101
|
Issberner JP, Sillar KT. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles. Eur J Neurosci 2007; 26:2556-64. [PMID: 17970719 DOI: 10.1111/j.1460-9568.2007.05892.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of the N-methyl-D-aspartate (NMDA) receptor glycine-binding site and its role in locomotor activity have been examined using fictive swimming in stage 42 Xenopus laevis frog tadpoles as a simple model system. The specific NMDA/glycine site blocker L-689560 (0.1-20 microm) impaired swimming rhythm generation and abolished NMDA-induced locomotor-like ventral root activity. D-serine (50 microm), an agonist at the NMDA/glycine site, increased the duration of skin stimulus-induced fictive swimming episodes, and produced slow modulations of burst frequency and amplitude. These effects of D-serine were reversed by L-689560. In some animals, D-serine also induced an alternative intense, non-locomotory form of rhythmic motor output termed struggling. Glycine (100 microm), another endogenous agonist at this site, triggered similar effects to D-serine, but only when applied in the presence of strychnine. Manipulations of endogenous glycine levels using sarcosine or ALX 5407 (inhibitors of the glycine re-uptake protein, GlyT1b), produced similar effects to glycine site agonists, including increased episode durations, and modulations in cycle period and burst amplitude. Sarcosine and ALX 5407 also induced struggling. In summary, these experiments support the hypothesis that NMDA receptors in the swimming network of Xenopus laevis tadpoles possess glycine-binding sites, not all of which are fully occupied under normal circumstances. Altering the strength of the NMDA receptor-mediated component of the synaptic drive for swimming by increasing or decreasing occupancy of this site potently influences the locomotor pattern.
Collapse
Affiliation(s)
- Jonathan P Issberner
- School of Biology, Bute Medical Buildings, University of St Andrews, St Andrews, Fife KY16 9TS, Scotland, UK
| | | |
Collapse
|
102
|
Walter MW, Hoffman BJ, Gordon K, Johnson K, Love P, Jones M, Man T, Phebus L, Reel JK, Rudyk HC, Shannon H, Svensson K, Yu H, Valli MJ, Porter WJ. Discovery and SAR studies of novel GlyT1 inhibitors. Bioorg Med Chem Lett 2007; 17:5233-8. [PMID: 17629697 DOI: 10.1016/j.bmcl.2007.06.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 11/16/2022]
Abstract
Inhibition of the glycine transporter GlyT1 is a potential strategy for the treatment of schizophrenia. A novel series of GlyT1 inhibitors and their structure-activity relationships (SAR) are described. Members of this series are highly potent and selective transport inhibitors which are shown to elevate glycine levels in cerebrospinal fluid.
Collapse
Affiliation(s)
- Magnus W Walter
- Lilly Research Laboratories, Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Buchanan RW, Freedman R, Javitt DC, Abi-Dargham A, Lieberman JA. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophr Bull 2007; 33:1120-30. [PMID: 17641146 PMCID: PMC2632365 DOI: 10.1093/schbul/sbm083] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Wayne Fenton was a major driving force behind the establishment of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) and Treatment Units for Research on Neurocognition and Schizophrenia (TURNS) project mechanisms. These projects were designed to facilitate the development of new drugs for the treatment of cognitive impairments in people with schizophrenia. The MATRICS project identified 3 drug mechanisms of particular interest: cholinergic, dopaminergic, and glutamatergic. The TURNS project is designed to select potential cognitive-enhancing agents and evaluate their potential efficacy in the context of proof of concept or clinical efficacy trials. This article reviews the rationale for these 3 approaches and provides an update on the development of therapeutic agents, which act through one of these 3 mechanisms.
Collapse
MESH Headings
- Antipsychotic Agents/pharmacology
- Antipsychotic Agents/therapeutic use
- Cognition Disorders/drug therapy
- Cognition Disorders/physiopathology
- Cognition Disorders/psychology
- Drug Design
- Humans
- Program Development/methods
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/physiology
- Schizophrenia/drug therapy
- Schizophrenia/physiopathology
- Schizophrenic Psychology
Collapse
|
104
|
Igartua I, Solís JM, Bustamante J. Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1. Neuropharmacology 2007; 52:1586-95. [PMID: 17462677 DOI: 10.1016/j.neuropharm.2007.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/13/2007] [Accepted: 03/05/2007] [Indexed: 11/29/2022]
Abstract
The negative symptoms of schizophrenia are reverted by treatment with glycine or other agonists of the glycine-B site which facilitate NMDA receptor function. On the other hand, there are experimental observations showing that exogenous application of glycine (0.5-10mM) results in a long-lasting potentiation of glutamatergic synaptic transmission (LTP-GLY). The characterization of the mechanisms underlying LTP-GLY could be useful to develop new therapies for schizophrenia. The main goal of this work is to deepen the understanding of this potentiation phenomenon. The present study demonstrates in rat hippocampal slices that superfusion of glycine 1mM during 30 min produces a potentiation of excitatory postsynaptic potentials in CA3-CA1 pathway lasting at least 1h. Glycine application does not modify neither presynaptic fiber volley nor paired-pulse facilitation of synaptic potentials. This LTP-GLY is independent of both strychnine-sensitive glycine receptors and nifedipine-sensitive calcium channels. Interestingly, LTP-GLY is not inhibited but strengthened by NMDA receptors antagonists such as AP-5 or MK-801. In contrast, LTP-GLY is partially or totally blocked with the antagonists of glycine transporter GLYT1, sarcosine or ALX-5407, respectively. These results indicate that LTP-GLY requires the activation of GLYT1, a glycine transporter co-localized and associated to NMDA receptors. In addition, the fact that NMDA receptor inhibition increases LTP-GLY magnitude, opens the possibility that these receptors could have a negative control on GLYT1 activity.
Collapse
Affiliation(s)
- Itziar Igartua
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | |
Collapse
|
105
|
Vandenberg RJ, Shaddick K, Ju P. Molecular basis for substrate discrimination by glycine transporters. J Biol Chem 2007; 282:14447-53. [PMID: 17383967 DOI: 10.1074/jbc.m609158200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.
Collapse
Affiliation(s)
- Robert J Vandenberg
- Department of Pharmacology, Institute for Biomedical Research, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
106
|
|
107
|
Lindsley CW, Zhao Z, Leister WH, O'Brien J, Lemaire W, Williams DL, Chen TB, Chang RSL, Burno M, Jacobson MA, Sur C, Kinney GG, Pettibone DJ, Tiller PR, Smith S, Tsou NN, Duggan ME, Conn PJ, Hartman GD. Design, synthesis, and in vivo efficacy of glycine transporter-1 (GlyT1) inhibitors derived from a series of [4-phenyl-1-(propylsulfonyl)piperidin-4-yl]methyl benzamides. ChemMedChem 2006; 1:807-11. [PMID: 16902933 DOI: 10.1002/cmdc.200600097] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Craig W Lindsley
- Department of Medicinal Chemistry, Technology Enabled Synthesis Group, Merck Research Laboratories, P.O. Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T. Psychosis pathways converge via D2high dopamine receptors. Synapse 2006; 60:319-46. [PMID: 16786561 DOI: 10.1002/syn.20303] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this review is to identify a target or biomarker of altered neurochemical sensitivity that is common to the many animal models of human psychoses associated with street drugs, brain injury, steroid use, birth injury, and gene alterations. Psychosis in humans can be caused by amphetamine, phencyclidine, steroids, ethanol, and brain lesions such as hippocampal, cortical, and entorhinal lesions. Strikingly, all of these drugs and lesions in rats lead to dopamine supersensitivity and increase the high-affinity states of dopamine D2 receptors, or D2High, by 200-400% in striata. Similar supersensitivity and D2High elevations occur in rats born by Caesarian section and in rats treated with corticosterone or antipsychotics such as reserpine, risperidone, haloperidol, olanzapine, quetiapine, and clozapine, with the latter two inducing elevated D2High states less than that caused by haloperidol or olanzapine. Mice born with gene knockouts of some possible schizophrenia susceptibility genes are dopamine supersensitive, and their striata reveal markedly elevated D2High states; suchgenes include dopamine-beta-hydroxylase, dopamine D4 receptors, G protein receptor kinase 6, tyrosine hydroxylase, catechol-O-methyltransferase, the trace amine-1 receptor, regulator of G protein signaling RGS9, and the RIIbeta form of cAMP-dependent protein kinase (PKA). Striata from mice that are not dopamine supersensitive did not reveal elevated D2High states; these include mice with knockouts of adenosine A2A receptors, glycogen synthase kinase GSK3beta, metabotropic glutamate receptor 5, dopamine D1 or D3 receptors, histamine H1, H2, or H3 receptors, and rats treated with ketanserin or aD1 antagonist. The evidence suggests that there are multiple pathways that convergetoelevate the D2High state in brain regions and that this elevation may elicit psychosis. This proposition is supported by the dopamine supersensitivity that is a common feature of schizophrenia and that also occurs in many types of genetically altered, drug-altered, and lesion-altered animals. Dopamine supersensitivity, in turn, correlates with D2High states. The finding that all antipsychotics, traditional and recent ones, act on D2High dopamine receptors further supports the proposition.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, and Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Salceda R. Pharmacological properties of glycine uptake in the developing rat retina. Neurochem Int 2006; 49:342-6. [PMID: 16621161 DOI: 10.1016/j.neuint.2006.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 02/20/2006] [Accepted: 02/24/2006] [Indexed: 11/15/2022]
Abstract
A pharmacological characterization of glycine transport was performed in the rat retina at different postnatal ages. The uptake of 3H-glycine increased during the first 2 weeks of postnatal age, reaching maximum values at 12 days; then it decreased sharply to the adult values. We found a Na+ -dependent and high-affinity transport system with a Km of 100 microM. The Na+ Hill coefficient for glycine uptake was 1.76 +/- 0.07. Although glycine uptake was insensitive to staurosporine and phorbol ester, it was reduced 40-50% by sarcosine and ALX5407. Besides, amoxapine inhibited glycine uptake by 40 and 70% in adult and immature retina, respectively. These results suggest that the Glyt1 transporter was concentrated in the nerve terminals. In addition to the presence of Glyt1 in the retina, our results provided evidence of the occurrence of Glyt2 and/or another isoform of glycine transporter, which might have had a role in the retina development.
Collapse
Affiliation(s)
- Rocío Salceda
- Instituto de Fisiología Celular, Departamento Neurociencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-253, C.P. 04510 México D.F., Mexico.
| |
Collapse
|
110
|
Smith G, Mikkelsen G, Eskildsen J, Bundgaard C. The synthesis and SAR of 2-arylsulfanylphenyl-1-oxyalkylamino acids as GlyT-1 inhibitors. Bioorg Med Chem Lett 2006; 16:3981-4. [PMID: 16725323 DOI: 10.1016/j.bmcl.2006.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/04/2006] [Accepted: 05/04/2006] [Indexed: 11/24/2022]
Abstract
Elevation of glycine levels by inhibition of the glycine transporter-1 (GlyT-1) and activation of the NMDA receptor is a potential strategy for the treatment of schizophrenia. A novel series of 2-arylsulfanylphenyl-1-oxyalkyl amino acids have been identified. The most prominent member of this series S-1-{2-[3-(3-fluoro-phenylsulfanyl)biphenyl-4-yloxy]ethyl}pyrrolidine-2-carboxylic acid (38) is a potent GlyT-1 inhibitor (IC50=59 nM). In vitro and in vivo assessment of CNS exposure indicates this compound is a likely substrate for active efflux transporters.
Collapse
Affiliation(s)
- Garrick Smith
- Medicinal Chemistry Research, H. Lundbeck A/S, 9 Ottiliavej, DK 2500 Valby, Denmark.
| | | | | | | |
Collapse
|
111
|
Shigeri Y, Shimamoto K. [Pharmacology of inhibitory amino acid transporters (GABA transporters and glycine transporters)]. Nihon Yakurigaku Zasshi 2006; 127:279-87. [PMID: 16755080 DOI: 10.1254/fpj.127.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
112
|
Ceccarelli SM, Pinard E, Stalder H, Alberati D. Discovery of N-(2-hydroxy-2-aryl-cyclohexyl) substituted spiropiperidines as GlyT1 antagonists with improved pharmacological profile. Bioorg Med Chem Lett 2006; 16:354-7. [PMID: 16246561 DOI: 10.1016/j.bmcl.2005.09.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/20/2022]
Abstract
During SAR exploration of N-(2-aryl-cyclohexyl) substituted spiropiperidine as GlyT1 inhibitors, it was found that introduction of an hydroxy group in position 2 of the cyclohexyl residue considerably improves the pharmacological profile. In particular, reduction of the binding affinity at the nociceptin/orphanin FQ peptide and the mu opioid receptors was achieved.
Collapse
Affiliation(s)
- Simona M Ceccarelli
- F. Hoffmann-La Roche Ltd, Pharmaceutical Division Basel, Discovery Chemistry, CH-4070 Basel, Switzerland.
| | | | | | | |
Collapse
|
113
|
Pinard E, Ceccarelli SM, Stalder H, Alberati D. Discovery of N-(2-aryl-cyclohexyl) substituted spiropiperidines as a novel class of GlyT1 inhibitors. Bioorg Med Chem Lett 2006; 16:349-53. [PMID: 16246557 DOI: 10.1016/j.bmcl.2005.09.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 09/26/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Screening of the Roche compound library led to the identification of cis-N-(2-phenyl-cyclohexyl)-spiropiperidine 1 as structurally novel GlyT1 inhibitor. The SAR, which was developed in this series, resulted in the discovery of highly potent compounds displaying excellent selectivity against the GlyT2 isoform.
Collapse
Affiliation(s)
- Emmanuel Pinard
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research Basel, Discovery Chemistry, CH-4070 Basel, Switzerland.
| | | | | | | |
Collapse
|
114
|
Raiteri L, Zappettini S, Stigliani S, Paluzzi S, Raiteri M, Bonanno G. Glutamate release induced by activation of glycine and GABA transporters in spinal cord is enhanced in a mouse model of amyotrophic lateral sclerosis. Neurotoxicology 2005; 26:883-92. [PMID: 15885796 DOI: 10.1016/j.neuro.2005.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 11/19/2022]
Abstract
Amyotrophic lateral sclerosis is a progressive and fatal neurodegenerative disease, involving both upper and lower motor neurons, the cause of which is obscure, although glutamate (GLU)-induced excitotoxicity has been suggested to play a major role. We studied the release of [3H]d-aspartate ([3H]d-ASP) and endogenous glutamate evoked by glycine (GLY) or GABA from spinal cord synaptosomes in mice expressing a mutant form of human SOD1 with a Gly93Ala substitution ([SOD1-G93A(+)]), a transgenic model of amyotrophic lateral sclerosis, in mice expressing the non-mutated form of human SOD1 [SOD1+], and in non-transgenic littermates [SOD1(-)/G93A(-)]. In parallel experiments, we also studied the release of [3H]GABA evoked by GLY and that of [3H]GLY evoked by GABA. Mutant mice were killed at advanced phase of pathology or during the pre-symptomatic period. In SOD1(-)/G93A(-) or SOD1(+) mice GLY evoked [3H]d-ASP and [3H]GABA release, while GABA caused [3H]d-ASP, but not [3H]GLY, release. The GLY-evoked release of [3H]d-ASP, but not that of [3H]GABA, and the GABA-evoked [3H]d-ASP release, but not that of [3H]GLY, were more pronounced in SOD1-G93A(+) than in SOD1(+) or SOD1(-)/G93A(-) mice. Furthermore, the excessive potentiation of [3H]d-ASP by GLY or GABA was already present in asymptomatic 30-40 day-old SOD1-G93A(+) mice. The releases of endogenous glutamate and GABA also were enhanced by GLY and the GLY-evoked release of endogenous glutamate, but not of endogenous GABA, was higher in SOD1-G93A(+) than in control animals. Potentiation of the spontaneous amino acid release is likely to be mediated by activation of a GLY or a GABA transporter, since the effect of GLY was counteracted by the GLY transporter blocker glycyldodecylamide but not by the GLY receptor antagonists strychnine and 5,7-dichlorokynurenate while the effect of GABA was diminished by the GABA transporter blocker SKF89976-A but not by the GABA receptor antagonists SR9531 and CGP52432. It is concluded that the glutamate release machinery seems excessively functional in SOD1-G93A(+) animals.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, 16148 Genoa, Italy
| | | | | | | | | | | |
Collapse
|
115
|
Yang CR, Chen L. Targeting prefrontal cortical dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment. Neuroscientist 2005; 11:452-70. [PMID: 16151046 DOI: 10.1177/1073858405279692] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The prefrontal cortex plays a principal role in higher cognition and particularly in the fast online manipulation of appropriate information to guide forthcoming behavior. Dysfunction of this process represents a main feature in the pathophysiology of schizophrenia. Both dopamine D1 and N-methyl-D-aspartate (NMDA) receptors in the prefrontal cortex play a critical role in synaptic plasticity, memory mechanisms, and cognition. Recent data have shown that D1 and NMDA receptors interact bidirectionally and may greatly influence the output of the prefrontal cortex. Hypofunction of these receptor systems in the prefrontal cortex is found in schizophrenia. This review attempts to summarize some of the latest findings on the cellular mechanisms that underlie D1-NMDA receptor interactions. These findings have provided potential therapeutic strategies that aim to functionally up-regulate D1 and/or NMDA receptor safely via selective activation of D1 receptors or coagonist activation of NMDA receptors through blockade of the glycine transporter-1.
Collapse
Affiliation(s)
- Charles R Yang
- Neuroscience Discovery, Eli Lilly & Co., Indianapolis, Indiana 46285-0510, USA.
| | | |
Collapse
|
116
|
Rorick-Kehn LM, Hart JC, McKinzie DL. Pharmacological characterization of stress-induced hyperthermia in DBA/2 mice using metabotropic and ionotropic glutamate receptor ligands. Psychopharmacology (Berl) 2005; 183:226-40. [PMID: 16175401 DOI: 10.1007/s00213-005-0169-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 08/11/2005] [Indexed: 11/26/2022]
Abstract
RATIONALE Accumulating evidence suggests that drugs acting on the glutamatergic system may represent promising novel therapeutic targets for the treatment of anxiety disorders. The stress-induced hyperthermia paradigm has been used widely to model some of the physiological symptoms associated with anxiety disorders and has produced results that are predictive of clinical efficacy. We have modified this paradigm to measure the autonomic consequences of stress induced by the fear of predation in mice. OBJECTIVE To evaluate the efficacy of several classes of metabotropic and ionotropic glutamate receptor ligands, as well as known anxiolytics and psychotropic comparators, in attenuating predatory-stress-induced hyperthermia. METHODS Male DBA/2 mice were implanted with radiotelemetric transmitters in the peritoneal cavity to measure stress-related increases in core body temperature, following placement in a novel cage containing soiled rat shavings. RESULTS Clinically active compounds such as chlordiazepoxide (5-10 mg/kg), alprazolam (0.3-3 mg/kg), and buspirone (10-30 mg/kg) exhibited an anxiolytic profile. Assessment of glutamatergic agents indicated that the mGlu1 receptor antagonist LY456236 (10-30 mg/kg), mGlu5 receptor antagonist MPEP (10-30 mg/kg), mGlu2/3 receptor agonist LY354740 (3-10 mg/kg), mGlu2 receptor potentiator LY566332 (30 and 100 mg/kg), mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (30-60 mg/kg), competitive NMDA receptor antagonist LY235959 (1 mg/kg), AMPA receptor antagonist GYKI-52466 (10-20 mg/kg), and glycine transporter-1 (GlyT-1) inhibitor ALX-5407 (3-10 mg/kg) dose-dependently attenuated stress-induced hyperthermia. The AMPA receptor potentiator LY451646, iGlu5 kainate receptor antagonist LY382884, glycine(B) receptor partial agonist D: -cycloserine, and GlyT-1 inhibitor ORG-24461 were ineffective in this model. CONCLUSION Select metabotropic and ionotropic glutamate receptor ligands exhibited an anxiolytic profile, as measured by the attenuation of stress-induced hyperthermia, and may represent viable targets for the development of pharmacological treatments for anxiety-related disorders.
Collapse
Affiliation(s)
- Linda M Rorick-Kehn
- Neuroscience Discovery Research, Eli Lilly & Company, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
117
|
Depoortère R, Dargazanli G, Estenne-Bouhtou G, Coste A, Lanneau C, Desvignes C, Poncelet M, Heaulme M, Santucci V, Decobert M, Cudennec A, Voltz C, Boulay D, Terranova JP, Stemmelin J, Roger P, Marabout B, Sevrin M, Vigé X, Biton B, Steinberg R, Françon D, Alonso R, Avenet P, Oury-Donat F, Perrault G, Griebel G, George P, Soubrié P, Scatton B. Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic. Neuropsychopharmacology 2005; 30:1963-85. [PMID: 15956994 DOI: 10.1038/sj.npp.1300772] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 microM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10-30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1-3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.
Collapse
|
118
|
Núñez E, Martínez-Maza R, Geerlings A, Aragón C, López-Corcuera B. Transmembrane domains 1 and 3 of the glycine transporter GLYT1 contain structural determinants of N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine specificity. Neuropharmacology 2005; 49:922-34. [PMID: 16143353 DOI: 10.1016/j.neuropharm.2005.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/15/2005] [Accepted: 07/20/2005] [Indexed: 11/29/2022]
Abstract
The neurotransmitter glycine is removed from the synaptic cleft by two Na(+)-and Cl(-)-dependent transporters: GLYT1 and GLYT2. GLYT1, expressed in glial processes of glycinergic areas and in glia and neurons of glutamatergic pathways that contain N-methyl-d-aspartate (NMDA) receptors, is essential for regulating glycine levels both at glycinergic and NMDA-containing synapses. GLYT2 is the transporter present in glycinergic neurons and provides cytosolic glycine for vesicular release from glycinergic terminals. GLYT1 is selectively inhibited by the sarcosine derivative N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)-propyl]sarcosine (NFPS). In the present report, GLYT1-GLYT2 chimeric transporters have been generated and their inhibition by NFPS has been studied. The introduction of GLYT2 transmembrane domains (TMs) 1 or 3, but not 2, on GLYT1 structure reduced the inhibition potency of NFPS and sarcosine. Binding studies and kinetic analysis of NFPS inhibition indicate lower affinity and smaller sensitivity of the chimeras to the compound. Opposite chimeras containing TM1 or TM3 of GLYT1 on GLYT2 structure became sensitive to NFPS. Individual substitution mutants of GLYT2 TM1 residues on GLYT1 and opposite GLYT1 TM1 residues on GLYT2 indicate that the more N-terminal portion of GLYT1 including residue E40 contributes to NFPS specificity. Our results demonstrate that TM1 and TM3, but not TM2, contain residues involved in the specific action of NFPS on GLYT1.
Collapse
Affiliation(s)
- Enrique Núñez
- Centro de Biología Molecular "Severo Ochoa", Facultad de Ciencias, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
119
|
Lipina T, Labrie V, Weiner I, Roder J. Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berl) 2005; 179:54-67. [PMID: 15759151 DOI: 10.1007/s00213-005-2210-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 02/08/2005] [Indexed: 01/29/2023]
Abstract
RATIONALE Schizophrenia is characterized by disturbances in sensorimotor gating and attentional processes, which can be measured by prepulse inhibition (PPI) and latent inhibition (LI), respectively. Research has implicated dysfunction of neurotransmission at the NMDA-type glutamate receptor in this disorder. OBJECTIVES This study was conducted to examine whether compounds that enhance NMDA receptor (NMDAR) activity via glycine B site, D-serine and ALX 5407 (glycine transporter type 1 inhibitor), alter PPI and LI in the presence or absence of an NMDAR antagonist, MK-801. METHODS C57BL/6J mice were tested in a standard PPI paradigm with three prepulse intensities. LI was measured in a conditioned emotional response procedure by comparing suppression of drinking in response to a noise in mice that previously received 0 (non-preexposed) or 40 noise exposures (preexposed) followed by two or four noise-foot shock pairings. RESULTS Clozapine (3 mg/kg) and D-serine (600 mg/kg), but not ALX 5407, facilitated PPI. MK-801 dose dependently reduced PPI. The PPI disruptive effect of MK-801 (1 mg/kg) could be reversed by clozapine and ALX 5407, but not by D-serine. All the compounds were able to potentiate LI under conditions that disrupted LI in controls. MK-801 induced abnormal persistence of LI at a dose of 0.15 mg/kg. Clozapine, D-serine, and ALX 5407 were equally able to reverse persistent LI induced by MK-801. CONCLUSIONS D-Serine and ALX 5407 display similar effects to clozapine in PPI and LI mouse models, suggesting potential neuroleptic action. Moreover, the finding that agonists of NMDARs and clozapine can restore disrupted LI and disrupt persistent LI may point to a unique ability of the NMDA system to regulate negative and positive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Tatiana Lipina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | | | | | | |
Collapse
|
120
|
Javitt DC, Hashim A, Sershen H. Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology 2005; 30:649-56. [PMID: 15688094 DOI: 10.1038/sj.npp.1300589] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional models of schizophrenia have focused primarily upon dopaminergic (DA) dysregulation. In contrast, more recent models focus on dysfunction of glutamatergic systems, acting particularly through N-methyl-D-aspartate (NMDA) receptors. NMDA receptors in brain are regulated by glycine, acting via a strychnine-insensitive regulatory site, and by glycine (GlyT1) transporters that maintain low glycine levels in the immediate vicinity of the NMDA receptor complex. The present study investigates the role of NMDA receptors in the modulation of striatal dopamine release in vitro, and of glycine transport inhibitors (GTIs) as potential psychotherapeutic agents in schizophrenia. In striatum, NMDA receptors exert dual excitatory/inhibitory effects, with inhibition reflecting activity of local GABAergic feedback regulation. We have previously demonstrated effectiveness of glycine in regulating [3H]DA release both in vivo and in vitro, consistent with its beneficial clinical effects. In the present study, similar effects were observed for the high-affinity GTI (+)N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy-)propyl]sarcosine (NFPS), and for a range of high-affinity GTIs with appropriate rank order of potency. In addition, (+)NFPS significantly stimulated NMDA-induced [3H]GABA release. Effects, of GTIs, were blocked by the glycine-site antagonists L689,560 and HA-966, and the GABA(B) antagonists phaclofen and CGP 52432, confirming the roles of both the NMDA-associated glycine-site and presynaptic GABA(B) receptors in NMDA receptor-mediated regulation of striatal DA release in vitro. Endogenous DA hyperactivity is associated with prominent positive symptoms in schizophrenia. The present results are consistent with recent clinical studies showing significant effectiveness of glycine-site agonists and GTIs in reduction of persistent positive, as well as negative, symptoms in schizophrenia.
Collapse
Affiliation(s)
- Daniel C Javitt
- Department of Neurochemistry, Nathan S Kline Institute for Psychiatric Research/NYU School of Medicine, Orangeburg, NY, USA.
| | | | | |
Collapse
|
121
|
Javitt DC, Duncan L, Balla A, Sershen H. Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 2005; 10:275-87. [PMID: 15278098 DOI: 10.1038/sj.mp.4001552] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clozapine is an atypical antipsychotic with particular efficacy in schizophrenia, possibly related to potentiation of brain N-methyl-D-aspartate receptor (NMDAR) -mediated neurotransmission. NMDARs are regulated in vivo by glycine, which is regulated in turn by glycine transporters. The present study investigates transport processes regulating glycine uptake into rat brain synaptosomes, along with effects of clozapine on synaptosomal glycine transport. Amino-acid uptake of amino acids was assessed in rat brain P2 synaptosomal preparations using a radiotransport assay. Synaptosomal glycine transport was inhibited by a series of amino acids and by the selective System A antagonist MeAIB (2-methyl-aminoisobutyric acid). Clozapine inhibited transport of both glycine and MeAIB, but not other amino acids, at concentrations associated with preferential clinical response (0.5-1 microg/ml). By contrast, other antipsychotics studied were ineffective. The novel glycine transport inhibitor N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS) produced biphasic inhibition of [(3)H]glycine transport, with IC(50) values of approximately 25 nM and 25 microM, respectively. NFPS inhibition of [(3)H]MeAIB was monophasic with a single IC(50) value of 31 microM. Clozapine significantly inhibited [(3)H]glycine binding even in the presence of 100 nM NFPS. In conclusion, this study suggests first that System A transporters, or a subset thereof, may play a critical role in regulation of synaptic glycine levels and by extension of NMDA receptor regulation, and second that System A antagonism may contribute to the differential clinical efficacy of clozapine compared with other typical or atypical antipsychotics.
Collapse
Affiliation(s)
- D C Javitt
- Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric Research/New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
122
|
Raiteri L, Stigliani S, Siri A, Passalacqua M, Melloni E, Raiteri M, Bonanno G. Glycine taken up through GLYT1 and GLYT2 heterotransporters into glutamatergic axon terminals of mouse spinal cord elicits release of glutamate by homotransporter reversal and through anion channels. Biochem Pharmacol 2005; 69:159-68. [PMID: 15588724 DOI: 10.1016/j.bcp.2004.08.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 08/11/2004] [Indexed: 11/19/2022]
Abstract
Glycine concentration-dependently elicited [3H]D-aspartate ([3H]D-ASP) release from superfused mouse spinal cord synaptosomes. Glycine effect was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was prevented by the glycine transporter blocker glycyldodecylamide. Glycine also evoked release of endogenous glutamate, which was sensitive to glycyldodecylamide and abolished in low-Na+ medium. Experiments with purified synaptosomes and gliasomes show that the glycine-evoked [3H]D-ASP release largely originates from glutamatergic nerve terminals. The glycine-evoked [3H]D-ASP release was halved by NFPS, a selective blocker of GLYT1 transporters, or by Org 25543, a selective GLYT2 blocker, and almost abolished by a mixture of the two, suggesting that activation of GLYT1 and GLYT2 present on glutamatergic terminals triggers the release of [3H]D-ASP. Accordingly, confocal microscopy experiments show localization of GLYT1 and GLYT2 in purified synaptosomes immuno-stained for the vesicular glutamate transporter vGLUT1. The glycine effect was independent of extra- and intraterminal Ca2+ ions. It was partly inhibited by the glutamate transporter blocker DL-TBOA and largely prevented by the anion channel blockers niflumic acid and NPPB. To conclude, transporters for glycine (GLYT1 or/and GLYT2) and for glutamate coexist on the same spinal cord glutamatergic terminals. Activation of glycine heterotransporters elicits glutamate release partly by homotransporter reversal and largely through anion channels.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
123
|
Vandenberg RJ, Ju P, Aubrey KR, Ryan RM, Mitrovic AD. Allosteric modulation of neurotransmitter transporters at excitatory synapses. Eur J Pharm Sci 2004; 23:1-11. [PMID: 15324920 DOI: 10.1016/j.ejps.2004.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 05/10/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
The regulation of glutamate and glycine concentrations within excitatory synapses plays an important role in maintaining a dynamic signalling process between neurones, but the failure to regulate the concentrations of these neurotransmitters has been implicated in the pathogenesis of various neurological disorders. In this review we shall discuss how glutamate and glycine transporters regulate synaptic concentrations of these neurotransmitters and how endogenous allosteric modulators influence transporter function. Whilst glutamate transport inhibitors are unlikely to be of therapeutic value because their potential to cause excitoxicity and cell death, a greater understanding of how endogenous compounds allosterically modulate glutamate transporters may provide alternate drug targets. On the other hand, there are some promising drugs that inhibit glycine transporters, which are being trialled as an alternate treatment for schizophrenia. We shall discuss how the activity of one such compound may be expected to influence excitatory neurotransmission.
Collapse
Affiliation(s)
- Robert J Vandenberg
- Department of Pharmacology, Institute for Biomedical Research, University of Sydney, Sydney 2006, NSW, Australia.
| | | | | | | | | |
Collapse
|
124
|
Huang H, Barakat L, Wang D, Bordey A. Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices. J Physiol 2004; 560:721-36. [PMID: 15331688 PMCID: PMC1665288 DOI: 10.1113/jphysiol.2004.067801] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glycine is an inhibitory neurotransmitter and is critical for NMDA receptor activation. These roles are dependent on extracellular glycine levels, which are regulated by Na(+)/Cl(-)-dependent glycine transporters (GlyTs) in neurones and glia. The glial GlyT subtype GlyT1 is well located to activate NMDA receptors. However, glial GlyTs have not been studied in an intact system thus far. Whole-cell patch-clamp recordings were obtained from Bergmann glia in mice cerebellar slices to determine whether these glia express functional GlyT1 that can mediate both glycine uptake and efflux. In the presence of a glycine receptor blocker, glycine and a substrate agonist for GlyT1, sarcosine, induced voltage-dependent inward currents that were abolished by removing external Na(+), identifying them as transport currents. Inhibitors of glycine transport through GlyT1 (sarcosine and (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS)) reduced glycine currents by approximately 85%, consistent with positive immunostaining for GlyT1 in Bergmann glia while inhibitors of glycine transport through GlyT2 (4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminocyclopently)methyl]benzamide (ORG 25543) and amoxapine) or through systems A and ASC did not affect glycine transport currents. Following internal glycine perfusion during the recording, outward currents progressively developed at -50 mV and external glycine-induced uptake currents were reduced. Using paired recordings of a Bergmann glial cell and a granule cell in the whole cell and outside-out modes, respectively, depolarizations of Bergmann glia to +20 mV induced a 73% increase in the open probability of glycine receptor channels in membrane patches of granule cells. This increase was prevented when NFPS was included in the bath solution. Overall, these results demonstrate for the first time that Bergmann glia express functional GlyT1 that can work in reverse at near-physiological ionic and internal glycine conditions in brain slices. These glial GlyTs can probably mediate glycine efflux under conditions of metabolic impairments like ischaemia.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, CT 06520-8082, USA
| | | | | | | |
Collapse
|
125
|
Smith G, Ruhland T, Mikkelsen G, Andersen K, Christoffersen CT, Alifrangis LH, Mørk A, Wren SP, Harris N, Wyman BM, Brandt G. The synthesis and SAR of 2-arylsulfanyl-phenyl piperazinyl acetic acids as glyT-1 inhibitors. Bioorg Med Chem Lett 2004; 14:4027-30. [PMID: 15225720 DOI: 10.1016/j.bmcl.2004.05.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 04/28/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
Elevation of glycine levels and activation of the NMDA receptor by inhibition of the glycine transporter 1 (GlyT-1) is a potential strategy for the treatment of schizophrenia. A novel series of GlyT-1 inhibitors have been identified containing the 2-arylsulfanyl-phenylpiperazine motif. The most prominent member of this series, (R)-4-[5-chloro-2-(4-methoxy-phenylsulfanyl)-phenyl]-2-methyl-piperazin-1-yl-acetic acid (31) is a potent glycine transporter-1 inhibitor (IC(50)=150 nM), which elevated glycine levels in rat ventral hippocampus as measured by microdialysis in vivo at doses of 1.2-4.6 mg/kg s.c.
Collapse
Affiliation(s)
- Garrick Smith
- Medicinal Chemistry Research, H. Lundbeck A/S, 9 Ottiliavej, DK 2500 Valby, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Dawson LA, Organ AJ, Winter P, Lacroix LP, Shilliam CS, Heidbreder C, Shah AJ. Rapid high-throughput assay for the measurement of amino acids from microdialysates and brain tissue using monolithic C18-bonded reversed-phase columns. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 807:235-41. [PMID: 15203035 DOI: 10.1016/j.jchromb.2004.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/30/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
A rapid precolumn high-performance liquid chromatography method based on fluorescence detection has been developed for the measurement of multiple amino acids from both ex vivo and in vivo biological samples using monolithic C18 columns. A mixture of 18 primary amino acids were derivatised with napthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide. The resulting isoindole derivatives were resolved within 10 min using a linear binary gradient elution profile with Rs values in the range 1.2-9.0. The limit of detection (LOD) was found to be between 6.0 and 60 fmol for 5 microl injection with a signal to noise ratio of 3:1. The NDA derivatives were found to be stable for 9 h at 4 degrees C. This assay has been employed for the rapid analysis of amino acids from brain tissue and microdialysis samples. Examples of application of the method are given.
Collapse
Affiliation(s)
- L A Dawson
- In Vivo Neurochemistry, Neuropharmacology, Psychiatry CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK
| | | | | | | | | | | | | |
Collapse
|
127
|
Raiteri L, Stigliani S, Zappettini S, Mercuri NB, Raiteri M, Bonanno G. Excessive and precocious glutamate release in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology 2004; 46:782-92. [PMID: 15033338 DOI: 10.1016/j.neuropharm.2003.11.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 11/12/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022]
Abstract
The release of [3H]D-aspartate ([3H]D-ASP) or [3H]GABA evoked by glycine and that of [3H]D-ASP or [3H]glycine evoked by GABA from spinal cord synaptosomes were studied in SOD1-G93A(+) mice, a transgenic model of amyotrophic lateral sclerosis, SOD1(+) mice and SOD1(-)/G93A(-) animals. Mutant mice were killed at advanced phase of pathology or during the presymptomatic period. In SOD1(-)/G93A(-) or SOD1(+) mice glycine evoked [(3)H]d-ASP and [(3)H]GABA release, while GABA caused [3H]D-ASP, but not [3H]glycine, release. The glycine-evoked release of [3H]D-ASP, but not that of [3H]GABA, and the GABA-evoked [3H]D-ASP release, but not that of [3H]glycine, were more pronounced in SOD1-G93A(+) than in SOD1(+) mice. Furthermore, these potentiations were already present in asymptomatic 30- to 40-day-old mice. Basal [3H]D-ASP release was also higher in SOD1-G93A(+) than SOD1(+) or SOD1(-)/G93A(-) mice. The release of endogenous glutamate and GABA was also enhanced in asymptomatic animals; the glycine-evoked release of endogenous glutamate, but not of endogenous GABA, was higher in SOD1-G93A(+) than in SOD1(+) animals. The effects of glycine and GABA were insensitive to receptor blockers, but sensitive to transporter inhibitors, indicating coexistence of glutamate and glycine transporters and of glutamate and GABA transporters on glutamate-releasing terminals. The glutamate release machinery seems excessively functional in SOD1-G93A(+) animals.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, Genoa 16148, Italy
| | | | | | | | | | | |
Collapse
|
128
|
Lewis B, O'Donnell P. Blockade of the GlyT1 glycine transporter prolongs response to VTA stimulation in nucleus accumbens neurons. Ann N Y Acad Sci 2004; 1003:431-4. [PMID: 14684480 DOI: 10.1196/annals.1300.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Barbara Lewis
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
129
|
Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H. Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-D-aspartate receptor/glycine-site agonists. Neuropsychopharmacology 2004; 29:300-7. [PMID: 14560321 DOI: 10.1038/sj.npp.1300313] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors may play a critical role in the pathophysiology of schizophrenia. In rodents, NMDA receptor antagonists, such as phencyclidine (PCP), induce dopaminergic dysregulation that resembles the pattern observed in schizophrenia. The present study investigates the degree to which concurrent treatment with NMDA modulators, such as glycine and the recently developed glycine transport antagonist N[3-(4"-fluorophenyl)-3-(4"-phenylphenoxy)propyl]sarcosine (NFPS) prevents dopaminergic dysregulation observed following chronic (3 months) or subchronic (2 weeks) PCP administration. Both chronic and subchronic treatment with PCP in the absence of glycine or NFPS led to significant potentiation of amphetamine-induced dopamine release in the prefrontal cortex and striatum, similar to that observed in schizophrenia. Treatment with either high-dose glycine or NFPS along with PCP prevented PCP effects. These findings demonstrate effective doses of glycine for use in animal models of schizophrenia, and support recent clinical studies showing the effectiveness of NMDA agonists in the treatment of persistent symptoms of schizophrenia.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan Kline Institute for Psychiatric Research, NYU School of Medicine, Orangeburg, NY, USA.
| | | | | | | | | | | |
Collapse
|
130
|
Williams JB, Mallorga PJ, Lemaire W, Williams DL, Na S, Patel S, Conn PJ, Conn JP, Pettibone DJ, Austin C, Sur C. Development of a scintillation proximity assay for analysis of Na+/Cl- -dependent neurotransmitter transporter activity. Anal Biochem 2003; 321:31-7. [PMID: 12963052 DOI: 10.1016/s0003-2697(03)00431-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human placental choriocarcinoma (JAR) cells endogenously expressing glycine transporter type 1a (GlyT1a) have been cultured in 96-well scintillating microplates to develop a homogenous screening assay for the detection of GlyT1 antagonists. In these microplates uptake of [14C]glycine was time dependent and saturable with a Michaelis-Menten constant (Km) of 27+/-3 microM. The GlyT1 transport inhibitors sarcosine, ALX-5407, and Org-24598 were tested and shown to block [14C]glycine uptake with expected IC50 values of 37.5+/-4.6 microM, 2.8+/-0.6 nM, and 6.9+/-0.9 nM, respectively. The [14C]glycine uptake process was sensitive to membrane Na+ gradient as blockade of membrane Na+/K+-ATPase by ouabain or Na+ exchanger by benzamil-disrupted glycine accumulation in JAR cells. Glycine influx was not affected by concentration of dimethyl sulfoxide up to 2%. The versatility of this technological approach was further confirmed by the characterization of a saturable [14C]taurine uptake in JAR cells. Taurine transport was of high affinity with a Km of 10.2+/-1.7 microM and fully inhibited by ALX-5407 (IC50=522 +/-83 nM). The developed assay is homogenous, rapid, versatile and amenable to automation for the discovery of new neurotransmitter transporter inhibitors.
Collapse
Affiliation(s)
- Jacinta B Williams
- Department of Neuroscience West Point, Merck & Co. Inc., West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Mallorga PJ, Williams JB, Jacobson M, Marques R, Chaudhary A, Conn PJ, Pettibone DJ, Sur C. Pharmacology and expression analysis of glycine transporter GlyT1 with [3H]-(N-[3-(4'-fluorophenyl)-3-(4'phenylphenoxy)propyl])sarcosine. Neuropharmacology 2003; 45:585-93. [PMID: 12941372 DOI: 10.1016/s0028-3908(03)00227-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the central nervous system, re-uptake of the neurotransmitter glycine is mediated by two different glycine transporters, GlyT1 and GlyT2. GlyT2 is found in brainstem and spinal cord, whereas GlyT1 is expressed in rat forebrain regions where it is responsible for most glycine transport activity. Initially, GlyT1 and GlyT2 were pharmacologically differentiated by sarcosine, a weak selective inhibitor of GlyT1. The recently described selective and potent GlyT1 antagonist, NFPS/ALX-5407 provided an important additional tool to further characterize GlyT1 pharmacology. In the present study, we have radiolabeled the racemic form of NFPS (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (also known as ALX-5407) to investigate its interaction with GlyT1, as well as define GlyT1 expression in the rat central nervous system. Kinetic studies indicated that [3H]NFPS binds rapidly to rat forebrain membranes and dissociates with a t(1/2) of 28 +/- 5 min. [3H]NFPS labeled a saturable population of sites in rat forebrain with a Kd of 7.1+/-1.3 nM and a B(max) of 3.14 +/- 0.26 pmol/mg protein. Bound [3H]NFPS was fully and potently displaced by unlabeled NFPS, whereas glycine and sarcosine were weak, Na+-dependent inhibitors with IC50 of 1,008 and 190 microM, respectively. Additional saturation experiments indicated that glycine and sarcosine were non-competitive antagonists of [3H]NFPS binding. Functional studies revealed that NFPS was a non-competitive inhibitor of [3H]glycine uptake and does not interact with Na+ and Cl- binding sites of GlyT1. Overall, this work shows that [3H]NFPS is a valuable tool in studying GlyT1 expression and pharmacology and that NFPS interacts with GlyT1 at a site different from the transporter translocation and ion binding sites.
Collapse
Affiliation(s)
- Pierre J Mallorga
- Merck and Co. Inc., Department of Neuroscience, West Point, WP26A-3000, P.O. Box 4, West Point, PA 19486, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Glycine exerts multiple functions in the central nervous system, as an inhibitory neurotransmitter through activation of specific, Cl--permeable, ligand-gated ionotropic receptors and as an obligatory co-agonist with glutamate on the activation of N-methyl-D-aspartate (NMDA) receptors. In some areas of the central nervous system, glycine seems to be co-released with gamma-aminobutyric acid (GABA), the main inhibitory amino acid neurotransmitter. The synaptic action of glycine ends by active recapture through sodium- and chloride-coupled glycine transporters located in glial and neuronal plasma membranes, whose structure-function relationship is being studied. The trafficking and plasma membrane expressions of these proteins are controlled by regulatory mechanisms. Glycine transporter inhibitors may find application in the treatment of muscle tone defects, epilepsy, schizophrenia, pain and neurodegenerative disorders. This review deals on recent progress on localization, transport mechanisms, structure, regulation and pharmacology of the glycine transporters (GLYTs).
Collapse
Affiliation(s)
- Carmen Aragón
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
133
|
The glycine transporter type 1 inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine potentiates NMDA receptor-mediated responses in vivo and produces an antipsychotic profile in rodent behavior. J Neurosci 2003. [PMID: 12930797 DOI: 10.1523/jneurosci.23-20-07586.2003] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycine acts as a necessary coagonist for glutamate at the NMDA receptor (NMDAR) complex by binding to the strychnine-insensitive glycine-B binding site on the NR1 subunit. The fact that glycine is normally found in the brain and spinal cord at concentrations that exceed those required to saturate this site has led to the speculation that glycine normally saturates NMDAR-containing synapses in vivo. However, additional lines of evidence suggest that synaptic glycine may be efficiently regulated in synaptic areas by the glycine transporter type 1 (GlyT1). The recent description of a potent and selective GlyT1 inhibitor (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine [NFPS]) provides a tool for evaluation of the hypothesis that inhibition of GlyT1 may increase synaptic glycine and thereby potentiate NMDAR function in vivo. In the present study, we found that (+)-NFPS demonstrated >10-fold greater activity in an in vitro functional glycine reuptake assay relative to the racemic compound. In vivo, (+/-)-NFPS significantly enhanced long-term potentiation in the hippocampal dentate gyrus induced by high-frequency electrical stimulation of the afferent perforant pathway. Furthermore, (+)-NFPS induced a pattern of c-Fos immunoreactivity comparable with the atypical antipsychotic clozapine and enhanced prepulse inhibition of the acoustic startle response in DBA/2J mice, a strain with low basal levels of prepulse inhibition. Collectively, these data suggest that selective inhibition of GlyT1 can enhance NMDAR-sensitive activity in vivo and also support the idea that GlyT1 may represent a novel target for developing therapeutics to treat disorders associated with NMDAR hypofunction.
Collapse
|
134
|
Lowe JA, Drozda SE, Fisher K, Strick C, Lebel L, Schmidt C, Hiller D, Zandi KS. [3H]-(R)-NPTS, a radioligand for the type 1 glycine transporter. Bioorg Med Chem Lett 2003; 13:1291-2. [PMID: 12657266 DOI: 10.1016/s0960-894x(03)00126-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The synthesis of NPTS, 6, a potent inhibitor of the type 1 glycine transporter (GlyT1) is described, as well as preparation of 6 in optically active and tritiated form for use as a radioligand for affinity displacement assay of GlyT1.
Collapse
Affiliation(s)
- John A Lowe
- Central Research Division, Pfizer Inc., Groton, CT 06340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89:691-703. [PMID: 12574447 DOI: 10.1152/jn.00680.2002] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor (NMDA-R) has pivotal roles in neural development, learning, memory, and synaptic plasticity. Functional impairment of NMDA-R has been implicated in schizophrenia. NMDA-R activation requires glycine to act on the glycine-B (GlyB) site of the NMDA-R as an obligatory co-agonist with glutamate. Extracellular glycine near NMDA-R is regulated effectively by a glial glycine transporter (GlyT1). Using whole-cell voltage-clamp recordings in prefrontal cortex (PFC) slices, we have shown that exogenous GlyB site agonists glycine and D-serine, or a specific GlyT1 inhibitor N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS) in the presence of exogenous glycine (10 microM), potentiated synaptically evoked NMDA excitatory postsynaptic currents (EPSCs) in vitro. Furthermore, in urethan-anesthetized rats, microiontophoretic NMDA pulses excite single PFC neurons. When these responses were blocked by approximately 50% to approximately 90% on continuous iontophoretic application of the GlyB site, antagonist (+)HA-966, intravenous NFPS (5 mg/kg), or a GlyB site agonist D-serine (50 mg/kg iv) reversed this (+)HA-966 block. NFPS may elevate endogenous glycine levels sufficiently to displace (+)HA-966 from the GlyB sites of the NMDA-R, thus enabling reactivation of the NMDA-Rs by iontophoretic NMDA applications. D-Serine (50-100 mg/kg iv) or NFPS (1-2 mg/kg iv) alone also augmented NMDA-evoked excitatory responses. These data suggest that direct GlyB site stimulation by D-serine, or blockade of GLYT1 to elevate endogenous glycine to act on unsaturated GlyB sites on NMDA-Rs, potentiated NMDA-R-mediated firing responses in rat PFC. Hence, blockade of GlyT1 to elevate glycine near the NMDA-R may activate hypofunctional NMDA-R, which has been implicated to play a critical role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Long Chen
- Neuroscience Discovery, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, Indiana 46220, USA
| | | | | |
Collapse
|
136
|
Pearlman RJ, Aubrey KR, Vandenberg RJ. Arachidonic acid and anandamide have opposite modulatory actions at the glycine transporter, GLYT1a. J Neurochem 2003; 84:592-601. [PMID: 12558979 DOI: 10.1046/j.1471-4159.2003.01549.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GLYT1 subtypes of glycine transporter are expressed in glia surrounding excitatory synapses in the mammalian CNS and may regulate synaptic glycine concentrations required for activation of the NMDA subtypes of glutamate receptor. In this report we demonstrate that the rate of glycine transport by GLYT1 is inhibited by arachidonic acid. The cyclo-oxygenase and lipoxygenase inhibitors indomethacin and nordihydroguaiaretic acid, and the protein kinase C inhibitor staurosporine, had no effect on the extent of arachidonic acid inhibition of transport, which suggests that the inhibitory effects of arachidonic acid result from a direct interaction with the transporter. In contrast to arachidonic acid, its amide derivative, anandamide, and the more stable analogue R1-methanandamide stimulate glycine transport. This stimulation is unlikely to be a secondary effect of cannabinoid receptor stimulation because the cannabinoid receptor agonist WIN 55 212-2 had no effect on transport. We suggest that the stimulatory effects of anandamide on GLYT1 are due to a direct interaction with the transporter.
Collapse
Affiliation(s)
- Rhonda Jo Pearlman
- Department of Pharmacology and Institute for Biomedical Research, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
137
|
Abstract
In the brain, neurons and glial cells compete for the uptake of the fast neurotransmitters, glutamate, GABA and glycine, through specific transporters. The relative contributions of glia and neurons to the neurotransmitter uptake depend on the kinetic properties, thermodynamic coupling and density of transporters but also on the intracellular metabolization or sequestration of the neurotransmitter. In the case of glycine, which is both an inhibitory transmitter and a neuromodulator of the excitatory glutamatergic transmission as a co-agonist of N-methyl D-aspartate receptors, the glial (GlyT1b) and neuronal (GlyT2a) transporters differ at least in three aspects: (i) stoichiometries, (ii) reverse uptake capabilities and (iii) pre-steady-state kinetics. A 3 Na(+)/1 Cl(-)/gly stoichiometry was established for GlyT2a on the basis of a 2 charges/glycine flux ratio and changes in the reversal potential of the transporter current as a function of the extracellular glycine, Na(+) and Cl(-) concentrations. Therefore, the driving force available for glycine uphill transport in neurons is about two orders of magnitude larger than for glial cells. In addition, GlyT2a shows a severe limitation for reverse uptake, which suggests an essential role of GlyT2a in maintaining a high intracellular glycine pool, thus facilitating the refilling of synaptic vesicles by the low affinity, low specificity vesicular transporter VGAT/VIAAT. In contrast, the 2 Na(+)/1 Cl(-)/gly stoichiometry and bi-directional transport properties of GlyT1b are appropriate for the control of the extracellular glycine concentration in a submicromolar range that can modulate N-methyl D-aspartate receptors effectively. Finally, analysis of the pre-steady-state kinetics of GlyT1b and GlyT2a revealed that at the resting potential neuronal transporters are preferentially oriented outward, ready to bind glycine, which suggests a kinetic advantage in the uptake contest.
Collapse
Affiliation(s)
- Stéphane Supplisson
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, UMR8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| | | |
Collapse
|