101
|
Walker SG, Carnu OI, Tüter G, Ryan ME. The immunoglobulin A1 proteinase fromStreptococcus pneumoniaeis inhibited by tetracycline compounds. ACTA ACUST UNITED AC 2006; 48:218-22. [PMID: 16995879 DOI: 10.1111/j.1574-695x.2006.00148.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae produces a zinc-dependent proteinase that cleaves human immunoglobulin (Ig) A1 in the hinge region. This metalloproteinase is hypothesized to act as a virulence factor by allowing S. pneumoniae to evade the protection provided by IgA1, thus enhancing its ability to colonize the human nasopharyngeal region. No biologically compatible inhibitors of this enzyme have been identified. We determined that doxycycline and a chemically modified tetracycline inhibit this enzyme in vitro at low micromolar concentrations.
Collapse
Affiliation(s)
- Stephen G Walker
- Department of Oral Biology and Pathology, School of Dental Medicine, State University of New York at Stony Brook, NY 11794-8702, USA.
| | | | | | | |
Collapse
|
102
|
Thomas S, Redfern JB, Lidbury BA, Mahalingam S. Antibody-dependent enhancement and vaccine development. Expert Rev Vaccines 2006; 5:409-12. [PMID: 16989620 DOI: 10.1586/14760584.5.4.409] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
103
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
104
|
Senior BW, Woof JM. Sites in the CH3 Domain of Human IgA1 That Influence Sensitivity to Bacterial IgA1 Proteases. THE JOURNAL OF IMMUNOLOGY 2006; 177:3913-9. [PMID: 16951354 DOI: 10.4049/jimmunol.177.6.3913] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of regions, other than the hinge, on the susceptibility of human IgA1 to cleavage by diverse bacterial IgA1 proteases, was examined using IgA1 mutants bearing amino acid deletions, substitutions, and domain swaps. IgA1 lacking the tailpiece retained its susceptibility to cleavage by all of the IgA1 proteases. The domain swap molecule alpha1alpha2gamma3, in which the CH3 domain of IgA1 was exchanged for that of human IgG1, was resistant to cleavage with the type 1 and 2 serine IgA1 proteases of Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae, but remained sensitive to cleavage with the metallo-IgA1 proteases of Streptococcus pneumoniae, Streptococcus oralis, Streptococcus sanguis, and Streptococcus mitis. Substitution of the IgA1 Calpha3 domain motif Pro440 -Phe443 into the corresponding position in the Cgamma3 domain of alpha1alpha2gamma3 resulted now in sensitivity to the type 2 IgA1 protease of N. meningitidis, indicating the possible requirement of these amino acids for sensitivity to this protease. For the H. influenzae type 2 protease, resistance of an IgA1 mutant in which the CH3 domain residues 399-409 were exchanged with those from IgG1, but sensitivity of mutant HuBovalpha3 in which the Calpha3 domain of bovine IgA replaces that of human IgA1, suggests that CH3 domain residues Glu403, Gln406, and Thr409 influence sensitivity to this enzyme. Hence, unlike the situation with the metallo-IgA1 proteases of Streptococcus spp., the sensitivity of human IgA1 to cleavage with the serine IgA1 proteases of Neisseria and Haemophilus involves their binding to different sites specifically in the CH3 domain.
Collapse
Affiliation(s)
- Bernard W Senior
- Division of Pathology and Neuroscience, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom
| | | |
Collapse
|
105
|
Takenouchi-Ohkubo N, Mortensen LM, Drasbek KR, Kilian M, Poulsen K. Horizontal transfer of the immunoglobulin A1 protease gene (iga) from Streptococcus to Gemella haemolysans. MICROBIOLOGY-SGM 2006; 152:2171-2180. [PMID: 16804190 DOI: 10.1099/mic.0.28801-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial IgA1 proteases share the ability to cleave human IgA1 at the hinge region. Nature has developed this trait along at least five independent evolutionary lineages. To obtain further insight into the phylogeny and function of IgA1 proteases, the nucleotide sequence of the iga gene that encodes the IgA1 protease was determined from two Streptococcus mitis strains and one Gemella haemolysans strain. Heterologous expression in Escherichia coli confirmed that the genes encode human IgA1-cleaving activity. IgA1 proteases from Streptococcus and G. haemolysans shared structural features, including a motif typical for zinc-dependent metalloproteases of clan MA(E) family M26 and an N-terminal signal sequence followed by an LPXTG cell-wall-anchor motif and two putative membrane-spanning domains. In addition, they all harboured a repeat region preceding the active site of the protease. In the streptococcal IgA1 proteases, a G5 domain, which has been suggested to bind N-acetylglucosamine, was identified. Conservation of these structures in otherwise diverse proteases suggests that they are essential to the biological function of the enzyme. The phylogenetic distribution of homologous iga genes and conservation of gene order in the iga gene region in different Streptococcus species, combined with the sequence homologies, strongly suggest that the iga gene is more ancient in Streptococcus than in G. haemolysans, and therefore that the IgA1 protease gene was transferred from Streptococcus to G. haemolysans.
Collapse
Affiliation(s)
- Nobuko Takenouchi-Ohkubo
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Lotte M Mortensen
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Kim R Drasbek
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Mogens Kilian
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Knud Poulsen
- Institute of Medical Microbiology and Immunology, The Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| |
Collapse
|
106
|
Bender MH, Weiser JN. The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Mol Microbiol 2006; 61:526-43. [PMID: 16776657 DOI: 10.1111/j.1365-2958.2006.05256.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus pneumoniae produces a zinc metalloproteinase, Iga, which cleaves human immunoglobulin A1 (IgA1), and whose activity is predominantly localized to the bacterial surface. However, proper surface localization is not predicted using current models, as the LPNTG sorting motif is located atypically near the amino- rather than the carboxy-terminus. The cell-associated form of Iga was confirmed to be external to the bacterial membrane, and while bound tightly, its attachment to the cell wall is non-covalent, but dependent on both a complete LPNTG sequence and sortase activity. Disruption of the region between the signal peptidase cleavage site and the LPNTG domain resulted in a localization defect, premature degradation, and an alteration of the ability of the enzyme to act on a monoclonal human IgA1 substrate and to enhance bacterial adherence, linking localization to enzyme function. Edman sequencing of cell-associated Iga determined that the enzyme is processed at an unexpected site downstream of the sorting signal yet still associates with the bacterial surface. Our results indicate a non-covalent re-association between the carboxy-terminal enzymatic domain and the cleaved, sorted amino-terminal localization domain. This amino-terminal motif is shared among the other zinc metalloproteinases in streptococci and suggests a novel conserved mechanism for the surface localization of protease activity.
Collapse
Affiliation(s)
- Matthew H Bender
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
107
|
Camilli R, Pettini E, Grosso MD, Pozzi G, Pantosti A, Oggioni MR. Zinc metalloproteinase genes in clinical isolates of Streptococcus pneumoniae: association of the full array with a clonal cluster comprising serotypes 8 and 11A. MICROBIOLOGY-SGM 2006; 152:313-321. [PMID: 16436419 DOI: 10.1099/mic.0.28417-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pneumococci display large zinc metalloproteinases on the surface, including the IgA protease, which cleaves human IgA1 in the hinge region, the ZmpC proteinase, which cleaves human matrix metalloproteinase 9 (MMP-9), and two other proteinases, ZmpB and ZmpD, whose substrates have not yet been identified. Surface metalloproteinases are antigenic and have been linked to virulence. The genes encoding these proteinases reside in three distinct loci: two loci specific for zmpB and zmpC, and a third, the iga locus, containing iga and zmpD. Data obtained by this and other groups have shown that pneumococcal metalloproteinase genes are transcribed and yield mature and enzymatically active proteins. Since the presence of the four proteinase genes is variable in the pneumococcal strains whose genomes have been sequenced, the presence of these genes in a collection of 218 pneumococcal isolates, mostly from invasive disease, was investigated. The data showed that zmpB and iga were present in all the isolates examined, while zmpC and zmpD were present in a variable proportion of the isolates (in 18 and 49 %, respectively). Interestingly, isolates carrying both zmpC and zmpD were found to belong mainly to two serotypes (sts), 8 and 11A. By molecular typing, st 8 and st 11A isolates appeared to belong to the same clonal cluster. The presence of these two additional metalloproteinases could contribute to the fitness of particular pneumococcal clones.
Collapse
Affiliation(s)
- Romina Camilli
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maria Del Grosso
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Pozzi
- Dipartimento di Biologia Molecolare, Università di Siena, and UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Annalisa Pantosti
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Rome, Italy
| | - Marco R Oggioni
- Dipartimento di Biologia Molecolare, Università di Siena, and UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
108
|
Abstract
The vast surfaces of the gastrointestinal, respiratory, and genitourinary tracts represent major sites of potential attack by invading micro-organisms. Immunoglobulin A (IgA), as the principal antibody class in the secretions that bathe these mucosal surfaces, acts as an important first line of defence. IgA, also an important serum immunoglobulin, mediates a variety of protective functions through interaction with specific receptors and immune mediators. The importance of such protection is underlined by the fact that certain pathogens have evolved mechanisms to compromise IgA-mediated defence, providing an opportunity for more effective invasion. IgA function may also be perturbed in certain disease states, some of which are characterized by deposition of IgA in specific tissues. This review details current understanding of the roles played by IgA in both health and disease.
Collapse
Affiliation(s)
- Jenny M Woof
- Division of Pathology and Neuroscience, University of Dundee Medical School, Ninewells Hospital, UK.
| | | |
Collapse
|
109
|
Kirchherr JL, Bowden GH, Richmond DA, Sheridan MJ, Wirth KA, Cole MF. Clonal diversity and turnover of Streptococcus mitis bv. 1 on shedding and nonshedding oral surfaces of human infants during the first year of life. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1184-90. [PMID: 16210481 PMCID: PMC1247832 DOI: 10.1128/cdli.12.10.1184-1190.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus mitis bv. 1 is a pioneer colonizer of the human oral cavity. Studies of its population dynamics within parents and their infants and within neonates have shown extensive diversity within and between subjects. We examined the genetic diversity and clonal turnover of S. mitis bv. 1 isolated from the cheeks, tongue, and primary incisors of four infants from birth to 1 year of age. In addition, we compared the clonotypes of S. mitis bv. 1 isolated from their mothers' saliva collected in parallel to determine whether the mother was the origin of the clones colonizing her infant. Of 859 isolates obtained from the infants, 568 were unique clones. Each of the surfaces examined, whether shedding or nonshedding, displayed the same degree of diversity. Among the four infants it was rare to detect the same clone colonizing more than one surface at a given visit. There was little evidence for persistence of clones, but when clones were isolated on multiple visits they were not always found on the same surface. A similar degree of clonal diversity of S. mitis bv. 1 was observed in the mothers' saliva as in their infants' mouths. Clones common to both infant and mothers' saliva were found infrequently suggesting that this is not the origin of the infants' clones. It is unclear whether mucosal immunity exerts the environmental pressure driving the genetic diversity and clonal turnover of S. mitis bv. 1, which may be mechanisms employed by this bacterium to evade immune elimination.
Collapse
Affiliation(s)
- Jennifer L Kirchherr
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
110
|
Vidarsson G, Overbeeke N, Stemerding AM, van den Dobbelsteen G, van Ulsen P, van der Ley P, Kilian M, van de Winkel JGJ. Working mechanism of immunoglobulin A1 (IgA1) protease: cleavage of IgA1 antibody to Neisseria meningitidis PorA requires de novo synthesis of IgA1 Protease. Infect Immun 2005; 73:6721-6. [PMID: 16177349 PMCID: PMC1230903 DOI: 10.1128/iai.73.10.6721-6726.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neisseria meningitidis secretes a protease that specifically cleaves the hinge region of immunoglobulin A1 (IgA1), releasing the effector (Fc) domain of IgA1 from the antigen binding (Fab) determinants. Theoretically, the remaining Fab fragments can block pathogen receptors or toxins and still provide protection. Here, we describe binding of V-gene-matched human IgA1 and IgA2 to PorA of strain H44/76. On live meningococci, efficient cleavage of IgA1, but not cleavage of IgA2, was observed, and up to approximately 80% of the IgA1 Fc tails were lost from the meningococcal surface within 30 min. No cleavage of IgA1 was found on an isogenic H44/76 strain lacking IgA1 protease. Furthermore, our data indicate that PorA-bound IgA1 is masked by the serogroup B polysaccharide capsule, rendering the IgA1 less accessible to degradation by secreted IgA1 protease present in the bacterial surroundings. Experiments with protein synthesis inhibitors showed that de novo production of IgA1 protease was responsible for cleavage of PorA-bound IgA1 on encapsulated bacteria. Finally, our data suggest that cleavage of IgA1 by IgA1 protease releases a significant proportion of Fab fragments from the bacterium, probably as a result of their reduced avidity compared to that of whole antibodies.
Collapse
Affiliation(s)
- Gestur Vidarsson
- Immunotherapy Laboratory, Department of Immunology, University Medical Center Utrecht (UMCU), The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Mistry D, Stockley RA. IgA1 protease. Int J Biochem Cell Biol 2005; 38:1244-8. [PMID: 16293440 PMCID: PMC7108436 DOI: 10.1016/j.biocel.2005.10.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/30/2005] [Accepted: 10/06/2005] [Indexed: 01/06/2023]
Abstract
IgA1 proteases are proteolytic enzymes that cleave specific peptide bonds in the human immunoglobulin A1 (IgA1) hinge region sequence. Several species of pathogenic bacteria secrete IgA1 proteases at mucosal sites of infection to destroy the structure and function of human IgA1 thereby eliminating an important aspect of host defence. IgA1 proteases are known as autotransporter proteins as their gene structure encodes the information to direct their own secretion out of the bacterial cell. The iga gene structure is also thought to contribute to the antigenic heterogeneity demonstrated by the IgA1 proteases during infections and the cleavage specificity of the IgA1 proteases for human IgA1. The IgA1 proteases have therefore been implicated as important virulence factors that contribute to bacterial infection and colonisation. The development of strategies to inactivate these IgA1 proteases has become the subject of recent research, as this has the potential to reduce bacterial colonisation at mucosal surfaces.
Collapse
Affiliation(s)
- Dippica Mistry
- Respiratory Research Laboratory, Department of Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | | |
Collapse
|
112
|
Brandtzaeg P, Johansen FE. Mucosal B cells: phenotypic characteristics, transcriptional regulation, and homing properties. Immunol Rev 2005; 206:32-63. [PMID: 16048541 DOI: 10.1111/j.0105-2896.2005.00283.x] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mucosal antibody defense depends on a complex cooperation between local B cells and secretory epithelia. Mucosa-associated lymphoid tissue gives rise to B cells with striking J-chain expression that are seeded to secretory effector sites. Such preferential homing constitutes the biological basis for local production of polymeric immunoglobulin A (pIgA) and pentameric IgM with high affinity to the epithelial pIg receptor that readily can export these antibodies to the mucosal surface. This ultimate functional goal of mucosal B-cell differentiation appears to explain why the J chain is also expressed by IgG- and IgD-producing plasma cells (PCs) occurring at secretory tissue sites; these immunocytes may be considered as 'spin-offs' from early effector clones that through class switch are on their way to pIgA production. Abundant evidence supports the notion that intestinal PCs are largely derived from B cells initially activated in gut-associated lymphoid tissue (GALT). Nevertheless, insufficient knowledge exists concerning the relative importance of M cells, major histocompatibility complex class II-expressing epithelial cells, and professional antigen-presenting cells for the uptake, processing, and presentation of luminal antigens in GALT to accomplish the extensive and sustained priming and expansion of mucosal B cells. Likewise, it is unclear how the germinal center reaction in GALT so strikingly can promote class switch to IgA and expression of J chain. Although B-cell migration from GALT to the intestinal lamina propria is guided by rather well-defined adhesion molecules and chemokines/chemokine receptors, the cues directing preferential homing to different segments of the gut require better definition. This is even more so for the molecules involved in homing of mucosal B cells to secretory effector sites beyond the gut, and in this respect, the role of Waldever's ring (including the palatine tonsils and adenoids) as a regional inductive tissue needs further characterization. Data suggest a remarkable compartmentalization of the mucosal immune system that must be taken into account in the development of effective local vaccines to protect specifically the airways, eyes, oral cavity, small and large intestines, and urogenital tract.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Institute and Department of Pathology, University of Oslo, Rikshospitalet University Hospital, Oslo, Norway.
| | | |
Collapse
|
113
|
Puthia MK, Vaithilingam A, Lu J, Tan KSW. Degradation of human secretory immunoglobulin A by Blastocystis. Parasitol Res 2005; 97:386-9. [PMID: 16151742 DOI: 10.1007/s00436-005-1461-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/27/2005] [Indexed: 10/25/2022]
Abstract
Microbial immunoglobulin A (IgA) proteases cleave human secretory IgA, promoting the mucosal adhesion of pathogens. To investigate if the enteric protozoan Blastocystis degrades human secretory IgA, cell lysate and conditioned medium from two species were exposed to immunoglobulin A. Secretory IgA was cleaved by both cell lysate and conditioned medium with mainly cysteine proteinase activity in B. hominis B isolate and aspartic proteinase activity in B. ratii WR1 isolate. These findings suggest that Blastocystis proteases may play a role in parasite survival in vivo.
Collapse
Affiliation(s)
- Manoj K Puthia
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | | | | | | |
Collapse
|
114
|
Lysenko ES, Ratner AJ, Nelson AL, Weiser JN. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 2005; 1:e1. [PMID: 16201010 PMCID: PMC1238736 DOI: 10.1371/journal.ppat.0010001] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022] Open
Abstract
Since mucosal surfaces may be simultaneously colonized by multiple species, the success of an organism may be determined by its ability to compete with co-inhabitants of its niche. To explore the contribution of host factors to polymicrobial competition, a murine model was used to study the initiation of colonization by Haemophilus influenzae and Streptococcus pneumoniae. Both bacterial species, which occupy a similar microenvironment within the nasopharynx, persisted during colonization when given individually. Co-colonization, however, resulted in rapid clearance of S. pneumoniae from the upper respiratory tract, associated with increased recruitment of neutrophils into paranasal spaces. Systemic depletion of either neutrophil-like cells or complement was sufficient to eliminate this competitive effect, indicating that clearance was likely due to enhanced opsonophagocytic killing. The hypothesis that modulation of opsonophagocytic activity was responsible for host-mediated competition was tested using in vitro killing assays with elicited neutrophil-like cells. Components of H. influenzae (but not S. pneumoniae) stimulated complement-dependent phagocytic killing of S. pneumoniae. Thus, the recruitment and activation of neutrophils through selective microbial pattern recognition may underlie the H. influenzae-induced clearance of S. pneumoniae. This study demonstrates how innate immune responses may mediate competitive interactions between species and dictate the composition of the colonizing flora.
Collapse
Affiliation(s)
- Elena S Lysenko
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Adam J Ratner
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Aaron L Nelson
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey N Weiser
- Departments of Microbiology and Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
115
|
Zhou H, Hickford JGH, Fang Q. Polymorphism of the IGHA gene in sheep. Immunogenetics 2005; 57:453-7. [PMID: 16025324 DOI: 10.1007/s00251-005-0007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Genetic variation in immunoglobulin A, the most abundant immunoglobulin in mammalian cells, has not been reported in ruminants. In this study, variation in the immunoglobulin heavy alpha chain constant gene (IGHA) of sheep was investigated by amplification of a fragment that included the hinge coding sequence, followed by single-strand conformational polymorphism (SSCP) analysis and DNA sequencing. Three novel sequences, each characterized by unique SSCP banding patterns, were identified. One or two sequences were detected in individual sheep and all the sequences identified shared high homology to the published ovine and bovine IGHA sequences, suggesting that these sequences represent allelic variants of the IGHA gene in sheep. Sequence alignment showed that these sequences differed mainly in the 3' end of exon 1 and in the coding sequence of the hinge region. There was either a deletion or an insertion of two codons in the hinge coding region in these allelic variants. Codon usage in the hinge coding region was quite different from that in the non-hinge coding regions of the gene, suggesting different evolution of the IGHA hinge sequence. Three novel amino acid sequences of ovine IGHA were also predicted, and variation in these sequences might not only affect antigen recognition but also susceptibility to cleavage by bacterial or parasitic proteases.
Collapse
Affiliation(s)
- Huitong Zhou
- Agriculture and Life Sciences Division, Lincoln University, P.O. Box 84, Canterbury, New Zealand
| | | | | |
Collapse
|
116
|
Hein M, Petersen AC, Helmig RB, Uldbjerg N, Reinholdt J. Immunoglobulin levels and phagocytes in the cervical mucus plug at term of pregnancy. Acta Obstet Gynecol Scand 2005; 84:734-42. [PMID: 16026397 DOI: 10.1111/j.0001-6349.2005.00525.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND To characterize the potential for adaptive immune protection in cervical mucus plugs with respect to immunoglobulin isotypes and effector cells (phagocytes). METHODS Thirty-one cervical mucus plugs were collected from healthy women in labor at term. The cervical mucus plugs were allocated either to analysis of immunoglobulins by enzyme-linked immunosorbent assay (ELISA), gel chromatography and Western blotting (n = 20) or to microscopical, including immunocytochemical, analyses. The levels of immunoglobulin in the plugs were compared to the levels in 10 samples of ovulatory cervical mucus from nonpregnant women. RESULTS In the cervical mucus plugs, levels of immunoglobulin G (IgG) [median 3270 microg/mL (100-14 500)] and IgA [540 (22-2820)], but not IgM [30.5 (1.0-160)], were significantly elevated compared to cervical mucus from nonpregnant women (p < 0.02 for IgG and IgA). The IgG : IgA ratio in the plugs was also elevated (p < 0.02). The proportion of secretory immunoglobulin A (SIgA) relative to total IgA in the plugs ranged from 16 to 65% (n = 5). IgA and IgG were largely intact. Microscopically, the vagina-proximal part of the cervical mucus plugs contained bacteria and was rich in cells, mainly phagocytes. Conversely, the uterine part contained few cells. CONCLUSION The high immunoglobulin levels in combination with the presence of phagocytes suggest a potential for adaptive immune defense in the cervical mucus plug, which, together with innate immune factors, may act as an immunological gatekeeper protecting the fetomaternal unit against infection from the vagina.
Collapse
Affiliation(s)
- Merete Hein
- Department of Obstetrics and Gynecology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.
| | | | | | | | | |
Collapse
|
117
|
Senior BW, Woof JM. The Influences of Hinge Length and Composition on the Susceptibility of Human IgA to Cleavage by Diverse Bacterial IgA1 Proteases. THE JOURNAL OF IMMUNOLOGY 2005; 174:7792-9. [PMID: 15944283 DOI: 10.4049/jimmunol.174.12.7792] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The influences of IgA hinge length and composition on its susceptibility to cleavage by bacterial IgA1 proteases were examined using a panel of IgA hinge mutants. The IgA1 proteases of Streptococcus pneumoniae, Streptococcus sanguis strains SK4 and SK49, Neisseria meningitidis, Neisseria gonorrhoeae, and Haemophilus influenzae cleaved IgA2-IgA1 half hinge, an Ab featuring half of the IgA1 hinge incorporated into the equivalent site in IgA1 protease-resistant IgA2, whereas those of Streptococcus mitis, Streptococcus oralis, and S. sanguis strain SK1 did not. Hinge length reduction by removal of two of the four C-terminal proline residues rendered IgA2-IgA1 half hinge resistant to all streptococcal IgA1 metalloproteinases but it remained sensitive to cleavage by the serine-type IgA1 proteases of Neisseria and Haemophilus spp. The four C-terminal proline residues could be substituted by alanine residues or transferred to the N-terminal extremity of the hinge without affect on the susceptibility of the Ab to cleavage by serine-type IgA1 proteases. However, their removal rendered the Ab resistant to cleavage by all the IgA1 proteases. We conclude that the serine-type IgA1 proteases of Neisseria and Haemophilus require the Fab and Fc regions to be separated by at least ten (or in the case of N. gonorrhoeae type I protease, nine) amino acids between Val(222) and Cys(241) (IgA1 numbering) for efficient access and cleavage. By contrast, the streptococcal IgA1 metalloproteinases require 12 or more appropriate amino acids between the Fab and Fc to maintain a minimum critical distance between the scissile bond and the start of the Fc.
Collapse
Affiliation(s)
- Bernard W Senior
- Division of Pathology and Neuroscience, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom
| | | |
Collapse
|
118
|
Nurkka A, Lahdenkari M, Palmu AAI, Käyhty H, the FinOM Study Group. Salivary antibodies induced by the seven-valent PncOMPC conjugate vaccine in the Finnish Otitis Media Vaccine Trial. BMC Infect Dis 2005; 5:41. [PMID: 15921511 PMCID: PMC1185537 DOI: 10.1186/1471-2334-5-41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 05/27/2005] [Indexed: 11/25/2022] Open
Abstract
Background Mucosal antibodies have been suggested to have a role in defence against pneumococcal infections. We investigated here the ability of a seven-valent pneumococcal conjugate vaccine, PncOMPC, to induce mucosal immune response. Methods Healthy Finnish children (n = 111), a subcohort of the Finnish Otitis Media Vaccine Trial, were recruited and 56 of them were immunised with the PncOMPC at the age of 2, 4, and 6 months. At 12 months of age, 49 of them received the PncOMPC and 7 were vaccinated with the pneumococcal polysaccharide vaccine (PncPS) as a booster. The control group of 55 children received a hepatitis B vaccine at the same ages. Salivary anti-Pnc IgG, IgA, IgA1, and IgA2 antibodies to serotypes 6B, 14, 19F, and 23F were measured in both groups at the age of 7 and 13 months. Results Salivary anti-Pnc IgG and IgA were detected more often in the PncOMPC than in the control group. However, the difference between groups was significant only for 19F and 23F IgA concentrations at the age of 7 months. At the age of 13 months, antibody concentrations did not differ between PncOMPC and control groups. The rises in IgA concentrations between 7 and 13 months of age were mainly of subclass IgA1. Further, there is a clear trend that PncPS booster induces higher salivary anti-Pnc PS antibody concentrations than the PncOMPC. Conclusion We found that PncOMPC can induce a mucosal IgA response. However, the actual impact of mucosal antibodies in protection against pneumococcal infections is not clear.
Collapse
Affiliation(s)
- Anu Nurkka
- Department of Vaccines, National Public Health Institute (KTL), Helsinki, Finland
| | - Mika Lahdenkari
- Department of Vaccines, National Public Health Institute (KTL), Helsinki, Finland
| | - Arto AI Palmu
- Department of Vaccines, National Public Health Institute (KTL), Helsinki, Finland
| | - Helena Käyhty
- Department of Vaccines, National Public Health Institute (KTL), Helsinki, Finland
| | | |
Collapse
|
119
|
Senior BW, Woof JM. Effect of mutations in the human immunoglobulin A1 (IgA1) hinge on its susceptibility to cleavage by diverse bacterial IgA1 proteases. Infect Immun 2005; 73:1515-22. [PMID: 15731049 PMCID: PMC1064975 DOI: 10.1128/iai.73.3.1515-1522.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Components of the human immunoglobulin A1 (IgA1) hinge governing sensitivity to cleavage by bacterial IgA1 proteases were investigated. Recombinant antibodies with distinct hinge mutations were constructed from a hybrid comprised of human IgA2 bearing half of the human IgA1 hinge region. This hybrid antibody and all the mutant antibodies derived from it were resistant to cleavage by the IgA1 proteases from Streptococcus oralis and Streptococcus mitis biovar 1 strains but were cleaved to various degrees by those of Streptococcus pneumoniae, some Streptococcus sanguis strains, and the type 1 and 2 IgA1 proteases of Haemophilus influenzae, Neisseria meningitidis, and Neisseria gonorrhoeae. Remarkably, those proteases that cleave a Pro-Ser peptide bond in the wild-type IgA1 hinge were able to cleave mutant antibodies lacking a Pro-Ser peptide bond in the hinge, and those that cleave a Pro-Thr peptide bond in the wild-type IgA1 hinge were able to cleave mutant antibodies devoid of a Pro-Thr peptide bond in the hinge. Thus, the enzymes can cleave alternatives to their preferred postproline peptide bond when such a bond is unavailable. Peptide sequence analysis of a representative antibody digestion product confirmed this conclusion. The presence of a cleavable peptide bond near the CH2 end of the hinge appeared to result in greater cleavage than if the scissile bond was at the CH1 end of the hinge. Proline-to-serine substitution at residue 230 in a hinge containing potentially cleavable Pro-Ser and Pro-Thr peptide bonds increased the resistance of the antibody to cleavage by many IgA1 proteases.
Collapse
Affiliation(s)
- Bernard W Senior
- Division of Pathology and Neuroscience, University of Dundee Medical School, Ninewells Hospital, Dundee, United Kingdom.
| | | |
Collapse
|
120
|
|
121
|
Kirchherr JL, Bowden GH, Richmond DA, Sheridan MJ, Wirth KA, Cole MF. Distribution of Streptococcus mitisbiovar 1 phenotypes on shedding and non-shedding oral surfaces of human infants during the first year of life. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2005. [DOI: 10.1080/08910600500433015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jennifer L. Kirchherr
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - George H. Bowden
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada
| | - Dorothy A. Richmond
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC
| | | | - Katherine A. Wirth
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Michael F. Cole
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
122
|
Teeuw W, Bosch JA, Veerman ECI, Amerongen AVN. Neuroendocrine regulation of salivary IgA synthesis and secretion: implications for oral health. Biol Chem 2004; 385:1137-46. [PMID: 15653426 DOI: 10.1515/bc.2004.147] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractSecretory immunoglobulin A (S-IgA) represents the main adaptive immune mechanism in the oral cavity. The regulation of secretion and synthesis of S-IgA is not only dependent on prior antigenic stimulation, but is also under strong neuroendocrine control. Thus, alterations in neuroendocrine functioning (such as induced by stress, exercise, pregnancy, menstrual cycle, and pharmacological interventions) may affect salivary IgA levels. This review deals with the neuroendocrine regulation of synthesis and secretion of salivary IgA and its potential role in the maintenance of oral health.
Collapse
Affiliation(s)
- Wijnand Teeuw
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, NL-1018 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
123
|
Obaro SK, Deubzer HE, Newman VO, Adegbola RA, Greenwood BM, Henderson DC. Serotype-specific pneumococcal antibodies in breast milk of Gambian women immunized with a pneumococcal polysaccharide vaccine during pregnancy. Pediatr Infect Dis J 2004; 23:1023-9. [PMID: 15545857 DOI: 10.1097/01.inf.0000143651.54880.09] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In breast-feeding populations, immunization during pregnancy with pneumococcal polysaccharide offers a potentially useful approach to preventing pneumococcal disease in young infants. METHODS Breast milk samples were collected at 0, 2, 4 and 6 months after delivery from Gambian women vaccinated during pregnancy (24-32 weeks gestation) with Pneumovax II (n = 56) or Mengivax A&C (n = 57). Specimens were examined for secretory immunoglobulin A (s-IgA) concentration, subclass distribution and avidity specific to pneumococcal serotypes 4, 6B, 14, 19F and 23F and the antigen mixture in Pneumovax II by enzyme-linked immunosorbent assay. Colostral s-IgA and IgG concentrations in paired maternal sera were compared. RESULTS Colostral s-IgA concentrations specific to all pneumococcal polysaccharide antigens investigated were significantly higher (P < 0.05) among Pneumovax II vaccinees. Titers specific to serotypes 4, 6B and 14 and the vaccine formula remained significantly higher during 6 months, and those for 19F were higher during 4 months. Significantly higher concentrations of vaccine antigen-specific s-IgA antibody were sustained for 6 months after delivery (P = 0.011). Comparison of colostral s-IgA and IgG in serum revealed a significant correlation only among Mengivax A&C vaccinees for pneumococcal polysaccharide 23F (rs= 0.68; P < or = 0.0001). Vaccination elicited trends toward increased s-IgA2, reaching significance for serotype 14 and the vaccine formula. Immunization elicited significantly higher s-IgA avidities specific to all pneumococcal polysaccharide antigens studied during 6 months. CONCLUSIONS The public health value of immunization during pregnancy with pneumococcal polysaccharide vaccine in breast-feeding populations warrants further evaluation, particularly in populations with a high incidence of pneumococcal disease in early infancy.
Collapse
Affiliation(s)
- Stephen K Obaro
- Imperial College, School of Science, Technology and Medicine, Department of Immunology, Chelsea and Westminster Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
During periods of endemic disease, about 10 % of the general population harbour Neisseria meningitidis in the nasopharynx. Since N. meningitidis is a strict human pathogen and most patients have not been in contact with other cases, asymptomatic carriers are presumably the major source of the pathogenic strains. Most carrier isolates are shown to lack capsule production. The capsule deficient state of meningococcal strains in the nasopharynx may aid evasion of the human immune defence and hence be selected to survive nasopharyngeal colonization. Carriage itself can be an immunizing process resulting in systemic protective antibody responses. Frequent nasopharyngeal colonization with related bacteria like Neisseria lactamica improves natural immunity to meningococci by the formation of cross-reacting antibodies. While most meningococcal strains recovered from patients belong to a limited number of clonal groups worldwide, strains isolated from carriers comprise numerous genotypes, with only a small proportion of the strains representing invasive clones. During the carriage state, co-colonization with other pathogenic and non-pathogenic bacteria may lead to genetic exchange, which may result in the emergence of new meningococcal clones. The high diversity of meningococcal carrier strains, compared with hypervirulent strains, supports the idea that transmissibility, not invasion, is essential in the life cycle of N. meningitidis.
Collapse
Affiliation(s)
- Siamak P Yazdankhah
- Department of Airborne Infections, Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway 2Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Dominique A Caugant
- Department of Airborne Infections, Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway 2Department of Oral Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
125
|
Nakamura Y, Nosaka S, Suzuki M, Nagafuchi S, Takahashi T, Yajima T, Takenouchi-Ohkubo N, Iwase T, Moro I. Dietary fructooligosaccharides up-regulate immunoglobulin A response and polymeric immunoglobulin receptor expression in intestines of infant mice. Clin Exp Immunol 2004; 137:52-8. [PMID: 15196243 PMCID: PMC1809085 DOI: 10.1111/j.1365-2249.2004.02487.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We examined whether or not dietary fructooligosaccharides (FOS) in infancy can have a beneficial effect on the mucosal immune system. Newborn BALB/c mice, accompanied by their dams until 21 days of age, were fed either a control diet based on casein [FOS- diet group] or a FOS- diet supplemented with 5% (w/w) FOS [FOS+ diet group]. Total IgA levels in tissue extracts from the intestines of mice in the FOS+ diet group at 38 days of age were about twofold higher (P < 0.05) than those in the FOS- diet group in the jejunum, ileum and colon. Ileal and colonic polymeric immunoglobulin receptor (pIgR) expression in the FOS+ diet group at 36 days of age was 1.5-fold higher than in the FOS- diet group (P < 0.05). Consistent with these results, the ileal IgA secretion rate of the FOS+ diet group at 37 days of age was twofold higher than that of the FOS- diet group (P < 0.05). Moreover, the percentage of B220(+)IgA+ cells in Peyer's patches (PP) was significantly higher in the FOS+ diet group than in the FOS- diet group (6.2%versus 4.3%, P < 0.05), suggesting that isotype switching from IgM to IgA in PP B cells might be enhanced in vivo. Taken together, our findings suggest that dietary FOS increases the intestinal IgA response and pIgR expression in the small intestine as well as the colon in infant mice.
Collapse
Affiliation(s)
- Y Nakamura
- Department of Nutritional Research, Nutrition Science Institute, Meiji Dairies Corporation, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Furtado PB, Whitty PW, Robertson A, Eaton JT, Almogren A, Kerr MA, Woof JM, Perkins SJ. Solution Structure Determination of Monomeric Human IgA2 by X-ray and Neutron Scattering, Analytical Ultracentrifugation and Constrained Modelling: A Comparison with Monomeric Human IgA1. J Mol Biol 2004; 338:921-41. [PMID: 15111057 DOI: 10.1016/j.jmb.2004.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/01/2004] [Accepted: 03/04/2004] [Indexed: 01/10/2023]
Abstract
Immunoglobulin A (IgA), the most abundant human immunoglobulin, mediates immune protection at mucosal surfaces as well as in plasma. It exists as two subclasses IgA1 and IgA2, and IgA2 is found in at least two allotypic forms, IgA2m(1) or IgA2m(2). Compared to IgA1, IgA2 has a much shorter hinge region, which joins the two Fab and one Fc fragments. In order to assess its solution structure, monomeric recombinant IgA2m(1) was studied by X-ray and neutron scattering. Its Guinier X-ray radius of gyration R(G) is 5.18 nm and its neutron R(G) is 5.03 nm, both of which are significantly smaller than those for monomeric IgA1 at 6.1-6.2 nm. The distance distribution function P(r)for IgA2m(1) showed a broad peak with a subpeak and gave a maximum dimension of 17 nm, in contrast to the P(r) curve for IgA1, which showed two distinct peaks and a maximum dimension of 21 nm. The sedimentation coefficients of IgA1 and IgA2m(1) were 6.2S and 6.4S, respectively. These data show that the solution structure of IgA2m(1) is significantly more compact than IgA1. The complete monomeric IgA2m(1) structure was modelled using molecular dynamics to generate random IgA2 hinge structures, to which homology models for the Fab and Fc fragments were connected to generate 10,000 full models. A total of 104 compact best-fit IgA2m(1) models gave good curve fits. These best-fit models were modified by linking the two Fab light chains with a disulphide bridge that is found in IgA2m(1), and subjecting these to energy refinement to optimise this linkage. The averaged solution structure of the arrangement of the Fab and Fc fragments in IgA2m(1) was found to be predominantly T-shaped and flexible, but also included Y-shaped structures. The IgA2 models show full steric access to the two FcalphaRI-binding sites at the Calpha2-Calpha3 interdomain region in the Fc fragment. Since previous scattering modelling had shown that IgA1 also possessed a flexible T-shaped solution structure, such a T-shape may be common to both IgA1 and IgA2. The final models suggest that the combination of the more compact IgA2m(1) and the more extended IgA1 structures will enable human IgA to access a broader range of antigens than either acting alone. The hinges of both IgA subclasses appear to show reduced flexibility when compared to their equivalents in IgG, and this may be important for maintaining an extended IgA structure.
Collapse
Affiliation(s)
- Patricia B Furtado
- Structural Immunology Group, Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Pohlschröder M, Dilks K, Hand NJ, Wesley Rose R. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev 2004; 28:3-24. [PMID: 14975527 DOI: 10.1016/j.femsre.2003.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/03/2003] [Accepted: 07/09/2003] [Indexed: 11/20/2022] Open
Abstract
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Mechthild Pohlschröder
- Department of Biology, University of Pennsylvania, 415 University Avenue, 201 Leidy Labs, Philadelphia, PA 19104-6018, USA.
| | | | | | | |
Collapse
|
128
|
Hoessli DC, Rungger-Brändle E, Hussain SA, Walker-Nasir E. Role of sialic acid and sulfate groups in cervical mucus physiological functions: study of Macaca radiata glycoproteins. Biochim Biophys Acta Gen Subj 2003; 1623:53-61. [PMID: 14572902 DOI: 10.1016/s0304-4165(03)00150-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The influence of charged groups in glycoproteins was investigated to assess their effect on the physiological functions of bonnet monkey cervical mucus. The macromolecular glycoproteins from peri-ovulatory, midcycle phase cervical mucus were treated with Pronase, trypsin and chymotrypsin and the enzyme-resistant glycoproteins purified by gel filtration on Sepharose 4B and a high molecular weight component containing carbohydrates, proteins and sulfate groups was recovered in high yield. This material still reacted with an antiserum directed against purified midcycle glycoprotein but not against another antiserum directed against luteal phase purified glycoproteins. Upon treatment with Pronase, trypsin and chymotrypsin, asialoglycoproteins and desulfated asialoglycoproteins released fragments of low molecular sizes, none of which reacted with the anti-midcycle glycoprotein antiserum. Cervical mucus collected from the estrogenic phase displayed a morphology supporting sperm migration, and this mucus retains the same morphology and reacts with the anti-midcycle glycoprotein antiserum following mild treatment with sialidase and subsequently with Pronase. These results imply that charged carbohydrate groups help maintain the structural and functional integrity of the mucus glycoprotein in its biological environment.
Collapse
|
129
|
Childers NK, Greenleaf C, Li F, Dasanayake AP, Powell WD, Michalek SM. Effect of age on immunoglobulin A subclass distribution in human parotid saliva. ORAL MICROBIOLOGY AND IMMUNOLOGY 2003; 18:298-301. [PMID: 12930521 DOI: 10.1034/j.1399-302x.2003.00084.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two subclasses of immunoglobulin A (IgA) antibodies are produced in humans, IgA1 and IgA2, IgA2 being more resistant to digestion by bacterial proteases than IgA1. The amount of IgA in saliva has been shown to vary with age; however, little is known about the correlation between IgA subclass distribution in saliva and age. The purpose of this study was to determine whether differences exist in the levels and ratio of IgA subclasses in parotid saliva of children and adults. Parotid saliva was obtained from healthy children (age range 6-12 years, n = 14) and adults (age range 22-51 years, n = 20) using Schaefer cups. Samples were analyzed for levels of total IgA, IgA1, and IgA2 by ELISA. IgA and IgA1 levels were significantly higher in adults than in children. However, no differences were seen in the ratio of IgA1 and IgA2 in the two groups of subjects. These findings indicate that levels of IgA increase with age, whereas the IgA subclass ratio is established early in life.
Collapse
Affiliation(s)
- N K Childers
- Department of Oral Biology, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA.
| | | | | | | | | | | |
Collapse
|
130
|
Affiliation(s)
- Surendran Mahalingam
- Department of Biological Sciences, Northfields Avenue, University of Wollongong, Wollongong, NSW 2522, Australia.
| | | |
Collapse
|
131
|
Lappin DF, McGregor AMP, Kinane DF. The systemic immune response is more prominent than the mucosal immune response in the pathogenesis of periodontal disease. J Clin Periodontol 2003; 30:778-86. [PMID: 12956653 DOI: 10.1034/j.1600-051x.2003.00372.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND/AIM The diseased periodontium appears to express features of a systemic and a mucosal immune response. Our aims were to determine differences in immunoglobulin expression between gingivitis and periodontitis lesions and to ascertain whether immune and inflammatory cells were recruited into the diseased periodontium by the mucosal addressin adhesion molecule (MAdCAM-1). METHODS In situ hybridization and immunohistochemistry were used to detect the expression of chemokines, adhesion molecules and immunoglobulins in tissue sections of gingival and granulation tissues excised from periodontitis-affected sites and of healthy tissue and gingivitis-affected tissue excised during crown-lengthening procedures. RESULTS Greater numbers of plasma cells were observed in periodontitis gingival/granulation tissue lesions compared with gingivitis lesions. While IgA1 were predominant in all lesions, IgA2 and J-chain expressing plasma cells were present in increased proportions in gingival tissues compared with granulation tissue. Intracellular adhesion molecule-1 (ICAM-1) was higher in periodontitis than in gingivitis and interleukin-8 mRNA was higher in lesions with a pronounced neutrophil infiltrate. Vascular cell adhesion molecule-1 (VCAM-1) localized to the deep connective tissue and indicated the presence of a systemic type of immune response in this region. Periodontal tissues (n=71 biopsies) did not appear to express MAdCAM-1, in positive control sections of small intestine where it was detected. CONCLUSION Overall, the systemic-type immune response is predominant, and although the mucosal immune response is minor and limited to the superficial tissues it may have an important role in the host defense to periodontal pathogens.
Collapse
Affiliation(s)
- D F Lappin
- Periodontology and Oral Immunology, Glasgow University Dental School, Glasgow, Scotland, UK.
| | | | | |
Collapse
|
132
|
Abstract
The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.
Collapse
Affiliation(s)
- Renato C Monteiro
- 1INSERM E0225, Bichat Medical School, 16 rue Henri Huchard, Paris 75870, France.
| | | |
Collapse
|
133
|
Chiavolini D, Memmi G, Maggi T, Iannelli F, Pozzi G, Oggioni MR. The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice. BMC Microbiol 2003; 3:14. [PMID: 12841855 PMCID: PMC166150 DOI: 10.1186/1471-2180-3-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 07/03/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae possesses large zinc metalloproteinases on its surface. To analyse the importance in virulence of three of these metalloproteinases, intranasal challenge of MF1 outbred mice was carried out using a range of infecting doses of wild type and knock-out pneumococcal mutant strains, in order to compare mice survival. RESULTS Observation of survival percentages over time and detection of LD50s of knock out mutants in the proteinase genes in comparison to the type 4 TIGR4 wild type strain revealed two major aspects: i) Iga and ZmpB, present in all strains of S. pneumoniae, strongly contribute to virulence in mice; (ii) ZmpC, only present in about 25% of pneumococcal strains, has a lower influence on virulence in mice. CONCLUSIONS These data suggest Iga, ZmpB and ZmpC as candidate surface proteins responsible for pneumococcal infection and potentially involved in distinct stages of pneumococcal disease.
Collapse
Affiliation(s)
- Damiana Chiavolini
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Guido Memmi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Tiziana Maggi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Francesco Iannelli
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| | - Marco R Oggioni
- Dipartimento di Biologia Molecolare, Laboratorio di Microbiologia Molecolare e Biotecnologia, Università di Siena, Siena, Italy
| |
Collapse
|
134
|
Almogren A, Senior BW, Loomes LM, Kerr MA. Structural and functional consequences of cleavage of human secretory and human serum immunoglobulin A1 by proteinases from Proteus mirabilis and Neisseria meningitidis. Infect Immun 2003; 71:3349-56. [PMID: 12761118 PMCID: PMC155769 DOI: 10.1128/iai.71.6.3349-3356.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cleavage of human serum monomeric immunoglobulin A1 (IgA1) and human secretory IgA1 (S-IgA1) by IgA1 proteinase of Neisseria meningitidis and cleavage by the proteinase from Proteus mirabilis have been compared. For serum IgA1, both proteinases cleaved only the alpha chain. N. meningitidis proteinase cleaved only in the hinge. P. mirabilis proteinase sequentially removed the tailpiece, the CH3 domain, and the CH2 domain. The cleavage of S-IgA1 by N. meningitidis proteinase occurred only in the hinge and was as rapid as that of serum IgA1. P. mirabilis proteinase predominantly cleaved the secretory component (SC) of S-IgA1. The SC of S-IgA1, whether cleaved or not, appeared to protect the alpha1 chain. Purified Fc fragment derived from the cleavage of serum IgA1 by N. meningitidis proteinase stimulated a respiratory burst in neutrophils through Fcalpha receptors, whereas the (Fcalpha1)(2)-SC fragment from digested S-IgA1 did not. The loss of the tailpiece from serum IgA1 treated with P. mirabilis proteinase had little effect, but the loss of the CH3 domain was concurrent with a rapid loss in the ability to bind to Fcalpha receptors. S-IgA1 treated with P. mirabilis proteinase under the same conditions retained the ability to bind to Fcalpha receptors. The results are consistent with the Fcalpha receptor binding site being at the CH2-CH3 interface. These data shed further light on the structure of S-IgA1 and indicate that the binding site for the Fcalpha receptor in S-IgA is protected by SC, thus prolonging its ability to activate phagocytic cells at the mucosal surface.
Collapse
Affiliation(s)
- Adel Almogren
- Department of Molecular and Cellular Pathology, University of DundeeNinewells Hospital Medical School, United Kingdom
| | | | | | | |
Collapse
|
135
|
Nurkka A, Obiero J, Käyhty H, Scott JAG. Effects of sample collection and storage methods on antipneumococcal immunoglobulin A in saliva. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:357-61. [PMID: 12738631 PMCID: PMC154953 DOI: 10.1128/cdli.10.3.357-361.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saliva contains components of both the mucosal and systemic immune systems. Variable flow rates, immunoglobulin proteases, and variation in collection and storage methods all introduce differences in the estimated concentrations of antibodies. We evaluated the effect of four collection methods and three storage protocols on the concentrations of immunoglobulin A (IgA) antibodies to pneumococcal capsular antigens 1, 5, 6B, and 14 and to pneumococcal surface adhesin A (PsaA) in saliva. Specimens were collected from 30 healthy Kenyan adults by collecting drool, by pipette suction, and with two commercial kits, OraSure and Oracol. Aliquots from each specimen were snap-frozen with glycerol in liquid nitrogen or stored for 4 to 8 h at +4 degrees C either with or without the addition of protease enzyme inhibitors prior to storage at -70 degrees C. Anticapsular IgA concentrations were not significantly different with different collection methods, but snap-freezing the specimens in liquid nitrogen led to concentrations 41 to 47% higher than those of specimens stored by the other methods (P < 0.0005).
Collapse
Affiliation(s)
- A Nurkka
- National Public Health Institute, Department of Vaccines, Helsinki, Finland.
| | | | | | | |
Collapse
|
136
|
Benson M, Reinholdt J, Cardell LO. Allergen-reactive antibodies are found in nasal fluids from patients with birch pollen-induced intermittent allergic rhinitis, but not in healthy controls. Allergy 2003; 58:386-92. [PMID: 12752324 DOI: 10.1034/j.1398-9995.2003.00113.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Increased levels of allergen-reactive immunoglobulins (Igs) have been reported in nasal fluids from patients with intermittent allergic rhinitis (IAR) sensitive to ragweed and grass. The aims of this study were to make a detailed characterization of nasal fluid Igs in birch pollen-induced IAR. METHODS Nasal fluids were obtained from 23 patients with birch pollen-induced IAR during and after the birch pollen season, and from 20 healthy controls. Nasal fluid total and Bet v 1-reactive (IgA), IgE and IgG as well as albumin were analyzed by immunoassays. The integrity of IgA and IgG, and the molecular form of IgA were assessed by Western blotting and column fractionation, respectively. RESULTS Nasal fluid total IgE and IgG, but not IgA, were higher in patients compared with controls. Western blotting indicated no significant degradation of IgA (including S-IgA) and IgG. Most of the IgA, including Bet v 1-reactive antibodies, was of the secretory form and of the IgA1 subclass. Bet v 1-reactive IgA and IgG were present in all patients, but was mostly nondetectable in controls. No significant differences in the levels of Bet v 1-reactive IgA and IgG were found in patients during the birch pollen season compared with off season. Both Bet v 1 and Bet v 2-reactive IgE were nondetectable in most samples. CONCLUSIONS Nasal fluid Bet v 1-reactive IgA and IgG were found in all patients with birch pollen-induced IAR, but not in controls. However, no significant differences were found between patients during and after the birch pollen season.
Collapse
Affiliation(s)
- M Benson
- Allergy Laboratory, Department of Oto-Rhino-Laryngology, Malmö University Hospital, Malmö, Sweden
| | | | | |
Collapse
|
137
|
Weiser JN, Bae D, Fasching C, Scamurra RW, Ratner AJ, Janoff EN. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci U S A 2003; 100:4215-20. [PMID: 12642661 PMCID: PMC153073 DOI: 10.1073/pnas.0637469100] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IgA, the major class of Ig in secretions, classically functions by interfering with microbial attachment to host tissues. Many mucosal pathogens, including Streptococcus pneumoniae, express an IgA1 protease that may circumvent the protective effects of this Ig subclass. Because these proteases are specific for human IgA1, we generated human mAbs to the major surface antigen of the pneumococcus, its capsular polysaccharide, and tested their effect in a colonization model of bacterial adherence to respiratory epithelial cells in culture. Rather than inhibiting adherence, type-specific IgA1 markedly enhanced bacterial attachment to host cells, but only when cleaved by IgA1 protease. Neither antibodies of protease-insensitive subclasses (IgA2 and IgG) nor those directed against heterologous capsules had such activity. The adherence-promoting properties of cleaved antibodies correlated with the cationic characteristics of their variable segments, suggesting that bound Fab fragments may neutralize the inhibitory effect of negatively charged capsules on adhesive interaction with host cells. Coating of pneumococci with anticapsular polysaccharide antibody unmasked the bacterial phosphorylcholine ligand, allowing for increased adherence mediated by binding to the platelet activating factor receptor on epithelial cells. In addition, our findings provide evidence for a novel function of bacterial IgA1 proteases. These enzymes may enable pathogens to subvert the antigen specificity of the humoral immune response to facilitate adhesive interactions and persistence on the mucosal surface.
Collapse
Affiliation(s)
- Jeffrey N Weiser
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
138
|
Abstract
Adaptive immunity mediated by secretory antibodies is important in the defence against mucosal infections. Specific secretory immunoglobulin A (SIgA) can inhibit initial pathogen colonization by performing immune exclusion both on the mucosal surface and within virus-infected secretory epithelial cells without causing tissue damage. Resistance against toxin-producing bacteria such as Vibrio cholerae appears to be particularly dependent on SIgA antibodies. Like natural infections, live topical vaccines or adequate combinations of inactivated vaccines and mucosal adjuvants give rise not only to SIgA antibodies, but also to long-standing serum IgG and IgA responses. The intranasal route of vaccine application could be particularly attractive to achieve this result, but only if successful stimulation is obtained without the use of toxic adjuvants. The degree of protection after vaccination may range from complete inhibition of reinfection to reduction of symptoms. In this scenario it is generally difficult to determine unequivocally the relative importance of SIgA versus serum antibodies. However, infection models in knockout mice strongly support the notion that SIgA exerts a decisive role in protection and cross-protection against a variety of infectious agents.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology LIIPAT, Institute of Pathology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway.
| |
Collapse
|
139
|
Batten MR, Senior BW, Kilian M, Woof JM. Amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by streptococcal IgA1 proteases. Infect Immun 2003; 71:1462-9. [PMID: 12595464 PMCID: PMC148859 DOI: 10.1128/iai.71.3.1462-1469.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amino acid sequence requirements in the hinge of human immunoglobulin A1 (IgA1) for cleavage by IgA1 proteases of different species of Streptococcus were investigated. Recombinant IgA1 antibodies were generated with point mutations at proline 227 and threonine 228, the residues lying on either side of the peptide bond at which all streptococcal IgA1 proteases cleave wild-type human IgA1. The amino acid substitutions produced no major effect upon the structure of the mutant IgA1 antibodies or their functional ability to bind to Fcalpha receptors. However, the substitutions had a substantial effect upon sensitivity to cleavage with some streptococcal IgA1 proteases, with, in some cases, a single point mutation rendering the antibody resistant to a particular IgA1 protease. This effect was least marked with the IgA1 protease from Streptococcus pneumoniae, which showed no absolute requirement for either proline or threonine at residues 227 to 228. By contrast, the IgA1 proteases of Streptococcus oralis, Streptococcus sanguis, and Streptococcus mitis had an absolute requirement for proline at 227 but not for threonine at 228, which could be replaced by valine. There was evidence in S. mitis that proteases from different strains may have different amino acid requirements for cleavage. Remarkably, some streptococcal proteases appeared able to cleave the hinge at a distant alternative site if substitution prevented efficient cleavage of the original site. Hence, this study has identified key residues required for the recognition of the IgA1 hinge as a substrate by streptococcal IgA1 proteases, and it marks a preliminary step towards development of specific enzyme inhibitors.
Collapse
Affiliation(s)
- Margaret R Batten
- Department of Molecular and Cellular Pathology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | | | | | | |
Collapse
|
140
|
Bosch JA, Ring C, de Geus EJC, Veerman ECI, Amerongen AVN. Stress and secretory immunity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 52:213-53. [PMID: 12498106 DOI: 10.1016/s0074-7742(02)52011-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Jos A Bosch
- Department of Oral Biology, College of Dentistry, Ohio State University, Columbus, Ohio 43218, USA
| | | | | | | | | |
Collapse
|
141
|
Bakir M, Yagci A, Ulger N, Akbenlioglu C, Ilki A, Soyletir G. Asymtomatic carriage of Neisseria meningitidis and Neisseria lactamica in relation to Streptococcus pneumoniae and Haemophilus influenzae colonization in healthy children: apropos of 1400 children sampled. Eur J Epidemiol 2003; 17:1015-8. [PMID: 12380714 DOI: 10.1023/a:1020021109462] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Meningococcal disease is one of the most important causes of morbidity and mortality among children in many parts of the world. Main reservoir of carriage and site of meningococcal dissemination appears to be the upper respiratory tract. Colonization of Neisseria meningitidis and lactamica and factors affecting this carriage were determined in a group of healthy children aged 0-10 years. Meningococcus and N. lactamica carriage were detected in 17 (1.23%) and 245 (17.7%) of 1382 subjects, respectively. Number (%) of serogroups for meningococci was 1 (6), 5 (29), 0 (0), 1 (6), 1 (6), and 9 (53) for A, B, C, D, W135, and Y, respectively. Having more than three household members, elementary school attendance, pharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae were associated with carriage of meningococci, whereas age less than 24-month was associated with carriage of N. lactamica. There was a reverse carriage rate between N. meningitidis and N. lactamica by age which may suggest a possible protective role of N. lactamica against meningococcal colonization among pre-school children.
Collapse
Affiliation(s)
- M Bakir
- Department of Pediatrics, Marmara University, School of Medicine, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
142
|
Brandtzaeg P. The secretory immunoglobulin system: regulation and biological significance. Focusing on human mammary glands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 503:1-16. [PMID: 12026008 DOI: 10.1007/978-1-4615-0559-4_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Institute of Pathology, University of Oslo, Rikshospitalet, Norway.
| |
Collapse
|
143
|
I, 4. Immunology of the gut. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0168-7069(03)09005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
144
|
Kilian M, Poulsen K, Lomholt H. Evolution of the paralogous hap and iga genes in Haemophilus influenzae: evidence for a conserved hap pseudogene associated with microcolony formation in the recently diverged Haemophilus aegyptius and H. influenzae biogroup aegyptius. Mol Microbiol 2002; 46:1367-80. [PMID: 12453222 DOI: 10.1046/j.1365-2958.2002.03254.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Certain non-capsulate strains belonging to the Haemophilus influenzae/Haemophilus aegyptius complex show unusually high pathogenicity, but the evolutionary origin of these virulent phenotypes, termed H. influenzae biogroup aegyptius, is as yet unknown. The aim of the present study was to elucidate the mechanisms of evolution of two paralogous genes, hap and iga, which encode the adhesion and penetration Hap protein and the IgA1 protease respectively. Partial sequencing of hap and iga genes in a comprehensive collection of strains belonging to the H. influenzae/H. aegyptius complex revealed considerable genetic polymorphism and pronounced mosaic-like patterns in both genes, but no evidence of intrastrain recombination between the two genes. A conserved hap pseudogene was present in all strains of H. aegyptius and H. influenzae biogroup aegyptius, each of which constituted distinct subpopulations as revealed by phylogenetic analysis. There was no evidence for a second, functional copy of the hap gene in these strains. The perturbed expression of the Hap serine protease appears to be associated with the formation of elongated bacterial cells growing in chains and a distinct colonization pattern on conjunctival cells, previously termed microcolony formation. The fact that individual hap pseudogenes differed from the ancestral sequence by zero to two positions within a 1.5 kb stretch suggests that the silencing event happened approximately 2000-11,000 years ago. Divergence of H. aegyptius and H. influenzae biogroup aegyptius occurred subsequent to this genetic event. The loss of Hap protein expression may be one of the genetic events that facilitated exploitation of the conjunctivae as a new niche.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
145
|
Affiliation(s)
- Michael J Giese
- Ocular Inflammatory Disease Center, and Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, 90095-7000, USA
| | | |
Collapse
|
146
|
Kosowska K, Reinholdt J, Rasmussen LK, Sabat A, Potempa J, Kilian M, Poulsen K. The Clostridium ramosum IgA proteinase represents a novel type of metalloendopeptidase. J Biol Chem 2002; 277:11987-94. [PMID: 11815614 DOI: 10.1074/jbc.m110883200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium ramosum is part of the normal flora in the human intestine. Some strains produce an IgA proteinase that specifically cleaves human IgA1 and the IgA2m(1) allotype. This prolylendopeptidase was purified from a broth culture supernatant, and N-terminal sequences of the native protein and tryptic fragments thereof were determined. A fragment of the iga gene encoding the IgA proteinase was isolated using degenerate primers in PCR, and the complete gene was obtained by inverse PCR. The identity of the iga gene was confirmed by heterologous expression in Escherichia coli. The deduced amino acid sequence indicated a signal peptide of 30 residues and a secreted proteinase of 133,828 Da. A typical Gram-positive cell wall anchor motif was identified in the C terminus. The presence of a putative zinc-binding motif His-Glu-Phe-Gly-His together with inhibition studies indicate that the proteinase belongs to the zinc-dependent metalloproteinases. However, the sequence of the C. ramosum IgA proteinase shows no overall similarity to other proteins except for significant identity around the zinc-binding motif with family M6 of metalloendopeptidases, and the unique sequence of the IgA proteinase in this area presumably establishes a new subfamily. The GC percentage of the iga gene is significantly higher than that for the entire genome of C. ramosum, suggesting that the gene was acquired recently in evolution.
Collapse
Affiliation(s)
- Klaudia Kosowska
- Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus C DK-8000, Denmark
| | | | | | | | | | | | | |
Collapse
|
147
|
Tsirpouchtsidis A, Hurwitz R, Brinkmann V, Meyer TF, Haas G. Neisserial immunoglobulin A1 protease induces specific T-cell responses in humans. Infect Immun 2002; 70:335-44. [PMID: 11748199 PMCID: PMC127630 DOI: 10.1128/iai.70.1.335-344.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 08/28/2001] [Accepted: 10/19/2001] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that immunoglobulin A1 (IgA1) protease, an exoenzyme of pathogenic neisseriae, can trigger the release of proinflammatory cytokines from human monocytic subpopulations. Here, we demonstrate a dose-dependent T-cell response to recombinant gonococcal IgA1 protease (strain MS11) in healthy human blood donors. This response was delayed in comparison to the immune response against tetanus toxoid. Stimulation with IgA1 protease led to the activation of CD4(+) and CD8(+) T cells, as well as CD19(+) B cells and CD56(+) NK cells, indicated by de novo expression of CD69. Only CD4(+) T cells proliferated and stained positive for intracellular gamma interferon (IFN-gamma). Both proliferation and IFN-gamma production were dependent on antigen presentation via major histocompatibility complex class II. Peripheral blood mononuclear cells stimulated with IgA1 protease produce IFN-gamma and tumor necrosis factor alpha but no, or very low amounts of, interleukin-10 (IL-10) or IL-4, indicating a Th1-based proinflammatory immune response. These findings support the significance of IgA1 protease as a virulence determinant of bacterial meningitis and its function as a dominant proinflammatory T-cell antigen.
Collapse
Affiliation(s)
- Anastasios Tsirpouchtsidis
- Abteilung Molekulare Biologie. Zentralbereich Mikroskopie, Max-Planck-Institut für Infektionsbiologie, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
148
|
Pan Q, Petit-Frére C, Dai S, Huang P, Morton HC, Brandtzaeg P, Hammarström L. Regulation of switching and production of IgA in human B cells in donors with duplicated alpha1 genes. Eur J Immunol 2001; 31:3622-30. [PMID: 11745382 DOI: 10.1002/1521-4141(200112)31:12<3622::aid-immu3622>3.0.co;2-h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
IgA is the predominant immunoglobulin class synthesized in humans and can be subdivided into two subclasses, IgA1 and IgA2, each encoded by a separate gene and differentially expressed depending on age and anatomical localization of the producing cells. Duplication of the alpha1 gene is frequently observed in selected populations. As this duplication may serve to enhance IgA-mediated immunity, we determined its effect on switching and production of IgA in human B cells. We developed a nested PCR strategy, involving sequencing the switch (S) alpha2 region, the only human S region not sequenced to date, to assess the proportion of cells switching to IgA1 and IgA2 in vivo. Our results show that there is no difference in the serum and salivary levels of IgA1 and IgA or rate of switching to IgA1 and IgA between normal donors and individuals carrying alpha1 gene duplications, suggesting involvement of a regulatory step in the production of IgA.
Collapse
Affiliation(s)
- Q Pan
- Division of Clinical Immunology, IMPI, Karolinska Institutet at Huddinge Hospital, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
149
|
Wiggins R, Hicks SJ, Soothill PW, Millar MR, Corfield AP. Mucinases and sialidases: their role in the pathogenesis of sexually transmitted infections in the female genital tract. Sex Transm Infect 2001; 77:402-8. [PMID: 11714935 PMCID: PMC1744407 DOI: 10.1136/sti.77.6.402] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mucinases and sialidases contribute to the process of invasion and colonisation in many conditions and infections of the female reproductive tract by degrading the protective cervical mucus. The role of hydrolytic enzymes in the pathogenesis of sexually transmitted diseases and their effect on cervical mucus are discussed in this review. METHODS Articles were searched for using the keywords "sialidase," "mucinase," "protease," and "sexually transmitted infections." As well as review and other articles held by our group, searches were conducted using PubMed, Grateful Med, and the University of Bath search engine, BIDS. RESULTS Numerous publications were found describing the production of hydrolytic enzymes in sexually transmitted diseases. Because the number of publications exceeded the restrictions imposed on the size of the review, the authors selected and discussed those which they considered of the most relevance to sexually transmitted infections.
Collapse
Affiliation(s)
- R Wiggins
- Dorothy Crowfoot Hodgkin Laboratories, University Division of Medicine, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | | | | | | | |
Collapse
|
150
|
Abstract
The purpose of this study was to examine the genetic structure of the typical commensal Streptococcus mitis biovar 1 in its natural habitat in the human oral cavity and pharynx and to investigate the role that selected microbial properties and host, spatial, and temporal factors play in determining the structure of the bacterial population. Consecutive samples were collected from buccal and pharyngeal mucosal surfaces of two infants, their four parents, and two elderly individuals over a period of approximately 1 year. A total of 751 isolates identified as S. mitis biovar 1 were typed by restriction endonuclease analysis (REA) and representative clones were typed by multilocus enzyme electrophoresis (MLEE). The genetic diversity of the S. mitis biovar 1 isolates collected from single infant hosts over a period of 9 to 10 months was found to be between 0.69 and 0.76, which is considerably higher than that previously observed for intestinal populations of Escherichia coli. The study provides evidence of the existence of both transient and persistent clones in adult individuals. In the two infants, however, none of 42 demonstrated clones were detected on more than a single occasion. Statistical calculations showed that the ability to persist was not distributed at random in the S. mitis biovar 1 population. However, neither immunoglobulin A1 protease activity nor the ability to bind alpha-amylase from saliva was a preferential characteristic of persistent genotypes. In contrast to current concepts of climax ecosystems, the species niche in the habitat appears to be maintained predominantly by a succession of clones rather than by stable strains. Several lines of evidence suggest that the major origin of "new" clones is the many other habitats in the respiratory tract that are occupied by this species.
Collapse
Affiliation(s)
- J Hohwy
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|