101
|
Xu B, Wang Y, Bahriz SMFM, Zhao M, Zhu C, Xiang YK. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes. Cell Commun Signal 2022; 20:143. [PMID: 36104752 PMCID: PMC9472443 DOI: 10.1186/s12964-022-00947-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSpatiotemporal regulation of subcellular protein kinase A (PKA) activity for precise substrate phosphorylation is essential for cellular responses to hormonal stimulation. Ryanodine receptor 2 (RyR2) and (sarco)endoplasmic reticulum calcium ATPase 2a (SERCA2a) represent two critical targets of β adrenoceptor (βAR) signaling on the sarcoplasmic reticulum membrane for cardiac excitation and contraction coupling. Using novel biosensors, we show that cardiac β1AR signals to both RyR2 and SERCA2a nanodomains in cardiomyocytes from mice, rats, and rabbits, whereas the β2AR signaling is restricted from these nanodomains. Phosphodiesterase 4 (PDE4) and PDE3 control the baseline PKA activity and prevent β2AR signaling from reaching the RyR2 and SERCA2a nanodomains. Moreover, blocking inhibitory G protein allows β2AR signaling to the RyR2 but not the SERCA2a nanodomains. This study provides evidence for the differential roles of inhibitory G protein and PDEs in controlling the adrenergic subtype signaling at the RyR2 and SERCA2a nanodomains in cardiomyocytes.
Collapse
|
102
|
Bose SJ, Read MJ, Akerman E, Capel RA, Ayagama T, Russell A, Terrar DA, Zaccolo M, Burton RAB. Inhibition of adenylyl cyclase 1 by ST034307 inhibits IP 3-evoked changes in sino-atrial node beat rate. Front Pharmacol 2022; 13:951897. [PMID: 36105228 PMCID: PMC9465815 DOI: 10.3389/fphar.2022.951897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP3 signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP3 signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307. The maximum rate change of spontaneously beating mouse right atrial tissue exposed to PE was reduced from 14.5% to 8.2% (p = 0.005) in the presence of 1 μM ST034307, whereas the increase in tension generated in paced left atrial tissue in the presence of PE was not inhibited by ST034307 (Control = 14.2%, ST034307 = 16.3%; p > 0.05). Experiments were performed using isolated guinea pig atrial and SAN cells loaded with Fluo-5F-AM to record changes in calcium transients (CaT) generated by 10 μM PE in the presence and absence of 1 μM ST034307. ST034307 significantly reduced the beating rate of SAN cells (0.34-fold decrease; p = 0.003) but did not inhibit changes in CaT amplitude in response to PE in atrial cells. The results presented here demonstrate pharmacologically the involvement of AC1 in the downstream response of atrial pacemaker activity to α-adrenoreceptor stimulation and IP3R calcium release.
Collapse
Affiliation(s)
- Samuel J. Bose
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Matthew J. Read
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Emily Akerman
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Thamali Ayagama
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Angela Russell
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
103
|
Li M, Zhao Y, Wang Y, Geng R, Fang J, Kang SG, Huang K, Tong T. Eugenol, A Major Component of Clove Oil, Attenuates Adiposity and Modulates Gut Microbiota in High-Fat Diet-fed Mice. Mol Nutr Food Res 2022; 66:e2200387. [PMID: 36029106 DOI: 10.1002/mnfr.202200387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Eugenol (EU), the major aromatic compound derived from clove oil, is being focused recently due to its potential in preventing several chronic conditions. Herein, we aimed to evaluate the potential of EU in obesity prevention and to delineate the mechanisms involved. METHODS AND RESULTS Five-week-old male C57BL/6J mice were fed with high-fat diet (HFD) or HFD supplemented with EU (0.2%, w/w) for 13 weeks. EU significantly reduced obesity-related indexes including final body weight, body weight gain, adipocyte size, visceral fat-pad weight, and fasting blood glucose. EU prevented HFD-induced gut dysbiosis, as indicated by the increase of Firmicutes and decrease of Desulfobacterota at phylum level, and the increase of Dubosiella, Blautia, unclassified_f_Oscillospiraceae, and unclassified_f_Ruminococcaceae, and the decrease of Alistipes, Alloprevotella, and Bilophila at genus level. Notably, the obesity-related indexes were positively correlated with the relative abundances of Bacteroides, unclassified_f_Lachnospiraceae, Colidextribacter, and Bilophila, and negatively correlated with the relative abundances of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group. Moreover, the preventive effects of EU on obesity were accompanied by the transcriptomic reprogramming of white adipose tissue. CONCLUSION These findings demonstrated that EU prevents the HFD-induced adiposity and modulates gut dysbiosis, and highlighted the potential of EU in obesity intervention as a functional dietary supplement. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, 58554, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| |
Collapse
|
104
|
Ferreira J, Levin LR, Buck J. Strategies to safely target widely expressed soluble adenylyl cyclase for contraception. Front Pharmacol 2022; 13:953903. [PMID: 36091839 PMCID: PMC9452739 DOI: 10.3389/fphar.2022.953903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
In humans, the prototypical second messenger cyclic AMP is produced by 10 adenylyl cyclase isoforms, which are divided into two classes. Nine isoforms are G protein coupled transmembrane adenylyl cyclases (tmACs; ADCY1-9) and the 10th is the bicarbonate regulated soluble adenylyl cyclase (sAC; ADCY10). This review details why sAC is uniquely druggable and outlines ways to target sAC for novel forms of male and female contraception.
Collapse
|
105
|
Sidoli M, Chen LC, Lu AJ, Wandless TJ, Talbot WS. A cAMP Sensor Based on Ligand-Dependent Protein Stabilization. ACS Chem Biol 2022; 17:2024-2030. [PMID: 35839076 PMCID: PMC9396618 DOI: 10.1021/acschembio.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
cAMP is a ubiquitous second messenger with many functions in diverse organisms. Current cAMP sensors, including Föster resonance energy transfer (FRET)-based and single-wavelength-based sensors, allow for real time visualization of this small molecule in cultured cells and in some cases in vivo. Nonetheless the observation of cAMP in living animals is still difficult, typically requiring specialized microscopes and ex vivo tissue processing. Here we used ligand-dependent protein stabilization to create a new cAMP sensor. This sensor allows specific and sensitive detection of cAMP in living zebrafish embryos, which may enable new understanding of the functions of cAMP in living vertebrates.
Collapse
Affiliation(s)
- Mariapaola Sidoli
- Department
of Developmental Biology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Ling-chun Chen
- Department
of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Alexander J. Lu
- Department
of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Thomas J. Wandless
- Department
of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - William S. Talbot
- Department
of Developmental Biology, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
106
|
Negative Feedback of the cAMP/PKA Pathway Regulates the Effects of Endoplasmic Reticulum Stress-Induced NLRP3 Inflammasome Activation on Type II Alveolar Epithelial Cell Pyroptosis as a Novel Mechanism of BLM-Induced Pulmonary Fibrosis. J Immunol Res 2022; 2022:2291877. [PMID: 36033388 PMCID: PMC9410862 DOI: 10.1155/2022/2291877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum stress (ER stress) contributes to the development of pulmonary fibrosis, especially in type II alveolar epithelial cells (AECs) apoptosis. ER stress also promotes NLRP3 inflammasome activation which is inhibited by upregulation of cAMP/PKA pathway. However, it is confused whether ER stress-induced NLRP3 inflammasome activation and pyroptosis in type II alveolar epithelial cells which exacerbates pulmonary fibrosis via a mechanism that is suppressed by cAMP/PKA pathway. In our research, we explored that potential links among NLRP3 inflammasome, ER stress, and cAMP/PKA pathway in type II AECs to explain the new mechanisms of pulmonary fibrosis. We found that in vivo, ER stress, NLRP3 inflammasome, and PKA upregulated in the alveolar epithelial area in animal models of pulmonary fibrosis. In addition, immunofluorescence staining further confirmed that ER stress, NLRP3 inflammasome, and cAMP/PKA had potential links on type II AECs in BLM group. In vitro, ER stress stimulated NLRP3 inflammasome activation, promoted pyroptosis, and also upregulated cAMP/PKA pathway. Upregulation of cAMP/PKA pathway inhibited ER stress-induced pyroptosis of A549 cells and vice versa. These results initially supported conclusion that ER stress may stimulate NLRP3 inflammasome activation and pyroptosis in type II AECs, which exacerbated pulmonary fibrosis, and cAMP/PKA pathway may act as a feedback regulator.
Collapse
|
107
|
Klein F, Machado MR, Pantano S. Hitting the Detection Limit in cAMP Signaling. FUNCTION 2022; 3:zqac038. [PMID: 38989037 PMCID: PMC11234644 DOI: 10.1093/function/zqac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 07/12/2024] Open
Affiliation(s)
- Florencia Klein
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Matías R Machado
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
108
|
Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2022; 32:3457-3471. [PMID: 34937090 PMCID: PMC9376866 DOI: 10.1093/cercor/bhab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laurence Ris
- Department of Neuroscience, University of Mons, Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | | | - Keiko Mizuno
- Department of Neuroscience, King’s College, London SE5 9NU, UK
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | | | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
109
|
Hansen JN, Kaiser F, Leyendecker P, Stüven B, Krause J, Derakhshandeh F, Irfan J, Sroka TJ, Preval KM, Desai PB, Kraut M, Theis H, Drews A, De‐Domenico E, Händler K, Pazour GJ, Henderson DJP, Mick DU, Wachten D. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep 2022; 23:e54315. [PMID: 35695071 PMCID: PMC9346484 DOI: 10.15252/embr.202154315] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | - Birthe Stüven
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | | | | | - Tommy J Sroka
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Kenley M Preval
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Paurav B Desai
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Michael Kraut
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Heidi Theis
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Anna‐Dorothee Drews
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Elena De‐Domenico
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Kristian Händler
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Gregory J Pazour
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | | | - David U Mick
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
110
|
Absence of EPAC1 Signaling to Stabilize CFTR in Intestinal Organoids. Cells 2022; 11:cells11152295. [PMID: 35892592 PMCID: PMC9332071 DOI: 10.3390/cells11152295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane (PM) stability of the cystic fibrosis transmembrane conductance regulator (CFTR), the protein which when mutated causes Cystic Fibrosis (CF), relies on multiple interaction partners that connect CFTR to signaling pathways, including cAMP signaling. It was previously shown that activation of exchange protein directly activated by cAMP 1 (EPAC1) by cAMP promotes an increase in CFTR PM levels in airway epithelial cells. However, the relevance of this pathway in other tissues, particularly the intestinal tissue, remains uncharacterized. Here, we used Western blot and forskolin-induced swelling assay to demonstrate that the EPAC1 protein is not expressed in the intestinal organoid model, and consequently the EPAC1 stabilization pathway is not in place. On the other hand, using cell surface biotinylation, EPAC1-mediated stabilization of PM CFTR is observed in intestinal cell lines. These results indicate that the EPAC1 stabilization pathway also occurs in intestinal cells and is a potential target for the development of novel combinatorial therapies for treatment of CF.
Collapse
|
111
|
Wang Y, Zhao M, Xu B, Bahriz SMF, Zhu C, Jovanovic A, Ni H, Jacobi A, Kaludercic N, Di Lisa F, Hell JW, Shih JC, Paolocci N, Xiang YK. Monoamine oxidase A and organic cation transporter 3 coordinate intracellular β 1AR signaling to calibrate cardiac contractile function. Basic Res Cardiol 2022; 117:37. [PMID: 35842861 PMCID: PMC9288959 DOI: 10.1007/s00395-022-00944-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023]
Abstract
We have recently identified a pool of intracellular β1 adrenergic receptors (β1ARs) at the sarcoplasmic reticulum (SR) crucial for cardiac function. Here, we aim to characterize the integrative control of intracellular catecholamine for subcellular β1AR signaling and cardiac function. Using anchored Förster resonance energy transfer (FRET) biosensors and transgenic mice, we determined the regulation of compartmentalized β1AR-PKA signaling at the SR and plasma membrane (PM) microdomains by organic cation transporter 3 (OCT3) and monoamine oxidase A (MAO-A), two critical modulators of catecholamine uptake and homeostasis. Additionally, we examined local PKA substrate phosphorylation and excitation-contraction coupling in cardiomyocyte. Cardiac-specific deletion of MAO-A (MAO-A-CKO) elevates catecholamines and cAMP levels in the myocardium, baseline cardiac function, and adrenergic responses. Both MAO-A deletion and inhibitor (MAOi) selectively enhance the local β1AR-PKA activity at the SR but not PM, and augment phosphorylation of phospholamban, Ca2+ cycling, and myocyte contractile response. Overexpression of MAO-A suppresses the SR-β1AR-PKA activity and PKA phosphorylation. However, deletion or inhibition of OCT3 by corticosterone prevents the effects induced by MAOi and MAO-A deletion in cardiomyocytes. Deletion or inhibition of OCT3 also negates the effects of MAOi and MAO-A deficiency in cardiac function and adrenergic responses in vivo. Our data show that MAO-A and OCT3 act in concert to fine-tune the intracellular SR-β1AR-PKA signaling and cardiac fight-or-flight response. We reveal a drug contraindication between anti-inflammatory corticosterone and anti-depressant MAOi in modulating adrenergic regulation in the heart, providing novel perspectives of these drugs with cardiac implications.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, 110122, China
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Sherif M F Bahriz
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Chaoqun Zhu
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Aleksandra Jovanovic
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Haibo Ni
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Ariel Jacobi
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Institute for Pediatric Research Città Della Speranza, Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA, 95616, USA.
- VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|
112
|
Kawata S, Mukai Y, Nishimura Y, Takahashi T, Saitoh N. Green fluorescent cAMP indicator of high speed and specificity suitable for neuronal live-cell imaging. Proc Natl Acad Sci U S A 2022; 119:e2122618119. [PMID: 35867738 PMCID: PMC9282276 DOI: 10.1073/pnas.2122618119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a canonical intracellular messenger playing diverse roles in cell functions. In neurons, cAMP promotes axonal growth during early development, and mediates sensory transduction and synaptic plasticity after maturation. The molecular cascades of cAMP are well documented, but its spatiotemporal profiles associated with neuronal functions remain hidden. Hence, we developed a genetically encoded cAMP indicator based on a bacterial cAMP-binding protein. This indicator "gCarvi" monitors [cAMP]i at 0.2 to 20 µM with a subsecond time resolution and a high specificity over cyclic guanosine monophosphate (cGMP). gCarvi can be converted to a ratiometric probe for [cAMP]i quantification and its expression can be specifically targeted to various subcellular compartments. Monomeric gCarvi also enables simultaneous multisignal monitoring in combination with other indicators. As a proof of concept, simultaneous cAMP/Ca2+ imaging in hippocampal neurons revealed a tight linkage of cAMP to Ca2+ signals. In cerebellar presynaptic boutons, forskolin induced nonuniform cAMP elevations among boutons, which positively correlated with subsequent increases in the size of the recycling pool of synaptic vesicles assayed using FM dye. Thus, the cAMP domain in presynaptic boutons is an important determinant of the synaptic strength.
Collapse
Affiliation(s)
- Seiko Kawata
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuki Mukai
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yumi Nishimura
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Naoto Saitoh
- Department of Neurophysiology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| |
Collapse
|
113
|
Awale GM, Barajaa MA, Kan HM, Lo KWH, Laurencin CT. Single-Dose Induction of Osteogenic Differentiation of Mesenchymal Stem Cells Using a Cyclic AMP Activator, Forskolin. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
114
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
115
|
Liu W, Liu C, Ren PG, Chu J, Wang L. An Improved Genetically Encoded Fluorescent cAMP Indicator for Sensitive cAMP Imaging and Fast Drug Screening. Front Pharmacol 2022; 13:902290. [PMID: 35694242 PMCID: PMC9175130 DOI: 10.3389/fphar.2022.902290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) is an important intracellular second messenger molecule downstream of many G protein-coupled receptors (GPCRs). Fluorescence imaging with bright and sensitive cAMP indicators allows not only dissecting the spatiotemporal dynamics of intracellular cAMP, but also high-content screening of compounds against GPCRs. We previously reported the high-performance circularly permuted GFP (cpGFP)-based cAMP indicator G-Flamp1. Here, we developed improved G-Flamp1 variants G-Flamp2 and G-Flamp2b. Compared to G-Flamp1, G-Flamp2 exhibited increased baseline fluorescence (1.6-fold) and larger fluorescence change (ΔF/F0) (1,300% vs. 1,100%) in HEK293T cells, while G-Flamp2b showed increased baseline fluorescence (3.1-fold) and smaller ΔF/F0 (400% vs. 1,100%). Furthermore, live cell imaging of mitochondrial matrix-targeted G-Flamp2 confirmed cytosolic cAMP was able to enter the mitochondrial matrix. G-Flamp2 imaging also showed that adipose tissue extract activated the Gi protein-coupled orphan GPCR GPR50 in HEK293T cells. Taken together, our results showed that the high-performance of G-Flamp2 would facilitate sensitive intracellular cAMP imaging and activity measurement of compounds targeting GPCR-cAMP signaling pathway during early drug development.
Collapse
Affiliation(s)
- Wenfeng Liu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chang Liu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
116
|
Chang B, Liu Y, Hu J, Tang Z, Qiu Z, Song Z, Jia A, Zhang Y. Bupleurum chinense DC improves CUMS-induced depressive symptoms in rats through upregulation of the cAMP/PKA/CREB signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115034. [PMID: 35092825 DOI: 10.1016/j.jep.2022.115034] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleurum chinense DC. (B. chinense) is the dried root of B. chinense, belonging to the Umbelliferae family. B. chinense has been reported since ancient times for its effect of soothing the liver and relieving depression. Additionally, its important role in treating depression, depressed mood disorders and anti-inflammation has been proven in previous studies. However, its specific mechanism of action remains unknown. AIM OF THE STUDY The key targets and metabolites of the antidepressant effect of B. chinense were investigated based on the cAMP signalling pathway. The study examined the mechanism for the antidepressant effect of B. chinense by target prediction, analysis of related metabolites and potential metabolic pathways. MATERIALS AND METHODS A network pharmacology approach was used to predict the antidepressant targets and pathways of B. chinense. A depression rat model was established through the CUMS (chronic unpredictable mild stress) procedure. The depression model was assessed by body weight, sugar-water preference, water maze and enzyme-linked immunosorbent assay (ELISA) indicators (5hydroxytryptamine, etc.). The key metabolic pathways were screened by correlations between metabolites and key targets. Finally, a quantitative analysis of key targets and metabolites was experimentally validated. RESULTS B. chinense significantly ameliorated the reduction in body weight, sugar-water preference rate and cognitive performance in the water maze experiment in rats with depression induced by CUMS. ELISA, Western blotting (WB) and reverse transcription-polymerase chain reaction (RT-PCR) assays showed that B. chinense significantly improves the expression of protein kinase cyclic adenylic acid (cAMP)-activated catalytic subunit alpha (PRKACA), cAMP-response element-binding protein (CREB) and cAMP activation in the rat brain induced by CUMS. According to metabolic pathway analysis, B. chinense shows an antidepressant effect primarily by regulating the cAMP metabolic pathway. CONCLUSION B. chinense upregulated PRKACA and CREB expression and the level of the key metabolite cAMP in the cAMP/PKA/CREB pathway while reducing the inflammatory response to depression treatment. These new findings support future research on the antidepressant effects of B. chinense.
Collapse
Affiliation(s)
- Baijin Chang
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China
| | - Yanru Liu
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China.
| | - Jingting Hu
- The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, 130117, Chang chun, PR China
| | - Zhishu Tang
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China; Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China; China Academy of Chinese Medical Sciences, 100700, Beijing, PR China.
| | - Zhidong Qiu
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China
| | - Zhongxing Song
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China
| | - Ailing Jia
- Changchun University of Chinese Medicine, 130117, Chang Chun, PR China
| | - Yuru Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi Collaborative Innovation Center Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712083, Xianyang, PR China
| |
Collapse
|
117
|
A multiscale model of the regulation of aquaporin 2 recycling. NPJ Syst Biol Appl 2022; 8:16. [PMID: 35534498 PMCID: PMC9085758 DOI: 10.1038/s41540-022-00223-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
The response of cells to their environment is driven by a variety of proteins and messenger molecules. In eukaryotes, their distribution and location in the cell are regulated by the vesicular transport system. The transport of aquaporin 2 between membrane and storage region is a crucial part of the water reabsorption in renal principal cells, and its malfunction can lead to Diabetes insipidus. To understand the regulation of this system, we aggregated pathways and mechanisms from literature and derived three models in a hypothesis-driven approach. Furthermore, we combined the models to a single system to gain insight into key regulatory mechanisms of Aquaporin 2 recycling. To achieve this, we developed a multiscale computational framework for the modeling and simulation of cellular systems. The analysis of the system rationalizes that the compartmentalization of cAMP in renal principal cells is a result of the protein kinase A signalosome and can only occur if specific cellular components are observed in conjunction. Endocytotic and exocytotic processes are inherently connected and can be regulated by the same protein kinase A signal.
Collapse
|
118
|
Mesa-Herrera F, Marín R, Torrealba E, Santos G, Díaz M. Neuronal ER-Signalosome Proteins as Early Biomarkers in Prodromal Alzheimer's Disease Independent of Amyloid-β Production and Tau Phosphorylation. Front Mol Neurosci 2022; 15:879146. [PMID: 35600079 PMCID: PMC9119323 DOI: 10.3389/fnmol.2022.879146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 01/18/2023] Open
Abstract
There exists considerable interest to unveil preclinical period and prodromal stages of Alzheimer's disease (AD). The mild cognitive impairment (MCI) is characterized by significant memory and/or other cognitive domains impairments, and is often considered the prodromal phase of AD. The cerebrospinal fluid (CSF) levels of β-amyloid (βA), total tau (t-tau), and phosphorylated tau (p-tau) have been used as biomarkers of AD albeit their significance as indicators during early stages of AD remains far from accurate. The new biomarkers are being intensively sought as to allow identification of pathological processes underlying early stages of AD. Fifty-three participants (75.4 ± 8.3 years) were classified in three groups as cognitively normal healthy controls (HC), MCI, and subjective memory complaints (SMC). The subjects were subjected to a battery of neurocognitive tests and underwent lumbar puncture for CSF extraction. The CSF levels of estrogen-receptor (ER)-signalosome proteins, βA, t-tau and p-tau, were submitted to univariate, bivariate, and multivariate statistical analyses. We have found that the components of the ER-signalosome, namely, caveolin-1, flotilin-1, and estrogen receptor alpha (ERα), insulin growth factor-1 receptor β (IGF1Rβ), prion protein (PrP), and plasmalemmal voltage dependent anion channel 1 (VDAC) could be detected in the CSF from all subjects of the HC, MCI, and SMC groups. The six proteins appeared elevated in MCI and slightly increased in SMC subjects compared to HC, suggesting that signalosome proteins undergo very early modifications in nerve cells. Using a multivariate approach, we have found that the combination of ERα, IGF-1Rβ, and VDAC are the main determinants of group segregation with resolution enough to predict the MCI stage. The analyses of bivariate relationships indicated that collinearity of ER-signalosome proteins vary depending on the stage, with some pairs displaying opposed relationships between HC and MCI groups, and the SMC stage showing either no relationships or behaviors similar to either HC or MCI stages. The multinomial logistic regression models of changes in ER-signalosome proteins provide reliable predictive criteria, particularly for the MCI. Notably, most of the statistical analyses revealed no significant relationships or interactions with classical AD biomarkers at either disease stage. Finally, the multivariate functions were highly correlated with outcomes from neurocognitive tests for episodic memory. These results demonstrate that alterations in ER-signalosome might provide useful diagnostic information on preclinical stages of AD, independently from classical biomarkers.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology, Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Medicine Section, Health Sciences School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Associate Research Unit ULL-CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”, University of La Laguna, San Cristóbal de La Laguna, Spain
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Eduardo Torrealba
- Department of Neurology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Guido Santos
- Systems Biology and Mathematical Modelling Group, Department of Department of Biochemistry, Microbiology, Cell Biology and Genetics Biology Section, Science School, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Mario Díaz
- Instituto Universitario de Neurociencias (IUNE), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Department of Physics, Faculty of Sciences, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
119
|
Puri NM, Romano GR, Lin TY, Mai QN, Irannejad R. The organic cation Transporter 2 regulates dopamine D1 receptor signaling at the Golgi apparatus. eLife 2022; 11:75468. [PMID: 35467530 PMCID: PMC9098220 DOI: 10.7554/elife.75468] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine is a key catecholamine in the brain and kidney, where it is involved in a number of physiological functions such as locomotion, cognition, emotion, endocrine regulation, and renal function. As a membrane-impermeant hormone and neurotransmitter, dopamine is thought to signal by binding and activating dopamine receptors, members of the G protein coupled receptor (GPCR) family, only on the plasma membrane. Here, using novel nanobody-based biosensors, we demonstrate for the first time that the dopamine D1 receptor (D1DR), the primary mediator of dopaminergic signaling in the brain and kidney, not only functions on the plasma membrane but becomes activated at the Golgi apparatus in the presence of its ligand. We present evidence that activation of the Golgi pool of D1DR is dependent on organic cation transporter 2 (OCT2), a dopamine transporter, providing an explanation for how the membrane-impermeant dopamine accesses subcellular pools of D1DR. We further demonstrate that dopamine activates Golgi-D1DR in murine striatal medium spiny neurons, and this activity depends on OCT2 function. We also introduce a new approach to selectively interrogate compartmentalized D1DR signaling by inhibiting Gαs coupling using a nanobody-based chemical recruitment system. Using this strategy, we show that Golgi-localized D1DRs regulate cAMP production and mediate local protein kinase A activation. Together, our data suggest that spatially compartmentalized signaling hubs are previously unappreciated regulatory aspects of D1DR signaling. Our data provide further evidence for the role of transporters in regulating subcellular GPCR activity.
Collapse
Affiliation(s)
- Natasha M Puri
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Giovanna R Romano
- Biochemistry Department, Weill Cornell Medicine, New York, United States
| | - Ting-Yu Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Quynh N Mai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Roshanak Irannejad
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
120
|
Melick CH, Lama-Sherpa TD, Curukovic A, Jewell JL. G-Protein Coupled Receptor Signaling and Mammalian Target of Rapamycin Complex 1 Regulation. Mol Pharmacol 2022; 101:181-190. [PMID: 34965982 PMCID: PMC9092479 DOI: 10.1124/molpharm.121.000302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) senses upstream stimuli to regulate numerous cellular functions such as metabolism, growth, and autophagy. Increased activation of mTOR complex 1 (mTORC1) is typically observed in human disease and continues to be an important therapeutic target. Understanding the upstream regulators of mTORC1 will provide a crucial link in targeting hyperactivated mTORC1 in human disease. In this mini-review, we will discuss the regulation of mTORC1 by upstream stimuli, with a specific focus on G-protein coupled receptor signaling to mTORC1. SIGNIFICANCE STATEMENT: mTORC1 is a master regulator of many cellular processes and is often hyperactivated in human disease. Therefore, understanding the molecular underpinnings of G-protein coupled receptor signaling to mTORC1 will undoubtedly be beneficial for human disease.
Collapse
Affiliation(s)
- Chase H Melick
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tshering D Lama-Sherpa
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Adna Curukovic
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jenna L Jewell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
121
|
Anton SE, Kayser C, Maiellaro I, Nemec K, Möller J, Koschinski A, Zaccolo M, Annibale P, Falcke M, Lohse MJ, Bock A. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 2022; 185:1130-1142.e11. [PMID: 35294858 DOI: 10.1016/j.cell.2022.02.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and β2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.
Collapse
Affiliation(s)
- Selma E Anton
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Charlotte Kayser
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Isabella Maiellaro
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany; School of Life Sciences, Department of Neuroscience, University of Nottingham, Nottingham NG7 2UH, UK
| | - Katarina Nemec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Jan Möller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany; School of Physics and Astronomy, University of St Andrews, North Haugh, St. Andrews KY16 9SS, UK
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Department of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany; Institute for Chemistry and Biochemistry, Free University Berlin, Takustr. 3, 14195 Berlin, Germany; ISAR Bioscience Institute, Semmelweisstrasse 5, 82152 Planegg, Munich, Germany.
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany; Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
122
|
Franzoso M, Dokshokova L, Vitiello L, Zaglia T, Mongillo M. Tuning the Consonance of Microscopic Neuro-Cardiac Interactions Allows the Heart Beats to Play Countless Genres. Front Physiol 2022; 13:841740. [PMID: 35273522 PMCID: PMC8902305 DOI: 10.3389/fphys.2022.841740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Different from skeletal muscle, the heart autonomously generates rhythmic contraction independently from neuronal inputs. However, speed and strength of the heartbeats are continuously modulated by environmental, physical or emotional inputs, delivered by cardiac innervating sympathetic neurons, which tune cardiomyocyte (CM) function, through activation of β-adrenoceptors (β-ARs). Given the centrality of such mechanism in heart regulation, β-AR signaling has been subject of intense research, which has reconciled the molecular details of the transduction pathway and the fine architecture of cAMP signaling in subcellular nanodomains, with its final effects on CM function. The importance of mechanisms keeping the elements of β-AR/cAMP signaling in good order emerges in pathology, when the loss of proper organization of the transduction pathway leads to detuned β-AR/cAMP signaling, with detrimental consequences on CM function. Despite the compelling advancements in decoding cardiac β-AR/cAMP signaling, most discoveries on the subject were obtained in isolated cells, somehow neglecting that complexity may encompass the means in which receptors are activated in the intact heart. Here, we outline a set of data indicating that, in the context of the whole myocardium, the heart orchestra (CMs) is directed by a closely interacting and continuously attentive conductor, represented by SNs. After a roundup of literature on CM cAMP regulation, we focus on the unexpected complexity and roles of cardiac sympathetic innervation, and present the recently discovered Neuro-Cardiac Junction, as the election site of "SN-CM" interaction. We further discuss how neuro-cardiac communication is based on the combination of extra- and intra-cellular signaling micro/nano-domains, implicating neuronal neurotransmitter exocytosis, β-ARs and elements of cAMP homeostasis in CMs, and speculate on how their dysregulation may reflect on dysfunctional neurogenic control of the heart in pathology.
Collapse
Affiliation(s)
- Mauro Franzoso
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
123
|
Zhou G, Wang Z, Han S, Chen X, Li Z, Hu X, Li Y, Gao J. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front Mol Neurosci 2022; 15:808510. [PMID: 35283731 PMCID: PMC8904388 DOI: 10.3389/fnmol.2022.808510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/26/2022] [Indexed: 01/03/2023] Open
Abstract
Spinal cord injury (SCI) results in multiple pathophysiological processes, including blood–spinal cord barrier disruption, hemorrhage/ischemia, oxidative stress, neuroinflammation, scar formation, and demyelination. These responses eventually lead to severe tissue destruction and an inhibitory environment for neural regeneration.cAMP signaling is vital for neurite outgrowth and axonal guidance. Stimulating intracellular cAMP activity significantly promotes neuronal survival and axonal regrowth after SCI.However, neuronal cAMP levels in adult CNS are relatively low and will further decrease after injury. Targeting cAMP signaling has become a promising strategy for neural regeneration over the past two decades. Furthermore, studies have revealed that cAMP signaling is involved in the regulation of glial cell function in the microenvironment of SCI, including macrophages/microglia, reactive astrocytes, and oligodendrocytes. cAMP-elevating agents in the post-injury milieu increase the cAMP levels in both neurons and glial cells and facilitate injury repair through the interplay between neurons and glial cells and ultimately contribute to better morphological and functional outcomes. In recent years, combination treatments associated with cAMP signaling have been shown to exert synergistic effects on the recovery of SCI. Agents carried by nanoparticles exhibit increased water solubility and capacity to cross the blood–spinal cord barrier. Implanted bioscaffolds and injected hydrogels are potential carriers to release agents locally to avoid systemic side effects. Cell transplantation may provide permissive matrices to synergize with the cAMP-enhanced growth capacity of neurons. cAMP can also induce the oriented differentiation of transplanted neural stem/progenitor cells into neurons and increase the survival rate of cell grafts. Emerging progress focused on cAMP compartmentation provides researchers with new perspectives to understand the complexity of downstream signaling, which may facilitate the clinical translation of strategies targeting cAMP signaling for SCI repair.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyan Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shiyuan Han
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhimin Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianghui Hu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- *Correspondence: Jun Gao
| |
Collapse
|
124
|
Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and Compartmentation of cAMP and cGMP Signaling in Regulation of Cardiac Contractility in Normal and Failing Hearts. Int J Mol Sci 2022; 23:2145. [PMID: 35216259 PMCID: PMC8880502 DOI: 10.3390/ijms23042145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure.
Collapse
Affiliation(s)
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, P.O. Box 1057 Blindern, 0316 Oslo, Norway; (G.C.); (L.R.M.); (F.O.L.)
| |
Collapse
|
125
|
Abstract
In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.
Collapse
Affiliation(s)
- Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
126
|
Sando R, Ho ML, Liu X, Südhof TC. Engineered synaptic tools reveal localized cAMP signaling in synapse assembly. J Cell Biol 2022; 221:e202109111. [PMID: 34913963 PMCID: PMC8685283 DOI: 10.1083/jcb.202109111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The physiological mechanisms driving synapse formation are elusive. Although numerous signals are known to regulate synapses, it remains unclear which signaling mechanisms organize initial synapse assembly. Here, we describe new tools, referred to as "SynTAMs" for synaptic targeting molecules, that enable localized perturbations of cAMP signaling in developing postsynaptic specializations. We show that locally restricted suppression of postsynaptic cAMP levels or of cAMP-dependent protein-kinase activity severely impairs excitatory synapse formation without affecting neuronal maturation, dendritic arborization, or inhibitory synapse formation. In vivo, suppression of postsynaptic cAMP signaling in CA1 neurons prevented formation of both Schaffer-collateral and entorhinal-CA1/temporoammonic-path synapses, suggesting a general principle. Retrograde trans-synaptic rabies virus tracing revealed that postsynaptic cAMP signaling is required for continuous replacement of synapses throughout life. Given that postsynaptic latrophilin adhesion-GPCRs drive synapse formation and produce cAMP, we suggest that spatially restricted postsynaptic cAMP signals organize assembly of postsynaptic specializations during synapse formation.
Collapse
Affiliation(s)
- Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Milan Lyndie Ho
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
127
|
Liccardo F, Luini A, Di Martino R. Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells 2022; 11:528. [PMID: 35159337 PMCID: PMC8834376 DOI: 10.3390/cells11030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) and G-proteins have a range of roles in many physiological and pathological processes and are among the most studied signaling proteins. A plethora of extracellular stimuli can activate the GPCR and can elicit distinct intracellular responses through the activation of specific transduction pathways. For many years, biologists thought that GPCR signaling occurred entirely on the plasma membrane. However, in recent decades, many lines of evidence have proved that the GPCRs and G-proteins may reside on endomembranes and can start or propagate signaling pathways through the organelles that form the secretory route. How these alternative intracellular signaling pathways of the GPCR and G-proteins influence the physiological and pathological function of the endomembranes is still under investigation. Here, we review the general role and classification of GPCRs and G-proteins with a focus on their signaling pathways in the membrane transport apparatus.
Collapse
Affiliation(s)
- Federica Liccardo
- Cardiovascular Research Institute, University of California San Francisco (UCSF), 555 Mission Bay Blvd., San Francisco, CA 94158, USA;
| | - Alberto Luini
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosaria Di Martino
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
128
|
Cabrera O, Ficorilli J, Shaw J, Echeverri F, Schwede F, Chepurny OG, Leech CA, Holz GG. Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. J Biol Chem 2022; 298:101484. [PMID: 34896391 PMCID: PMC8789663 DOI: 10.1016/j.jbc.2021.101484] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
We report that intra-islet glucagon secreted from α-cells signals through β-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9-39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on β-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a "spillover" effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the β-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9-39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise increase of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test that is diagnostic of type 2 diabetes in the clinical setting.
Collapse
Affiliation(s)
- Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - James Ficorilli
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Janice Shaw
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Frank Schwede
- Biolog Life Science Institute GmbH & Co KG, Bremen, Germany
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA; Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
129
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
130
|
Reddy GR, Ren L, Thai PN, Caldwell JL, Zaccolo M, Bossuyt J, Ripplinger CM, Xiang YK, Nieves-Cintrón M, Chiamvimonvat N, Navedo MF. Deciphering cellular signals in adult mouse sinoatrial node cells. iScience 2022; 25:103693. [PMID: 35036877 PMCID: PMC8749457 DOI: 10.1016/j.isci.2021.103693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct β-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Gopireddy R. Reddy
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Jessica L. Caldwell
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Crystal M. Ripplinger
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| |
Collapse
|
131
|
Emerging Role of cAMP/AMPK Signaling. Cells 2022; 11:cells11020308. [PMID: 35053423 PMCID: PMC8774420 DOI: 10.3390/cells11020308] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
Collapse
|
132
|
Schleicher K, Hester S, Stegmann M, Zaccolo M. Quantitative Phosphoproteomics to Study cAMP Signaling. Methods Mol Biol 2022; 2483:281-296. [PMID: 35286683 DOI: 10.1007/978-1-0716-2245-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) signaling activates multiple downstream cellular targets in response to different stimuli. Specific phosphorylation of key target proteins via activation of the cAMP effector protein kinase A (PKA) is achieved via signal compartmentalization. Termination of the cAMP signal is mediated by phosphodiesterases (PDEs), a diverse group of enzymes comprising several families that localize to distinct cellular compartments. By studying the effects of inhibiting individual PDE families on the phosphorylation of specific targets it is possible to gain information on the subcellular spatial organization of this signaling pathway.We describe a phosphoproteomic approach that can detect PDE family-specific phosphorylation changes in cardiac myocytes against a high phosphorylation background. The method combines dimethyl labeling and titanium dioxide-mediated phosphopeptide enrichment, followed by tandem mass spectrometry.
Collapse
Affiliation(s)
- Katharina Schleicher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Svenja Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Monika Stegmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
133
|
Kayser C, Lohse MJ, Bock A. Real-Time Measurements of Intracellular cAMP Gradients Using FRET-Based cAMP Nanorulers. Methods Mol Biol 2022; 2483:1-13. [PMID: 35286666 DOI: 10.1007/978-1-0716-2245-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is one of the most important and ubiquitous second messengers in cells downstream of G protein-coupled receptors (GPCRs). In a single cell, cAMP can exert innumerous specific cell functions in response to more than one hundred different GPCRs. Cells achieve this extraordinary functional specificity of cAMP signaling by limiting the spread of these signals in space and time. To do so, cells establish nanometer-size cAMP gradients by immobilizing cAMP via cAMP binding proteins and via targeted activity of cAMP-degrading phosphodiesterases (PDEs). As cAMP gradients appear to be essential for cell function, new technologies are needed to accurately measure cAMP gradients in intact cells with nanometer-resolution. Here we describe FRET-based cAMP nanorulers to measure local, nanometer-size cAMP gradients in intact cells in the direct vicinity of PDEs.
Collapse
Affiliation(s)
- Charlotte Kayser
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Receptor Signaling Lab, Robert-Roessle-Strasse 10, Berlin, Germany
| | - Martin J Lohse
- ISAR Bioscience Institute, Semmelweisstraße 5, Munich, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Receptor Signaling Lab, Robert-Roessle-Strasse 10, Berlin, Germany.
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Haertelstrasse, Leipzig, Germany.
| |
Collapse
|
134
|
Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne) 2022; 13:1024423. [PMID: 36313756 PMCID: PMC9612118 DOI: 10.3389/fendo.2022.1024423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The cAMP-signaling cancers, which are defined by functionally-significant somatic mutations in one or more elements of the cAMP signaling pathway, have an unexpectedly wide range of cell origins, clinical manifestations, and potential therapeutic options. Mutations in at least 9 cAMP signaling pathway genes (TSHR, GPR101, GNAS, PDE8B, PDE11A, PRKARA1, PRKACA, PRKACB, and CREB) have been identified as driver mutations in human cancer. Although all cAMP-signaling pathway cancers are driven by mutation(s) that impinge on a single signaling pathway, the ultimate tumor phenotype reflects interactions between five critical variables: (1) the precise gene(s) that undergo mutation in each specific tumor type; (2) the effects of specific allele(s) in any given gene; (3) mutations in modifier genes (mutational "context"); (4) the tissue-specific expression of various cAMP signaling pathway elements in the tumor stem cell; and (5) and the precise biochemical regulation of the pathway components in tumor cells. These varying oncogenic mechanisms reveal novel and important targets for drug discovery. There is considerable diversity in the "druggability" of cAMP-signaling components, with some elements (GPCRs, cAMP-specific phosphodiesterases and kinases) appearing to be prime drug candidates, while other elements (transcription factors, protein-protein interactions) are currently refractory to robust drug-development efforts. Further refinement of the precise driver mutations in individual tumors will be essential for directing priorities in drug discovery efforts that target these mutations.
Collapse
|
135
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|
136
|
Haire A, Bai J, Zhao X, Song Y, Zhao G, Dilixiati A, Li J, Sun WQ, Wan P, Fu X, Wusiman A. Identifying the heat resistant genes by multi-tissue transcriptome sequencing analysis in Turpan Black sheep. Theriogenology 2021; 179:78-86. [PMID: 34844083 DOI: 10.1016/j.theriogenology.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022]
Abstract
Heat stress not only affects the physical condition but also affects reproductive performance in sheep. A thorough understanding of the molecular and physiological mechanisms underlying heat stress would certainly improve livestock productivity and provide genetic evaluation ways for heat resistant breeds selection. In this study, 85 Turpan Black sheep, a breed exhibited excellent heat resistance from long-term artificial selection, and 85 heat sensitive Kazakh sheep in Turpan basin were tested for physiological and reproductive performance from July to August in summer. The results showed that the estrus rate was significantly higher in Turpan Black sheep (P < 0.05), while the heart rate and respiratory rate of Turpan Black sheep are significantly lower than that of Kazakh sheep (P < 0.05). Furthermore, to clarify genes participated in heat stress response, the pituitary, ovarian and hepatic tissues from three Turpan Black sheep and three Kazakh sheep were subjected to RNA-seq. The results indicated that 32, 49 and 69 genes were up-regulated, and 39, 60 and 145 genes were down-regulated in pituitary, ovarian and hepatic tissues in Turpan Black sheep compared with that of the Kazakh sheep, respectively. KEGG and gene set enrichment analysis showed that the differentially expressed genes were mainly involved in signal transduction pathways. In particular, the differentially expressed genes in hepar were enriched in the energy metabolism pathway, while the differentially expressed genes in ovarian tissue were enriched in the ovarium steroidogenesis pathway. In conclusion, our results implied that the pituitary-ovary axis might include hepar as downstream targeted organism in heat resistant regulation. Under heat stress, the signals released from pituitary would impact steroidogenesis in ovary, and further alter energy metabolism in hepar. As we know, this is the first comparative study to investigate the gene expression in multi-tissue in sheep under heat stress.
Collapse
Affiliation(s)
- Aerman Haire
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jiachen Bai
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, 832000, China; National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China; National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yukun Song
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Guodong Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Airixiati Dilixiati
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jun Li
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wendell Q Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, 832000, China
| | - Xiangwei Fu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihhotze, 832000, China; National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Abulizi Wusiman
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
137
|
Maric D, Paterek A, Delaunay M, López IP, Arambasic M, Diviani D. A-Kinase Anchoring Protein 2 Promotes Protection against Myocardial Infarction. Cells 2021; 10:2861. [PMID: 34831084 PMCID: PMC8616452 DOI: 10.3390/cells10112861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of maladaptive cardiac remodeling and heart failure. In the damaged heart, loss of function is mainly due to cardiomyocyte death and remodeling of the cardiac tissue. The current study shows that A-kinase anchoring protein 2 (AKAP2) orchestrates cellular processes favoring cardioprotection in infarcted hearts. Induction of AKAP2 knockout (KO) in cardiomyocytes of adult mice increases infarct size and exacerbates cardiac dysfunction after MI, as visualized by increased left ventricular dilation and reduced fractional shortening and ejection fraction. In cardiomyocytes, AKAP2 forms a signaling complex with PKA and the steroid receptor co-activator 3 (Src3). Upon activation of cAMP signaling, the AKAP2/PKA/Src3 complex favors PKA-mediated phosphorylation and activation of estrogen receptor α (ERα). This results in the upregulation of ER-dependent genes involved in protection against apoptosis and angiogenesis, including Bcl2 and the vascular endothelial growth factor a (VEGFa). In line with these findings, cardiomyocyte-specific AKAP2 KO reduces Bcl2 and VEGFa expression, increases myocardial apoptosis and impairs the formation of new blood vessels in infarcted hearts. Collectively, our findings suggest that AKAP2 organizes a transcriptional complex that mediates pro-angiogenic and anti-apoptotic responses that protect infarcted hearts.
Collapse
Affiliation(s)
- Darko Maric
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aleksandra Paterek
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Marion Delaunay
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Irene Pérez López
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Miroslav Arambasic
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| |
Collapse
|
138
|
Warren R, Rich T, Leavesley S, Phan AV. A three-dimensional finite element model of cAMP signals. FORCES IN MECHANICS 2021; 4. [PMID: 35072121 PMCID: PMC8773462 DOI: 10.1016/j.finmec.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R. Warren
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T.C. Rich
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - S.J. Leavesley
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - A.-V. Phan
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA
- Corresponding author. (A.-V. Phan)
| |
Collapse
|
139
|
Ragone A, Salzillo A, Spina A, Zappavigna S, Caraglia M, Sapio L, Naviglio S. Protein Kinase A Detection in Human Urine Samples. J Clin Med 2021; 10:4096. [PMID: 34575203 PMCID: PMC8464865 DOI: 10.3390/jcm10184096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
Actively involved in tumor maintenance, cAMP-dependent protein kinase A (PKA) has been proposed as a putative biomarker in cancer. Recently, an active PKA form has been identified in human sera and PKA autoantibodies have been detected in cancer patients. However, their serum functions, as well as diagnostic significance, remain largely unknown. Although several PKA detection assays have been developed, none refer to a laboratory diagnostic procedure. Among these, ELISA and Western blotting (WB) assays have been employed in PKA detection. Since, to the best of our knowledge, there are no data showing its presence in human urine samples, herein, we explore the possibility of PKA's existence in this biological specimen. Interestingly, among the 30 screened urines by quantitative sandwich ELISA, we recognized detectable PKA levels in 5 different samples, and of those two exhibited a considerable high concentration. To corroborate these results, we also evaluated PKA's presence in both positive and negative ELISA urines by WB. Remarkably, immunoblotting analysis confirmed PKA's existence in certain, but not in all, human urine specimens. Despite being quite preliminary, these findings firstly identify PKA in urine samples and provide evidence for its potential clinic usage as a diagnostic analyte in laboratory medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Luigi Sapio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (A.R.); (A.S.); (A.S.); (S.Z.); (M.C.); (S.N.)
| | | |
Collapse
|
140
|
Cai E, Zhang J, Ge X. Control of the Hedgehog pathway by compartmentalized PKA in the primary cilium. SCIENCE CHINA-LIFE SCIENCES 2021; 65:500-514. [PMID: 34505970 DOI: 10.1007/s11427-021-1975-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023]
Abstract
The Hedgehog (Hh) signaling is one of the essential signaling pathways during embryogenesis and in adults. Hh signal transduction relies on primary cilium, a specialized cell surface organelle viewed as the hub of cell signaling. Protein kinase A (PKA) has been recognized as a potent negative regulator of the Hh pathway, raising the question of how such a ubiquitous kinase specifically regulates one signaling pathway. We reviewed recent genetic, molecular and biochemical studies that have advanced our mechanistic understanding of PKA's role in Hh signaling in vertebrates, focusing on the compartmentalized PKA at the centrosome and in the primary cilium. We outlined the recently developed genetic and optical tools that can be harvested to study PKA activities during the course of Hh signal transduction.
Collapse
Affiliation(s)
- Eva Cai
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA.
| |
Collapse
|
141
|
Faro D, Boekhoff I, Gudermann T, Breit A. Physiological Temperature Changes Fine-Tune β 2- Adrenergic Receptor-Induced Cytosolic cAMP Accumulation. Mol Pharmacol 2021; 100:203-216. [PMID: 34158361 DOI: 10.1124/molpharm.121.000309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) controls many vital body functions by activating adrenergic receptors (ARs). Average core body temperature (CBT) in mice is 37°C. Of note, CBT fluctuates between 36 and 38°C within 24 hours, but little is known about the effects of CBT changes on the pharmacodynamics of NE. Here, we used Peltier element-controlled incubators and challenged murine hypothalamic mHypoA -2/10 cells with temperature changes of ±1°C. We observed enhanced NE-induced activation of a cAMP-dependent luciferase reporter at 36 compared with 38°C. mRNA analysis and subtype specific antagonists revealed that NE activates β 2- and β 3-AR in mHypoA-2/10 cells. Agonist binding to the β 2-AR was temperature insensitive, but measurements of cytosolic cAMP accumulation revealed an increase in efficacy of 45% ± 27% for NE and of 62% ± 33% for the β 2-AR-selective agonist salmeterol at 36°C. When monitoring NE-promoted cAMP efflux, we observed an increase in the absolute efflux at 36°C. However, the ratio of exported to cytosolic accumulated cAMP is higher at 38°C. We also stimulated cells with NE at 37°C and measured cAMP degradation at 36 and 38°C afterward. We observed increased cAMP degradation at 38°C, indicating enhanced phosphodiesterase activity at higher temperatures. In line with these data, NE-induced activation of the thyreoliberin promoter was found to be enhanced at 36°C. Overall, we show that physiologic temperature changes fine-tune NE-induced cAMP signaling in hypothalamic cells via β 2-AR by modulating cAMP degradation and the ratio of intra- and extracellular cAMP. SIGNIFICANCE STATEMENT: Increasing cytosolic cAMP levels by activation of G protein-coupled receptors (GPCR) such as the β 2-adrenergic receptor (AR) is essential for many body functions. Changes in core body temperature are fundamental and universal factors of mammalian life. This study provides the first data linking physiologically relevant temperature fluctuations to β 2-AR-induced cAMP signaling, highlighting a so far unappreciated role of body temperature as a modulator of the prototypic class A GPCR.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- ARNTL Transcription Factors/metabolism
- Aminopyridines/pharmacology
- Animals
- Cell Line
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cytosol/metabolism
- Forkhead Transcription Factors/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- GTP-Binding Protein alpha Subunits, Gs/physiology
- Hypothalamus/physiology
- Mice
- Neurons/physiology
- Norepinephrine/pharmacology
- Receptors, Adrenergic, beta-2/biosynthesis
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/biosynthesis
- Receptors, Adrenergic, beta-3/physiology
- STAT Transcription Factors/metabolism
- Salmeterol Xinafoate/pharmacology
- Signal Transduction/physiology
- Temperature
- Thyrotropin-Releasing Hormone/genetics
- Thyrotropin-Releasing Hormone/metabolism
Collapse
Affiliation(s)
- Dennis Faro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Ingrid Boekhoff
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| | - Andreas Breit
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
142
|
Markova V, Hejnova L, Benda A, Novotny J, Melkes B. β-Arrestin 1 and 2 similarly influence μ-opioid receptor mobility and distinctly modulate adenylyl cyclase activity. Cell Signal 2021; 87:110124. [PMID: 34450275 DOI: 10.1016/j.cellsig.2021.110124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/14/2023]
Abstract
β-Arrestins are known to play a crucial role in GPCR-mediated transmembrane signaling processes. However, there are still many unanswered questions, especially those concerning the presumed similarities and differences of β-arrestin isoforms. Here, we examined the roles of β-arrestin 1 and β-arrestin 2 at different levels of μ-opioid receptor (MOR)-regulated signaling, including MOR mobility, internalization of MORs, and adenylyl cyclase (AC) activity. For this purpose, naïve HEK293 cells or HEK293 cells stably expressing YFP-tagged MOR were transfected with appropriate siRNAs to block in a specific way the expression of β-arrestin 1 or β-arrestin 2. We did not find any significant differences in the ability of β-arrestin isoforms to influence the lateral mobility of MORs in the plasma membrane. Using FRAP and line-scan FCS, we observed that knockdown of both β-arrestins similarly increased MOR lateral mobility and diminished the ability of DAMGO and endomorphin-2, respectively, to enhance and slow down receptor diffusion kinetics. However, β-arrestin 1 and β-arrestin 2 diversely affected the process of agonist-induced MOR endocytosis and exhibited distinct modulatory effects on AC function. Knockdown of β-arrestin 1, in contrast to β-arrestin 2, more effectively suppressed forskolin-stimulated AC activity and prevented the ability of activated-MORs to inhibit the enzyme activity. Moreover, we have demonstrated for the first time that β-arrestin 1, and partially β-arrestin 2, may somehow interact with AC and that this interaction is strongly supported by the enzyme activation. These data provide new insights into the functioning of β-arrestin isoforms and their distinct roles in GPCR-mediated signaling.
Collapse
Affiliation(s)
- Vendula Markova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Hejnova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ales Benda
- IMCF at Biocev, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Melkes
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
143
|
cAMP Compartmentalization in Cerebrovascular Endothelial Cells: New Therapeutic Opportunities in Alzheimer's Disease. Cells 2021; 10:cells10081951. [PMID: 34440720 PMCID: PMC8392343 DOI: 10.3390/cells10081951] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
The vascular hypothesis used to explain the pathophysiology of Alzheimer’s disease (AD) suggests that a dysfunction of the cerebral microvasculature could be the beginning of alterations that ultimately leads to neuronal damage, and an abnormal increase of the blood–brain barrier (BBB) permeability plays a prominent role in this process. It is generally accepted that, in physiological conditions, cyclic AMP (cAMP) plays a key role in maintaining BBB permeability by regulating the formation of tight junctions between endothelial cells of the brain microvasculature. It is also known that intracellular cAMP signaling is highly compartmentalized into small nanodomains and localized cAMP changes are sufficient at modifying the permeability of the endothelial barrier. This spatial and temporal distribution is maintained by the enzymes involved in cAMP synthesis and degradation, by the location of its effectors, and by the existence of anchor proteins, as well as by buffers or different cytoplasm viscosities and intracellular structures limiting its diffusion. This review compiles current knowledge on the influence of cAMP compartmentalization on the endothelial barrier and, more specifically, on the BBB, laying the foundation for a new therapeutic approach in the treatment of AD.
Collapse
|
144
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
145
|
Südhof TC. The cell biology of synapse formation. J Cell Biol 2021; 220:e202103052. [PMID: 34086051 PMCID: PMC8186004 DOI: 10.1083/jcb.202103052] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 04/25/2023] Open
Abstract
In a neural circuit, synapses transfer information rapidly between neurons and transform this information during transfer. The diverse computational properties of synapses are shaped by the interactions between pre- and postsynaptic neurons. How synapses are assembled to form a neural circuit, and how the specificity of synaptic connections is achieved, is largely unknown. Here, I posit that synaptic adhesion molecules (SAMs) organize synapse formation. Diverse SAMs collaborate to achieve the astounding specificity and plasticity of synapses, with each SAM contributing different facets. In orchestrating synapse assembly, SAMs likely act as signal transduction devices. Although many candidate SAMs are known, only a few SAMs appear to have a major impact on synapse formation. Thus, a limited set of collaborating SAMs likely suffices to account for synapse formation. Strikingly, several SAMs are genetically linked to neuropsychiatric disorders, suggesting that impairments in synapse assembly are instrumental in the pathogenesis of neuropsychiatric disorders.
Collapse
|
146
|
Abstract
Parathyroid hormone (PTH), which is primarily regulated by extracellular calcium changes, controls calcium and phosphate homeostasis. Different diseases are derived from PTH deficiency (hypoparathyroidism), excess (hyperparathyroidism) and resistance (pseudohypoparathyroidism, PHP). Pseudohypoparathyroidism was historically classified into subtypes according to the presence or not of inherited PTH resistance associated or not with features of Albright's hereditary osteodystrophy and deep and progressive ectopic ossifications. The growing knowledge on the PTH/PTHrP signaling pathway showed that molecular defects affecting different members of this pathway determined distinct, yet clinically related disorders, leading to the proposal of a new nomenclature and classification encompassing all disorders, collectively termed inactivating PTH/PTHrP signaling disorders (iPPSD).
Collapse
Affiliation(s)
- Giovanna Mantovani
- University of Milan, Dept. Clinical Sciences and Commmunity Health, Via Lamarmora 5, Milan, Italy; Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| | - Francesca Marta Elli
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Via Lamarmora 5, 20122, Milan, Italy.
| |
Collapse
|
147
|
Ghigo A, Harvey RD. Illuminating cAMP Dynamics at Ryanodine Receptors in Arrhythmias. Circ Res 2021; 129:95-97. [PMID: 34166076 DOI: 10.1161/circresaha.121.319449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G.)
| | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno (R.D.H.)
| |
Collapse
|
148
|
Bathe-Peters M, Gmach P, Boltz HH, Einsiedel J, Gotthardt M, Hübner H, Gmeiner P, Lohse MJ, Annibale P. Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes. Proc Natl Acad Sci U S A 2021; 118:e2101119118. [PMID: 34088840 PMCID: PMC8201832 DOI: 10.1073/pnas.2101119118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A key question in receptor signaling is how specificity is realized, particularly when different receptors trigger the same biochemical pathway(s). A notable case is the two β-adrenergic receptor (β-AR) subtypes, β1 and β2, in cardiomyocytes. They are both coupled to stimulatory Gs proteins, mediate an increase in cyclic adenosine monophosphate (cAMP), and stimulate cardiac contractility; however, other effects, such as changes in gene transcription leading to cardiac hypertrophy, are prominent only for β1-AR but not for β2-AR. Here, we employ highly sensitive fluorescence spectroscopy approaches, in combination with a fluorescent β-AR antagonist, to determine the presence and dynamics of the endogenous receptors on the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. These techniques allow us to visualize that the β2-AR is confined to and diffuses within the T-tubular network, as opposed to the β1-AR, which is found to diffuse both on the outer plasma membrane as well as on the T-tubules. Upon overexpression of the β2-AR, this compartmentalization is lost, and the receptors are also seen on the cell surface. Such receptor segregation depends on the development of the T-tubular network in adult cardiomyocytes since both the cardiomyoblast cell line H9c2 and the cardiomyocyte-differentiated human-induced pluripotent stem cells express the β2-AR on the outer plasma membrane. These data support the notion that specific cell surface targeting of receptor subtypes can be the basis for distinct signaling and functional effects.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Mice
- Mice, Transgenic
- Molecular Imaging
- Myocytes, Cardiac/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
Collapse
Affiliation(s)
- Marc Bathe-Peters
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Philipp Gmach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Horst-Holger Boltz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Department for Modelling and Simulation of Complex Processes, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
- Department of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
- ISAR Bioscience Institute, 82152 Munich-Planegg, Germany
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany;
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
149
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
150
|
Burton RAB, Terrar DA. Emerging Evidence for cAMP-calcium Cross Talk in Heart Atrial Nanodomains Where IP 3-Evoked Calcium Release Stimulates Adenylyl Cyclases. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211008341. [PMID: 37366374 PMCID: PMC10243587 DOI: 10.1177/25152564211008341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 06/28/2023]
Abstract
Calcium handling is vital to normal physiological function in the heart. Human atrial arrhythmias, eg. atrial fibrillation, are a major morbidity and mortality burden, yet major gaps remain in our understanding of how calcium signaling pathways function and interact. Inositol trisphosphate (IP3) is a calcium-mobilizing second messenger and its agonist-induced effects have been observed in many tissue types. In the atria IP3 receptors (IR3Rs) residing on junctional sarcoplasmic reticulum augment cellular calcium transients and, when over-stimulated, lead to arrhythmogenesis. Recent studies have demonstrated that the predominant pathway for IP3 actions in atrial myocytes depends on stimulation of calcium-dependent forms of adenylyl cyclase (AC8 and AC1) by IP3-evoked calcium release from the sarcoplasmic reticulum. AC8 shows co-localisation with IP3Rs and AC1 appears to be nearby. These observations support crosstalk between calcium and cAMP pathways in nanodomains in atria. Similar mechanisms also appear to operate in the pacemaker region of the sinoatrial node. Here we discuss these significant advances in our understanding of atrial physiology and pathology, together with implications for the identification of potential novel targets and modulators for the treatment of atrial arrhythmias.
Collapse
Affiliation(s)
| | - Derek A. Terrar
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|