101
|
Reeves SR, Kang I, Chan CK, Barrow KA, Kolstad TK, White MP, Ziegler SF, Wight TN, Debley JS. Asthmatic bronchial epithelial cells promote the establishment of a Hyaluronan-enriched, leukocyte-adhesive extracellular matrix by lung fibroblasts. Respir Res 2018; 19:146. [PMID: 30071849 PMCID: PMC6090698 DOI: 10.1186/s12931-018-0849-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background Airway inflammation is a hallmark of asthma. Alterations in extracellular matrix (ECM) hyaluronan (HA) content have been shown to modulate the recruitment and retention of inflammatory cells. Bronchial epithelial cells (BECs) regulate the activity of human lung fibroblasts (HLFs); however, their contribution in regulating HLF production of HA in asthma is unknown. In this study, we tested the hypothesis that BECs from asthmatic children promote the generation of a pro-inflammatory, HA-enriched ECM by HLFs, which promotes the retention of leukocytes. Methods BECs were obtained from well-characterized asthmatic and healthy children ages 6–18 years. HLFs were co-cultured with BECs for 96 h and samples were harvested for analysis of gene expression, synthesis and accumulation of HA, and subjected to a leukocyte adhesion assay with U937 monocytes. Results We observed increased expression of HA synthases HAS2 and HAS3 in HLFs co-cultured with asthmatic BECs. Furthermore, we demonstrated greater total accumulation and increased synthesis of HA by HLFs co-cultured with asthmatic BECs compared to healthy BEC/HLF co-cultures. ECM generated by HLFs co-cultured with asthmatic BECs displayed increased HA-dependent adhesion of leukocytes in a separate in vitro binding assay. Conclusions Our findings demonstrate that BEC regulation of HA production by HLFs is altered in asthma, which may in turn promote the establishment of a more leukocyte-permissive ECM promoting airway inflammation in this disease. Electronic supplementary material The online version of this article (10.1186/s12931-018-0849-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen R Reeves
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA. .,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA. .,Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kaitlyn A Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Tessa K Kolstad
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Maria P White
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Jason S Debley
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98105, USA.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
102
|
Howell C, Smith JR, Shute JK. Targeting matrix metalloproteinase-13 in bronchial epithelial repair. Clin Exp Allergy 2018; 48:1214-1221. [PMID: 29924890 DOI: 10.1111/cea.13215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Viral infection of the bronchial epithelium disrupts the barrier properties of the epithelium in healthy individuals and those with lung disease. Repair of the bronchial epithelium is dependent of the formation of a provisional fibrin matrix and migration of epithelial cells to cover denuded areas, followed by proliferation and differentiation. OBJECTIVE The objective was to test the hypothesis that poly I:C, a model of viral infection, limits epithelial repair through the stimulated release of matrix metalloproteinase-13 (MMP-13). METHODS Confluent layers of cultured normal human primary bronchial epithelial cells (NHBE) and SV-40 virus-transformed 16HBE14o- bronchial epithelial cells were mechanically wounded, and video microscopy used to measure the rate of wound closure over 2 hours, in the absence and presence of poly I:C (1-20 μg/mL). MMP-13, tissue factor and endothelin release were measured by ELISA. The effect of inhibitors of MMP-13 activity and expression and a nonspecific endothelin receptor antagonist, bosentan, on the rate of epithelial repair was investigated. RESULTS Poly I:C limited the rate of epithelial repair, and NHBE were significantly more sensitive to poly I:C effects than 16HBE14o- cells. NHBE, but not 16HBE14o-, released MMP-13 in response to poly I:C. Inhibitors of MMP-13 activity (WAY 170523) and expression (dimethyl fumarate) significantly enhanced the rate of repair. Bosentan enhanced the rate of bronchial epithelial repair by a mechanism that was independent of MMP-13. CONCLUSIONS AND CLINICAL RELEVANCE Bronchial epithelial repair is limited by endothelin and by MMP-13, a protease that degrades coagulation factors, such as fibrinogen, and matrix proteins essential for epithelial repair. Further studies with primary cells from patients are needed to confirm whether repurposing bosentan and inhibitors of MMP-13 expression or activity, for inhalation may be a useful therapeutic strategy in diseases where repeated cycles of epithelial injury and repair occur, such as asthma and COPD.
Collapse
Affiliation(s)
- Christopher Howell
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Janis K Shute
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
103
|
Gon Y, Maruoka S, Inoue T, Kuroda K, Yamagishi K, Kozu Y, Shikano S, Soda K, Lötvall J, Hashimoto S. Selective release of miRNAs via extracellular vesicles is associated with house-dust mite allergen-induced airway inflammation. Clin Exp Allergy 2018; 47:1586-1598. [PMID: 28859242 DOI: 10.1111/cea.13016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) may facilitate cell-to-cell communication via extracellular vesicles (EVs). The biological roles of miRNAs in EVs on allergic airway inflammation are unclear. METHODS Airway-secreted EVs (AEVs) were isolated from bronchoalveolar lavage fluid (BALF) of control and house-dust mite (HDM) allergen-exposed HDM-sensitized mice. The expression of miRNAs in AEVs or miRNAs and mRNAs in lung tissue was analysed using miRNA microarray. RESULTS The amount of AEV increased 8.9-fold in BALF from HDM-exposed mice compared with that from sham-control mice. HDM exposure resulted in significant changes in the expression of 139 miRNAs in EVs and 175 miRNAs in lung tissues, with 54 miRNAs being common in both samples. Expression changes of these 54 miRNAs between miRNAs in AEVs and lung tissues after HDM exposure were inversely correlated. Computational analysis revealed that 31 genes, including IL-13 and IL-5Ra, are putative targets of the miRNAs up-regulated in AEVs but down-regulated in lung tissues after HDM exposure. The amount of AEV in BALF after HDM exposure was diminished by treatment with the sphingomyelinase inhibitor GW4869. The treatment with GW4869 also decreased Th2 cytokines and eosinophil counts in BALFs and reduced eosinophil accumulation in airway walls and mucosa. CONCLUSION These results indicate that selective sorting of miRNA including Th2 inhibitory miRNAs into AEVs and increase release to the airway after HDM exposure would be involved in the pathogenesis of allergic airway inflammation.
Collapse
Affiliation(s)
- Y Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - S Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - T Inoue
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - K Kuroda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - K Yamagishi
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama-shi, Fukushima, Japan
| | - Y Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - S Shikano
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - K Soda
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - J Lötvall
- Department of Internal Medicine and Department of Respiratory Medicine and Allergology, The Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden.,Krefting Research Centre, University of Gothenburg, Sweden, and Codiak BioSciences, Cambridge, MA
| | - S Hashimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
104
|
Hill MR, Philp CJ, Billington CK, Tatler AL, Johnson SR, O'Dea RD, Brook BS. A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodelling. Biomech Model Mechanobiol 2018; 17:1451-1470. [PMID: 29968161 PMCID: PMC6154265 DOI: 10.1007/s10237-018-1037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/22/2018] [Indexed: 12/28/2022]
Abstract
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and pro-contractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms.
Collapse
Affiliation(s)
- Michael R Hill
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C25, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK.
| | - Christopher J Philp
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Amanda L Tatler
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Simon R Johnson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C28, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| | - Bindi S Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C26, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
105
|
Caminati M, Pham DL, Bagnasco D, Canonica GW. Type 2 immunity in asthma. World Allergy Organ J 2018; 11:13. [PMID: 29988331 PMCID: PMC6020328 DOI: 10.1186/s40413-018-0192-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2-immunity represents the typical adaptive response to allergen exposure in atopic individuals. It mainly involves Th2 cells and immunoglobulin E, as the main orchestrators of type 2-inflammation. Recently, it has been highlighted that allergens may be responsible for a Th2 response beside specific IgE activation and that a number of other environmental stimuli, such as viruses and pollutants, can trigger the same pattern of inflammation beyond atopy. Emerging data sustain a substantial role of the so-called epithelial dysfunction in asthma pathogenesis, both from anatomic and functional point of view. Furthermore an increasing amount of evidence demonstrates the relevance of innate immunity in polarizing a Th2 impaired response in asthmatic patients. Under this perspective, the complex cross-talking between airway epithelium, innate and adaptive immunity is emerging as a major determinant of type 2-inflammation beyond allergens. This review will include an update on the relevance of dysregulation of innate and adaptive type 2-immunity in asthma pathogenesis, particularly severe asthma, and on the role of the allergens that are associated with severe asthma. Type 2-immunity also will be reviewed in the light of the current and upcoming targeted treatments for severe asthma.
Collapse
Affiliation(s)
- Marco Caminati
- 1Asthma Center and Allergy Unit, Verona University Hospital, Piazzale Scuro10, 37134 Verona, Italy
| | - Duy Le Pham
- 2Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Diego Bagnasco
- University of Genoa Allergy and Respiratory Diseases, IRCCS San Martino Hospital, IST, University of Genoa, Genoa, Italy
| | - Giorgio Walter Canonica
- 4Personalized Medicine Clinic, Asthma & Allergy, Humanitas Clinical and Research Center, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
106
|
Vonk JM, Nieuwenhuis MAE, Dijk FN, Boudier A, Siroux V, Bouzigon E, Probst-Hensch N, Imboden M, Keidel D, Sin D, Bossé Y, Hao K, van den Berge M, Faiz A, Koppelman GH, Postma DS. Novel genes and insights in complete asthma remission: A genome-wide association study on clinical and complete asthma remission. Clin Exp Allergy 2018; 48:1286-1296. [PMID: 29786918 DOI: 10.1111/cea.13181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Asthma is a chronic respiratory disease without a cure, although there exists spontaneous remission. Genome-wide association (GWA) studies have pinpointed genes associated with asthma development, but did not investigate asthma remission. OBJECTIVE We performed a GWA study to develop insights in asthma remission. METHODS Clinical remission (ClinR) was defined by the absence of asthma treatment and wheezing in the last year and asthma attacks in the last 3 years and complete remission (ComR) similarly but additionally with normal lung function and absence of bronchial hyperresponsiveness (BHR). A GWA study on both ClinR and ComR was performed in 790 asthmatics with initial doctor diagnosis of asthma and BHR and long-term follow-up. We assessed replication of the 25 top single nucleotide polymorphisms (SNPs) in 2 independent cohorts (total n = 456), followed by expression quantitative loci (eQTL) analyses of the 4 replicated SNPs in lung tissue and epithelium. RESULTS Of the 790 asthmatics, 178 (23%) had ClinR and 55 ComR (7%) after median follow-up of 15.5 (range 3.3-47.8) years. In ClinR, 1 of the 25 SNPs, rs2740102, replicated in a meta-analysis of the replication cohorts, which was an eQTL for POLI in lung tissue. In ComR, 3 SNPs replicated in a meta-analysis of the replication cohorts. The top-hit, rs6581895, almost reached genome-wide significance (P-value 4.68 × 10-7 ) and was an eQTL for FRS2 and CCT in lung tissue. Rs1420101 was a cis-eQTL in lung tissue for IL1RL1 and IL18R1 and a trans-eQTL for IL13. CONCLUSIONS AND CLINICAL RELEVANCE By defining a strict remission phenotype, we identified 3 SNPs to be associated with complete asthma remission, where 2 SNPs have plausible biological relevance in FRS2, CCT, IL1RL1, IL18R1 and IL13.
Collapse
Affiliation(s)
- J M Vonk
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - M A E Nieuwenhuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - F N Dijk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - A Boudier
- INSERM, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - V Siroux
- INSERM, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France.,Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Univ. Grenoble Alpes, Grenoble, France.,CHU de Grenoble, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, IAB, Grenoble, France
| | - E Bouzigon
- UMR-946, Inserm, Paris, France.,Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris, France
| | - N Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - M Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - D Keidel
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - D Sin
- St Paul's Hospital, The University of British Columbia James Hogg Research Laboratory, Vancouver, BC, Canada.,Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Y Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | - K Hao
- Merck Research Laboratories, Boston, MA, USA
| | - M van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - A Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - G H Koppelman
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands
| | - D S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| |
Collapse
|
107
|
Morgan KA, Mann EH, Young AR, Hawrylowicz CM. ASTHMA - comparing the impact of vitamin D versus UVR on clinical and immune parameters. Photochem Photobiol Sci 2018; 16:399-410. [PMID: 28092390 DOI: 10.1039/c6pp00407e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The incidence of asthma has increased markedly since the 1960s and is currently estimated to affect more than 300 million individuals worldwide. A number of environmental factors are implicated in asthma pathogenesis, one of which is vitamin D. Vitamin D deficiency is a global health concern and has increased in parallel with asthma incidence. Epidemiological studies report associations between low vitamin D status, assessed as circulating levels of 25-hydroxyvitamin D, with asthma incidence, severity, exacerbations and responses to treatment. This has led to clinical studies to test whether increasing the levels of vitamin D improves asthma management. Despite being highly variable in dosing regimens, design and outcomes, meta-analyses suggest overall positive outcomes with respect to reduced asthma exacerbations and steroid requirements. The primary mechanism for increasing vitamin D levels in the body is through exposure of the skin to the ultraviolet B (UVB) component of ultraviolet radiation (UVR), most commonly from sun exposure. However, only a limited number of studies investigating the impact of UVR on the asthmatic response have been performed; these generally report on the impact of latitude as a surrogate of sun exposure, or address this in animal models. To the best of our knowledge no comprehensive trials to assess the impact of UVB radiation on asthma outcomes have been performed. Within this review we discuss observational and clinical studies in this field, and innate and adaptive immune mechanisms through which UVR and vitamin D may impact respiratory health, and asthma. We highlight the heterogeneity of asthmatic disease, which is likely to impact upon the efficacy of interventional studies, and briefly overview more recent findings relating to the impact of vitamin D/UVR on the development of asthma.
Collapse
Affiliation(s)
- Kylie A Morgan
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, UK. and NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, UK and St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, UK
| | - Elizabeth H Mann
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, UK.
| | - Antony R Young
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, UK and St John's Institute of Dermatology, Division of Genetics and Molecular Medicine, King's College London, UK
| | - Catherine M Hawrylowicz
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, UK. and NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, UK
| |
Collapse
|
108
|
Niespodziana K, Stenberg-Hammar K, Megremis S, Cabauatan CR, Napora-Wijata K, Vacal PC, Gallerano D, Lupinek C, Ebner D, Schlederer T, Harwanegg C, Söderhäll C, van Hage M, Hedlin G, Papadopoulos NG, Valenta R. PreDicta chip-based high resolution diagnosis of rhinovirus-induced wheeze. Nat Commun 2018; 9:2382. [PMID: 29915220 PMCID: PMC6006174 DOI: 10.1038/s41467-018-04591-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
Rhinovirus (RV) infections are major triggers of acute exacerbations of severe respiratory diseases such as pre-school wheeze, asthma and chronic obstructive pulmonary disease (COPD). The occurrence of numerous RV types is a major challenge for the identification of the culprit virus types and for the improvement of virus type-specific treatment strategies. Here, we develop a chip containing 130 different micro-arrayed RV proteins and peptides and demonstrate in a cohort of 120 pre-school children, most of whom had been hospitalized due to acute wheeze, that it is possible to determine the culprit RV species with a minute blood sample by serology. Importantly, we identify RV-A and RV-C species as giving rise to most severe respiratory symptoms. Thus, we have generated a chip for the serological identification of RV-induced respiratory illness which should be useful for the rational development of preventive and therapeutic strategies targeting the most important RV types.
Collapse
Affiliation(s)
- Katarzyna Niespodziana
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Katarina Stenberg-Hammar
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Spyridon Megremis
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, M13 9NT, UK
| | - Clarissa R Cabauatan
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Kamila Napora-Wijata
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Phyllis C Vacal
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Daniela Gallerano
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Daniel Ebner
- Phadia Austria GmbH, Part of Thermo Fisher Scientific ImmunoDiagnostics, A-1220, Vienna, Austria
| | - Thomas Schlederer
- Phadia Austria GmbH, Part of Thermo Fisher Scientific ImmunoDiagnostics, A-1220, Vienna, Austria
| | - Christian Harwanegg
- Phadia Austria GmbH, Part of Thermo Fisher Scientific ImmunoDiagnostics, A-1220, Vienna, Austria
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Marianne van Hage
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital, SE-171 77, Stockholm, Sweden
| | - Gunilla Hedlin
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Nikolaos G Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, M13 9NT, UK.
- Allergy Department, 2nd Pediatric Clinic, University of Athens, 106 79, Athens, Greece.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
109
|
Poly-L-Arginine Induces Apoptosis of NCI-H292 Cells via ERK1/2 Signaling Pathway. J Immunol Res 2018; 2018:3651743. [PMID: 30013990 PMCID: PMC6022307 DOI: 10.1155/2018/3651743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022] Open
Abstract
Cationic protein is a cytotoxic protein secreted by eosinophils and takes part in the damage of airway epithelium in asthma. Poly-L-arginine (PLA), a synthetic cationic protein, is widely used to mimic the biological function of the natural cationic protein in vitro. Previous studies demonstrated the damage of the airway epithelial cells by cationic protein, but the molecular mechanism is unclear. The purpose of this study aimed at exploring whether PLA could induce apoptosis of human airway epithelial cells (NCI-H292) and the underlying mechanism. Methods. The morphology of apoptotic cells was observed by transmission electron microscopy. The rate of apoptosis was analyzed by flow cytometry (FCM). The expressions of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Bcl-2/Bax, and cleaved caspase-3 were assessed by western blot. Results. PLA can induce apoptosis in NCI-H292 cells in a concentration-dependent manner. Moreover, the phosphorylation of the ERK1/2 and the unbalance of Bcl2/Bax, as well as the activation of caspase-3, were involved in the PLA-induced apoptosis. Conclusions. PLA can induce the apoptosis in NCI-H292 cells, and this process at least involved the ERK1/2 and mitochondrial pathway. The results could have some indications in revealing the apoptotic damage of the airway epithelial cells. Besides, inhibition of cationic protein-induced apoptotic death in airway epithelial cells could be considered as a potential target of anti-injury or antiremodeling in asthmatics.
Collapse
|
110
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
111
|
Reeves SR, Barrow KA, White MP, Rich LM, Naushab M, Debley JS. Stability of gene expression by primary bronchial epithelial cells over increasing passage number. BMC Pulm Med 2018; 18:91. [PMID: 29843677 PMCID: PMC5975426 DOI: 10.1186/s12890-018-0652-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background An increasing number of studies using primary human bronchial epithelial cells (BECs) have reported intrinsic differences in the expression of several genes between cells from asthmatic and non-asthmatic donors. The stability of gene expression by primary BECs with increasing cell passage number has not been well characterized. Methods To determine if expression by primary BECs from asthmatic and non-asthmatic children of selected genes associated with airway remodeling, innate immune response, immunomodulatory factors, and markers of differentiated airway epithelium, are stable over increasing cell passage number, we studied gene expression patterns in passages 1, 2, 3, 4, and 5 BECs from asthmatic (n = 6) and healthy (n = 6) subjects that were differentiated at an air-liquid interface. RNA was harvested from BECs and RT-PCR was performed for TGFβ1, TGFβ2, activin A, FSTL3, MUC5AC, TSLP, IL-33, CXCL10, IFIH1, p63, KT5, TUBB4A, TJP1, OCLN, and FOXJ1. Results Expression of TGFβ1, TGFβ2, activin A, FSTL3, MUC5AC, CXCL10, IFIH1, p63, KT5, TUBB4A, TJP1, OCLN, and FOXJ1 by primary BECs from asthmatic and healthy children was stable with no significant differences between passages 1, 2 and 3; however, gene expression at cell passages 4 and 5 was significantly greater and more variable compared to passage 1 BECs for many of these genes. IL-33 and FOXJ1 expression was also stable between passages 1 through 3, however, expression at passages 4 and 5 was significantly lower than by passage 1 BECs. TSLP, p63, and KRT5 expression was stable across BEC passages 1 through 5 for both asthmatic and healthy BECs. Conclusions These observations illustrate the importance of using BECs from passage ≤3 when studying gene expression by asthmatic and non-asthmatic primary BECs and characterizing the expression pattern across increasing cell passage number for each new gene studied, as beyond passage 3 genes expressed by primary BECs appear to less accurately model in vivo airway epithelial gene expression. Electronic supplementary material The online version of this article (10.1186/s12890-018-0652-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.,Pulmonary and Sleep Medicine Division, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kaitlyn A Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Maria P White
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Maryam Naushab
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA. .,Pulmonary and Sleep Medicine Division, Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
112
|
Turner S, Custovic A, Ghazal P, Grigg J, Gore M, Henderson J, Lloyd CM, Marsland B, Power UF, Roberts G, Saglani S, Schwarze J, Shields M, Bush A. Pulmonary epithelial barrier and immunological functions at birth and in early life - key determinants of the development of asthma? A description of the protocol for the Breathing Together study. Wellcome Open Res 2018; 3:60. [PMID: 30191183 PMCID: PMC6097397 DOI: 10.12688/wellcomeopenres.14489.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 01/30/2023] Open
Abstract
Background. Childhood asthma is a common complex condition whose aetiology is thought to involve gene-environment interactions in early life occurring at the airway epithelium, associated with immune dysmaturation. It is not clear if abnormal airway epithelium cell (AEC) and cellular immune system functions associated with asthma are primary or secondary. To explore this, we will (i) recruit a birth cohort and observe the evolution of respiratory symptoms; (ii) recruit children with and without asthma symptoms; and (iii) use existing data from children in established STELAR birth cohorts. Novel pathways identified in the birth cohort will be sought in the children with established disease. Our over-arching hypothesis is that epithelium function is abnormal at birth in babies who subsequently develop asthma and progression is driven by abnormal interactions between the epithelium, genetic factors, the developing immune system, and the microbiome in the first years of life. Methods. One thousand babies will be recruited and nasal AEC collected at 5-10 days after birth for culture. Transcriptomes in AEC and blood leukocytes and the upper airway microbiome will be determined in babies and again at one and three years of age. In a subset of 100 individuals, AEC transcriptomes and microbiomes will also be assessed at three and six months. Individuals will be assigned a wheeze category at age three years. In a cross sectional study, 300 asthmatic and healthy children aged 1 to 16 years will have nasal and bronchial AEC collected for culture and transcriptome analysis, leukocyte transcriptome analysis, and upper and lower airway microbiomes ascertained. Genetic variants associated with asthma symptoms will be confirmed in the STELAR cohorts. Conclusions. This study is the first to comprehensively study the temporal relationship between aberrant AEC and immune cell function and asthma symptoms in the context of early gene-microbiome interactions.
Collapse
Affiliation(s)
- Steve Turner
- Child Health, University of Aberdeen, Aberdeen, AB25 2ZG, UK
| | - Adnan Custovic
- Department of Paediatrics, Imperial College and Royal Brompton Hospital, London, SW3 6NP, UK
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, EH16 4TJ, UK
| | - Jonathan Grigg
- Centre for Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Mindy Gore
- Department of Paediatrics, Imperial College and Royal Brompton Hospital, London, SW3 6NP, UK
| | - John Henderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 1TH, UK
| | - Clare M Lloyd
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Ben Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, 3004 , Australia
| | - Ultan F Power
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, PO30 5TG, UK
| | - Sejal Saglani
- Department of Paediatrics, Imperial College and Royal Brompton Hospital, London, SW3 6NP, UK
| | - Jurgen Schwarze
- Child Life and Health and MRC-Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH9 1UW, UK
| | - Michael Shields
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Andrew Bush
- Department of Paediatrics, Imperial College and Royal Brompton Hospital, London, SW3 6NP, UK
| |
Collapse
|
113
|
Kolmert J, Piñeiro-Hermida S, Hamberg M, Gregory JA, López IP, Fauland A, Wheelock CE, Dahlén SE, Pichel JG, Adner M. Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins Other Lipid Mediat 2018; 137:20-29. [PMID: 29763661 DOI: 10.1016/j.prostaglandins.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 05/09/2018] [Indexed: 01/08/2023]
Abstract
The profile of activation of lipid mediator (LM) pathways in asthmatic airway inflammation remains unclear. This experimental study quantified metabolite levels of ω3-, ω6- and ω9-derived polyunsaturated fatty acids in bronchoalveolar lavage fluid (BALF) after 4-weeks of repeated house dust mite (HDM) exposure in a murine (C57BL/6) asthma model. The challenge induced airway hyperresponsiveness, pulmonary eosinophil infiltration, but with low and unchanged mast cell numbers. Of the 112 screened LMs, 26 were increased between 2 to >25-fold in BALF with HDM treatment (p < 0.05, false discovery rate = 5%). While cysteinyl-leukotrienes were the most abundant metabolites at baseline, their levels did not increase after HDM treatment, whereas elevation of PGD2, LTB4 and multiple 12/15-lipoxygenase products, such as 5,15-DiHETE, 15-HEDE and 15-HEPE were observed. We conclude that this model has identified a global lipoxygenase activation signature, not linked to mast cells, but with aspects that mimic chronic allergic airway inflammation in asthma.
Collapse
Affiliation(s)
- Johan Kolmert
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sergio Piñeiro-Hermida
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joshua A Gregory
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Icíar P López
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - José G Pichel
- Lung Cancer and Respiratory Diseases Unit, Centro de Investigación Biomédica de la Rioja (CIBIR), Fundación Rioja Salud, Logroño, Spain
| | - Mikael Adner
- Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
114
|
Jiang G, Liu CT, Zhang WD. IL-17A and GDF15 are able to induce epithelial-mesenchymal transition of lung epithelial cells in response to cigarette smoke. Exp Ther Med 2018; 16:12-20. [PMID: 29977354 PMCID: PMC6030931 DOI: 10.3892/etm.2018.6145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
Smoking is one of the primary causes of chronic obstructive pulmonary disease (COPD). Sustained active epithelial-mesenchymal transition (EMT) in COPD may explain the core pathophysiology of airway fibrosis and why lung cancer is so common among smokers. Interleukin (IL)-17A and growth/differentiation factor (GDF)15 have been reported to be biomarkers of COPD; however, the role of IL-17A and GDF15 in EMT remains unclear. The aim of the present study was to investigate the role of IL-17A and GDF15 in the pathogenesis of COPD. It was demonstrated that IL-17A and GDF15 are upregulated in patients with COPD, particularly those with a history of smoking. The results also revealed that IL-17A and GDF15 expression was negatively correlated with the epithelial marker epithelial-cadherin and positively correlated with the mesenchymal marker vimentin. Furthermore, treatment with cigarette smoke extract or IL-17A induced GDF15 expression. Combined treatment with IL-17A and GDF15 induced EMT in human small epithelial HSAEpiC cells in vitro. Collectively, the results of the present study suggest that IL-17A and GDF15-induced EMT serves an important role in the pathology of COPD.
Collapse
Affiliation(s)
- Gang Jiang
- Department of Respiration, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Chen-Tao Liu
- Department of Paediatrics, Xiang Ya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei-Dong Zhang
- Department of Respiration, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
115
|
Fallacara A, Busato L, Pozzoli M, Ghadiri M, Ong HX, Young PM, Manfredini S, Traini D. Combination of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate for the treatment of inflammatory lung diseases: An in vitro study. Eur J Pharm Sci 2018; 120:96-106. [PMID: 29723596 DOI: 10.1016/j.ejps.2018.04.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/16/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
This in vitro study evaluated, for the first time, the safety and the biological activity of a novel urea-crosslinked hyaluronic acid component and sodium ascorbyl phosphate (HA-CL - SAP), singularly and/or in combination, intended for the treatment of inflammatory lung diseases. The aim was to understand if the combination HA-CL - SAP had an enhanced activity with respect to the combination native hyaluronic acid (HA) - SAP and the single SAP, HA and HA-CL components. Sample solutions displayed pH, osmolality and viscosity values suitable for lung delivery and showed to be not toxic on epithelial Calu-3 cells at the concentrations used in this study. The HA-CL - SAP displayed the most significant reduction in interleukin-6 (IL-6) and reactive oxygen species (ROS) levels, due to the combined action of HA-CL and SAP. Moreover, this combination showed improved cellular healing (wound closure) with respect to HA - SAP, SAP and HA, although at a lower rate than HA-CL alone. These preliminary results showed that the combination HA-CL - SAP could be suitable to reduce inflammation and oxidative stress in lung disorders like acute respiratory distress syndrome, asthma, emphysema and chronic obstructive pulmonary disease, where inflammation is prominent.
Collapse
Affiliation(s)
- Arianna Fallacara
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy..
| | - Laura Busato
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy..
| | - Michele Pozzoli
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Maliheh Ghadiri
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Paul M Young
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy..
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, The University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia.
| |
Collapse
|
116
|
Zhang X, Biagini Myers JM, Burleson JD, Ulm A, Bryan KS, Chen X, Weirauch MT, Baker TA, Butsch Kovacic MS, Ji H. Nasal DNA methylation is associated with childhood asthma. Epigenomics 2018; 10:629-641. [PMID: 29692198 DOI: 10.2217/epi-2017-0127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM We aim to study DNA methylation (DNAm) variations associated with childhood asthma. METHODS Nasal DNAm was compared between sibling pairs discordant for asthma, 29 sib pairs for genome-wide association studies and 54 sib pairs for verification by pyrosequencing. Associations of methylation with asthma symptoms, allergy and environmental exposures were evaluated. In vitro experiments and functional genomic analyses were performed to explore biologic relevance. RESULTS Three CpGs were associated with asthma. cg14830002 was associated with allergies in nonasthmatics. cg23602092 was associated with asthma symptoms. cg14830002 and cg23602092 were associated with traffic-related air pollution exposure. Nearby genes were transcriptionally regulated by diesel exhaust, house dust mite and 5-aza-2'-deoxycytidine. Active chromatin marks and transcription factor binding were found around these sites. CONCLUSION We identified novel DNAm variations associated with childhood asthma and suggested new disease-contributing epigenetic mechanisms.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jocelyn M Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - J D Burleson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley Ulm
- Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kelly S Bryan
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.,Center for Autoimmune Genomics & Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Biomedical Informatics & Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Theresa A Baker
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melinda S Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.,Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong Ji
- Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
117
|
Effects of microRNA-19b on airway remodeling, airway inflammation and degree of oxidative stress by targeting TSLP through the Stat3 signaling pathway in a mouse model of asthma. Oncotarget 2018; 8:47533-47546. [PMID: 28472780 PMCID: PMC5564584 DOI: 10.18632/oncotarget.17258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/12/2017] [Indexed: 02/07/2023] Open
Abstract
This study explored the effects of microRNA-19b (miR-19b) on airway remodeling, airway inflammation, and degree of oxidative stress in a mouse model of asthma. Bioinformatics analyses and dual luciferase reporter gene assays revealed that thymic stromal lymphopoietin (TSLP) is a direct target of miR-19b. An asthma model was established via ovalbumin (OVA) sensitization and challenge in 72 female BALB/c mice. Mice were then assigned to saline, OVA-sensitized, saline+miR-19b mimics, saline+anti-TSLP, OVA-sensitized+miR-19b mimics, OVA-sensitized+mimics scramble, OVA-sensitized+anti-TSLP, and OVA-sensitized+IgG2a groups. Pathological morphology changes were detected through hematoxylin/eosin, Masson, and periodic acid-Schiff staining. miR-19b was downregulated while TSLP and Stat3 were upregulated in the OVA-sensitized group compared with the saline group. Bronchoalveolar lavage fluid samples from OVA-sensitized mice showed increased total protein, IL-4, IL-5 and IL-6 levels, numbers of inflammatory cells, eosinophils, neutrophils, mononuclear macrophages and lymphocytes, and eosinophil% compared to controls. Lung tissues from sensitized mice exhibited decreased superoxide dismutase activity and increased methane dicarboxylic aldehyde levels. The effects of OVA sensitization were reversed in the OVA-sensitized+miR-19b mimics and OVA-sensitized+anti-TSLP groups. These findings suggest miR-19b reduces airway remodeling, airway inflammation, and degree of oxidative stress by inhibiting Stat3 signaling through TSLP downregulation in a mouse asthma model.
Collapse
|
118
|
Freer G, Maggi F, Pifferi M, Di Cicco ME, Peroni DG, Pistello M. The Virome and Its Major Component, Anellovirus, a Convoluted System Molding Human Immune Defenses and Possibly Affecting the Development of Asthma and Respiratory Diseases in Childhood. Front Microbiol 2018; 9:686. [PMID: 29692764 PMCID: PMC5902699 DOI: 10.3389/fmicb.2018.00686] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
The microbiome, a thriving and complex microbial community colonizing the human body, has a broad impact on human health. Colonization is a continuous process that starts very early in life and occurs thanks to shrewd strategies microbes have evolved to tackle a convoluted array of anatomical, physiological, and functional barriers of the human body. Cumulative evidence shows that viruses are part of the microbiome. This part, called virome, has a dynamic composition that reflects what we eat, how and where we live, what we do, our genetic background, and other unpredictable variables. Thus, the virome plays a chief role in shaping innate and adaptive host immune defenses. Imbalance of normal microbial flora is thought to trigger or exacerbate many acute and chronic disorders. A compelling example can be found in the respiratory apparatus, where early-life viral infections are major determinants for the development of allergic diseases, like asthma, and other non-transmissible diseases. In this review, we focus on the virome and, particularly, on Anelloviridae, a recently discovered virus family. Anelloviruses are major components of the virome, present in most, if not all, human beings, where they are acquired early in life and replicate persistently without causing apparent disease. We will discuss how modulation of innate and adaptive immune systems by Anelloviruses can influence the development of respiratory diseases in childhood and provide evidence for the use of Anelloviruses as useful and practical molecular markers to monitor inflammatory processes and immune system competence.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Massimo Pifferi
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Maria E Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
119
|
Khaitov MR, Gaisina AR, Shilovskiy IP, Smirnov VV, Ramenskaia GV, Nikonova AA, Khaitov RM. The Role of Interleukin-33 in Pathogenesis of Bronchial Asthma. New Experimental Data. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29534664 DOI: 10.1134/s0006297918010029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-33 (IL-33) belongs to the IL-1 cytokine family and plays an important role in modulating immune system by inducing Th2 immune response via the ST2 membrane receptor. Epithelial cells are the major producers of IL-33. However, IL-33 is also secreted by other cells, e.g., bone marrow cells, dendritic cells, macrophages, and mast cells. IL-33 targets a broad range of cell types bearing the ST2 surface receptor. Many ST2-positive cells, such as Th2 cells, mast cells, basophils, and eosinophils, are involved in the development of allergic bronchial asthma (BA). This suggests that IL-33 directly participates in BA pathogenesis. Currently, the role of IL-33 in pathogenesis of inflammatory disorders, including BA, has been extensively investigated using clinical samples collected from patients, as well as asthma animal models. In particular, numerous studies on blocking IL-33 and its receptor by monoclonal antibodies in asthma mouse model have been performed over the last several years; IL-33- and ST2-deficient transgenic mice have also been generated. In this review, we summarized and analyzed the data on the role of IL-33 in BA pathogenesis and the prospects for creating new treatments for BA.
Collapse
Affiliation(s)
- M R Khaitov
- Institute of Immunology, FMBA of Russia, Moscow, 115478, Russia.
| | | | | | | | | | | | | |
Collapse
|
120
|
Shi JP, Wang SY, Chen LL, Zhang XY, Zhao YH, Du B, Jiang WZ, Qian M, Ren H. P2Y6 contributes to ovalbumin-induced allergic asthma by enhancing mast cell function in mice. Oncotarget 2018; 7:60906-60918. [PMID: 27590515 PMCID: PMC5308625 DOI: 10.18632/oncotarget.11758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Extracelluar nucleotides have been identified as regulatory factors in asthmatic pathogenesis by activating purinergic receptors. This research aimed to investigate the function of the purinergic receptor P2Y6 in mediating airway inflammation in allergic asthma. Wild-type (WT) and P2Y6-deficient mice were stimulated with ovalbumin (OVA) to construct asthmatic mouse models. Overexpression of P2Y6 and uridine 5'-diphosphate (UDP)-releasing were demonstrated in lung tissues in ovalbumin-induced asthmatic mice. The release of the cytokine IL-4, mast cell invasion, and the airway remodeling phenotypes were more severe following the application of UDP in asthmatic mice. However, P2Y6 deficiency reduced these asthmatic pathogeneticsymptoms markedly in a mouse model. In vitro, we found that P2Y6 in purified mast cells enhanced the functions of mast cells in the inflammatory response in the asthmatic process by triggering their capability for migration, cytokine secretion and granule release. Moreover, P2Y6 stimulated the function of mast cells through activation of the AKT signaling pathway. Our data provides evidence that P2Y6 contributes to allergic airway inflammation and remodeling by enhancing the functions of mast cells in ovalbumin-induced asthmatic mice.
Collapse
Affiliation(s)
- Jue-Ping Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Shao-Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Li-Li Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Xiao-Yu Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Yi-Han Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Wen-Zheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| |
Collapse
|
121
|
Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C, Tan M, Jiang J, Qin X. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Rep 2018; 17:6935-6941. [PMID: 29568899 DOI: 10.3892/mmr.2018.8739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
As the first barrier to the outside environment, airway epithelial cells serve a central role in the initiation and development of airway inflammation. Chemokines are the most direct and immediate cell factors for the recruitment and migration of inflammatory cells. The present review focused on the role of epithelial chemokines in the pathogenesis of airway inflammation in asthma. In addition to traditional CC family chemokines and CXC family chemokines, airway epithelial cells also express other chemokines, including thymic stromal lymphopoietin and interleukin‑33. By expressing and secreting chemokines, airway epithelial cells serve a key role in orchestrating airway inflammation in asthma.
Collapse
Affiliation(s)
- Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xun Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Caixia Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meiling Tan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
122
|
Liu M, Shen J, Yuan H, Chen F, Song H, Qin H, Li Y, Xu J, Ye Q, Li S, Saeki K, Yokomizo T. Leukotriene B4 receptor 2 regulates the proliferation, migration, and barrier integrity of bronchial epithelial cells. J Cell Physiol 2018; 233:6117-6124. [PMID: 29323699 DOI: 10.1002/jcp.26455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/05/2018] [Indexed: 11/07/2022]
Abstract
The airway epithelium plays a crucial role in the pathogenesis of asthma. The functions of leukotriene B4 receptor 2 (BLT2) on the airway epithelial cells remains unknown. In our study, BLT2 expression in 16HBE bronchial epithelial cells were manipulated by transfection with BLT2 overexpression plasmid or BLT2 small interference RNA. 16HBE cells were then exposed to BLT2 antagonist (LY255283) or BLT2 agonist (12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid [12-HHT] or CAY10583). The results showed that BLT2 overexpression, 12-HHT stimulation, or CAY10583 treatment resulted in the enhanced proliferation and migration of 16HBE cells. In addition, BLT2 showed an inhibitory effect on epithelial permeability as illustrated by the measurement of transepithelial electrical resistance (TER) and epithelial permeability, and a promoting effect on the levels of tight junction proteins (occludin and claudin-4) and phosphorylated p38 as demonstrated by real-time PCR and Western blotting analyses. These results suggest BLT2 as a key determinant of airway epithelial barrier integrity. On the contrary, RNAi-mediated knockdown or LY255283 treatment had reversed effects on the proliferation, migration, and epithelial barrier integrity. Together, our findings suggest the critical roles of BLT2 on the functions of bronchial epithelial cells and that BLT2 agonists are potential therapeutic agents for asthma treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Shen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Yuan
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaidong Song
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Qin
- Department of Respiratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqin Li
- Department of Respiratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiabo Xu
- Department of Respiratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Ye
- Department of Respiratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenxian Li
- Department of Endocrinology and Metabolism, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
123
|
Erdem SB, Can D, Girit S, Çatal F, Şen V, Pekcan S, Yüksel H, Bingöl A, Bostancı I, Erge D, Ersu R. Does atopy affect the course of viral pneumonia? Allergol Immunopathol (Madr) 2018. [PMID: 28634031 PMCID: PMC7130674 DOI: 10.1016/j.aller.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The presence of atopy is considered as a risk factor for severe respiratory symptoms in children. The objective of this study was to examine the effect of atopy on the course of disease in children hospitalised with viral pneumonia. Methods Children between the ages of 1 and 6 years hospitalised due to viral pneumonia between the years of 2013 and 2016 were included to this multicentre study. Patients were classified into two groups as mild–moderate and severe according to the course of pneumonia. Presence of atopy was evaluated with skin prick tests. Groups were compared to evaluate the risk factors associated with severe viral pneumonia. Results A total of 280 patients from nine centres were included in the study. Of these patients, 163 (58.2%) were male. Respiratory syncytial virus (29.7%), Influenza A (20.5%), rhinovirus (18.9%), adenovirus (10%), human metapneumovirus (8%), parainfluenza (5.2%), coronavirus (6%), and bocavirus (1.6%) were isolated from respiratory samples. Eighty-five (30.4%) children had severe pneumonia. Atopic sensitisation was found in 21.4% of the patients. Ever wheezing (RR: 1.6, 95% CI: 1.1–2.4), parental asthma (RR: 1.5, 95% CI: 1.1–2.2), other allergic diseases in the family (RR: 1.8, 95% CI: 1.2–2.9) and environmental tobacco smoke (RR: 1.6, 95% CI: 1.1–3.5) were more common in the severe pneumonia group. Conclusions When patients with mild–moderate pneumonia were compared to patients with severe pneumonia, frequency of atopy was not different between the two groups. However, parental asthma, ever wheezing and environmental tobacco smoke exposure are risk factors for severe viral pneumonia in children.
Collapse
Affiliation(s)
- S B Erdem
- Dr Behcet Uz Children's Hospital, Department of Pediatric Allergy, Izmir, Turkey.
| | - D Can
- Dr Behcet Uz Children's Hospital, Department of Pediatric Allergy, Izmir, Turkey
| | - S Girit
- Kartal Dr Lütfü Kırdar Training and Research Hospital, Pediatric Pulmonology, Istanbul, Turkey
| | - F Çatal
- Inonu University Faculty of Medicine, Department of Allergy Immunology, Malatya, Turkey
| | - V Şen
- Dicle University Faculty of Medicine, Department of Pediatrics, Diyarbakır, Turkey
| | - S Pekcan
- Necmettin Erbakan University, Meram Medical Faculty, Department of Allergy Immunology, Konya, Turkey
| | - H Yüksel
- Celal Bayar University Medical Faculty, Department of Allergy Immunology, Manisa, Turkey
| | - A Bingöl
- Akdeniz University Faculty of Medicine, Department of Allergy Immunology, Antalya, Turkey
| | - I Bostancı
- Dr. Sami Ulus Obstetrics and Child Health and Diseases Training and Research Hospital, Department of Allergy Immunology, Ankara, Turkey
| | - D Erge
- Adnan Menderes University Medical Faculty, Department of Allergy Immunology, Aydın, Turkey
| | - R Ersu
- Marmara University Faculty of Medicine, Department of Pediatric Pulmonology, Istanbul, Turkey
| |
Collapse
|
124
|
Turner S, Miller D, Walsh GM, Scaife A, Power UF, Shields MD, Devereux G. Pro-inflammatory mediator responses from neonatal airway epithelial cells and early childhood wheeze. Pediatr Pulmonol 2018; 53:10-16. [PMID: 29136347 DOI: 10.1002/ppul.23915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/24/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Airway epithelial cell (AEC) function differs between children with and without asthma. Here, we associated neonatal AEC function with asthma symptoms at 4 years of age. METHODS Nasal AEC were collected from neonates within 48 h of birth. Cells were cultured and stimulated with tumor necrosis factor alpha/interleukin-1 beta (TNFα/IL-1β), lipopolysaccharide (LPS), or house dust mite (HDM). Absolute concentrations of pro-inflammatory mediators in the culture supernatant were quantified and expressed as median [interquartile range] in pg/mg protein. A parent-completed respiratory questionnaire was returned when the child was 4 years old. RESULTS AEC were successfully cultured in 139 neonates, of whom 120 were contacted at 4 years and 91 (76%) questionnaires were returned. Sixteen children had wheezed ever and 11 had recent wheeze. At birth, when compared to those with no recent wheeze, supernatants from cultured neonatal AEC from the children with recent wheeze had reduced median IL-8 (CXCL8) release after treatment with culture medium alone (P = 0.049), with TNFα/IL-1β (P < 0.001) and LPS (P = 0.004). Additionally, and when compared to those with no recent wheeze, 4 year olds with recent wheeze had reduced neonatal AEC release of IL-6 (P = 0.013), GMCSF (P = 0.012), and ICAM-1 (P = 0.017) after treatment with TNFα/IL-1β and reduced release of ICAM-1 (P = 0.038) and RANTES (P = 0.042) after treatment with HDM. CONCLUSIONS Abnormalities in AEC function are present at birth before the onset of childhood wheeze. The relationship between reduced AEC function at birth and wheeze at 4 years was not exclusive, suggesting that post-natal factors are required for the AEC abnormality to translate into symptoms.
Collapse
Affiliation(s)
- Steve Turner
- Child Health, University of Aberdeen, Aberdeen, AB25 2ZG, United Kingdom
| | - David Miller
- Child Health, University of Aberdeen, Aberdeen, AB25 2ZG, United Kingdom
| | - Garry M Walsh
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Alison Scaife
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Ultan F Power
- Centre of Experimental Medicine, Queens' University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Michael D Shields
- Centre of Experimental Medicine, Queens' University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Graham Devereux
- Child Health, University of Aberdeen, Aberdeen, AB25 2ZG, United Kingdom
| |
Collapse
|
125
|
Villaseñor A, Rosace D, Obeso D, Pérez-Gordo M, Chivato T, Barbas C, Barber D, Escribese MM. Allergic asthma: an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy 2017; 47:442-456. [PMID: 28160515 DOI: 10.1111/cea.12902] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic asthma is a prominent disease especially during childhood. Indoor allergens, in general, and particularly house dust mites (HDM) are the most prevalent sensitizers associated with allergic asthma. Available data show that 65-130 million people are mite-sensitized world-wide and as many as 50% of these are asthmatic. In fact, sensitization to HDM in the first years of life can produce devastating effects on pulmonary function leading to asthmatic syndromes that can be fatal. To date, there has been considerable research into the pathological pathways and structural changes associated with allergic asthma. However, limitations related to the disease heterogeneity and a lack of knowledge into its pathophysiology have impeded the generation of valuable data needed to appropriately phenotype patients and, subsequently, treat this disease. Here, we report a systematic and integral analysis of the disease, from airway remodelling to the immune response taking place throughout the disease stages. We present an overview of metabolomics, the management of complex multifactorial diseases through the analysis of all possible metabolites in a biological sample, obtaining a global interpretation of biological systems. Special interest is placed on the challenges to obtain biological samples and the methodological aspects to acquire relevant information, focusing on the identification of novel biomarkers associated with specific phenotypes of allergic asthma. We also present an overview of the metabolites cited in the literature, which have been related to inflammation and immune response in asthma and other allergy-related diseases.
Collapse
Affiliation(s)
- A Villaseñor
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Rosace
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Obeso
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M Pérez-Gordo
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - T Chivato
- Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - D Barber
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| | - M M Escribese
- Faculty of Medicine, Institute of Applied Molecular Medicine (IMMA), CEU San Pablo University, Boadilla del Monte, Madrid, Spain.,Basic Medical Sciences Department, Faculty of Medicine, CEU San Pablo University, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
126
|
Pappová L, Jošková M, Kazimierová I, Šutovská M, Fraňová S. Combination Therapy with Budesonide and Salmeterol in Experimental Allergic Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 935:25-34. [PMID: 27329088 DOI: 10.1007/5584_2016_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The aim of this study was to determinate bronchodilator, antitussive, and ciliomodulatory activity of inhaled combination therapy with budesonide and salmeterol, and to correlate the results with the anti-inflammatory effect. The experiments were performed using two models of allergic inflammation (21 and 28 days long sensitization with ovalbumine) in guinea pigs. The animals were treated daily by aerosols of budesonide (1 mM), salmeterol (0.17 mM), and a half-dose combination of the two drugs. Antitussive and bronchodilator activities were evaluated in vivo. The ciliary beat frequency (CBF) was assessed in vitro in tracheal brushed samples, and inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, and TNF-α) were determined in bronchoalveolar lavage fluid (BALF). We found that the combination therapy significantly decreased the number of cough efforts, airway reactivity, and the level of inflammatory cytokines in both models of allergic asthma. Three weeks long sensitization led to an increase in CBF and all three therapeutic approaches have shown a ciliostimulatory effect in order: salmeterol < budesonid < combination therapy. Four weeks long ovalbumine sensitization, on the other hand, decreased the CBF, increased IL-5, and decreased IL-13. In this case, only the combination therapy was able to stimulate the CBF. We conclude that a half-dose combination therapy of budesonide and salmeterol shows comparable antitussive, bronchodilator, and the anti-inflammatory effect to a full dose therapy with budesonide alone, but had a more pronounced stimulatory effect on the CBF.
Collapse
Affiliation(s)
- L Pappová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and Biomed, Martin, Slovakia
| | - M Jošková
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and Biomed, Martin, Slovakia
| | - I Kazimierová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and Biomed, Martin, Slovakia
| | - M Šutovská
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and Biomed, Martin, Slovakia
| | - S Fraňová
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and Biomed, Martin, Slovakia. .,Department of Pharmacology, Jesseniu Faculty of Medicine in Martin, Comenius University in Bratislava, 4C Malá Hora, Martin, 036 01, Slovakia.
| |
Collapse
|
127
|
Tsai YM, Chiang KH, Hung JY, Chang WA, Lin HP, Shieh JM, Chong IW, Hsu YL. Der f1 induces pyroptosis in human bronchial epithelia via the NLRP3 inflammasome. Int J Mol Med 2017; 41:757-764. [PMID: 29207030 PMCID: PMC5752164 DOI: 10.3892/ijmm.2017.3310] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/24/2017] [Indexed: 12/29/2022] Open
Abstract
Damage to the bronchial epithelium leads to persistent inflammation and airway remodelling in various respiratory diseases, such as asthma and chronic obstructive pulmonary disease. To date, the mechanisms underlying bronchial epithelial cell damage and death by common allergens remain largely unknown. The aim of the present study was to investigate Der f1, an allergen of Dermatophagoides farinae, which may result in the death of human bronchial epithelial cells (HBECs). Der f1 induces BECs to undergo the inflammatory cell death referred to as pyroptosis, induced by increasing lactate dehydrogenase release and propidium iodide penetration. Stimulation by Der f1 enhances interleukin (IL)‑1β cleavage and release, which is associated with caspase‑1 activation. In addition, the NOD‑like receptor family pyrin domain‑containing 3 (NLRP3), is required for the activation of caspase‑1 through increasing the formation of the inflammasome complex. Consistent with these findings, pre‑treatment of HBECs with a caspase‑1 inhibitor, or silencing of NLRP3 by siRNA transfection, reduced Der f1‑mediated IL‑1β and pyroptosis. Therefore, the common allergen Der f1 was not only found to induce allergy, but also led to pyroptosis and IL‑1β secretion via the NLRP3‑caspase‑1 inflammasome in HBECs. This newly identified connection of the Der f1 allergen with BEC damage and inflammation may play an important role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Kuo-Hwa Chiang
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Hui-Ping Lin
- Department of Respiratory Care, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan, R.O.C
| | - Jiunn-Min Shieh
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan, R.O.C
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
128
|
Aguilera-Aguirre L, Hao W, Pan L, Li X, Saavedra-Molina A, Bacsi A, Radak Z, Sur S, Brasier AR, Ba X, Boldogh I. Pollen-induced oxidative DNA damage response regulates miRNAs controlling allergic inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1058-L1068. [PMID: 28798252 PMCID: PMC5814700 DOI: 10.1152/ajplung.00141.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
A mucosal oxidative burst is a hallmark response to pollen exposure that promotes allergic inflammatory responses. Reactive species constituents of oxidative stress signal via the modification of cellular molecules including nucleic acids. One of the most abundant forms of oxidative genomic base damage is 8-oxo-7,8-dihydroguanine (8-oxoG), which is removed from DNA by 8-oxoguanine DNA glycosylase 1 (OGG1). OGG1 in complex with 8-oxoG acts as a GDP-GTP exchange factor and induces acute inflammation; however, the mechanism(s) by which OGG1 signaling regulates allergic airway inflammation is not known. Here, we postulate that the OGG1 signaling pathway differentially altered the levels of small regulatory RNAs and increased the expression of T helper 2 (Th2) cytokines in ragweed pollen extract (RWPE)-challenged lungs. To determine this, the lungs of sensitized mice expressing or lacking OGG1 were challenged with RWPE and/or with OGG1's excision product 8-oxoG. The responses in lungs were assessed by next-generation sequencing, as well as various molecular and histological approaches. The results showed that RWPE challenge induced oxidative burst and damage to DNA and activated OGG1 signaling, resulting in the differential expression of 84 micro-RNAs (miRNAs), which then exacerbated antigen-driven allergic inflammation and histological changes in the lungs. The exogenous administration of the downregulated let-7b-p3 mimetic or inhibitors of upregulated miR-23a or miR-27a decreased eosinophil recruitment and mucus and collagen production via controlling the expression of IL-4, IL-5, and IL-13. Together, these data demonstrate the roles of OGG1 signaling in the regulation of antigen-driven allergic immune responses via differential expression of miRNAs upstream of Th2 cytokines and eosinophils.
Collapse
Affiliation(s)
| | - Wenging Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Xiaoxue Li
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Alfredo Saavedra-Molina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Sanjiv Sur
- Division of Endocrinology and Division of Allergy and Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas; and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Allan R Brasier
- Division of Endocrinology and Division of Allergy and Immunology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas; and
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas;
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
129
|
Wolf S, Perez GF, Mukharesh L, Isaza N, Preciado D, Freishtat RJ, Pillai D, Rose MC, Nino G. Conditional reprogramming of pediatric airway epithelial cells: A new human model to investigate early-life respiratory disorders. Pediatr Allergy Immunol 2017; 28:810-817. [PMID: 28981980 PMCID: PMC5868353 DOI: 10.1111/pai.12810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Airway epithelial cells (AEC) are quite difficult to access in newborns and infants. It is critically important to develop robust life-extended models to conduct translational studies in this age group. We propose the use of a recently described cell culture technology (conditionally reprogrammed cells-CRC) to generate continuous primary cell cultures from nasal and bronchial AEC of young children. METHODS We collected nasal and/or bronchial AEC from a total of 23 subjects of different ages including newborns/infants/toddlers (0-2 years; N = 9), school-age children (4-11 years; N = 6), and a group of adolescent/adult donors (N = 8). For CRC generation, we used conditioned medium from mitotically inactivated 3T3 fibroblasts and Rho-associated kinase (ROCK) inhibitor (Y-27632). Antiviral immune responses were studied using 25 key antiviral genes and protein production of type III epithelial interferon (IFN λ1) after double-stranded (ds) RNA exposure. RESULTS CRC derived from primary AEC of neonates/infants and young children exhibited: (i) augmented proliferative capacity and life extension, (ii) preserved airway epithelial phenotype after multiple passages, (iii) robust immune responses characterized by the expression of innate antiviral genes and parallel nasal/bronchial production of IFN λ1 after exposure to dsRNA, and (iv) induction of airway epithelial inflammatory and remodeling responses to dsRNA (eg, CXCL8 and MMP9). CONCLUSION Conditional reprogramming of AEC from young children is a feasible and powerful translational approach to investigate early-life airway epithelial immune responses in humans.
Collapse
Affiliation(s)
- S Wolf
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - G F Perez
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - L Mukharesh
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - N Isaza
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Neonatology, Children's National Medical Center, Washington, DC, USA
| | - D Preciado
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pediatric Otorhinolaryngology, Children's National Medical Center, Washington, DC, USA
| | - R J Freishtat
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Emergency Medicine, Children's National Medical Center, Washington, DC, USA
| | - D Pillai
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - M C Rose
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - G Nino
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
130
|
O’Sullivan MJ, Gabriel E, Panariti A, Park CY, Ijpma G, Fredberg JJ, Lauzon AM, Martin JG. Epithelial Cells Induce a Cyclo-Oxygenase-1-Dependent Endogenous Reduction in Airway Smooth Muscle Contractile Phenotype. Am J Respir Cell Mol Biol 2017; 57:683-691. [PMID: 28708434 PMCID: PMC5765417 DOI: 10.1165/rcmb.2016-0427oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/29/2017] [Indexed: 12/11/2022] Open
Abstract
Airway smooth muscle cells (ASMCs) are phenotypically regulated to exist in either a proliferative or a contractile state. However, the influence of other airway structural cell types on ASMC phenotype is largely unknown. Although epithelial cells are known to drive ASM proliferation, their effects on the contractile phenotype are uncertain. In the current study, we tested the hypothesis that epithelial cells reduce the contractile phenotype of ASMCs. To do so, we measured force production by traction microscopy, gene and protein expression, as well as calcium release by Fura-2 ratiometric imaging. ASMCs incubated with epithelial-derived medium produced less force after histamine stimulation. We observed reduced expression of myocardin, α-smooth muscle actin, and calponin within ASMCs after coculture with epithelial cells. Peak calcium release in response to histamine was diminished, and depended on the synthesis of cyclo-oxygenase-1 products by ASM and on prostaglandin E receptors 2 and 4. Together, these in vitro results demonstrate that epithelial cells have the capacity to coordinately reduce ASM contraction by functional antagonism and by reduction of the expression of certain contractile proteins.
Collapse
Affiliation(s)
- Michael J. O’Sullivan
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Elizabeth Gabriel
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Alice Panariti
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Chan Y. Park
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Gijs Ijpma
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| | - James G. Martin
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada; and
| |
Collapse
|
131
|
Brugha R, Lowe R, Henderson AJ, Holloway JW, Rakyan V, Wozniak E, Mahmud N, Seymour K, Grigg J, Shaheen SO. DNA methylation profiles between airway epithelium and proxy tissues in children. Acta Paediatr 2017; 106:2011-2016. [PMID: 28833606 DOI: 10.1111/apa.14027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/24/2017] [Accepted: 08/15/2017] [Indexed: 12/14/2022]
Abstract
AIM Epidemiological studies of deoxyribonucleic acid (DNA) methylation in airway disease have largely been conducted using blood or buccal samples. However, given tissue specificity of DNA methylation, these surrogate tissues may not allow reliable inferences about methylation in the lung. We sought to compare the pattern of DNA methylation in blood, buccal and nasal epithelial cells to that in airway epithelial cells from children. METHODS Samples of blood, and buccal, nasal and airway epithelium were obtained from six children undergoing elective anaesthesia for adenotonsillectomy. DNA methylation was assessed at 450 000 5'-C-phosphate-G-3' (CpG) sites using the Illumina HumanMethylation450 array. RESULTS Eighteen samples from all sites were suitable for analysis. Hierarchical clustering demonstrated that the methylation profile in nasal epithelium was most representative of that in airway epithelium; the profile in buccal cells was moderately similar and that in blood was least similar. CONCLUSION DNA methylation in blood poorly reflects methylation in airway epithelium. Future epidemiological studies of DNA methylation and airway diseases should consider measurement of methylation either in buccal cells or, preferably, in nasal epithelial cells.
Collapse
Affiliation(s)
- Rossa Brugha
- National Heart and Lung Institute; Imperial College London; London UK
| | - Robert Lowe
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - A. John Henderson
- School of Social and Community Medicine; University of Bristol; Bristol UK
| | - John W. Holloway
- Human Development and Health; Faculty of Medicine; University of Southampton; Southampton UK
| | - Vardhman Rakyan
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Eva Wozniak
- Genome Centre; Barts and The London School of Medicine and Dentistry; London UK
| | - Nadiya Mahmud
- Genome Centre; Barts and The London School of Medicine and Dentistry; London UK
| | - Kay Seymour
- Ear, Nose and Throat Surgery; Barts Health NHS Trust; London UK
| | - Jonathan Grigg
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Seif O. Shaheen
- Blizard Institute; Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| |
Collapse
|
132
|
Kim YH, Choi YJ, Lee EJ, Kang MK, Park SH, Kim DY, Oh H, Park SJ, Kang YH. Novel glutathione-containing dry-yeast extracts inhibit eosinophilia and mucus overproduction in a murine model of asthma. Nutr Res Pract 2017; 11:461-469. [PMID: 29209456 PMCID: PMC5712496 DOI: 10.4162/nrp.2017.11.6.461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/OBSECTIVE Airway inflammation by eosinophils, neutrophils and alveolar macrophages is a characteristic feature of asthma that leads to pathological subepithelial thickening and remodeling. Our previous study showed that oxidative stress in airways resulted in eosinophilia and epithelial apoptosis. The current study investigated whether glutathione-containing dry yeast extract (dry-YE) ameliorated eosinophilia, goblet cell hyperplasia and mucus overproduction. MATERIALS/METHOD This study employed 2 µg/mL lipopolysaccharide (LPS)- or 20 ng/mL eotaxin-1-exposed human bronchial epithelial cells and ovalbumin (OVA)-challenged mice. Dry-YE employed in this study contained a significant amount of glutathione (140 mg in 100 g dry yeast). RESULTS Human bronchial epithelial cell eotaxin-1 and mucin 5AC (MUC5AC) were markedly induced by the endotoxin LPS, which was dose-dependently attenuated by nontoxic dry-YE at 10-50 µg/mL. Moreover, dry-YE inhibited the MUC5AC induction enhanced by eotaxin-1, indicating that eotaxin-1-mediated eosinophilia may prompt the MUC5AC induction. Oral supplementation with 10-100 mg/kg dry-YE inhibited inflammatory cell accumulation in airway subepithelial regions with a reduction of lung tissue level of intracellular adhesion molecule-1. In addition, ≥ 50 mg/kg dry-YE diminished the lung tissue levels of eotaxin-1, eosinophil major basic protein and MUC5AC in OVA-exposed mice. Alcian blue/periodic acid schiff staining revealed that the dry-YE supplementation inhibited goblet cell hyperplasia and mucus overproduction in the trachea and bronchiolar airways of OVA-challenged mice. CONCLUSIONS Oxidative stress may be involved in the induction of eotaxin-1 and MUC5AC by endotoxin episode and OVA challenge. Dry-YE effectively ameliorated oxidative stress-responsive epithelial eosinophilia and mucus-secreting goblet cell hyperplasia in cellular and murine models of asthma.
Collapse
Affiliation(s)
- Yun-Ho Kim
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Yean-Jung Choi
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Min-Kyung Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Sin-Hye Park
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Dong Yeon Kim
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Hyeongjoo Oh
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| | - Sang-Jae Park
- Mediense Co. Ltd., 32 Soyanggang-ro, Chuncheon, Gangwon 24232, Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon, Gangwon 24252, Korea
| |
Collapse
|
133
|
Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res 2017; 2017:3743048. [PMID: 29359169 PMCID: PMC5735647 DOI: 10.1155/2017/3743048] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic inflammatory disease that undermines the airways. It is caused by dysfunction of various types of cells, as well as cellular components, and is characterized by recruitment of inflammatory cells, bronchial hyperreactivity, mucus production, and airway remodelling and narrowing. It has commonly been considered that airway inflammation is caused by the Th2 immune response, or eosinophilia, which is a hallmark of bronchial asthma pathogenesis. Some patients display a neutrophil-dominant presentation and are characterized with low (or even absent) Th2 cytokines. In recent years, increasing evidence has also suggested that neutrophils play a key role in the development of certain subtypes of asthma. This review discusses neutrophils in asthma and potentially related targeted therapies.
Collapse
|
134
|
Cheng Q, Shang Y. ORMDL3 may participate in the pathogenesis of bronchial epithelial‑mesenchymal transition in asthmatic mice with airway remodeling. Mol Med Rep 2017; 17:995-1005. [PMID: 29115563 DOI: 10.3892/mmr.2017.7972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/24/2017] [Indexed: 11/05/2022] Open
Abstract
Asthma is a common chronic respiratory disease in children that is caused by a complex interaction between genetic and environmental factors. Orosomucoid‑like 3 (ORMDL3) is a candidate gene that has been strongly associated with asthma; however, the underlying mechanisms are unknown. ORMDL3 regulates the expression of metalloproteinases and transforming growth factor‑β, and ORMDL3 transgenic mice exhibit increased airway remodeling. Therefore, ORMDL3 may be associated with airway remodeling. The present study attempted to examine the associations between ORMDL3 and the severity of airway remodeling in asthmatic mice, and also to determine whether ORMDL3 induces epithelial‑mesenchymal transition (EMT) in the bronchial epithelium. For this purpose, BALB/c mice were randomly assigned to control and asthma groups. Lung tissues were collected on days 3, 7 and 14 of the ovalbumin (OVA) challenge. Airway remodeling in asthmatic mice was then observed by hematoxylin and eosin, and Masson staining. Morphological changes in the bronchial epithelium were assessed by transmission electron microscopy. The EMT‑associated indicators E‑cadherin (E‑cad), fibroblast‑specific protein 1 (FSP1) and Vimentin (VIM) were assessed by western blotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) at different time points of airway remodeling in asthmatic mice to detect the trend in EMT. Then, the localization of ORMDL3 was observed by immunohistochemistry, and its protein and mRNA expression was examined by western blotting and RT‑qPCR, respectively. Furthermore, the bronchial epithelial cell line 16HBE14o‑was transfected with an ORMDL3‑expressing plasmid, and the differences in E‑cad, FSP‑1 and VIM expression were detected by immunofluorescence, western blotting and RT‑qPCR; the cell invasive ability was assessed by microscopy. The results revealed that ORMDL3 expression in the bronchial epithelium was associated with airway remodeling and EMT progression in vivo. Transfection of ORMDL3 into 16HBE 14o‑cells in vitro induced EMT. Taken together, these findings suggest that ORMDL3 may regulate EMT in the bronchial epithelium, thereby affecting airway remodeling in asthma.
Collapse
Affiliation(s)
- Qi Cheng
- Pediatric Pulmonology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yunxiao Shang
- Pediatric Pulmonology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
135
|
Samanta K, Parekh AB. Store-operated Ca2+ channels in airway epithelial cell function and implications for asthma. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0424. [PMID: 27377718 PMCID: PMC4938024 DOI: 10.1098/rstb.2015.0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
The epithelial cells of the lung are at the interface of a host and its environment and are therefore directly exposed to the inhaled air-borne particles. Rather than serving as a simple physical barrier, airway epithelia detect allergens and other irritants and then help organize the subsequent immune response through release of a plethora of secreted signals. Many of these signals are generated in response to opening of store-operated Ca2+ channels in the plasma membrane. In this review, we describe the properties of airway store-operated channels and their role in regulating airway epithelial cell function. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Krishna Samanta
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Anant B Parekh
- Department of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
136
|
Xing J, Zhang A, Zhang H, Wang J, Li XC, Zeng MS, Zhang Z. TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun 2017; 8:945. [PMID: 29038422 PMCID: PMC5643338 DOI: 10.1038/s41467-017-00101-w] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
Many double-stranded DNA viruses, such as Epstein-Barr virus, can establish persistent infection, but the underlying virus-host interactions remain poorly understood. Here we report that in human airway epithelial cells Epstein-Barr virus induces TRIM29, a member of the TRIM family of proteins, to inhibit innate immune activation. Knockdown of TRIM29 in airway epithelial cells enhances type I interferon production, and in human nasopharyngeal carcinoma cells results in almost complete Epstein-Barr virus clearance. TRIM29 is also highly induced by cytosolic double-stranded DNA in myeloid dendritic cells. TRIM29 -/- mice have lower adenovirus titers in the lung, and are resistant to lethal herpes simplex virus-1 infection due to enhanced production of type I interferon. Mechanistically, TRIM29 induces K48-linked ubiquitination of Stimulator of interferon genes, a key adaptor in double-stranded DNA-sensing pathway, followed by its rapid degradation. These data demonstrate that Epstein-Barr virus and possible other double-stranded DNA viruses use TRIM29 to suppress local innate immunity, leading to the persistence of DNA virus infections.Proteins of the TRIM family have regulatory functions in immune signaling, often via ubiquitination of target proteins. Here, the authors show that TRIM29 is induced upon infection with DNA viruses, resulting in degradation of STING, decreased interferon signaling and increased pathogenicity in mice.
Collapse
Affiliation(s)
- Junji Xing
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ao Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xian Chang Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China. .,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
137
|
Effects of Long-Term Exposure to Traffic-Related Air Pollution on Lung Function in Children. Curr Allergy Asthma Rep 2017; 17:41. [PMID: 28551888 PMCID: PMC5446841 DOI: 10.1007/s11882-017-0709-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lung function in early life has been shown to be an important predictor for peak lung function in adults and later decline. Reduced lung function per se is associated with increased morbidity and mortality. With this review, we aim to summarize the current epidemiological evidence on the effect of traffic-related air pollution on lung function in children and adolescents. We focus in particular on time windows of exposure, small airway involvement, and vulnerable sub-groups in the population. Findings from studies published to date support the notion that exposure over the entire childhood age range seems to be of importance for lung function development. We could not find any conclusive data to support evidence of sup-group effects considering gender, sensitization status, and asthma status, although a possibly stronger effect may be present for children with asthma. The long-term effects into adulthood of exposure to air pollution during childhood remains unknown, but current studies suggest that these deficits may be propagated into later life. In addition, further research on the effect of exposure on small airway function is warranted.
Collapse
|
138
|
Cottignies-Calamarte A, Becker Arrieta A, Ibtisame S, Dupuy C. [DUOX1: a future for the treatment of resistant allergic asthma?]. Med Sci (Paris) 2017; 33:735-737. [PMID: 28945561 DOI: 10.1051/medsci/20173308016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Corinne Dupuy
- UMR 8200 CNRS, Institut Gustave Roussy, 94800, Villejuif, France
| |
Collapse
|
139
|
Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue Barriers 2017; 5:e1367458. [PMID: 28886270 DOI: 10.1080/21688370.2017.1367458] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lungs are in direct contact with the environment through the tubular structure that constitutes the airway. Starting from the nasal orifice, the airway is exposed to foreign particles including infectious agents, allergens, and other substances that can damage the airways. Therefore, the airway must have a functional epithelial barrier both in the upper and lower airways to protect against these threats. As with the skin, it is likely that the pathogenesis of respiratory diseases is a consequence of epithelial barrier defects in these airways. The characteristics of this system, starting from the beginning of life and extending into maturing and aging, determine the prognosis of respiratory diseases. In this article, we discuss the pathogenesis, clinical phenotype, and prognosis of respiratory diseases from newborns to adulthood in the context of epithelial barrier function and dysfunction.
Collapse
Affiliation(s)
- Hasan Yuksel
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| | - Ahmet Turkeli
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| |
Collapse
|
140
|
Zhao C, Liu J, Yang H, Xiang L, Zhao S. Mycoplasma pneumoniae-Associated Bronchiolitis Obliterans Following Acute Bronchiolitis. Sci Rep 2017; 7:8478. [PMID: 28814783 PMCID: PMC5559585 DOI: 10.1038/s41598-017-08861-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022] Open
Abstract
The characteristics of Mycoplasma pneumonia (M. pneumoniae)-associated bronchiolitis obliterans (BO) are not well known. We retrospectively reviewed 17 patients with M. pneumoniae–associated BO. All patients had M. pneumoniae–associated acute bronchiolitis prior to the development of BO. In the acute bronchiolitis stage, all patients had fever and cough; six patients also had wheezing and dyspnoea. BO was diagnosed approximately 1.5–8 months later based on clinical manifestations and chest high-resolution computed tomography (HRCT) findings. All patients presented with wheezing and/or dyspnoea at the time of diagnosis of BO. HRCT findings included mosaic attenuation, pronounced air trapping, central bronchiectasis and emphysema, according to disease severity. Lung function tests revealed mild to severe airway obstruction. Fourteen of 17 patients had a greater than 12% increase in forced expiratory volume in 1 second values after taking salbutamol. All patients had positive allergy test results and family or personal history of atopic disease. Four patients had a history of asthma before M. pneumonia bronchiolitis. Asthma was diagnosed before, at the time of or after the diagnosis of BO in 11 cases. M. pneumoniae–associated BO may therefore develop following M. pneumonia bronchiolitis and overlap with asthma.
Collapse
Affiliation(s)
- Chengsong Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China
| | - Jinrong Liu
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China
| | - Haiming Yang
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China
| | - Li Xiang
- Department of Allergy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, People's Republic of China.
| |
Collapse
|
141
|
Kuo CHS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, Hoda U, Rossios C, Sousa A, Wilson SJ, Howarth P, Dahlen B, Dahlen SE, Chanez P, Shaw D, Krug N, Sandstrӧm T, De Meulder B, Lefaudeux D, Fowler S, Fleming L, Corfield J, Auffray C, Sterk PJ, Djukanovic R, Guo Y, Adcock IM, Chung KF. A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am J Respir Crit Care Med 2017; 195:443-455. [PMID: 27580351 DOI: 10.1164/rccm.201512-2452oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RATIONALE Asthma is a heterogeneous disease driven by diverse immunologic and inflammatory mechanisms. OBJECTIVES Using transcriptomic profiling of airway tissues, we sought to define the molecular phenotypes of severe asthma. METHODS The transcriptome derived from bronchial biopsies and epithelial brushings of 107 subjects with moderate to severe asthma were annotated by gene set variation analysis using 42 gene signatures relevant to asthma, inflammation, and immune function. Topological data analysis of clinical and histologic data was performed to derive clusters, and the nearest shrunken centroid algorithm was used for signature refinement. MEASUREMENTS AND MAIN RESULTS Nine gene set variation analysis signatures expressed in bronchial biopsies and airway epithelial brushings distinguished two distinct asthma subtypes associated with high expression of T-helper cell type 2 cytokines and lack of corticosteroid response (group 1 and group 3). Group 1 had the highest submucosal eosinophils, as well as high fractional exhaled nitric oxide levels, exacerbation rates, and oral corticosteroid use, whereas group 3 patients showed the highest levels of sputum eosinophils and had a high body mass index. In contrast, group 2 and group 4 patients had an 86% and 64% probability, respectively, of having noneosinophilic inflammation. Using machine learning tools, we describe an inference scheme using the currently available inflammatory biomarkers sputum eosinophilia and fractional exhaled nitric oxide levels, along with oral corticosteroid use, that could predict the subtypes of gene expression within bronchial biopsies and epithelial cells with good sensitivity and specificity. CONCLUSIONS This analysis demonstrates the usefulness of a transcriptomics-driven approach to phenotyping that segments patients who may benefit the most from specific agents that target T-helper cell type 2-mediated inflammation and/or corticosteroid insensitivity.
Collapse
Affiliation(s)
- Chih-Hsi Scott Kuo
- 1 Department of Computing.,2 Data Science Institute, and.,3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stelios Pavlidis
- 1 Department of Computing.,2 Data Science Institute, and.,4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Matthew Loza
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Fred Baribaud
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Anthony Rowe
- 4 Janssen Research and Development, High Wycombe, United Kingdom
| | - Ioannis Pandis
- 1 Department of Computing.,2 Data Science Institute, and
| | - Uruj Hoda
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Christos Rossios
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ana Sousa
- 6 Respiratory Therapeutic Unit, GlaxoSmithKline, Stockley Park, United Kingdom
| | - Susan J Wilson
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Peter Howarth
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Barbro Dahlen
- 8 Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | - Sven-Erik Dahlen
- 8 Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | | | - Dominick Shaw
- 10 Centre for Respiratory Research, University of Nottingham, Nottingham, United Kingdom
| | - Norbert Krug
- 11 Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrӧm
- 12 Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bertrand De Meulder
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Diane Lefaudeux
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Stephen Fowler
- 14 Centre for Respiratory Medicine and Allergy, University of Manchester, Manchester, United Kingdom
| | - Louise Fleming
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Julie Corfield
- 15 AstraZeneca R&D, Molndal, Sweden.,16 Areteva R&D, Nottingham, United Kingdom; and
| | - Charles Auffray
- 13 European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, University of Lyon, Lyon, France
| | - Peter J Sterk
- 17 Faculty of Medicine, University of Amsterdam, Amsterdam, the Netherlands
| | - Ratko Djukanovic
- 7 Faculty of Medicine, Southampton University, Southampton, United Kingdom
| | - Yike Guo
- 1 Department of Computing.,2 Data Science Institute, and
| | - Ian M Adcock
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | - Kian Fan Chung
- 3 Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,5 Biomedical Research Unit, Royal Brompton & Harefield National Health Service Trust, London, United Kingdom
| | | |
Collapse
|
142
|
Zazara DE, Perani CV, Solano ME, Arck PC. Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice. J Reprod Immunol 2017; 125:100-105. [PMID: 29241813 DOI: 10.1016/j.jri.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022]
Abstract
Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention.
Collapse
Affiliation(s)
- Dimitra E Zazara
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara V Perani
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - María E Solano
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
143
|
Mukherjee M, Cingolani E, Pritchard DI, Bosquillon C. Enhanced expression of Organic Cation Transporters in bronchial epithelial cell layers following insults associated with asthma - Impact on salbutamol transport. Eur J Pharm Sci 2017; 106:62-70. [PMID: 28549677 DOI: 10.1016/j.ejps.2017.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests Organic Cation Transporters (OCT) might facilitate the absorption of inhaled bronchodilators, including salbutamol, across the lung epithelium. This is essentially scarred and inflamed in asthma. Accordingly, the impact of epithelial insults relevant to asthma on OCT expression and salbutamol transport was evaluated in air-liquid interfaced layers of the human broncho-epithelial cell line Calu-3. These were physically injured and allowed to recover for 48h or exposed to the pro-inflammatory stimulant lipopolysaccharide (LPS) for 48h and the aeroallergen house dust mite (HDM) for 8h twice over 48h. Increases in transporter expression were measured following each treatment, with the protein levels of the OCTN2 subtype consistently raised by at least 50%. Interestingly, OCT upregulation upon LPS and HDM challenges were dependent on an inflammatory event occurring in the cell layers. Salbutamol permeability was higher in LPS exposed layers than in their untreated counterparts and in both cases, was sensitive to the OCT inhibitor tetraethylammonium. This study is the first to show epithelial injury, inflammation and allergen abuse upregulate OCT in bronchial epithelial cells, which might have an impact on the absorption of their substrates in diseased lungs.
Collapse
Affiliation(s)
- Manali Mukherjee
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - E Cingolani
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - D I Pritchard
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - C Bosquillon
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
144
|
Klaßen C, Karabinskaya A, Dejager L, Vettorazzi S, Van Moorleghem J, Lühder F, Meijsing SH, Tuckermann JP, Bohnenberger H, Libert C, Reichardt HM. Airway Epithelial Cells Are Crucial Targets of Glucocorticoids in a Mouse Model of Allergic Asthma. THE JOURNAL OF IMMUNOLOGY 2017; 199:48-61. [PMID: 28515280 DOI: 10.4049/jimmunol.1601691] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/25/2017] [Indexed: 11/19/2022]
Abstract
Although glucocorticoids (GCs) are a mainstay in the clinical management of asthma, the target cells that mediate their therapeutic effects are unknown. Contrary to our expectation, we found that GC receptor (GR) expression in immune cells was dispensable for successful therapy of allergic airway inflammation (AAI) with dexamethasone. Instead, GC treatment was compromised in mice expressing a defective GR in the nonhematopoietic compartment or selectively lacking the GR in airway epithelial cells. Further, we found that an intact GR dimerization interface was a prerequisite for the suppression of AAI and airway hyperresponsiveness by GCs. Our observation that the ability of dexamethasone to modulate gene expression in airway epithelial cells coincided with its potency to resolve AAI supports a crucial role for transcriptional regulation by the GR in this cell type. Taken together, we identified an unknown mode of GC action in the treatment of allergic asthma that might help to develop more specific therapies in the future.
Collapse
Affiliation(s)
- Carina Klaßen
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Anna Karabinskaya
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Lien Dejager
- Inflammation Research Center, Flanders Institute for Biotechnology, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, University of Ghent, 9052 Ghent, Belgium
| | - Sabine Vettorazzi
- Institute of Comparative Endocrinology, University of Ulm, 89081 Ulm, Germany
| | | | - Fred Lühder
- Institute for Multiple Sclerosis Research and Neuroimmunology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | | | - Jan P Tuckermann
- Institute of Comparative Endocrinology, University of Ulm, 89081 Ulm, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Claude Libert
- Inflammation Research Center, Flanders Institute for Biotechnology, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, University of Ghent, 9052 Ghent, Belgium
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
145
|
Radovanovic D, Santus P, Blasi F, Mantero M. The evidence on tiotropium bromide in asthma: from the rationale to the bedside. Multidiscip Respir Med 2017; 12:12. [PMID: 28484598 PMCID: PMC5420159 DOI: 10.1186/s40248-017-0094-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Severe and poorly controlled asthma still accounts for a great portion of the patients affected. Disease control and future risk management have been identified by international guidelines as the main goals in patients with asthma. The need for new treatment approaches has led to reconsider anticholinergic drugs as an option for asthma treatment. Tiotropium is the first anticholinergic drug that has been approved for children and adults with poorly controlled asthma and is currently considered as an option for steps 4 and 5 of the Global Initiative for Asthma. In large randomized clinical trials enrolling patients with moderate to severe asthma, add-on therapy with tiotropium has demonstrated to be efficacious in improving lung function, decreasing risk of exacerbation and slowing the worsening of disease; accordingly, tiotropium demonstrated to be non inferior compared to long acting beta-agonists in the maintenance treatment along with medium to high inhaled corticosteroids. In view of the numerous ancillary effects acting on inflammation, airway remodeling, mucus production and cough reflex, along with the good safety profile and the broad spectrum of efficacy demonstrated in different disease phenotypes, tiotropium can represent a beneficial alternative in the therapeutic management of poorly controlled asthma. The present extensive narrative review presents the pharmacological and pathophysiological basis that guided the rationale for the introduction of tiotropium in asthma treatment algorithm, with a particular focus on its conventional and unconventional effects; finally, data on tiotropium efficacy and safety. from recent randomized clinical trials performed in all age categories will be extensively discussed.
Collapse
Affiliation(s)
- Dejan Radovanovic
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Pulmonary Unit, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Milan, Italy
| | - Pierachille Santus
- Department of Biomedical and Clinical Sciences (DIBIC), University of Milan, Pulmonary Unit, Ospedale L. Sacco, ASST Fatebenfratelli-Sacco, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Cardio-thoracic unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Mantero
- Department of Pathophysiology and Transplantation, University of Milan, Cardio-thoracic unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
146
|
Fossum SL, Mutolo MJ, Tugores A, Ghosh S, Randell SH, Jones LC, Leir SH, Harris A. Ets homologous factor (EHF) has critical roles in epithelial dysfunction in airway disease. J Biol Chem 2017; 292:10938-10949. [PMID: 28461336 DOI: 10.1074/jbc.m117.775304] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium forms a barrier between the internal and external environments. Epithelial dysfunction is critical in the pathology of many respiratory diseases, including cystic fibrosis. Ets homologous factor (EHF) is a key member of the transcription factor network that regulates gene expression in the airway epithelium in response to endogenous and exogenous stimuli. EHF, which has altered expression in inflammatory states, maps to the 5' end of an intergenic region on Chr11p13 that is implicated as a modifier of cystic fibrosis airway disease. Here we determine the functions of EHF in primary human bronchial epithelial (HBE) cells and relevant airway cell lines. Using EHF ChIP followed by deep sequencing (ChIP-seq) and RNA sequencing after EHF depletion, we show that EHF targets in HBE cells are enriched for genes involved in inflammation and wound repair. Furthermore, changes in gene expression impact cell phenotype because EHF depletion alters epithelial secretion of a neutrophil chemokine and slows wound closure in HBE cells. EHF activates expression of the SAM pointed domain-containing ETS transcription factor, which contributes to goblet cell hyperplasia. Our data reveal a critical role for EHF in regulating epithelial function in lung disease.
Collapse
Affiliation(s)
- Sara L Fossum
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Michael J Mutolo
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Antonio Tugores
- the Unidad de Investigación, Complejo Hospitalario Universitario Insular Materno Infantil, 35016 Las Palmas de Gran Canaria, Spain
| | - Sujana Ghosh
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Scott H Randell
- the Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Lisa C Jones
- the Marsico Lung Institute, University of North Carolina Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina 27599, and
| | - Shih-Hsing Leir
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614.,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.,the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44016
| | - Ann Harris
- From the Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois 60614, .,the Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.,the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44016
| |
Collapse
|
147
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
148
|
Carsin A, Mazenq J, Ilstad A, Dubus JC, Chanez P, Gras D. Bronchial epithelium in children: a key player in asthma. Eur Respir Rev 2017; 25:158-69. [PMID: 27246593 PMCID: PMC9487245 DOI: 10.1183/16000617.0101-2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/24/2016] [Indexed: 11/29/2022] Open
Abstract
Bronchial epithelium is a key element of the respiratory airways. It constitutes the interface between the environment and the host. It is a physical barrier with many chemical and immunological properties. The bronchial epithelium is abnormal in asthma, even in children. It represents a key component promoting airway inflammation and remodelling that can lead to chronic symptoms. In this review, we present an overview of bronchial epithelium and how to study it, with a specific focus on children. We report physical, chemical and immunological properties from ex vivo and in vitro studies. The responses to various deleterious agents, such as viruses or allergens, may lead to persistent abnormalities orchestrated by bronchial epithelial cells. As epithelium dysfunctions occur early in asthma, reprogramming the epithelium may represent an ambitious goal to induce asthma remission in children. Bronchial epithelium is a morphological and functional dysregulated gatekeeper in asthmatic childrenhttp://ow.ly/Y4MaM
Collapse
Affiliation(s)
- Ania Carsin
- Unité de Pneumologie Pédiatrique, hôpital Timone-Enfants, Assistance Publique Hopitaux de Marseille, Marseille, France UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Julie Mazenq
- Unité de Pneumologie Pédiatrique, hôpital Timone-Enfants, Assistance Publique Hopitaux de Marseille, Marseille, France UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Alexandra Ilstad
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| | - Jean-Christophe Dubus
- CNRS, URMITE 6236, CHU Timone-Enfants, Aix-Marseille Université, Unité de pneumologie et médecine infantile, Marseille, France
| | - Pascal Chanez
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France Clinique des bronches, Allergie et Sommeil, Hôpital Nord, Assistance Publique Hopitaux de Marseille, Marseille, France
| | - Delphine Gras
- UMR Inserm U1067 CNRS 7333, Aix Marseille University, Marseille, France
| |
Collapse
|
149
|
Yang L, Na CL, Luo S, Wu D, Hogan S, Huang T, Weaver TE. The Phosphatidylcholine Transfer Protein Stard7 is Required for Mitochondrial and Epithelial Cell Homeostasis. Sci Rep 2017; 7:46416. [PMID: 28401922 PMCID: PMC5388865 DOI: 10.1038/srep46416] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria synthesize select phospholipids but lack the machinery for synthesis of the most abundant mitochondrial phospholipid, phosphatidylcholine (PC). Although the phospholipid transfer protein Stard7 promotes uptake of PC by mitochondria, the importance of this pathway for mitochondrial and cellular homeostasis represents a significant knowledge gap. Haploinsufficiency for Stard7 is associated with significant exacerbation of allergic airway disease in mice, including an increase in epithelial barrier permeability. To test the hypothesis that Stard7 deficiency leads to altered barrier structure/function downstream of mitochondrial dysfunction, Stard7 expression was knocked down in a bronchiolar epithelial cell line (BEAS-2B) and specifically deleted in lung epithelial cells of mice (Stard7epi∆/∆). Stard7 deficiency was associated with altered mitochondrial size and membrane organization both in vitro and in vivo. Altered mitochondrial structure was accompanied by disruption of mitochondrial homeostasis, including decreased aerobic respiration, increased oxidant stress, and mitochondrial DNA damage that, in turn, was linked to altered barrier integrity and function. Both mitochondrial and barrier defects were largely corrected by targeting Stard7 to mitochondria or treating epithelial cells with a mitochondrial-targeted antioxidant. These studies suggest that Stard7-mediated transfer of PC is crucial for mitochondrial homeostasis and that mitochondrial dysfunction contributes to altered barrier permeability in Stard7-deficient mice.
Collapse
Affiliation(s)
- Li Yang
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Shiyu Luo
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - David Wu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Simon Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| | - Timothy E Weaver
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229-3039, USA
| |
Collapse
|
150
|
Narożna B, Langwinski W, Jackson C, Lackie P, Holloway JW, Szczepankiewicz A. MicroRNA-328 is involved in wound repair process in human bronchial epithelial cells. Respir Physiol Neurobiol 2017; 242:59-65. [PMID: 28347890 DOI: 10.1016/j.resp.2017.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 12/26/2022]
Abstract
Our aim was to investigate the role of microRNA on epithelial wound repair by global microRNA silencing. We have also analysed the influence of five miRNAs (miR-328, miR-342, miR-411, miR-609, miR-888, previously identified) on wound repair in 16HBE14o-bronchial epithelial cell line. Cells were transfected with siRNAs against human DROSHA and DICER1 or miRNA mimics or inhibitors. Wounding assays were performed and the cells were observed using time-lapse microscopy. The area of damage was calculated at chosen time points, followed by data analysis. Cells with silenced global miRNA expression showed a significantly slower repair rate compared to the control cells (p=0.001). For miR-328, we observed significantly delayed repair in cells transfected with the inhibitor compared to control (p=0.02). Global microRNA silencing significantly decreased the repair rate of airway epithelial cells in vitro, indicating an important role of miRNA in the regulation of wound repair and that miR-328, possibly involved in actin pathway, may be a potent modifier of this process.
Collapse
Affiliation(s)
- Beata Narożna
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Wojciech Langwinski
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Claire Jackson
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter Lackie
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland.
| |
Collapse
|