95% CI 1.12-2.92). Additional adjustment for CRC family history, income, physical activity, diabetes medication and hypercholesterolemia did not modify the result (HR: 1.91; 95% CI 1.15-3.17). Analyses stratified by age and sex showed a most evident association in elderly (HR: 2.30; 95% CI: 1.10-4.81) and in women (HR: 2.28; 95% CI: 1.08-4.81). Sensitivity analyses confirmed the main findings, showing independence from a potential role of confounding by a large panel of biomarkers, including inflammation and hemostasis factors. Conclusion Our results, based on a case-cohort study from a general adult population apparently free from any cancer during the recruitment, showed that fibrinogen levels ≥400 mg/dL were positively and independently associated with CRC, suggesting that this glycoprotein could be a potential biomarker for this type of cancer and supporting the "common soil hypothesis" in the pathophysiology of cardiovascular disease and tumors.
Collapse
Affiliation(s)
- Roberta Parisi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Teresa Panzera
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | - Laura Russo
- Division of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII of Bergamo, Bergamo, Italy
| | - Sara Gamba
- Division of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII of Bergamo, Bergamo, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | | | - Marina Marchetti
- Division of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII of Bergamo, Bergamo, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | - Anna Falanga
- Division of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII of Bergamo, Bergamo, Italy,Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | | | | | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy,Department of Medicine and Surgery, Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese, Italy,*Correspondence: Licia Iacoviello ;
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
123
|
Granja TF, Köhler D, Leiss V, Eggstein C, Nürnberg B, Rosenberger P, Beer-Hammer S. Platelets and the Cybernetic Regulation of Ischemic Inflammatory Responses through PNC Formation Regulated by Extracellular Nucleotide Metabolism and Signaling. Cells 2022; 11:cells11193009. [PMID: 36230973 PMCID: PMC9561997 DOI: 10.3390/cells11193009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic events are associated with severe inflammation and are here referred to as ischemic inflammatory response (IIR). Recent studies identified the formation of platelet–neutrophil complexes (PNC) as key players in IIR. We investigated the role of extracellular platelet nucleotide signaling in the context of IIR and defined a cybernetic circle, including description of feedback loops. Cybernetic circles seek to integrate different levels of information to understand how biological systems function. Our study specifies the components of the cybernetic system of platelets in IIR and describes the theoretical progression of IIR passing the cybernetic cycle with positive and negative feedback loops based on nucleotide-dependent signaling and functional regulation. The cybernetic components and feedback loops were explored by cytometry, immunohistological staining, functional blocking antibodies, and ADP/ATP measurements. Using several ex vivo and in vivo approaches we confirmed cybernetic parameters, such as controller, sensor, and effector (VASP phosphorylation, P2Y12, ADORAs and GPIIb/IIIa activity), as well as set points (ADP, adenosine) and interfering control and disturbance variables (ischemia). We demonstrate the impact of the regulated platelet–neutrophil complex (PNC) formation in blood and the resulting damage to the affected inflamed tissue. Taken together, extracellular nucleotide signaling, PNC formation, and tissue damage in IIR can be integrated in a controlled cybernetic circle of platelet function, as introduced through this study.
Collapse
Affiliation(s)
- Tiago F. Granja
- Lusófona’s Research Center for Biosciences & Health Technologies, CBIOS–Universidade, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology and Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy and Toxicology and Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), Tübingen University Hospital, Wilhelmstrasse 56, D-72074 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-29-74594
| |
Collapse
|
124
|
Peng Y, Cheng Z, Yi Q. A practical nomogram for predicting coronary thrombosis for Kawasaki disease patients with medium or large coronary artery aneurysm. Clin Exp Med 2022:10.1007/s10238-022-00893-2. [PMID: 36151486 DOI: 10.1007/s10238-022-00893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Kawasaki disease (KD) is the main cause of acquired heart disease in children. Coronary thrombosis is a serious cardiovascular complication of KD, which affects the long-term treatment effect. The purpose was to develop and validate a model for predicting coronary thrombosis in KD with medium or large coronary artery aneurysm (CAA). A total of 358 consecutive KD patients with medium or large CAA from Chongqing Children's Hospital were enrolled retrospectively. The demographic data, clinical characteristics, laboratory features before intravenous immunoglobulin (IVIG) treatment, and all radiological features during hospitalization and follow-up were collected. Eligible patients follow-up for > 2 years. Follow-up was weekly for the first 1 month, monthly for the next 11 months, and every 3-6 months after 1 year. The main examinations included echocardiogram and electrocardiogram. The primary endpoint was defined as coronary thrombosis during the follow-up. Coronary thrombosis was assessed by echocardiographic assessment of the presence of echoes in the lumen of the right coronary artery, left main coronary artery, left anterior descending artery, or left circumflex artery by echocardiologists. The independent risk factors were identified using univariate analyses and multivariate logistic regression analyses, and the nomogram was constructed for predicting coronary thrombosis. Tenfold cross-validation was used to perform internal validation. The area under the ROC curve (AUC), calibration curve, and decision curve analysis were used to evaluate the discrimination, calibration, and clinical utility of the nomogram, respectively. Multivariate logistic regression analysis revealed that male (odds ratio [OR] 3.491; 95% confidence interval [CI] 1.570-7.765), large CAA (OR 3.725; 95% CI 1.388-9.999), no use high-dose aspirin prior to IVIG (OR 3.114; 95% CI 1.291-7.510), two-vessel coronary artery involvement (OR 4.433; 95% CI 1.732-11.344), three-vessel coronary artery involvement (OR 5.417; 95% CI 2.048-14.328), four-vessel coronary artery involvement (OR 13.183; 95% CI 3.408-50.997), serum fibrinogen level > 5.325 g/L (OR 14.233; 95% CI 5.479-36.921), serum thrombin time level ≤ 15.15 s (OR 3.576; 95% CI 1.756-7.284) were significantly associated with coronary thrombosis. The nomogram was established based on these variables. The AUC of the nomogram were 0.920, and tenfold cross-validation (repeated 100 times) showed that the average AUC was 0.902. Moreover, the nomogram had a well-fitted calibration curve and also exhibited good clinical usage. The nomogram is based on six ready-made clinical variables, is easy to use, has excellent diagnostic performance, and can help clinicians make better clinical decisions on the management and treatment of KD patients with medium or large CAA.
Collapse
Affiliation(s)
- Yue Peng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Zhenli Cheng
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
125
|
Kelley MA, Leiderman K. Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization. PLoS Comput Biol 2022; 18:e1010414. [PMID: 36107837 PMCID: PMC9477365 DOI: 10.1371/journal.pcbi.1010414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Thrombin is an enzyme produced during blood coagulation that is crucial to the formation of a stable clot. Thrombin cleaves soluble fibrinogen into fibrin, which polymerizes and forms an insoluble, stabilizing gel around the growing clot. A small fraction of circulating fibrinogen is the variant γA/γ′, which has been associated with high-affinity thrombin binding and implicated as a risk factor for myocardial infarctions, deep vein thrombosis, and coronary artery disease. Thrombin is also known to be strongly sequestered by polymerized fibrin for extended periods of time in a way that is partially regulated by γA/γ′. However, the role of γA/γ′-thrombin interactions during fibrin polymerization is not fully understood. Here, we present a mathematical model of fibrin polymerization that considered the interactions between thrombin, fibrinogen, and fibrin, including those with γA/γ′. In our model, bivalent thrombin-fibrin binding greatly increased thrombin residency times and allowed for thrombin-trapping during fibrin polymerization. Results from the model showed that early in fibrin polymerization, γ′ binding to thrombin served to localize the thrombin to the fibrin(ogen), which effectively enhanced the enzymatic conversion of fibrinogen to fibrin. When all the fibrin was fully generated, however, the fibrin-thrombin binding persisted but the effect of fibrin on thrombin switched quickly to serve as a sink, essentially removing all free thrombin from the system. This dual role for γ′-thrombin binding during polymerization led to a paradoxical decrease in trapped thrombin as the amount of γ′ was increased. The model highlighted biochemical and biophysical roles for fibrin-thrombin interactions during polymerization and agreed well with experimental observations.
Collapse
Affiliation(s)
- Michael A. Kelley
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, United States of America
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, United States of America
- * E-mail:
| |
Collapse
|
126
|
Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron-Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioact Mater 2022; 15:145-159. [PMID: 35386337 PMCID: PMC8940943 DOI: 10.1016/j.bioactmat.2021.11.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Nanotopography presents an effective physical approach for biomaterial cell manipulation mediated through material-extracellular matrix interactions. The extracellular matrix that exists in the cellular microenvironment is crucial for guiding cell behaviours, such as determination of integrin ligation and interaction with growth factors. These interactions with the extracellular matrix regulate downstream mechanotransductive pathways, such as rearrangements in the cytoskeleton and activation of signal cascades. Protein adsorption onto nanotopography strongly influences the conformation and distribution density of extracellular matrix and, therefore, subsequent cell responses. In this review, we first discuss the interactive mechanisms of protein physical adsorption on nanotopography. Secondly, we summarise advances in creating nanotopographical features to instruct desired cell behaviours. Lastly, we focus on the cellular mechanotransductive pathways initiated by nanotopography. This review provides an overview of the current state-of-the-art designs of nanotopography aiming to provide better biomedical materials for the future. A comprehensive overview of nanotopography fabrication, and nanotopography regulates various cell behaviours. The interactive physical adsorption between nanotopography and extracellular matrix. Nanotopography initiates the cellular mechanotransductive pathways and downstream signalling cascades.
Collapse
|
127
|
Noohi P, Abdekhodaie MJ, Nekoofar MH, Galler KM, Dummer PMH. Advances in Scaffolds Used for Pulp-Dentine Complex Tissue Engineering - A Narrative Review. Int Endod J 2022; 55:1277-1316. [PMID: 36039729 DOI: 10.1111/iej.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
Pulp necrosis in immature teeth disrupts root development and predisposes roots to fracture as a consequence of their thin walls and open apices. Regenerative endodontics is a developing treatment modality whereby necrotic pulps are replaced with newly formed healthy tissue inside the root canal. Many clinical studies have demonstrated the potential of this strategy to stimulate root maturation and apical root-end closure. However, clinical outcomes are patient-dependent and unpredictable. The development of predictable clinical protocols is achieved through the interplay of the three classical elements of tissue engineering, namely, stem cells, signaling molecules, and scaffolds. Scaffolds provide structural support for cells to adhere and proliferate and also regulate cell differentiation and metabolism. Hence, designing and fabricating an appropriate scaffold is a crucial step in tissue engineering. In this review, four main classes of scaffolds used to engineer pulp-dentine complexes, including bioceramic-based scaffolds, synthetic polymer-based scaffolds, natural polymer-based scaffolds, and composite scaffolds, are covered. Additionally, recent advances in the design, fabrication, and application of such scaffolds are analysed along with their advantages and limitations. Finally, the importance of vascular network establishment in the success of pulp-dentine complex regeneration and strategies used to create scaffolds to address this challenge are discussed.
Collapse
Affiliation(s)
- Parisa Noohi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad H Nekoofar
- Department of Endodontics, School of Dentistry, Tehran University of Medical Sciences Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Endodontic, Bahçeşehir University School of Dentistry, Istanbul, Turkey
| | - Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen-Nürnberg, Erlangen, Germany
| | - Paul M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
128
|
Sachdev A, Acharya S, Gadodia T, Shukla S, J H, Akre C, Khare M, Huse S. A Review on Techniques and Biomaterials Used in 3D Bioprinting. Cureus 2022; 14:e28463. [PMID: 36176831 PMCID: PMC9511817 DOI: 10.7759/cureus.28463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022] Open
Abstract
Three-dimensional (3D) bioprinting is a cutting-edge technology that has come to light recently and shows a promising potential whose progress will change the face of medicine. This article reviews the most commonly used techniques and biomaterials for 3D bioprinting. We will also look at the advantages and limitations of various techniques and biomaterials and get a comparative idea about them. In addition, we will also look at the recent applications of these techniques in different industries. This article aims to get a basic idea of the techniques and biomaterials used in 3D bioprinting, their advantages and limitations, and their recent applications in various fields.
Collapse
|
129
|
Hospodiuk-Karwowski M, Chi K, Pritchard J, Catchmark JM. Vascularized pancreas-on-a-chip device produced using a printable simulated extracellular matrix. Biomed Mater 2022; 17. [PMID: 36001993 DOI: 10.1088/1748-605x/ac8c74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
The extracellular matrix (ECM) influences cellular behavior, function, and fate. The ECM surrounding Langerhans islets has not been investigated in detail to explain its role in the development and maturation of pancreatic β-cells. Herein, a complex combination of the simulated ECM (sECM) has been examined with a comprehensive analysis of cell response and a variety of controls. The most promising results were obtained from group containing fibrin, collagen type I, Matrigel®, hyaluronic acid, methylcellulose, and two compounds of functionalized, ionically crosslinking bacterial cellulose (sECMbc). Even though the cell viability was not significantly impacted, the performance of group of sECMbc showed 2 to 4x higher sprouting number and length, 2 to 4x higher insulin secretion in static conditions, and 2 to 10x higher gene expression of VEGF-A, Endothelin-1, and NOS3 than the control group of fibrin matrix (sECMf). Each material was tested in a hydrogel-based, perfusable, pancreas-on-a-chip device and the best group - sECMbc has been tested with the drug Sunitinib to show the extended possibilities of the device for both diabetes-like screening as well as PDAC chemotherapeutics screening for potential personal medicine approach. It proved its functionality in 7 days dynamic culture and is suitable as a physiological tissue model. Moreover, the device with the pancreatic-like spheroids was 3D bioprintable and perfusable.
Collapse
Affiliation(s)
- Monika Hospodiuk-Karwowski
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Kai Chi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Justin Pritchard
- Biomedical Engineering Department, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| | - Jeffrey M Catchmark
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, 201 Old Main, University Park, Pennsylvania, 16802-1503, UNITED STATES
| |
Collapse
|
130
|
Meng Q, Watanabe Y, Tatsukawa H, Hashimoto H, Hitomi K. Biochemical characterization of medaka (Oryzias latipes) fibrinogen gamma and its gene disruption resulting in anemia as a model fish. J Biochem 2022; 172:293-302. [PMID: 35997167 DOI: 10.1093/jb/mvac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
At the final stages of blood coagulation, fibrinogen is processed into insoluble fibrin by thrombin resulting in fibril-like structure formation. Via further cross-linking reactions between the fibrin gamma subunit by the catalytic action of blood transglutaminase (Factor XIII), this molecule gains further physical stability. Meanwhile, since fibrinogen is expressed in various cells and tissues, this molecule can exhibit other functions apart from its role in blood coagulation. To create a system studying on aberrant coagulation and investigate the physiological functions, using a model fish medaka (Oryzias latipes), we established gene-deficient mutants of fibrinogen gamma subunit protein in parallel with its biochemical analysis, such as tissue distribution pattern and substrate properties. By genetic deletion via genome-editing, two distinct mutants displayed retardation of blood coagulation. The mutants showed lower hematocrit with aberrant erythrocyte maturation indicating that fibrin deficiency caused severe anemia, and also appeared as a model for investigation of the fibrin function.
Collapse
Affiliation(s)
- Qi Meng
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hideki Tatsukawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hisashi Hashimoto
- Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
131
|
Kamstrup P, Sand JMB, Ulrik CS, Janner J, Rønn CP, Rønnow SR, Leeming DJ, Jensen SG, Wilcke T, Mathioudakis AG, Miravitlles M, Lapperre T, Bendstrup E, Frikke-Schmidt R, Murray DD, Itenov T, Bossios A, Nielsen SD, Vestbo J, Biering-Sørensen T, Karsdal M, Jensen JU, Sivapalan P. Biomarkers of Clot Activation and Degradation and Risk of Future Major Cardiovascular Events in Acute Exacerbation of COPD: A Cohort Sub-Study in a Randomized Trial Population. Biomedicines 2022; 10:biomedicines10082011. [PMID: 36009558 PMCID: PMC9405886 DOI: 10.3390/biomedicines10082011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular diseases are common in patients with chronic obstructive pulmonary disease (COPD). Clot formation and resolution secondary to systemic inflammation may be a part of the explanation. The aim was to determine whether biomarkers of clot formation (products of von Willebrand Factor formation and activation) and clot resolution (product of fibrin degeneration) during COPD exacerbation predicted major cardiovascular events (MACE). The cohort was based on clinical data and biobank plasma samples from a trial including patients admitted with an acute exacerbation of COPD (CORTICO-COP). Neo-epitope biomarkers of formation and the activation of von Willebrand factor (VWF-N and V-WFA, respectively) and cross-linked fibrin degradation (X-FIB) were assessed using ELISAs in EDTA plasma at the time of acute admission, and analyzed for time-to-first MACE within 36 months, using multivariable Cox proportional hazards models. In total, 299/318 participants had samples available for analysis. The risk of MACE for patients in the upper quartile of each biomarker versus the lower quartile was: X-FIB: HR 0.98 (95% CI 0.65–1.48), VWF-N: HR 1.56 (95% CI 1.07–2.27), and VWF-A: HR 0.78 (95% CI 0.52–1.16). Thus, in COPD patients with an acute exacerbation, VWF-N was associated with future MACE and warrants further studies in a larger population.
Collapse
Affiliation(s)
- Peter Kamstrup
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Correspondence:
| | | | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Julie Janner
- Department of Respiratory Medicine, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Christian Philip Rønn
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| | | | | | - Sidse Graff Jensen
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| | - Torgny Wilcke
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander G. Mathioudakis
- The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Therese Lapperre
- Department of Respiratory Medicine, Copenhagen University Hospital Bispebjerg, 2400 Copenhagen, Denmark
- Department of Pulmonary Medicine, Antwerp University Hospital, Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Antwerp, Belgium
| | - Elisabeth Bendstrup
- Department Respiratory Disease and Allergy, Aarhus University Hospital, 8000 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Daniel D. Murray
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Theis Itenov
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Susanne Dam Nielsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Viro-Immunology Research Unit, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jørgen Vestbo
- The North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M13 9PL, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9PL, UK
| | - Tor Biering-Sørensen
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Jens-Ulrik Jensen
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Centre of Excellence for Health, Immunity and Infections (CHIP), Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Pradeesh Sivapalan
- Section of Respiratory Medicine, Department of Medicine, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| |
Collapse
|
132
|
Woloszyk A, Tuong ZK, Perez L, Aguilar L, Bankole AI, Evans CH, Glatt V. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes. BIOMATERIALS ADVANCES 2022; 139:213027. [PMID: 35882120 DOI: 10.1016/j.bioadv.2022.213027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The hematoma that forms between broken fragments of bone serves as a natural fibrin scaffold, and its removal from the defect site delays bone healing. The hypothesis of this study is that the microarchitectural and mechanical properties of the initially formed hematoma has a significant effect on the regulation of the biological process, which ultimately determines the outcome of bone healing. To mimic three healing conditions in the rat femur (normal, delayed, and non-healing bone defects), three different defect sizes of 0.5, 1.5, and 5.0 mm, are respectively used. The analysis of 3-day-old hematomas demonstrates clear differences in fibrin clot micro-architecture in terms of fiber diameter, fiber density, and porosity of the formed fibrin network, which result in different mechanical properties (stiffness) of the hematoma in each model. Those differences directly affect the biological processes involved. Specifically, RNA-sequencing reveals almost 700 differentially expressed genes between normally healing and non-healing defects, including significantly up-regulated essential osteogenic genes in normally healing defects, also differences in immune cell populations, activated osteogenic transcriptional regulators as well as potential novel marker genes. Most importantly, this study demonstrates that the healing outcome has already been determined during the hematoma phase of bone healing, three days post-surgery.
Collapse
Affiliation(s)
- Anna Woloszyk
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba 4102, QLD, Australia; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Louis Perez
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Leonardo Aguilar
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Abraham I Bankole
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester 55902, MN, USA.
| | - Vaida Glatt
- Department of Orthopaedics, University of Texas Health Science Center, San Antonio 78229, TX, USA.
| |
Collapse
|
133
|
McLimans CJ, Shelledy K, Conrad W, Prendergast K, Le AN, Grant CJ, Buonaccorsi VP. Potential biomarkers of endocrine and habitat disruption identified via RNA-Seq in Salvelinus fontinalis with proximity to fracking operations in Pennsylvania headwater stream ecosystems. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1044-1055. [PMID: 35834075 DOI: 10.1007/s10646-022-02564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Unconventional natural gas development (fracking) has been a rapidly expanding technique used for the extraction of natural gas from the Marcellus Shale formation in Pennsylvania. There remains a knowledge gap regarding the ecological impacts of fracking, especially regarding the long-term health of native Brook trout (Salvelinus fontinalis) populations. During the summer of 2015, Brook trout were sampled from twelve streams located in forested, northwestern Pennsylvania in order to evaluate the impacts of fracking on Brook trout. Four stream sites were undisturbed (no fracking activity), three had a developed well pad without fracking activity, and five had active fracking with natural gas production. Liver tissue was isolated from two to five fish per stream and underwent RNA-Seq analysis to identify differentially expressed genes between ecosystems with differing fracking status. Data were analyzed individually and with samples pooled within-stream to account for hierarchical data structure and variation in sample coverage within streams. Differentially expressed and differentially alternatively spliced genes had functions related to lipid and steroid metabolism, mRNA processing, RNA polymerase and protein regulation. Unique to our study, genes related to xenobiotic and stress responses were found as well as potential markers for endocrine disruption and saline adaptation that were identified in watersheds with active fracking activity. These results support the utility of RNA-Seq to assess trout health and suggest detrimental impacts of fracking on sensitive trout populations.
Collapse
Affiliation(s)
| | | | - William Conrad
- Department of Biology, Juniata College, Huntingdon, PA, USA
| | | | - Anh N Le
- Department of Biology, Juniata College, Huntingdon, PA, USA
| | | | | |
Collapse
|
134
|
Dang DS, Zhai C, Nair MN, Thornton KJ, Sawalhah MN, Matarneh SK. Tandem mass tag labeling to assess proteome differences between intermediate and very tender beef steaks. J Anim Sci 2022; 100:6652319. [PMID: 35908783 PMCID: PMC9339282 DOI: 10.1093/jas/skac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
Tenderness is considered as one of the most important quality attributes dictating consumers' overall satisfaction and future purchasing decisions of fresh beef. However, the ability to predict and manage tenderness has proven very challenging due to the numerous factors that contribute to variation in end-product tenderness. Proteomic profiling allows for global examination of differentially abundant proteins in the meat and can provide new insight into biological mechanisms related to meat tenderness. Hence, the objective of this study was to examine proteomic profiles of beef longissimus lumborum (LL) steaks varying in tenderness, with the intention to identify potential biomarkers related to tenderness. For this purpose, beef LL muscle samples were collected from 99 carcasses at 0 and 384 h postmortem. Based on Warner-Bratzler shear force values at 384 h, 16 samples with the highest (intermediate tender, IT) and lowest (very tender, VT) values were selected to be used for proteomic analysis in this study (n = 8 per category). Using tandem mass tag-based proteomics, a total of 876 proteins were identified, of which 51 proteins were differentially abundant (P < 0.05) between the tenderness categories and aging periods. The differentially identified proteins encompassed a wide array of biological processes related to muscle contraction, calcium signaling, metabolism, extracellular matrix organization, chaperone, and apoptosis. A greater (P < 0.05) relative abundance of proteins associated with carbohydrate metabolism and apoptosis, and a lower (P < 0.05) relative abundance of proteins involved in muscle contraction was observed in the VT steaks after aging compared with the IT steaks, suggesting that more proteolysis occurred in the VT steaks. This may be explained by the greater (P < 0.05) abundance of chaperonin and calcium-binding proteins in the IT steaks, which could have limited the extent of postmortem proteolysis in these steaks. In addition, a greater (P < 0.05) abundance of connective tissue proteins was also observed in the IT steaks, which likely contributed to the difference in tenderness due to added background toughness. The established proteomic database obtained in this study may provide a reference for future research regarding potential protein biomarkers that are associated with meat tenderness.
Collapse
Affiliation(s)
- David S Dang
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA
| | - Chaoyu Zhai
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kara J Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Mohammed N Sawalhah
- Department of Lands Management and Environment, Prince Al-Hasan Bin Talal Faculty for Natural Resources and Environment, The Hashemite University, Zarqa 13133, Jordan
| | - Sulaiman K Matarneh
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
135
|
Pediatric patient with fibrinogen Villeurbanne II presenting with an unprovoked portal vein thrombosis. Blood Adv 2022; 6:4297-4300. [PMID: 35877135 PMCID: PMC9327530 DOI: 10.1182/bloodadvances.2022006992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
|
136
|
Sulimai NH, Brown J, Lominadze D. Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines 2022; 10:1712. [PMID: 35885017 PMCID: PMC9313381 DOI: 10.3390/biomedicines10071712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/05/2022] Open
Abstract
Fibrinogen (Fg) and its derivatives play a considerable role in many diseases. For example, increased levels of Fg have been found in many inflammatory diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, rheumatoid arthritis, systemic lupus erythematosus, and cancer. Although associations of Fg, Fg chains, and its derivatives with various diseases have been established, their specific effects and the mechanisms of actions involved are still unclear. The present review is the first attempt to discuss the role of Fg, Fg chains, its derivatives, and other members of Fg family proteins, such as Fg-like protein 1 and 2, in inflammatory diseases and their effects in immunomodulation.
Collapse
Affiliation(s)
- Nurul H. Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - Jason Brown
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; (N.H.S.); (J.B.)
- Departments of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
137
|
Matei SC, Matei M, Anghel F, Carabenciov E, Murariu MS, Olariu S. Utility of routine laboratory tests in the assessment of chronic venous disease progression in female patients. Exp Ther Med 2022; 24:571. [PMID: 35978924 PMCID: PMC9366278 DOI: 10.3892/etm.2022.11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
Chronic venous disease (CVD) is a frequently encountered disease that progresses with age. Although the principal method of evaluation and diagnosis is Doppler ultrasound, routine laboratory tests may be an easier and more accessible way to evaluate CVD progression. The present retrospective study evaluated the laboratory results of 256 patients diagnosed with CVD. According to the Clinical, Etiological, Anatomical and Pathophysiological classification, depending on the CVD stage, patients were stratified into three groups: Group 1 (C2-C3; mild disease), Group 2 (C4; moderate to severe disease) and Group 3 (C5-C6; severe disease). The considered parameters were age, red blood cell count (RBC), white blood cell count (WBC) and platelet count (PLT), percentage of neutrophils and lymphocytes, neutrophil-to-lymphocyte ratio (NLR), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), fibrinogen, prothrombin time (in percentages and seconds), internal normalized ratio, activated partial thromboplastin time, creatine kinase (CK), CK myocardial band, alanine transaminase, aspartate transaminase, total bilirubin and urea. No significant differences among the groups were noted in RBC, WBC, PLT and coagulation factors; on the other hand, inflammatory markers exhibited differences among the groups. Several differences were observed in hepatic, metabolic and muscle tissue markers. Intraluminal thrombus formation in the case of varicose veins (thrombophlebitis) may be due to conditions of turbulent flow, stasis and endothelial inflammation, rather than hypercoagulability. The results of the present study confirmed the implication of inflammatory factors in pathophysiological modifications, including thickening of venous walls and valvular modification, as well as the appearance of intraluminal thrombi and trophic lesions. NLR, ESR, CRP and fibrinogen were increased with CVD progression and may be considered useful markers in evaluating CVD progression. Simple blood tests may provide phlebologists with additional insight for the management of those patients.
Collapse
Affiliation(s)
- Sergiu-Ciprian Matei
- Department X of Surgery, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Timișoara 300041, Romania
| | - Mervat Matei
- Department X of Surgery, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Timișoara 300041, Romania
| | - Flavia Anghel
- Department X of Surgery, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Timișoara 300041, Romania
| | - Emma Carabenciov
- Department X of Surgery, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Timișoara 300041, Romania
| | - Marius-Sorin Murariu
- Department X of Surgery, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Timișoara 300041, Romania
| | - Sorin Olariu
- Department X of Surgery, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Timișoara 300041, Romania
| |
Collapse
|
138
|
Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules 2022; 27:molecules27144504. [PMID: 35889381 PMCID: PMC9322155 DOI: 10.3390/molecules27144504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
The first bioprocess that occurs in response to wounding is the deterrence of local hemorrhage. This is accomplished by platelet aggregation and initiation of the hemostasis cascade. The resulting blood clot immediately enables the cessation of bleeding and then functions as a provisional matrix for wound healing, which begins a few days after injury. Here, fibrinogen and fibrin fibers are the key players, because they literally serve as scaffolds for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. Fibrin is also an important modulator of healing and a host defense system against microbes that effectively maintains incoming leukocytes and acts as reservoir for growth factors. This review presents recent advances in the understanding and applications of fibrin and fibrin-fiber-incorporated biomedical materials applied to wound healing and subsequent tissue repair. It also discusses how fibrin-based materials function through several wound healing stages including physical barrier formation, the entrapment of bacteria, drug and cell delivery, and eventual degradation. Pure fibrin is not mechanically strong and stable enough to act as a singular wound repair material. To alleviate this problem, this paper will demonstrate recent advances in the modification of fibrin with next-generation materials exhibiting enhanced stability and medical efficacy, along with a detailed look at the mechanical properties of fibrin and fibrin-laden materials. Specifically, fibrin-based nanocomposites and their role in wound repair, sustained drug release, cell delivery to wound sites, skin reconstruction, and biomedical applications of drug-loaded fibrin-based materials will be demonstrated and discussed.
Collapse
|
139
|
Ban Q, Zhang Y, Li Y, Cao D, Ye W, Zhan L, Wang D, Wang X. A point-of-care microfluidic channel-based device for rapid and direct detection of fibrinogen in whole blood. LAB ON A CHIP 2022; 22:2714-2725. [PMID: 35748483 DOI: 10.1039/d2lc00437b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hemorrhage is the leading cause of preventable death in civilian and battlefield traumatic injuries. Patients with severe traumatic hemorrhagic shock are more likely to be deficient in fibrinogen than those with other coagulation factors, and hypofibrinogenemia is an independent risk factor for mortality. Thus, rapid detection of fibrinogen levels is of great importance in these patients during damage control resuscitation. Plasma is used as an analyte in fibrinogen detection, which restricts the use of existing devices in emergencies. To meet the needs of on-site detection, we developed a point-of-care microfluidic channel-based device for direct measurement of fibrinogen concentration in whole blood. In our method, thrombin is dispersed on a reaction strip to initiate conversion of fibrinogen to fibrin. The permeability of the resulting blood clots depends on the fibrinogen level. A hydrophobic plastic protection flake between the reaction strip and a wicking strip is then removed to allow flow of unclotted blood. The rate of blood flow along the wicking strip was inversely related to the fibrinogen concentration. The whole process could be completed in as fast as 5 minutes for a whole blood sample size of 150 μL, and yielded accurate results ranging from 0 to 4 g L-1, which were unaffected by Ca2+, blood lipids, hematocrit, warfarin and tissue plasminogen activators (tPAs). Results using clinical whole blood samples were also highly consistent with those using an automatic coagulation analyzer, yielding a Pearson correlation coefficient of up to 0.919. This approach has potential for allowing rapid diagnosis of fibrinogen concentration in critically ill bleeding patients in different settings, thus helping to judge the suitability of fibrinogen replacement therapy (FRT) in cases of emergency bleeding and in patients at risk of thrombosis due to hyperfibrinogenemia.
Collapse
Affiliation(s)
- Qinan Ban
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P. R. China.
- BGI College, Zhengzhou University, Henan, 450001, P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P. R. China.
| | - Yuxuan Li
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P. R. China.
| | - Daye Cao
- Anbio (Xiamen) Biotechnology Co., Ltd, Xiamen, Fujian Province, 361028, P. R. China
| | - Weifeng Ye
- Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P. R. China.
- BGI College, Zhengzhou University, Henan, 450001, P. R. China
| | - Daming Wang
- Anbio (Xiamen) Biotechnology Co., Ltd, Xiamen, Fujian Province, 361028, P. R. China
- Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, Jiangsu Province, 215163, P. R. China.
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, P. R. China.
| |
Collapse
|
140
|
Awasthi A, Gulati M, Kumar B, Kaur J, Vishwas S, Khursheed R, Porwal O, Alam A, KR A, Corrie L, Kumar R, Kumar A, Kaushik M, Jha NK, Gupta PK, Chellappan DK, Gupta G, Dua K, Gupta S, Gundamaraju R, Rao PV, Singh SK. Recent Progress in Development of Dressings Used for Diabetic Wounds with Special Emphasis on Scaffolds. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1659338. [PMID: 35832856 PMCID: PMC9273440 DOI: 10.1155/2022/1659338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Diabetic wound (DW) is a secondary application of uncontrolled diabetes and affects about 42.2% of diabetics. If the disease is left untreated/uncontrolled, then it may further lead to amputation of organs. In recent years, huge research has been done in the area of wound dressing to have a better maintenance of DW. These include gauze, films, foams or, hydrocolloid-based dressings as well as polysaccharide- and polymer-based dressings. In recent years, scaffolds have played major role as biomaterial for wound dressing due to its tissue regeneration properties as well as fluid absorption capacity. These are three-dimensional polymeric structures formed from polymers that help in tissue rejuvenation. These offer a large surface area to volume ratio to allow cell adhesion and exudate absorbing capacity and antibacterial properties. They also offer a better retention as well as sustained release of drugs that are directly impregnated to the scaffolds or the ones that are loaded in nanocarriers that are impregnated onto scaffolds. The present review comprehensively describes the pathogenesis of DW, various dressings that are used so far for DW, the limitation of currently used wound dressings, role of scaffolds in topical delivery of drugs, materials used for scaffold fabrication, and application of various polymer-based scaffolds for treating DW.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942 KSA, Saudi Arabia
| | - Arya KR
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monika Kaushik
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No. 32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot No. 32-34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 248002 Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia 7248
| | - Pasupuleti Visweswara Rao
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
- Centre for International Relations and Research Collaborations, Reva University, Rukmini Knowledge Park, Rukmini Knowledge Park, Kattigenahili, Yelahanka, Bangalore, 560064, , Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
141
|
Kenny M, Stamboroski S, Taher R, Brüggemann D, Schoen I. Nanofiber Topographies Enhance Platelet-Fibrinogen Scaffold Interactions. Adv Healthc Mater 2022; 11:e2200249. [PMID: 35526111 PMCID: PMC11469041 DOI: 10.1002/adhm.202200249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
The initial contact with blood and its components, including plasma proteins and platelets, directs the body's response to foreign materials. Natural scaffolds of extracellular matrix or fibrin contain fibrils with nanoscale dimensions, but how platelets specifically respond to the topography and architecture of fibrous materials is still incompletely understood. Here, planar and nanofiber scaffolds are fabricated from native fibrinogen to characterize the morphology of adherent platelets and activation markers for phosphatidylserine exposure and α-granule secretion by confocal fluorescence microscopy and scanning electron microscopy. Different fibrinogen topographies equally support the spreading and α-granule secretion of washed platelets. In contrast, preincubation of the scaffolds with plasma diminishes platelet spreading on planar fibrinogen surfaces but not on nanofibers. The data show that the enhanced interactions of platelets with nanofibers result from a higher locally accessible surface area, effectively increasing the ligand density for integrin-mediated responses. Overall, fibrinogen nanofibers direct platelets toward robust adhesion formation and α-granule secretion while minimizing their procoagulant activity. Similar results on fibrinogen-coated polydimethylsiloxane substrates with micrometer-sized 3D features suggest that surface topography could be used more generally to steer blood-materials interactions on different length scales for enhancing the initial wound healing steps.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Stephani Stamboroski
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)Wiener Strasse 12Bremen28359Germany
| | - Reem Taher
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Dorothea Brüggemann
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- MAPEX Center for Materials and ProcessesUniversity of BremenBremen28359Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| |
Collapse
|
142
|
Rao Z, Lin Z, Song P, Quan D, Bai Y. Biomaterial-Based Schwann Cell Transplantation and Schwann Cell-Derived Biomaterials for Nerve Regeneration. Front Cell Neurosci 2022; 16:926222. [PMID: 35836742 PMCID: PMC9273721 DOI: 10.3389/fncel.2022.926222] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Schwann cells (SCs) dominate the regenerative behaviors after peripheral nerve injury by supporting axonal regrowth and remyelination. Previous reports also demonstrated that the existence of SCs is beneficial for nerve regeneration after traumatic injuries in central nervous system. Therefore, the transplantation of SCs/SC-like cells serves as a feasible cell therapy to reconstruct the microenvironment and promote nerve functional recovery for both peripheral and central nerve injury repair. However, direct cell transplantation often leads to low efficacy, due to injection induced cell damage and rapid loss in the circulatory system. In recent years, biomaterials have received great attention as functional carriers for effective cell transplantation. To better mimic the extracellular matrix (ECM), many biodegradable materials have been engineered with compositional and/or topological cues to maintain the biological properties of the SCs/SCs-like cells. In addition, ECM components or factors secreted by SCs also actively contribute to nerve regeneration. Such cell-free transplantation approaches may provide great promise in clinical translation. In this review, we first present the current bio-scaffolds engineered for SC transplantation and their achievement in animal models and clinical applications. To this end, we focus on the physical and biological properties of different biomaterials and highlight how these properties affect the biological behaviors of the SCs/SC-like cells. Second, the SC-derived biomaterials are also reviewed and discussed. Finally, the relationship between SCs and functional biomaterials is summarized, and the trends of their future development are predicted toward clinical applications.
Collapse
Affiliation(s)
- Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zudong Lin
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Panpan Song
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
143
|
Modrzycka S, Kołt S, Polderdijk SGI, Adams TE, Potoczek S, Huntington JA, Kasperkiewicz P, Drąg M. Parallel imaging of coagulation pathway proteases activated protein C, thrombin, and factor Xa in human plasma. Chem Sci 2022; 13:6813-6829. [PMID: 35774156 PMCID: PMC9200056 DOI: 10.1039/d2sc01108e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Activated protein C (APC), thrombin, and factor (f) Xa are vitamin K-dependent serine proteases that are key factors in blood coagulation. Moreover, they play important roles in inflammation, apoptosis, fibrosis, angiogenesis, and viral infections. Abnormal activity of these coagulation factors has been related to multiple conditions, such as bleeding and thrombosis, Alzheimer's disease, sepsis, multiple sclerosis, and COVID-19. The individual activities of APC, thrombin, and fXa in coagulation and in various diseases are difficult to establish since these proteases are related and have similar substrate preferences. Therefore, the development of selective chemical tools that enable imaging and discrimination between coagulation factors in biological samples may provide better insight into their roles in various conditions and potentially aid in the establishment of novel diagnostic tests. In our study, we used a large collection of unnatural amino acids, and this enabled us to extensively explore the binding pockets of the enzymes' active sites. Based on the specificity profiles obtained, we designed highly selective substrates, inhibitors, and fluorescent activity-based probes (ABPs) that were used for fast, direct, and simultaneous detection of APC, thrombin, and fXa in human plasma. Using a collection of natural and unnatural amino acids, we synthesized a set of fluorescent activity-based probes for the fast, direct, and simultaneous detection of coagulation factors in human plasma.![]()
Collapse
Affiliation(s)
- Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Sonia Kołt
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Stéphanie G I Polderdijk
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Ty E Adams
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Stanisław Potoczek
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University Pasteura 1 50-367 Wrocław Poland
| | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge The Keith Peters Building, Hills Road Cambridge CB2 0XY UK
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| |
Collapse
|
144
|
Abstract
Intraoperative bleeding and postoperative bleeding are major surgical complications. Tissue sealants, hemostats, and adhesives provide the armamentarium for establishing hemostatic balance, including the tissue sealant fibrin. Fibrin sealants combine advantages including instantaneous effect, biocompatibility, and biodegradability. However, several challenges remain. This review summarizes current fibrin product generations and highlights new trends and potential strategies for future improvement.
Collapse
Affiliation(s)
- Matthias Beudert
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
145
|
van Paridon PCS, Panova-Noeva M, van Oerle R, Schulz A, Prochaska JH, Arnold N, Schmidtmann I, Beutel M, Pfeiffer N, Münzel T, Lackner KJ, Ten Cate H, Wild PS, Spronk HMH. Relationships between coagulation factors and thrombin generation in a general population with arterial and venous disease background. Thromb J 2022; 20:32. [PMID: 35676710 PMCID: PMC9175351 DOI: 10.1186/s12959-022-00392-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background The current study aims to identify the relationships between coagulation factors and plasma thrombin generation in a large population-based study by comparing individuals with a history of arterial or venous thrombosis to cardiovascular healthy individuals. Methods This study comprised 502 individuals with a history of arterial disease, 195 with history of venous thrombosis and 1402 cardiovascular healthy individuals (reference group) from the population-based Gutenberg Health Study (GHS). Calibrated Automated Thrombography was assessed and coagulation factors were measured by means of BCS XP Systems. To assess the biochemical determinants of TG variables, a multiple linear regression analysis, adjusted for age, sex and antithrombotic therapy, was conducted. Results The lag time, the time to form the first thrombin, was mainly positively associated with the natural coagulant and anti-coagulant factors in the reference group, i.e. higher factors result in a longer lag time. The same determinants were negative for individuals with a history of arterial or venous thrombosis, with a 10 times higher effect size. Endogenous thrombin potential, or area under the curve, was predominantly positively determined by factor II, VIII, X and IX in all groups. However, the effect sizes of the reported associations were 4 times higher for the arterial and venous disease groups in comparison to the reference group. Conclusion This large-scale analysis demonstrated a stronger effect of the coagulant and natural anti-coagulant factors on the thrombin potential in individuals with a history of arterial or venous thrombosis as compared to healthy individuals, which implicates sustained alterations in the plasma coagulome in subjects with a history of thrombotic vascular disease, despite intake of antithrombotic therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00392-0.
Collapse
Affiliation(s)
- Pauline C S van Paridon
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, 6200 MD, the Netherlands.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marina Panova-Noeva
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany
| | - Rene van Oerle
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, 6200 MD, the Netherlands
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Natalie Arnold
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manfred Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany.,Center for Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J Lackner
- DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hugo Ten Cate
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, 6200 MD, the Netherlands.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany.,Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Henri M H Spronk
- Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
146
|
Ceznerová E, Kaufmanová J, Stikarová J, Pastva O, Loužil J, Chrastinová L, Suttnar J, Kotlín R, Dyr JE. Thrombosis-associated hypofibrinogenemia: novel abnormal fibrinogen variant FGG c.8G>A with oxidative posttranslational modifications. Blood Coagul Fibrinolysis 2022; 33:228-237. [PMID: 35067535 DOI: 10.1097/mbc.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we present the first case of fibrinogen variant FGG c.8G>A. We investigated the behaviour of this mutated fibrinogen in blood coagulation using fibrin polymerization, fibrinolysis, fibrinopeptides release measurement, mass spectrometry (MS), and scanning electron microscopy (SEM). The case was identified by routine coagulation testing of a 34-year-old man diagnosed with thrombosis. Initial genetic analysis revealed a heterozygous mutation in exon 1 of the FGG gene encoding gamma chain signal peptide. Fibrin polymerization by thrombin and reptilase showed the normal formation of the fibrin clot. However, maximal absorbance within polymerization was lower and fibrinolysis had a longer degradation phase than healthy control. SEM revealed a significant difference in clot structure of the patient, and interestingly, MS detected several posttranslational oxidations of fibrinogen. The data suggest that the mutation FGG c.8G>A with the combination of the effect of posttranslational modifications causes a novel case of hypofibrinogenemia associated with thrombosis.
Collapse
Affiliation(s)
- Eliška Ceznerová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic
| | - Jiřina Kaufmanová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6, Czech Republic
| | - Jana Stikarová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Ondřej Pastva
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jan Loužil
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Leona Chrastinová
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jiři Suttnar
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Roman Kotlín
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| | - Jan Evangelista Dyr
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, Czech Republic
| |
Collapse
|
147
|
Pancaldi F, Kim OV, Weisel JW, Alber M, Xu Z. Computational Biomechanical Modeling of Fibrin Networks and Platelet-Fiber Network Interactions. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22:100369. [PMID: 35386550 PMCID: PMC8979495 DOI: 10.1016/j.cobme.2022.100369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrin deformation and interaction of fibrin with other blood components play critical roles in hemostasis and thrombosis. In this review, computational and mathematical biomechanical models of fibrin network deformation and contraction at different spatio-temporal scales as well as challenges in developing and calibrating multiscale models are discussed. There are long standing challenges. For instance, applicability of models to identify and test potential mechanisms of the biomechanical processes mediating interactions between platelets and fiber networks in blood clot stretching and contraction needs to be examined carefully. How the structural and mechanical properties of major blood clot components influences biomechanical responses of the entire clot subjected to external forces, such as blood flow or vessel wall deformations needs to be investigated thoroughly.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Oleg V. Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN 46556, USA
| |
Collapse
|
148
|
Alam S, Khare G, Arun Kumar KV. A Comparative Study of Platelet-Rich Fibrin and Platelet-Rich Fibrin with Hydroxyapatite to Promote Healing of Impacted Mandibular Third Molar Socket. J Maxillofac Oral Surg 2022; 21:608-615. [DOI: 10.1007/s12663-020-01417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/29/2022] Open
|
149
|
Chen Z, Kheiri S, Young EWK, Kumacheva E. Trends in Droplet Microfluidics: From Droplet Generation to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6233-6248. [PMID: 35561292 DOI: 10.1021/acs.langmuir.2c00491] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past decade, droplet microfluidics has attracted growing interest in biology, medicine, and engineering. In this feature article, we review the advances in droplet microfluidics, primarily focusing on the research conducted by our group. Starting from the introduction to the mechanisms of microfluidic droplet formation and the strategies for cell encapsulation in droplets, we then focus on droplet transformation into microgels. Furthermore, we review three biomedical applications of droplet microfluidics, that is, 3D cell culture, single-cell analysis, and in vitro organ and disease modeling. We conclude with our perspective on future directions in the development of droplet microfluidics for biomedical applications.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | - Edmond W K Young
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada, M5S 3G8
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
- Institute of Biomedical Engineering, University of Toronto, Roseburgh Building, 164 College Street, Toronto, Ontario, Canada M5S 3G9
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| |
Collapse
|
150
|
Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing. Sci Rep 2022; 12:7213. [PMID: 35508533 PMCID: PMC9068811 DOI: 10.1038/s41598-022-11282-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/22/2023] Open
Abstract
Wound healing is a complex process and rapid healing necessitates a proper micro-environment. Therefore, design and fabrication of an efficacious wound dressing is an impressive innovation in the field of wound healing. The fabricated wound dressing in this scenario was designed using a combination of the appropriate coagulating and anti-bacterial materials like fibrinogen (as coagulating agent), nisin (as anti-bacterial agent), ethylenediaminetetraacetic acid (as anti-bacterial agent), and alginate (as wound healing agent). Biophysical characterization showed that the interaction of fibrinogen and alginate was associated with minor changes in the secondary structure of the protein. Conformational studies showed that the protein was structurally stable at 42 °C, is the maximum temperature of the infected wound. The properties of the hydrogel such as swelling, mechanical resistance, nisin release, antibacterial activity, cytotoxicity, gel porosity, and blood coagulation were assessed. The results showed a slow release for the nisin during 48 h. Antibacterial studies showed an inhibitory effect on the growth of Gram-negative and Gram-positive bacteria. The hydrogel was also capable to absorb a considerable amount of water and provide oxygenation as well as incorporation of the drug into its structure due to its sufficient porosity. Scanning electron microscopy showed pore sizes of about 14–198 µm in the hydrogel. Cell viability studies indicated high biocompatibility of the hydrogel. Blood coagulation test also confirmed the effectiveness of the synthesized hydrogel in accelerating the process of blood clot formation. In vivo studies showed higher rates of wound healing, re-epithelialization, and collagen deposition. According to the findings from in vitro as well as in vivo studies, the designed hydrogel can be considered as a novel attractive wound dressing after further prerequisite assessments.
Collapse
|