101
|
Mahamuni D, Shrinithivihahshini N. Inferring Bisphenol-A influences on estrogen-mediated signalling in estrogen and androgen receptors: an in silico approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
102
|
Bridges KN, Magnuson JT, Curran TE, Barker A, Roberts AP, Venables BJ. Alterations to the vision-associated transcriptome of zebrafish (Danio rerio) following developmental norethindrone exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:137-142. [PMID: 31071662 DOI: 10.1016/j.etap.2019.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Synthetic sex steroids, like the synthetic progestin norethindrone (NET), can affect a wide variety of biological processes via highly conserved mechanisms. NET is prevalent in surface waters, yet the sub-lethal effects of NET exposure are not are net yet well characterized in aquatic biota. A few targeted gene expression and behavioral studies have concluded that NET affects the vision of adult fish; however, early life stage (ELS) fish are often more sensitive to contaminants. Furthermore, many species of fish rely heavily on visual perception for survival during development. The goal of the present study was to characterize the effects of developmental exposure to environmentally relevant concentrations of NET on the visual system of ELS zebrafish, using transcriptomics and histological methods. Results indicate that exposure to relatively low levels of NET in aquatic systems may be sufficient to affect the visual function of developing fish.
Collapse
Affiliation(s)
- Kristin N Bridges
- Dept. of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States.
| | - Jason T Magnuson
- Dept. of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States
| | - Thomas E Curran
- Dept. of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States
| | - Andrew Barker
- Dept. of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States
| | - Aaron P Roberts
- Dept. of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States
| | - Barney J Venables
- Dept. of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, United States
| |
Collapse
|
103
|
Cornel KMC, Bongers MY, Kruitwagen RPFM, Romano A. Local estrogen metabolism (intracrinology) in endometrial cancer: A systematic review. Mol Cell Endocrinol 2019; 489:45-65. [PMID: 30326245 DOI: 10.1016/j.mce.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Endometrial cancer (EC) is the most common malignancy of the female gynaecological tract and increased exposure to estrogens is a risk factor. EC cells are able to produce estrogens locally using precursors like, among others, adrenal steroids present in the serum. This is referred to as local estrogen metabolism (or intracrinology) and consists of a complex network of multiple enzymes. Particular relevant to the final generation of active estrogens in endometrial cells are: steroid sulfatase (STS), estrogen sulfotransferase (SULT1E1), aromatase (CYP19A1), 17β-hydroxysteroid dehydrogenase (HSD17B) type 1 and type 2. During the last decades, a plethora of studies explored the level of these enzymes in EC but contrasting data were reported, which generated vigorous debate and controversies. Several reviews attempted at clarifying some of the debated issues, but published reviews are based on investigator-defined bibliography selection and not on systematic analysis. Therefore, we performed a systematic review of the literature reporting about the level of STS, SULT1E1, CYP19A1, HSD17B1 and HSD17B2 in EC. Additional intracrine enzymes and networks (e.g., HSD17Bs other than types 1 and 2, aldo-keto reductases, progesterone and androgen metabolism) were non-systematically reviewed as well.
Collapse
Affiliation(s)
- K M C Cornel
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - M Y Bongers
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands; Department of Obstetrics and Gynaecology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - R P F M Kruitwagen
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands
| | - A Romano
- Department of Obstetrics and Gynaecology, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, the Netherlands.
| |
Collapse
|
104
|
Abdeen SK, Aqeilan RI. Decoding the link between WWOX and p53 in aggressive breast cancer. Cell Cycle 2019; 18:1177-1186. [PMID: 31075076 PMCID: PMC6592247 DOI: 10.1080/15384101.2019.1616998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022] Open
Abstract
Basal-like breast cancer (BLBC) and triple-negative breast cancer (TNBC) are aggressive forms of human breast cancer with poor prognosis and limited treatment response. Molecular understanding of BLBC and TNBC biology is instrumental to improve detection and management of these deadly diseases. Tumor suppressors WW domain-containing oxidoreductase (WWOX) and TP53 are altered in BLBC and in TNBC. Nevertheless, the functional interplay between WWOX and p53 is poorly understood. In a recent study by Abdeen and colleagues, it has been demonstrated that WWOX loss drives BLBC formation via deregulating p53 functions. In this review, we highlight important signaling pathways regulated by WWOX and p53 that are related to estrogen receptor signaling, epithelial-to-mesenchymal transition, and genomic instability and how they impact BLBC and TNBC development.
Collapse
Affiliation(s)
- Suhaib K. Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
105
|
Song L, Xie H, Tong F, Yan B, Zhang S, Fu E, Jing Q, Wei L. Association of lnc-IL17RA-11 with increased radiation sensitivity and improved prognosis of HPV-positive HNSCC. J Cell Biochem 2019; 120:17438-17448. [PMID: 31119798 DOI: 10.1002/jcb.29008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Human papillomavirus (HPV) associated head and neck squamous cell carcinoma (HNSCC) has a far better prognosis than HPV negative HNSCC. Recent studies suggest that long noncoding RNA (lncRNA) moieties may play a role in HPV associated differential HNSCC prognoses. In this study, we examined differential expression of lncRNAs in HPV+ vs HPV- HNSCC using The Cancer Genome Atlas database. LncRNAs were categorized based on expression level and survival analysis. A group of eight lncRNAs was identified in which altered expression was associated with both HPV infection and better prognosis. Subsequently, genes coexpressed with these lncRNAs in HNSCC cells were sorted into corresponding co-expression modules. The lnc-IL17RA-11 coexpression module exhibited the greatest correlation with HPV infection and radiotherapy efficacy. We identified the lnc-IL17RA-11 transcription factor ER-alpha as the most likely HPV infection associated factor promoting increased lnc-IL17RA-11 levels. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed enrichment among lnc-IL17RA-11 co-expressed genes for functions related to DNA replication and cell proliferation. These observations are consistent with a model in which HPV infection upregulates transcription factor ER-alpha, which increases levels of lnc-IL17RA-11 and coexpressed genes that promote HNSCC cell sensitivity to radiotherapy, thereby improving disease prognosis.
Collapse
Affiliation(s)
- Lianhao Song
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Huanhuan Xie
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Fangjia Tong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Bingqing Yan
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Siwei Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Enhui Fu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Qingxu Jing
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lanlan Wei
- Department of Microbiology, Harbin Medical University, Harbin, China
| |
Collapse
|
106
|
Saha T, Makar S, Swetha R, Gutti G, Singh SK. Estrogen signaling: An emanating therapeutic target for breast cancer treatment. Eur J Med Chem 2019; 177:116-143. [PMID: 31129450 DOI: 10.1016/j.ejmech.2019.05.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer, a most common malignancy in women, was known to be associated with steroid hormone estrogen. The discovery of estrogen receptor (ER) gave us not only a powerful predictive and prognostic marker, but also an efficient target for the treatment of hormone-dependent breast cancer with various estrogen ligands. ER consists of two subtypes i.e. ERα and ERβ, that are mostly G-protein-coupled receptors and activated by estrogen, specially 17β-estradiol. The activation is followed by translocation into the nucleus and binding with DNA to modulate activities of different genes. ERs can manage synthesis of RNA through genomic actions without directly binding to DNA. Receptors are tethered by protein-protein interactions to a transcription factor complex to communicate with DNA. Estrogens also exhibit nongenomic actions, a characteristic feature of steroid hormones, which are so rapid to be considered by the activation of RNA and translation. These are habitually related to stimulation of different protein kinase cascades. Majority of post-menopausal breast cancer is estrogen dependent, mostly potent biological estrogen (E2) for continuous growth and proliferation. Estrogen helps in regulating the differentiation and proliferation of normal breast epithelial cells. In this review we have investigated the important role of ER in development and progression of breast cancer, which is complicated by receptor's interaction with co-regulatory proteins, cross-talk with other signal transduction pathways and development of treatment strategies viz. selective estrogen receptor modulators (SERMs), selective estrogen receptor down regulators (SERDs), aromatase and sulphatase inhibitors.
Collapse
Affiliation(s)
- Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, U.P, India.
| |
Collapse
|
107
|
Hu C, Liu Y, Teng M, Jiao K, Zhen J, Wu M, Li Z. Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signaling. Cell Biol Toxicol 2019; 35:445-456. [PMID: 30941654 DOI: 10.1007/s10565-019-09471-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is frequently overexpressed in breast cancer and plays an important role in maintaining the cell proliferative capacity. However, the mechanisms underlying the transcriptional regulation of EZH2 in estrogen receptor (ER)-positive breast cancer cells remain unclear. The antitumor effects of resveratrol have been reported. However, whether EZH2 was involved in these effects needs further exploration. Here, we showed that EZH2 is required for estrogen-induced cell proliferation in ER-positive breast cancer. Exposure to 17β-estradiol (E2) upregulated EZH2 via ERα signaling, and this effect was blocked by U0126, a MEK inhibiter. Resveratrol inhibited the proliferation and colony formation in ER-positive breast cancer cells and downregulated EZH2 through inhibition of phospho-ERK1/2. These findings indicated that ERK1/2 and ER signaling-mediated EZH2 upregulation is crucial for the proliferation of ER-positive breast cancer cells. The suppression of EZH2 expression by ERK1/2 dephosphorylation is important for the antiproliferative activities of resveratrol against ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Jing Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Maoxuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| |
Collapse
|
108
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
109
|
Oestrogen receptor alpha PvuII polymorphism and uterine fibroid incidence in Caucasian women. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2019; 17:149-154. [PMID: 30766461 PMCID: PMC6372853 DOI: 10.5114/pm.2018.81735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022]
Abstract
Introduction Uterine fibroids (UFs) are benign, monoclonal tumours of the female genital tract that originate from the myometrium. They may be diagnosed in as many as 80% of women depending on the selected population. UFs depend mostly on steroid hormones. Elevated levels of oestrogens and progesterone are believed to be among the most important factors inducing their formation and growth. These facts suggest that oestrogen (ESR) and progesterone receptors are crucial in UF pathophysiology as well. Previous studies have shown that, in some populations, polymorphisms in ESR genes (e.g. PvuII) constitute an important risk factor for UFs. Material and methods The aim of our study was to investigate whether ESRα PvuII polymorphism is associated with an increased risk of UFs in Caucasian women of Polish origin. A total of 197 patients (114 UF-positive and 83 controls) were included in this retrospective cohort study. ESRα gene polymorphism PvuII (rs2234693) was assayed with PCR and restriction fragment length polymorphism (RFLP). Results Our study found no significant difference in the occurrence of ESR PvuII polymorphism between women with UFs and UF-free controls in the selected population. Conclusions Our results did not indicate a significant association between ESRα gene PvuII polymorphism and the risk of UFs in Caucasian women of Polish origin. More studies and comparisons between races are necessary to clarify the role of ESRα in the development and progression of UFs.
Collapse
|
110
|
Hassan A, Bagu ET, Levesque M, Patten SA, Benhadjeba S, Edjekouane L, Villemure I, Tremblay A, Moldovan F. The 17β-estradiol induced upregulation of the adhesion G-protein coupled receptor (ADGRG7) is modulated by ESRα and SP1 complex. Biol Open 2019; 8:bio037390. [PMID: 30598481 PMCID: PMC6361214 DOI: 10.1242/bio.037390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
The physiological role and the regulation of ADGRG7 are not yet elucidated. The functional involvement of this receptor was linked with different physiological process such as reduced body weight, gastrointestinal function and recently, a gene variant in ADGRG7 was observed in patients with adolescent idiopathic scoliosis. Here, we identify the ADGRG7 as an estrogen-responsive gene under the regulation of estrogen receptor ERα in scoliotic osteoblasts and other cells lines. We found that ADGRG7 expression was upregulated in response to estrogen (E2) in adolescent idiopathic scoliosis (AIS) cells. ADGRG7 promoter studies indicate the presence of an ERα response half site in close vicinity of a specificity protein 1 (SP1) binding site. Mutation of the SP1 site completely abrogated the response to E2, indicating its essential requirement. ChIP confirmed the binding of SP1 and ERα to the ADGRG7 promoter. Our results identify the ADGRG7 gene as an estrogen-responsive gene under the control of ERα and SP1 tethered actions, suggesting a possible role of estrogens in the regulation of ADGRG7 This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amani Hassan
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
| | - Edward T Bagu
- Department of Basic Biomedical Sciences, Sanford Medical School, University of South Dakota, Vermillion, SD 57069, USA
| | | | | | | | | | - Isabelle Villemure
- Department of Mechanical Engineering, Ecole Polytechnique de Montréal, Montréal H3T 1J4, Canada
| | - André Tremblay
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
| | - Florina Moldovan
- CHU Sainte Justine Research Center, Montréal H3T 1C5, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal H3C 3J7, Canada
| |
Collapse
|
111
|
Sachdeva G, Desouza J, Gadkar S, Jagtap D. Size, site, and signaling: Three attributes of estrogen receptors. BIOMEDICAL RESEARCH JOURNAL 2019. [DOI: 10.4103/bmrj.bmrj_24_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
112
|
Okiyama Y, Watanabe C, Fukuzawa K, Mochizuki Y, Nakano T, Tanaka S. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: II. Protein and Its Ligand-Binding System Studies. J Phys Chem B 2018; 123:957-973. [PMID: 30532968 DOI: 10.1021/acs.jpcb.8b09326] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, the electronic properties of bioactive proteins were analyzed using an ab initio fragment molecular orbital (FMO) methodology in solution: coupling with an implicit solvent model based on the Poisson-Boltzmann surface area called as FMO-PBSA. We investigated the solvent effects on practical and heterogeneous targets with uneven exposure to solvents unlike deoxyribonucleic acid analyzed in our recent study. Interfragment interaction energy (IFIE) and its decomposition analyses by FMO-PBSA revealed solvent-screening mechanisms that affect local stability inside ubiquitin protein: the screening suppresses excessiveness in bare charge-charge interactions and enables an intuitive IFIE analysis. The electrostatic character and associated solvation free energy also give consistent results as a whole to previous studies on the explicit solvent model. Moreover, by using the estrogen receptor alpha (ERα) protein bound to ligands, we elucidated the importance of specific interactions that depend on the electric charge and activatability as agonism/antagonism of the ligand while estimating the influences of the implicit solvent on the ligand and helix-12 bindings. The predicted ligand-binding affinities of bioactive compounds to ERα also show a good correlation with their in vitro activities. The FMO-PBSA approach would thus be a promising tool both for biological and pharmaceutical research targeting proteins.
Collapse
Affiliation(s)
- Yoshio Okiyama
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Division of Medicinal Safety Science , National Institute of Health Sciences , 3-25-26 Tonomachi , Kawasaki-ku, Kawasaki , Kanagawa 210-9501 , Japan
| | - Chiduru Watanabe
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,RIKEN Center for Biosystems Dynamics Research , 1-7-22 Suehiro-cho , Tsurumi-ku, Yokohama , Kanagawa 230-0045 , Japan
| | - Kaori Fukuzawa
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Faculty of Pharmaceutical Sciences , Hoshi University , 2-4-41 Ebara , Shinagawa-ku, Tokyo 142-8501 , Japan
| | - Yuji Mochizuki
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Department of Chemistry and Research Center for Smart Molecules, Faculty of Science , Rikkyo University , 3-34-1 Nishi-ikebukuro , Toshima-ku, Tokyo 171-8501 , Japan
| | - Tatsuya Nakano
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan.,Division of Medicinal Safety Science , National Institute of Health Sciences , 3-25-26 Tonomachi , Kawasaki-ku, Kawasaki , Kanagawa 210-9501 , Japan
| | - Shigenori Tanaka
- Graduate School of System Informatics , Kobe University , 1-1 Rokkodai, Nada-ku, Kobe , Hyogo 657-8501 , Japan
| |
Collapse
|
113
|
Ambhore NS, Katragadda R, Raju Kalidhindi RS, Thompson MA, Pabelick CM, Prakash YS, Sathish V. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation. Mol Cell Endocrinol 2018; 476:37-47. [PMID: 29680290 PMCID: PMC6120801 DOI: 10.1016/j.mce.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways, and may point to a novel perception for blunting airway remodeling.
Collapse
Affiliation(s)
| | - Rathnavali Katragadda
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
114
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. A Novel Estrogen Receptor α-Targeted Near-Infrared Fluorescent Probe for in Vivo Detection of Breast Tumor. Mol Pharm 2018; 15:4702-4709. [DOI: 10.1021/acs.molpharmaceut.8b00684] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
115
|
Della Torre S, Rando G, Meda C, Ciana P, Ottobrini L, Maggi A. Transcriptional activity of oestrogen receptors in the course of embryo development. J Endocrinol 2018; 238:165-176. [PMID: 30012715 PMCID: PMC6084787 DOI: 10.1530/joe-18-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Oestrogens are well-known proliferation and differentiation factors that play an essential role in the correct development of sex-related organs and behaviour in mammals. With the use of the ERE-Luc reporter mouse model, we show herein that throughout mouse development, oestrogen receptors (ERs) are active starting from day 12 post conception. Most interestingly, we show that prenatal luciferase expression in each organ is proportionally different in relation to the germ layer of the origin. The luciferase content is highest in ectoderm-derived organs (such as brain and skin) and is lowest in endoderm-derived organs (such as liver, lung, thymus and intestine). Consistent with the testosterone surge occurring in male mice at the end of pregnancy, in the first 2 days after birth, we observed a significant increase in the luciferase content in several organs, including the liver, bone, gonads and hindbrain. The results of the present study show a widespread transcriptional activity of ERs in developing embryos, pointing to the potential contribution of these receptors in the development of non-reproductive as well as reproductive organs. Consequently, the findings reported here might be relevant in explaining the significant differences in male and female physiopathology reported by a growing number of studies and may underline the necessity for more systematic analyses aimed at the identification of the prenatal effects of drugs interfering with ER signalling, such as aromatase inhibitors or endocrine disrupter chemicals.
Collapse
Affiliation(s)
- Sara Della Torre
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Gianpaolo Rando
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Clara Meda
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Paolo Ciana
- Department of Oncology and Hemato-OncologyUniversity of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| |
Collapse
|
116
|
Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat Commun 2018; 9:3520. [PMID: 30166540 PMCID: PMC6117352 DOI: 10.1038/s41467-018-06034-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022] Open
Abstract
Human estrogen receptor alpha (hERα) is a hormone-responsive nuclear receptor (NR) involved in cell growth and survival that contains both a DNA-binding domain (DBD) and a ligand-binding domain (LBD). Functionally relevant inter-domain interactions between the DBD and LBD have been observed in several other NRs, but for hERα, the detailed structural architecture of the complex is unknown. By utilizing integrated complementary techniques of small-angle X-ray scattering, hydroxyl radical protein footprinting and computational modeling, here we report an asymmetric L-shaped “boot” structure of the multidomain hERα and identify the specific sites on each domain at the domain interface involved in DBD–LBD interactions. We demonstrate the functional role of the proposed DBD–LBD domain interface through site-specific mutagenesis altering the hERα interfacial structure and allosteric signaling. The L-shaped structure of hERα is a distinctive DBD–LBD organization of NR complexes and more importantly, reveals a signaling mechanism mediated by inter-domain crosstalk that regulates this receptor’s allosteric function. The human estrogen receptor alpha (hERα) is a hormone-responsive transcription factor. Here the authors combine small-angle X-ray scattering, hydroxyl radical protein footprinting and computational modeling and show that multidomain hERα adopts an L-shaped boot-like architecture revealing a cross-talk between its DNA-binding domain and Ligand-binding domain.
Collapse
|
117
|
Hu Z, Yang L, Ning W, Tang C, Meng Q, Zheng J, Dong C, Zhou HB. A high-affinity subtype-selective fluorescent probe for estrogen receptor β imaging in living cells. Chem Commun (Camb) 2018; 54:3887-3890. [PMID: 29610818 DOI: 10.1039/c8cc00483h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor β (ERβ) has recently been identified as a pharmaceutical target in hormone replacement therapy for breast cancers. However, the biological function of ERβ in disease progression remains unclear. A highly ERβ-selective fluorescent probe (FPNM) was discovered exhibiting nanomolar affinity for ERβ with an ERβ/ERα selectivity as high as 80, which allowed specific labeling of intracellular ERβ. Moreover, distinct ERβ dynamics in various cellular bio-settings such as prostate cancer (DU-145) or triple-negative breast cancer (MDA-MB-231) cells were directly observed for the first time viaFPNM staining.
Collapse
Affiliation(s)
- Zhiye Hu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Hubei Provincial Key Laboratory of Developmentally Originated Disease, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:427-453. [PMID: 29224106 DOI: 10.1007/978-3-319-70178-3_20] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, and Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
119
|
Kharman-Biz A, Gao H, Ghiasvand R, Haldosen LA, Zendehdel K. Expression of the three components of linear ubiquitin assembly complex in breast cancer. PLoS One 2018; 13:e0197183. [PMID: 29763465 PMCID: PMC5953448 DOI: 10.1371/journal.pone.0197183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Proteins belonging to the linear ubiquitin assembly complex (LUBAC) are believed to be important in tumorigenesis. LUBAC has been demonstrated to be composed of RBCK1, RNF31 and SHARPIN. The aim of this study was to explore all members of the LUBAC complex as novel biomarkers in breast cancer. We have already reported that RNF31 mRNA levels are higher in breast cancer samples compared to adjacent non-tumor tissue. In this study we extend these findings by demonstrating that the mRNA levels of RBCK1 and SHARPIN are also higher in tumors compared to adjacent non-tumor tissue in the same cross sectional study of samples (p < 0.001). In addition, up-regulated mRNA expression of all three members of the LUBAC complex displayed high predictive value in distinguishing tumor tissues from adjacent non-tumor tissue as determined by ROC curve analysis. Furthermore, we investigated whether there is an association between the mRNA and protein expression levels of RBCK1, RNF31 and SHARPIN and clinicopathological parameters including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER2) status and found that RNF31 protein is significantly higher in ERalpha-negative tumors than ERalpha-positive tumors (p = 0.034). Collectively, our findings indicate that up-regulated mRNA expression of RNF31, RBCK1 and SHARPIN could potentially be diagnostic biomarkers of breast cancer and RNF31 might be a drug target for ERalpha-negative breast cancers.
Collapse
Affiliation(s)
- Amirhossein Kharman-Biz
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Reza Ghiasvand
- Oslo Centre for Biostatistics and Epidemiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
120
|
Filipović B, Šošić-Jurjević B, Ajdžanović V, Živanović J, Manojlović-Stojanoski M, Nestorović N, Ristić N, Trifunović S, Milošević V. The phytoestrogen genistein prevents trabecular bone loss and affects thyroid follicular cells in a male rat model of osteoporosis. J Anat 2018; 233:204-212. [PMID: 29761487 DOI: 10.1111/joa.12828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 11/28/2022] Open
Abstract
As a major phytoestrogen of soy, genistein effectively prevents bone loss in both humans and rat models of osteoporosis. However, although the bone-sparing effects of genistein are achieved directly through estrogen receptors, its mode of action on bone by modulation of other endocrine functions is not entirely clear. Thus, thyroid hormones and calcitonin (CT) have an essential influence on bone metabolism. Besides its action on bones, in this study we examined the effect of genistein on the activity of two different endocrine cell populations, thyroid follicular and C-cells. Fifteen-month-old Wistar rats were either bilaterally orchidectomized (Orx) or sham-operated (SO). Two weeks after surgery, half of the Orx rats were treated chronically with 30 mg kg-1 b.w. genistein (Orx + G) subcutaneously (s.c.) every day for 3 weeks, while the remaining Orx rats and the SO rats were given the same volume of sterile olive oil to serve as controls. For histomorphometrical analysis of the trabecular bone microarchitecture an ImageJ public domain image processing programme was used. Thyroid sections were analysed histologically and stereologically after visualization of follicular and C-cells by immunohistochemical staining for thyroglobulin and CT. Thyroid follicular epithelium, interstitium, colloid and CT-immunopositive C-cells were examined morphometrically. Serum concentrations of osteocalcin (OC), triiodothyronine (T3 ), thyroxine (T4 ) and CT were determined as well as urinary calcium (Ca2+ ) concentrations. Genistein treatment significantly increased cancellous bone area (B.Ar), trabecular thickness (TbTh) and trabecular number (TbN) (P < 0.05), but trabecular separation (Tb.Sp) was decreased (P < 0.05) compared with control Orx rats. In the thyroid, genistein treatment significantly elevated the relative volume density (Vv) of the follicular cells (P < 0.05) compared with Orx, whereas Vv of the colloid was lower (P < 0.05) than in the Orx. Evaluation of the biochemical parameters showed significant reductions in serum OC, T3 , T4 and urinary Ca2+ concentrations (P < 0.05), compared with Orx rats. These data indicate that genistein treatment improves the trabecular microarchitecture of proximal tibia, induces histomorphometrical changes in thyroid glands, and decreases circulating thyroid hormone levels in orchidectomized rat model of male osteoporosis.
Collapse
Affiliation(s)
- Branko Filipović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Vladimir Ajdžanović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Jasmina Živanović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | | | - Nataša Nestorović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Nataša Ristić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Svetlana Trifunović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Verica Milošević
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| |
Collapse
|
121
|
Dou C, Ding N, Zhao C, Hou T, Kang F, Cao Z, Liu C, Bai Y, Dai Q, Ma Q, Luo F, Xu J, Dong S. Estrogen Deficiency-Mediated M2 Macrophage Osteoclastogenesis Contributes to M1/M2 Ratio Alteration in Ovariectomized Osteoporotic Mice. J Bone Miner Res 2018; 33:899-908. [PMID: 29281118 DOI: 10.1002/jbmr.3364] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
In this study, for the first time we discovered that the M1/M2 macrophage phenotype ratio is increased in bone marrow of ovariectomized (OVX) osteoporotic C57BL/6 mice. Considering estrogen is the main variable, we assumed that estrogen participated in this alteration. To determine whether and how estrogen contributes to the change of the M1/M2 ratio, we first isolated bone marrow macrophages (BMMs) from mice femur and stimulated the cells with lipopolysaccharide (LPS)/interferon γ (IFN-γ) for M1 polarization and interleukin 4 (IL-4)/IL-13 for M2 polarization. M1 and M2 macrophages were then exposed to RANKL stimulation, we found that M2 macrophage but not M1 macrophage differentiated into functional osteoclast leading to increased M1/M2 ratio. Intriguingly, 17β-estradiol (E2) pretreatment prevented osteoclastogenesis from M2 macrophages. By constructing shRNA lentivirus interfering the expression of different estrogen receptors in M2 macrophages, we found that estrogen protects M2 macrophage from receptor activator of nuclear factor κB ligand (RANKL) stimulation selectively through estrogen receptor α (ERα) and the downstream blockage of NF-κB p65 nuclear translocation. Animal studies showed that ERα selective agonist 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) was able to replicate the therapeutic effects of E2 in treating osteoporotic OVX mice. Together, our findings reveal that estrogen deficiency-mediated M2 macrophage osteoclastogenesis leads to increased M1/M2 ratio in OVX mice. Reducing the M1/M2 ratio is a potential therapeutic target in treating postmenopausal osteoporosis. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ning Ding
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Tianyong Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qinyu Ma
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Fei Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
122
|
Jaiswal B, Gupta A. Modulation of Nuclear Receptor Function by Chromatin Modifying Factor TIP60. Endocrinology 2018; 159:2199-2215. [PMID: 29420715 DOI: 10.1210/en.2017-03190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 02/07/2023]
Abstract
Nuclear receptors (NRs) are transcription factors that bind to specific DNA sequences known as hormone response elements located upstream of their target genes. Transcriptional activity of NRs can be modulated by binding of the compatible ligand and transient interaction with cellular coregulators, functioning either as coactivators or as corepressors. Many coactivator proteins possess intrinsic histone acetyltransferase (HAT) activity that catalyzes the acetylation of specific lysine residues in histone tails and loosens the histone-DNA interaction, thereby facilitating access of transcriptional factors to the regulatory sequences of the DNA. Tat interactive protein 60 (TIP60), a member of the Mof-Ybf2-Sas2-TIP60 family of HAT protein, is a multifunctional coregulator that controls a number of physiological processes including apoptosis, DNA damage repair, and transcriptional regulation. Over the last two decades or so, TIP60 has been extensively studied for its role as NR coregulator, controlling various aspect of steroid receptor functions. The aim of this review is to summarize the findings on the role of TIP60 as a coregulator for different classes of NRs and its overall functional implications. We also discuss the latest studies linking TIP60 to NR-associated metabolic disorders and cancers for its potential use as a therapeutic drug target in future.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Ashish Gupta
- Department of Life Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
123
|
Rios-Arce ND, Collins FL, Schepper JD, Steury MD, Raehtz S, Mallin H, Schoenherr DT, Parameswaran N, McCabe LR. Epithelial Barrier Function in Gut-Bone Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1033:151-183. [PMID: 29101655 DOI: 10.1007/978-3-319-66653-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as cytokines, diet, and diseases, can affect this barrier. These factors have been shown to increase intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory bowel disease. Our lab and others have also shown that barrier disruption can have systemic effects including bone loss. In this chapter, we will discuss the current literature to understand the link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis, and metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current suggested mechanism between intestinal barrier and bone.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Fraser L Collins
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | | | - Michael D Steury
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Heather Mallin
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Danny T Schoenherr
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Narayanan Parameswaran
- Comparative Medicine and Integrative Biology Program, East Lansing, MI, USA. .,Department of Physiology, Michigan State University, East Lansing, MI, USA.
| | - Laura R McCabe
- Department of Physiology and Department of Radiology, Biomedical Imaging Research Centre, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
124
|
Abstract
Background Epidemiological and clinical studies have largely demonstrated major differences in the prevalence of metabolic disorders in males and females, but the biological cause of these dissimilarities remain to be elucidated. Mammals are characterized by a major change in reproductive strategies and it is conceivable that these changes subjected females to a significant evolutionary pressure that perfected the coupling between energy metabolism and reproduction. Scope of review This review will address the plausibility that female liver functions diverged significantly from males given the role of liver in the control of metabolism. Indeed, it is well known that the liver is sexually dimorphic, and this might be relevant to explain the lower susceptibility to hepatic diseases and liver-derived metabolic disturbances (such as the cardiovascular diseases) characteristic of females during their fertile period. Furthermore, estrogens and the hepatic ERα play a significant role in liver sexual-specific functions and in the control of metabolic functions. Conclusions A better grasp of the role of male and female sex steroids in the liver of the two sexes may therefore represent an important element to conceive novel treatments aimed at preventing metabolic diseases particularly in ageing women or limiting undesired side effect in the treatment of gender dysphoria. Liver is a target for estrogens. Liver metabolism is regulated by estrogens. Metabolism and reproduction are reciprocally regulated functions. Liver sexual dimorphism is associated to female reproductive functions. Liver is sexually differentiated neonatally.
Collapse
|
125
|
A Research of Soft Tissue Lipoma Genesis Factor With Immunohistochemical Analysis. J Craniofac Surg 2018; 28:871-876. [PMID: 28212122 DOI: 10.1097/scs.0000000000003559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Lipoma is the most familiar soft-tissue tumor. But the etiology of lipoma remains imprecise. Sex steroid hormones such as estrogen have effects on muscle and adipose tissue development. There is now significant evidence that sex steroids are involved in the site specificities of adipose tissue metabolism. This association of adipose tissue metabolism between sex steroid hormones suggests a possible role for sex steroids in the pathogenesis of lipoma. METHODS To investigate this concept, the authors evaluated the expression of the estrogen receptor (ER) and the progesterone receptor (PR) in soft tissue lipoma in this study.In addition, angiogenesis and the production of angiogenic factors are fundamental for tumor progression in the form of growth, invasion, and metastasis. Epidermal growth factor receptor (EGFR) is involved in a signaling cascade that influences proliferation and other tumor-promoting activities. In this respect, the authors tried to define the correlation of soft tissue lipoma tumor cell and specific 2 immunohistologic markers, vascular endothelial growth factor (VEGF) and EGFR.The study population included patients who diagnosed with soft tissue lipoma, 20 independent patients were selected. All specimens were stained with hematoxylin and eosin. All slides were examined by a pathologist under a microscope. ER, PR, VEGF, and EGFR expression was analyzed by immunohistochemistry. RESULT ER, PR, and EGFR of tumor cell had significantly more negative than positive. And VEGF of tumor cell had significantly more positive than negative. There was no significantly difference between site of tumor and immunohistochemical stain. DISCUSSION AND CONCLUSION There are only a few studies for ER and PR in soft tissue related tumors. The authors estimated that the abnormal local proliferation and accumulation of adipocyte in soft tissue lipoma is related to sex steroid hormone action, especially estrogen and progesterone. But ER and PR of tumor cell had significantly more negative than positive in this study. The authors concluded that estrogen and progesterone are not impact factor of pathogenesis of soft tissue lipoma. Vascular endothelial growth factor of tumor cell had significantly more positive than negative. Angiogenesis is an essential factor for tumor growth. The VEGF expression of soft tissue lipoma can be understood in the same context. The authors need more study to reveal an association between lipoma and EGFR, because some patients of lipoma were positive to EGFR in this study.
Collapse
|
126
|
Filardo EJ. A role for G-protein coupled estrogen receptor (GPER) in estrogen-induced carcinogenesis: Dysregulated glandular homeostasis, survival and metastasis. J Steroid Biochem Mol Biol 2018; 176:38-48. [PMID: 28595943 DOI: 10.1016/j.jsbmb.2017.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
Mechanisms of carcinogenesis by estrogen center on its mitogenic and genotoxic potential on tumor target cells. These models suggest that estrogen receptor (ER) signaling promotes expansion of the transformed population and that subsequent accumulation of somatic mutations that drive cancer progression occur via metabolic activation of cathecol estrogens or by epigenetic mechanisms. Recent findings that GPER is linked to obesity, vascular pathology and immunosuppression, key events in the development of metabolic syndrome and intra-tissular estrogen synthesis, provides an alternate view of estrogen-induced carcinogenesis. Consistent with this concept, GPER is directly associated with clinicopathological indices that predict cancer progression and poor survival in breast and gynecological cancers. Moreover, GPER manifests cell biological responses and a microenvironment conducive for tumor development and cancer progression, regulating cellular responses associated with glandular homeostasis and survival, invading surrounding tissue and attracting a vascular supply. Thus, the cellular actions attributed to GPER fit well with the known molecular mechanisms of G-protein coupled receptors, GPCRs, namely, their ability to transactivate integrins and EGF receptors and alter the interaction between glandular epithelia and their extracellular environment, affecting epithelial-to-mesenchymal transition (EMT) and allowing for tumor cell survival and dissemination. This perspective reviews the molecular and cellular responses manifested by GPER and evaluates its contribution to female reproductive cancers as diseases that progress as a result of dysregulated glandular homeostasis resulting in chronic inflammation and metastasis. This review is organized in sections as follows: I) a brief synopsis of the current state of knowledge regarding estrogen-induced carcinogenesis, II) a review of evidence from clinical and animal-based studies that support a role for GPER in cancer progression, and III) a mechanistic framework describing how GPER-mediated estrogen action may influence the tumor and its microenvironment.
Collapse
Affiliation(s)
- Edward J Filardo
- Division of Hematology & Oncology, The Warren Alpert School of Medicine, Brown University, Providence, RI 02818, United States.
| |
Collapse
|
127
|
Villalobo A, Ishida H, Vogel HJ, Berchtold MW. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:507-521. [PMID: 29247668 DOI: 10.1016/j.bbamcr.2017.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023]
Abstract
Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.
Collapse
Affiliation(s)
- Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain.
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta T2N 1N4, Canada.
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
128
|
Lappano R, Malaguarnera R, Belfiore A, Maggiolini M. Recent advances on the stimulatory effects of metals in breast cancer. Mol Cell Endocrinol 2017; 457:49-56. [PMID: 27765682 DOI: 10.1016/j.mce.2016.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 01/08/2023]
Abstract
Certain environmental chemicals may accumulate in human serum and tissues eliciting estrogenic and/or carcinogenic effects. Therefore, there is heightened interest in determining whether environmental chemicals may increase the risk for endocrine-related tumors like breast cancer. For instance, metals as cadmium, zinc, copper, iron, nickel and aluminum have been shown to mimic estrogen action. Moreover, the exposure to these chemicals has been reported to stimulate diverse malignancies including breast cancer, which is the most common tumor in women worldwide. In this review, we summarize the epidemiologic and experimental evidence regarding the association between the exposure to some trace elements and breast cancer risk. We also address recent insights on the molecular mechanisms involved by metals in breast tumorigenesis.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Roberta Malaguarnera
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
129
|
A Research of Pyogenic Granuloma Genesis Factor With Immunohistochemical Analysis. J Craniofac Surg 2017; 28:2068-2072. [DOI: 10.1097/scs.0000000000004148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
130
|
Bhatnagar S, Soni A, Kaushik S, Rikhi M, Santhoshkumar TR, Jayaram B. Nonsteroidal estrogen receptor isoform-selective biphenyls. Chem Biol Drug Des 2017; 91:620-630. [PMID: 29052968 DOI: 10.1111/cbdd.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/18/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Estrogen receptor (ER) has been a therapeutic target to treat ER-positive breast cancer, most notably by agents known as selective estrogen receptor modulators (SERMs). However, resistance and severe adverse effects of known drugs gave impetus to the search for newer agents with better therapeutic profile. ERα and ERβ are two isoforms sharing 56% identity and having different physiological functions and expressions in various tissues. Only two residues differ in the active sites of the two isoforms motivating us to design isoform-selective ligands. Guided by computational docking and molecular dynamics simulations, we have designed, synthesized, and tested, substituted biphenyl-2,6-diethanones and their derivatives as potential agents targeting ERα. Four of the molecules synthesized exhibited preferential cytotoxicity in ERα+ cell line (MCF-7) compared to ERβ+ cell line (MDA-MB-231). Molecular dynamics (MD) in combination with molecular mechanics-generalized Born surface area (MM-GBSA) methods could account for binding selectivity. Further cotreatment and E-screen studies with known ER ligands-estradiol (E2 ) and tamoxifen (Tam)-indicated isoform-selective anti-estrogenicity in ERα+ cell line which might be ER-mediated. ERα siRNA silencing experiments further confirmed the ER selective nature of ligands.
Collapse
Affiliation(s)
- Seema Bhatnagar
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Anjali Soni
- Department of Chemistry and Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Swati Kaushik
- Amity Institute of Biotechnology, Amity University, Noida, India.,Cancer Research Programme Lab1, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| | - Megha Rikhi
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - Bhyravabhotla Jayaram
- Department of Chemistry and Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, Hauz Khas, New Delhi, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| |
Collapse
|
131
|
Al Qahtani A, Holly J, Perks C. Hypoxia negates hyperglycaemia-induced chemo-resistance in breast cancer cells: the role of insulin-like growth factor binding protein 2. Oncotarget 2017; 8:74635-74648. [PMID: 29088813 PMCID: PMC5650368 DOI: 10.18632/oncotarget.20287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Women who suffer from breast cancer and type II diabetes with associated hyperglycaemia respond less well to chemotherapy. We have shown that hyperglycaemia induces resistance to chemotherapy through upregulation of fatty acid synthase (FASN) in breast cancer cells and increased insulin-like binding protein 2 (IGFBP-2) in prostate cancer cells. As a tumour develops the tumour mass can outgrow the blood supply resulting in the cancer cells being exposed to hypoxia that stimulates many tumorigenic signalling pathways. Methods We used MCF-7 and T47D breast cancer cell lines. Trypan blue dye exclusion assay was employed to assess cell death and Western immunoblotting was used to determine changes in protein abundance. Hypoxia was induced both chemically by the addition of cobalt chloride (CoCl2) and using a hypoxia chamber. Results IGFBP-2 abundance increased with increasing concentrations of glucose (0-25 mM) that contributed to hyperglycaemia-induced chemo-resistance as it was abrogated by downregulating IGFBP-2 using siRNA. Production of IGFBP-2 is ER dependent: pre-treatment of MCF-7 cells with β-estradiol increased IGFBP-2 and induced chemo-resistance to doxorubicin. The hyperglycaemia-induced chemo-resistance and increases in FASN and IGFBP-2 were negated in a hypoxic environment, with levels of cell death unaffected by glucose concentrations. Conclusions The sensitivity of breast cancer cells to chemotherapy is reduced in hyperglycaemic conditions but this effect is negated by hypoxia. These effects appear to be mediated via regulation of IGFBP-2 and FASN. Understanding the role of FASN and IGFBP-2 in chemo-resistance could provide a novel target for improving the effectiveness of breast cancer treatment.
Collapse
Affiliation(s)
- Athba Al Qahtani
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol BS10 1TD, UK
| | - Jeff Holly
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol BS10 1TD, UK
| | - Claire Perks
- IGFs and Metabolic Endocrinology Group, School of Clinical Sciences, University of Bristol, Learning and Research Building, Southmead Hospital, Bristol BS10 1TD, UK
| |
Collapse
|
132
|
He S, Nelson ER. 27-Hydroxycholesterol, an endogenous selective estrogen receptor modulator. Maturitas 2017; 104:29-35. [PMID: 28923174 DOI: 10.1016/j.maturitas.2017.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Estrogen receptors (ERs) mediate the actions of the steroidal estrogens, and are important for the regulation of several physiological and pathophysiological processes, including reproduction, bone physiology, cardiovascular physiology and breast cancer. The unique pharmacology of the ERs allows for certain ligands, such as tamoxifen, to elicit tissue- and context-specific responses, ligands now referred to as selective estrogen receptor modulators (SERMs). Recently, the cholesterol metabolite 27-hydroxychoelsterol (27HC) has been defined as an endogenous SERM, with activities in atherosclerosis, osteoporosis, breast and prostate cancers, and neural degenerative diseases. Since 27HC concentrations closely mirror those of cholesterol, it is possible that 27HC mediates many of the biological effects of cholesterol. This paper provides an overview of ER pharmacology and summarizes the work to date implicating 27HC in various diseases. Wherever possible, we highlight clinical data in support of a role for 27HC in the diseases discussed.
Collapse
Affiliation(s)
- Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
133
|
Molina L, Figueroa CD, Bhoola KD, Ehrenfeld P. GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer. Expert Opin Ther Targets 2017; 21:755-766. [PMID: 28671018 DOI: 10.1080/14728222.2017.1350264] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Breast cancer is clinically classified as 'estrogen-positive' when at least 1% of cancer cells stain for the estrogen receptor alpha (ERα). However, recent research on both basic and clinical aspects of breast cancer suggests that GPER-1 (G protein-coupled estrogen receptor-1) may have an important role in breast cancer. Areas covered: This review provides a comprehensive and systematic literature search on GPER-1. We have focused on the role of GPER-1 in breast cancer and on resistance to endocrine therapy, an unsolved clinical issue still under discussion. Expert opinion: The discovery of GPER-1 as a novel estrogen receptor is unique and the signaling pathways activated by its stimulation, when compared to the classical nuclear ERα, indicate a potential role of GPER-1 in the genesis and mechanisms of drug resistance in breast cancer. Tumors expressing ERα represent the largest group of breast cancer patients indicating that more women eventually die from ERα-positive breast tumors than from other more malignant breast cancer subtypes such as HER2-positive and the triple negative groups. It is important to develop new strategies on endocrine therapy with regard to ERα and GPER-1 receptors to achieve innovative successful therapeutic tools.
Collapse
Affiliation(s)
- Luis Molina
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Carlos D Figueroa
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Kanti D Bhoola
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Pamela Ehrenfeld
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| |
Collapse
|
134
|
Yang L, Hu Z, Luo J, Tang C, Zhang S, Ning W, Dong C, Huang J, Liu X, Zhou HB. Dual functional small molecule fluorescent probes for image-guided estrogen receptor-specific targeting coupled potent antiproliferative potency for breast cancer therapy. Bioorg Med Chem 2017; 25:3531-3539. [DOI: 10.1016/j.bmc.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022]
|
135
|
Ishii H, Hattori Y, Munetomo A, Watanabe H, Sakuma Y, Ozawa H. Characterization of rodent constitutively active estrogen receptor α variants and their constitutive transactivation mechanisms. Gen Comp Endocrinol 2017; 248:16-26. [PMID: 28412386 DOI: 10.1016/j.ygcen.2017.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/24/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022]
Abstract
Estrogen receptor α (ERα) mRNAs exhibit remarkable heterogeneity owing to complicated alternative splicing. Some encode C-terminally-truncated ERα proteins, which display ligand-independent transactivation or dominant-negative activity. We previously characterized C-terminally-truncated ERα mRNA variants with cryptic sequences in humans and mice, and demonstrated that helices in the ligand-binding domains (LBDs) of ERα variants contribute to ligand-independent transcriptional activity. However, existence of non-conventional coding exons and generation of constitutively active ERα variants have remained to be examined in rats. To comparatively analyze modular organization and splicing profiles of the ERα genes, the range of C-terminally-truncated ERα variants was explored in rats and mice using rapid amplification of cDNA ends and RT-PCR cloning. Furthermore, their functions were determined in transiently transfected cells using expression constructs and luciferase reporter assays. Multiple cryptic exons and C-terminally-truncated ERα variant mRNAs were identified in rats and mice. Naturally occurring and artificially truncated variants/constructs lacking helix 5 potentially exhibited gain-of-function in transfected cells. Although cryptic exons and splicing profiles were poorly conserved among humans, mice, and rats, constitutively active variants were generated from the ERα genes. Moreover, the primary mechanism of ligand-independent activation by C-terminally-truncated ERα variants is C-terminus to helix 5 deletion in the LBD. This comparative study documented the complexity of ERα genes, mRNAs, and proteins, and further determined the underlying structural basis of ligand-independent activation by C-terminally-truncated ERα variants.
Collapse
Affiliation(s)
- Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | - Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | - Arisa Munetomo
- Laboratory of Behavior Neuroscience, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | - Hiroshi Watanabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | - Yasuo Sakuma
- University of Tokyo Health Sciences, 4-11 Ochiai, Tama, Tokyo 206-0033, Japan.
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| |
Collapse
|
136
|
|
137
|
Efficient synthesis of a multi-substituted diphenylmethane skeleton as a steroid mimetic. Bioorg Med Chem Lett 2017; 27:2590-2593. [PMID: 28400239 DOI: 10.1016/j.bmcl.2017.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 02/23/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022]
Abstract
Steroids are important components of cell membranes and are involved in several physiological functions. A diphenylmethane (DPM) skeleton has recently been suggested to act as a mimetic of the steroid skeleton. However, difficulties are associated with efficiently introducing different substituents between two phenyl rings of the DPM skeleton, and, thus, further structural development based on the DPM skeleton has been limited. We herein developed an efficient synthetic method for introducing different substituents into two phenyl rings of the DPM skeleton. We also synthesized DPM-based estrogen receptor (ER) modulators using our synthetic method and evaluated their ER transcriptional activities.
Collapse
|
138
|
Chen X, Ma N, Zhou Z, Wang Z, Hu Q, Luo J, Mei X, Yang Z, Zhang L, Wang X, Feng Y, Yu X, Ma J, Guo X. Estrogen Receptor Mediates the Radiosensitivity of Triple-Negative Breast Cancer Cells. Med Sci Monit 2017; 23:2674-2683. [PMID: 28570501 PMCID: PMC5466376 DOI: 10.12659/msm.904810] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to evaluate differences in the radiosensitivities of triple-negative breast cancer (TNBC) and luminal-type breast cancer cells and to investigate the effects of estrogen receptor (ER) expression on the biological behaviors of the cells. Material/Methods Colony-forming assays were performed to detect differences in radiosensitivities in breast cancer cell lines. Gene transfection technology was used to introduce the expression of ERα in TNBC cells to compare the difference in radiosensitivity between the TNBC cells and ERα transfected cells. CCK-8 assays were used to observe changes in the proliferation of TNBC cells after ERα transfection. Immunofluorescence was used to detect the number of γH2AX foci in nuclei. Flow cytometry was used to detect changes in cell cycle distribution and apoptosis. Western blotting was used to detect changes in autophagy-associated proteins. Results The radioresistance of the TNBC cell line MDA-MB-231 (231 cells) was greater than that of ERα-positive luminal-type breast cancer cell line MCF-7. Moreover, 231 cell proliferation and radioresistance decreased after ERα transfection. Interestingly, ERα-transfected 231 cells showed increased double-stranded breaks and delayed repair compared with 231 cells, and ERα-transfected 231 cells showed increased G2/M phase arrest and apoptosis after irradiation compared with those in 231 cells. ERα transfection in 231 cells reduced autophagy-related protein expression, suggesting that autophagy activity decreased in 231 ER-positive cells after irradiation. Conclusions TNBC cells were more resistant to radiation than luminal-type breast cancer cells. ERα expression may have major roles in modulating breast cancer cell radiosensitivity.
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Ningyi Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China (mainland)
| | - Zhirui Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Ziliang Wang
- Cancer Institutions, Fudan University Shanghai Cancer Center, Shanghai, China (mainland)
| | - Qunchao Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Jurui Luo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Li Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Xiaofang Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Yan Feng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (mainland)
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China (mainland).,Department of Oncology, Shanghai Medical College, Fudan University,, Shanghai, China (mainland)
| |
Collapse
|
139
|
BASP1 interacts with oestrogen receptor α and modifies the tamoxifen response. Cell Death Dis 2017; 8:e2771. [PMID: 28492543 PMCID: PMC5520704 DOI: 10.1038/cddis.2017.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023]
Abstract
Tamoxifen binds to oestrogen receptor α (ERα) to elicit distinct responses that vary by cell/tissue type and status, but the factors that determine these differential effects are unknown. Here we report that the transcriptional corepressor BASP1 interacts with ERα and in breast cancer cells, this interaction is enhanced by tamoxifen. We find that BASP1 acts as a major selectivity factor in the transcriptional response of breast cancer cells to tamoxifen. In all, 40% of the genes that are regulated by tamoxifen in breast cancer cells are BASP1 dependent, including several genes that are associated with tamoxifen resistance. BASP1 elicits tumour-suppressor activity in breast cancer cells and enhances the antitumourigenic effects of tamoxifen treatment. Moreover, BASP1 is expressed in breast cancer tissue and is associated with increased patient survival. Our data have identified BASP1 as an ERα cofactor that has a central role in the transcriptional and antitumourigenic effects of tamoxifen.
Collapse
|
140
|
Read-across for rat oral gavage repeated-dose toxicity for short-chain mono-alkylphenols: A case study. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.comtox.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
141
|
Bashir Surfraz M, Fowkes A, Plante JP. A Semi-automated Approach to Create Purposeful Mechanistic Datasets from Heterogeneous Data: Data Mining Towards the in silico Predictions for Oestrogen Receptor Modulation and Teratogenicity. Mol Inform 2017; 36. [PMID: 28436609 DOI: 10.1002/minf.201600154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022]
Abstract
The need to find an alternative to costly animal studies for developmental and reproductive toxicity testing has shifted the focus considerably to the assessment of in vitro developmental toxicology models and the exploitation of pharmacological data for relevant molecular initiating events. We hereby demonstrate how automation can be applied successfully to handle heterogeneous oestrogen receptor data from ChEMBL. Applying expert-derived thresholds to specific bioactivities allowed an activity call to be attributed to each data entry. Human intervention further improved this mechanistic dataset which was mined to develop structure-activity relationship alerts and an expert model covering 45 chemical classes for the prediction of oestrogen receptor modulation. The evaluation of the model using FDA EDKB and Tox21 data was quite encouraging. This model can also provide a teratogenicity prediction along with the additional information it provides relevant to the query compound, all of which will require careful assessment of potential risk by experts.
Collapse
Affiliation(s)
- M Bashir Surfraz
- Granary Wharf House, 2 Canal Wharf, Holbeck, Leeds, LS11 5PS, United Kingdom
| | - Adrian Fowkes
- Granary Wharf House, 2 Canal Wharf, Holbeck, Leeds, LS11 5PS, United Kingdom
| | - Jeffrey P Plante
- Granary Wharf House, 2 Canal Wharf, Holbeck, Leeds, LS11 5PS, United Kingdom
| |
Collapse
|
142
|
Rice ES, Kohno S, John JS, Pham S, Howard J, Lareau LF, O'Connell BL, Hickey G, Armstrong J, Deran A, Fiddes I, Platt RN, Gresham C, McCarthy F, Kern C, Haan D, Phan T, Schmidt C, Sanford JR, Ray DA, Paten B, Guillette LJ, Green RE. Improved genome assembly of American alligator genome reveals conserved architecture of estrogen signaling. Genome Res 2017; 27:686-696. [PMID: 28137821 PMCID: PMC5411764 DOI: 10.1101/gr.213595.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022]
Abstract
The American alligator, Alligator mississippiensis, like all crocodilians, has temperature-dependent sex determination, in which the sex of an embryo is determined by the incubation temperature of the egg during a critical period of development. The lack of genetic differences between male and female alligators leaves open the question of how the genes responsible for sex determination and differentiation are regulated. Insight into this question comes from the fact that exposing an embryo incubated at male-producing temperature to estrogen causes it to develop ovaries. Because estrogen response elements are known to regulate genes over long distances, a contiguous genome assembly is crucial for predicting and understanding their impact. We present an improved assembly of the American alligator genome, scaffolded with in vitro proximity ligation (Chicago) data. We use this assembly to scaffold two other crocodilian genomes based on synteny. We perform RNA sequencing of tissues from American alligator embryos to find genes that are differentially expressed between embryos incubated at male- versus female-producing temperature. Finally, we use the improved contiguity of our assembly along with the current model of CTCF-mediated chromatin looping to predict regions of the genome likely to contain estrogen-responsive genes. We find that these regions are significantly enriched for genes with female-biased expression in developing gonads after the critical period during which sex is determined by incubation temperature. We thus conclude that estrogen signaling is a major driver of female-biased gene expression in the post-temperature sensitive period gonads.
Collapse
Affiliation(s)
- Edward S Rice
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Satomi Kohno
- Department of Biology, St. Cloud State University, St. Cloud, Minnesota 56301, USA
| | - John St John
- Driver Group, LLC, San Francisco, California 94158, USA
| | - Son Pham
- BioTuring, Incorporated, San Diego, California 92121, USA
| | - Jonathan Howard
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Liana F Lareau
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Brendan L O'Connell
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA.,Dovetail Genomics, LLC, Santa Cruz, California 95060, USA
| | - Glenn Hickey
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Joel Armstrong
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Alden Deran
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ian Fiddes
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Roy N Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Cathy Gresham
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Fiona McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Colin Kern
- Department of Animal Science, University of California, Davis, California 95616, USA
| | - David Haan
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Tan Phan
- HCM University of Science, Ho Chí Minh, Vietnam 748500
| | - Carl Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19717, USA
| | - Jeremy R Sanford
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409, USA
| | - Benedict Paten
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, California 95064, USA
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina 29412, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA.,Dovetail Genomics, LLC, Santa Cruz, California 95060, USA
| |
Collapse
|
143
|
Nishimura Y, Mabuchi K, Takano A, Hara Y, Negishi H, Morimoto K, Ueno T, Uchiyama S, Takamata A. S-equol Exerts Estradiol-Like Anorectic Action with Minimal Stimulation of Estrogen Receptor-α in Ovariectomized Rats. Front Endocrinol (Lausanne) 2017; 8:281. [PMID: 29097993 PMCID: PMC5653693 DOI: 10.3389/fendo.2017.00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic estrogen replacement in ovariectomized rats attenuates food intake and enhances c-Fos expression in the suprachiasmatic nucleus (SCN), specifically during the light phase. S-equol, a metabolite of daidzein, has a strong affinity for estrogen receptor (ER)-β and exerts estrogenic activity. The purpose of the present study was to elucidate whether S-equol exerts an estrogen-like anorectic effect by modifying the regulation of the circadian feeding rhythm in ovariectomized rats. Ovariectomized female Wistar rats were divided into an estradiol (E2)-replaced group and cholesterol (vehicle; Veh)-treated group. These animals were fed either a standard diet or an S-equol-containing diet for 13 days. Then, the brain, uterus, and pituitary gland were collected along with blood samples. In the rats fed the standard diet, E2 replacement attenuated food intake (P < 0.001) and enhanced c-Fos expression in the SCN (P < 0.01) during the light phase. Dietary S-equol supplementation reduced food intake (P < 0.01) and increased c-Fos expression in the SCN (P < 0.01) in the Veh-treated rats but not in the E2-replaced rats during the light phase. Dietary S-equol did not alter ER-α expression in the medial preoptic area or the arcuate nucleus, nor did dietary S-equol affect pituitary gland weight or endometrial epithelial layer thickness. By contrast, E2 replacement not only markedly decreased ER-α expression in these brain areas (P < 0.001) but also increased both the pituitary gland weight (P < 0.001) and the endometrial epithelial layer thickness (P < 0.001). Thus, dietary S-equol acts as an anorectic by modifying the diurnal feeding pattern in a manner similar to E2 in ovariectomized rats; however, the mechanism of action is not likely to be mediated by ER-α. The data suggest a possibility that dietary S-equol could be an alternative to hormone replacement therapy for the prevention of hyperphagia and obesity with a lower risk of adverse effects induced by ER-α stimulation.
Collapse
Affiliation(s)
- Yuri Nishimura
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Kaori Mabuchi
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Azusa Takano
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Yayoi Hara
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Hiroko Negishi
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Keiko Morimoto
- Department of Environmental Health, Nara Women’s University, Nara, Japan
| | - Tomomi Ueno
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd., Saga, Japan
| | - Shigeto Uchiyama
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd., Saga, Japan
| | - Akira Takamata
- Department of Environmental Health, Nara Women’s University, Nara, Japan
- *Correspondence: Akira Takamata,
| |
Collapse
|
144
|
Li L, Xue Z, Chen L, Chen X, Wang H, Wang X. Puerarin suppression of Aβ 1-42-induced primary cortical neuron death is largely dependent on ERβ. Brain Res 2016; 1657:87-94. [PMID: 27923632 DOI: 10.1016/j.brainres.2016.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 02/08/2023]
Abstract
Recent study has suggested that estrogen replacement therapy (ERT) can decrease the risk of the development of Alzheimer's disease (AD), and phytoestrogen has been proposed as a potential alternative to ERT. In this study, we investigated the protective function of puerarin (a phytoestrogen isolated from puerarin lobate) against amyloid beta (Aβ1-42)-induced toxicity in cortical neurons and established the connection between such a protection and estrogen receptor (ER) activation. Puerarin suppressed Aβ1-42-induced cortical neuron death in a concentration-dependent manner. Morphological examination showed that puerarin not only suppressed Aβ1-42-induced decrease in neuron numbers, but also promoted neurite growth. In addition, we found that the neuroprotection of puerarin was dependent on the activation of estrogen receptors (ERs), as demonstrated by activation of ERE-reporter gene. Puerarin preferentially up-regulated the expression of ERβ but not ERα, and ERβ-specific siRNA significantly reduced the neuroprotection of puerarin. Taken together, our results indicated that puerarin is neuroprotective against Aβ1-42 toxicity via the activation of estrogen receptors, and ERβ plays a key role in the process. Our novel findings provide a potential strategy for the prevention of neurodegeneration and the treatment of AD.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
| | - Zuguang Xue
- Department of Hematology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
| | - Lei Chen
- Department of Radiology, The Third Hospital of Xiamen, Xiamen, Fujian 361011, China
| | - Xueyu Chen
- Department of Hematology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, China
| | - Heshuang Wang
- Department of Central Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning 116037, China.
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116023, China.
| |
Collapse
|
145
|
Wolff M, Kosyna FK, Dunst J, Jelkmann W, Depping R. Impact of hypoxia inducible factors on estrogen receptor expression in breast cancer cells. Arch Biochem Biophys 2016; 613:23-30. [PMID: 27823907 DOI: 10.1016/j.abb.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Abstract
In women breast cancer is still the most commonly diagnosed cancer. This type of cancer is classified as a hormone-dependent tumor. Estrogen receptor (ER) expression and functional status contribute to breast cancer development and progression. Another important factor associated with cancer is hypoxia which is defined as the state of reduced oxygen availability in tissues. Intratumoral hypoxia results in the activation of the hypoxia inducible factors (HIFs). HIFs are heterodimeric transcription factors involved in the regulation of many cellular processes, such as angiogenesis, anaerobic metabolism, cell proliferation/survival, and promotion of metastasis. In this study we evaluated the interplay between hypoxia, HIF stabilization and the ER-α/β-ratio in several ER-positive breast cancer cell lines. Hypoxia was shown to inhibit ER expression in ER-positive breast cancer cells. Further experiments using the hypoxia mimetic CoCl2 and HIF-1α knockdown cells indicated that the influence of hypoxia on breast cancer cells involves other pathways than the molecular oxygen sensing pathway. Moreover, we demonstrated that MCF-7 cells in long-term culture lost part of their ability to respond to hypoxic incubation. Understanding the relationships between HIF, ER-α and ER-β expression holds the promise of the development of new therapeutic agents and may provide future advances in prognosis.
Collapse
Affiliation(s)
- Matthias Wolff
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany; Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Germany
| | | | - Jürgen Dunst
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Germany
| | - Wolfgang Jelkmann
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany
| | - Reinhard Depping
- Institute of Physiology, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany.
| |
Collapse
|
146
|
A transgenic mouse model expressing an ERα folding biosensor reveals the effects of Bisphenol A on estrogen receptor signaling. Sci Rep 2016; 6:34788. [PMID: 27721470 PMCID: PMC5056407 DOI: 10.1038/srep34788] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor-α (ERα) plays an important role in normal and abnormal physiology of the human reproductive system by interacting with the endogenous ligand estradiol (E2). However, other ligands, either analogous or dissimilar to E2, also bind to ERα. This may create unintentional activation of ER signaling in reproductive tissues that can lead to cancer development. We developed a transgenic mouse model that constitutively expresses a firefly luciferase (FLuc) split reporter complementation biosensor (NFLuc-ER-LBDG521T-CFLuc) to simultaneously evaluate the dynamics and potency of ligands that bind to ERα. We first validated this model using various ER ligands, including Raloxifene, Diethylstilbestrol, E2, and 4-hydroxytamoxifen, by employing FLuc-based optical bioluminescence imaging of living mice. We then used the model to investigate the carcinogenic property of Bisphenol A (BPA), an environmental estrogen, by long-term exposure at full and half environmental doses. We showed significant carcinogenic effects on female animals while revealing activated downstream ER signaling as measured by bioluminescence imaging. BPA induced tumor-like outgrowths in female transgenic mice, histopathologically confirmed to be neoplastic and epithelial in origin. This transgenic mouse model expressing an ERα folding-biosensor is useful in evaluation of estrogenic ligands and their downstream effects, and in studying environmental estrogen induced carcinogenesis in vivo.
Collapse
|
147
|
Yi F, Tan XL, Yan X, Liu HB. In silico profiling for secondary metabolites from Lepidium meyenii (maca) by the pharmacophore and ligand-shape-based joint approach. Chin Med 2016; 11:42. [PMID: 27708692 PMCID: PMC5037646 DOI: 10.1186/s13020-016-0112-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lepidium meyenii Walpers (maca) is an herb known as a traditional nutritional supplement and widely used in Peru, North America, and Europe to enhance human fertility and treat osteoporosis. The secondary metabolites of maca, namely, maca alkaloids, macaenes, and macamides, are bioactive compounds, but their targets are undefined. METHODS The pharmacophore-based PharmaDB targets database screening joint the ligand shape similarity-based WEGA validation approach is proposed to predict the targets of these unique constituents and was performed using Discovery Studio 4.5 and PharmaDB. A compounds-targets-diseases network was established using Cytoscape 3.2. These suitable targets and their genes were calculated and analyzed using ingenuity pathway analysis and GeneMANIA. RESULTS Certain targets were identified in osteoporosis (8 targets), prostate cancer (9 targets), and kidney diseases (11 targets). This was the first study to identify the targets of these bioactive compounds in maca for cardiovascular diseases (29 targets). The compound with the most targets (46) was an amide alkaloid (MA-24). CONCLUSION In silico target fishing identified maca's traditional effects on treatment and prevention of osteoporosis, prostate cancer, and kidney diseases, and its potential function of treating cardiovascular diseases, as the most important of this herb's possible activities.
Collapse
Affiliation(s)
- Fan Yi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| | - Xiao-Lei Tan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| | - Xin Yan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Circle at University City, Guangzhou, 510006 China
| | - Hai-Bo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, 151 Malianwa N, Haidian District, Beijing, 100193 China ; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193 China
| |
Collapse
|
148
|
Synthesis and structure-activity relationships of 1-benzylindane derivatives as selective agonists for estrogen receptor beta. Bioorg Med Chem 2016; 24:5895-5910. [PMID: 27692995 DOI: 10.1016/j.bmc.2016.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
The estrogen receptor beta (ERβ) selective agonist is considered a promising candidate for the treatment of estrogen deficiency symptoms in ERβ-expressing tissues, without the risk of breast cancer, and multiple classes of compounds have been reported as ERβ selective agonists. Among them, 6-6 bicyclic ring-containing structures (e.g., isoflavone phytoestrogens) are regarded as one of the cyclized analogues of isobutestrol 5b, and suggest that other cyclized scaffolds comprising 5-6 bicyclic rings could also act as selective ERβ ligands. In this study, we evaluated the selective ERβ agonistic activity of 1-(4-hydroxybenzyl)indan-5-ol 7a and studied structure-activity relationship (SAR) of its derivatives. Some functional groups improved the properties of 7a; introduction of a nitrile group on the indane-1-position resulted in higher selectivity for ERβ (12a), and further substitution with a fluoro or a methyl group to the pendant phenyl ring was also preferable (12b, d, and e). Subsequent chiral resolution of 12a identified that R-12a has a superior profile over S-12a. This is comparable to diarylpropionitrile (DPN) 5c, one of the promising selective ERβ agonists and indicates that this indane-based scaffold has the potential to provide better ERβ agonistic probes.
Collapse
|
149
|
Ho LA, Thomas E, McLaughlin RA, Flematti GR, Fuller RO. A new selective fluorescent probe based on tamoxifen. Bioorg Med Chem Lett 2016; 26:4879-4883. [PMID: 27662800 DOI: 10.1016/j.bmcl.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 12/11/2022]
Abstract
Developing targeted validation probes that can interrogate biology is of interest for both chemists and biologists. The synthesis of suitable compounds provides a means for avoiding the costly labeling of cells with specific antibodies and the bias associated with the interpretation of biological validation experiments. The chemotherapeutic agent, tamoxifen has been routinely used in the treatment of breast cancer for decades. Once metabolized, the active form of tamoxifen (4-hydroxytamoxifen) competes with the binding of estrogens to the estrogen receptors (ER). Its selectivity in ER modulation makes it an ideal candidate for the development of materials to be used as chemical probes. Here we report the synthesis of a fluorescent BODIPY®FL conjugate of tamoxifen linked through an ethylene glycol moiety, and present proof-of-principle results in ER positive and ER negative cell lines. Optical microscopy indicates that the fluorescent probe binds selectively to tamoxifen sensitive breast cancer cell lines. The compound showed no affinity for the tamoxifen resistant breast cancer lines. The specificity of the new compound make it a valuable addition to the chemical probe tool kit for estrogen receptors.
Collapse
Affiliation(s)
- Louisa A Ho
- School of Chemistry and Biochemistry M310, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Elizabeth Thomas
- School of Surgery M507, The University of Western Australia, QEII Medical Center, Monash Ave, Nedlands, WA 6009, Australia
| | - Robert A McLaughlin
- Australian Research Council Center of Excellence for Nanoscale Biophotonics, School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gavin R Flematti
- School of Chemistry and Biochemistry M310, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Rebecca O Fuller
- School of Chemistry and Biochemistry M310, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| |
Collapse
|
150
|
Effects of ginseng on two main sex steroid hormone receptors: estrogen and androgen receptors. J Ginseng Res 2016; 41:215-221. [PMID: 28413327 PMCID: PMC5386121 DOI: 10.1016/j.jgr.2016.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/06/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023] Open
Abstract
Ginseng has been used in China for at least two millennia and is now popular in over 35 countries. It is one of the world's popular herbs for complementary and alternative medicine and has been shown to have helpful effects on cognition and blood circulation, as well as anti-aging, anti-cancer, and anti-diabetic effects, among many others. The pharmacological activities of ginseng are dependent mainly on ginsenosides. Ginsenosides have a cholesterol-like four trans-ring steroid skeleton with a variety of sugar moieties. Nuclear receptors are one of the most important molecular targets of ginseng, and reports have shown that members of the nuclear receptor superfamily are regulated by a variety of ginsenosides. Here, we review the published literature on the effects of ginseng and its constituents on two main sex steroid hormone receptors: estrogen and androgen receptors. Furthermore, we discuss applications for sex steroid hormone receptor modulation and their therapeutic efficacy.
Collapse
|