101
|
Weber AV, Firth BL, Cadonic IG, Craig PM. Interactive effects of venlafaxine and thermal stress on zebrafish (Danio rerio) inflammatory and heat shock responses. Comp Biochem Physiol C Toxicol Pharmacol 2023; 269:109620. [PMID: 37004898 DOI: 10.1016/j.cbpc.2023.109620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Venlafaxine (VFX), a commonly prescribed antidepressant often detected in wastewater effluent, and acute temperature elevations from climate change and increased urbanization, are two environmental stressors currently placing freshwater ecosystems at risk. This study focused on understanding if exposure to VFX impacts the agitation temperature (Tag) and critical thermal maximum (CTmax) of zebrafish (Danio rerio). Additionally, we examined the interactive effects of VFX and acute thermal stress on zebrafish heat shock and inflammatory immune responses. A 96 h 1.0 μg/L VFX exposure experiment was conducted, followed by assessment of thermal tolerance via CTmax challenge. Heat shock proteins and pro-inflammatory immune cytokines were quantified through gene expression analysis by quantitative PCR (qPCR) on hsp 70, hsp 90, hsp 47, il-8, tnfα, and il-1β within gill and liver tissue. No significant changes in agitation temperature between control and exposed fish were observed, nor were there any differences in CTmax based on treatment. Unsurprisingly, hsp 47, 70, and 90 were all upregulated in groups exposed solely to CTmax, while only hsp 47 within gill tissue showed signs of interactive effects, which was significantly decreased in fish exposed to both VFX and CTmax. No induction of an inflammatory response occurred. This study demonstrated that environmentally relevant concentrations of VFX have no impact on thermal tolerance performance in zebrafish. However, VFX can cause diminished function of protective heat shock mechanisms, which could be detrimental to freshwater fish populations and aquatic ecosystems as temperature spikes become more frequent from climate change and urbanization near watersheds.
Collapse
Affiliation(s)
- A V Weber
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - B L Firth
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada. https://twitter.com/@Britney_Firth
| | - I G Cadonic
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada. https://twitter.com/@IvanCadonic
| | - P M Craig
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
102
|
Flewwelling LD, Wearing OH, Garrett EJ, Scott GR. Thermoregulatory trade-offs underlie the effects of warming summer temperatures on deer mice. J Exp Biol 2023; 226:287070. [PMID: 36808489 DOI: 10.1242/jeb.244852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Climate warming could challenge the ability of endotherms to thermoregulate and maintain normal body temperature (Tb), but the effects of warming summer temperatures on activity and thermoregulatory physiology in many small mammals remain poorly understood. We examined this issue in deer mice (Peromyscus maniculatus), an active nocturnal species. Mice were exposed in the lab to simulated seasonal warming, in which an environmentally realistic diel cycle of ambient temperature (Ta) was gradually warmed from spring conditions to summer conditions (controls were maintained in spring conditions). Activity (voluntary wheel running) and Tb (implanted bio-loggers) were measured throughout, and indices of thermoregulatory physiology (thermoneutral zone, thermogenic capacity) were assessed after exposure. In control mice, activity was almost entirely restricted to the night-time, and Tb fluctuated ∼1.7°C between daytime lows and night-time highs. Activity, body mass and food consumption were reduced and water consumption was increased in later stages of summer warming. This was accompanied by strong Tb dysregulation that culminated in a complete reversal of the diel pattern of Tb variation, with Tb reaching extreme highs (∼40°C) during daytime heat but extreme lows (∼34°C) at cooler night-time temperatures. Summer warming was also associated with reduced ability to generate body heat, as reflected by decreased thermogenic capacity and decreased mass and uncoupling protein (UCP1) content of brown adipose tissue. Our findings suggest that thermoregulatory trade-offs associated with daytime heat exposure can affect Tb and activity at cooler night-time temperatures, impacting the ability of nocturnal mammals to perform behaviours important for fitness in the wild.
Collapse
Affiliation(s)
- Luke D Flewwelling
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Oliver H Wearing
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Emily J Garrett
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
103
|
Eizenga MR, Flewwelling LD, Warrier T, Scott GR. Thermal performance curve of endurance running at high temperatures in deer mice. J Exp Biol 2023; 226:286951. [PMID: 36752138 DOI: 10.1242/jeb.244847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
The impacts of warming temperatures associated with climate change on performance are poorly understood in most mammals. Thermal performance curves are a valuable means of examining the effects of temperature on performance traits, but they have rarely been used in endotherms. Here, we examined the thermal performance curve of endurance running capacity at high temperatures in the deer mouse (Peromyscus maniculatus). Endurance capacity was measured using an incremental speed test on a treadmill, and subcutaneous temperature in the abdominal region was measured as a proxy for body temperature (Tb). Endurance time at 20°C was repeatable but varied appreciably across individuals, and was unaffected by sex or body mass. Endurance capacity was maintained across a broad range of ambient temperatures (Ta) but was reduced above 35°C. Tb during running varied with Ta, and reductions in endurance were associated with Tb greater than 40°C when Ta was above 35°C. At the high Ta that limited endurance running capacity (but not at lower Ta), Tb tended to rise throughout running trials with increases in running speed. Metabolic and thermoregulatory measurements at rest showed that Tb, evaporative water loss and breathing frequency increased at Ta of 36°C and above. Therefore, the upper threshold temperatures at which endurance capacity is impaired are similar to those inducing heat responses at rest in this species. These findings help discern the mechanisms by which deer mice are impacted by warming temperatures, and provide a general approach for examining thermal breadth of performance in small mammals.
Collapse
Affiliation(s)
- Matthew R Eizenga
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Luke D Flewwelling
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Tanisha Warrier
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
104
|
Thermal optimality and physiological parameters inferred from experimental studies scale latitudinally with marine species occurrences. J Therm Biol 2023. [DOI: 10.1016/j.jtherbio.2023.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
105
|
Dixon TAM, Rhyno ELM, El N, McGaw SP, Otley NA, Parker KS, Buldo EC, Pabody CM, Savoie M, Cockshutt A, Morash AJ, Lamarre SG, MacCormack TJ. Taurine depletion impairs cardiac function and affects tolerance to hypoxia and high temperatures in brook char (Salvelinus fontinalis). J Exp Biol 2023; 226:286891. [PMID: 36728502 DOI: 10.1242/jeb.245092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Physiological and environmental stressors can cause osmotic stress in fish hearts, leading to a reduction in intracellular taurine concentration. Taurine is a β-amino acid known to regulate cardiac function in other animal models but its role in fish has not been well characterized. We generated a model of cardiac taurine deficiency (TD) by feeding brook char (Salvelinus fontinalis) a diet enriched in β-alanine, which inhibits cardiomyocyte taurine uptake. Cardiac taurine levels were reduced by 21% and stress-induced changes in normal taurine handling were observed in TD brook char. Responses to exhaustive exercise and acute thermal and hypoxia tolerance were then assessed using a combination of in vivo, in vitro and biochemical approaches. Critical thermal maximum was higher in TD brook char despite significant reductions in maximum heart rate. In vivo, TD brook char exhibited a lower resting heart rate, blunted hypoxic bradycardia and a severe reduction in time to loss of equilibrium under hypoxia. In vitro function was similar between control and TD hearts under oxygenated conditions, but stroke volume and cardiac output were severely compromised in TD hearts under severe hypoxia. Aspects of mitochondrial structure and function were also impacted in TD permeabilized cardiomyocytes, but overall effects were modest. High levels of intracellular taurine are required to achieve maximum cardiac function in brook char and cardiac taurine efflux may be necessary to support heart function under stress. Taurine appears to play a vital, previously unrecognized role in supporting cardiovascular function and stress tolerance in fish.
Collapse
Affiliation(s)
- Toni-Anne M Dixon
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Emma-Lee M Rhyno
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Nir El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Samuel P McGaw
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Nathan A Otley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Katya S Parker
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Elena C Buldo
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Claire M Pabody
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Mireille Savoie
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Amanda Cockshutt
- Department of Chemistry, Saint Francis Xavier University, Antigonish, NS, Canada, B2G 2W5
| | - Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Simon G Lamarre
- Departement de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| |
Collapse
|
106
|
Molina JM, Kunzmann A, Reis JP, Guerreiro PM. Metabolic Responses and Resilience to Environmental Challenges in the Sedentary Batrachoid Halobatrachus didactylus (Bloch & Schneider, 1801). Animals (Basel) 2023; 13:ani13040632. [PMID: 36830420 PMCID: PMC9951689 DOI: 10.3390/ani13040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In the context of climate change, warming of the seas and expansion of hypoxic zones are challenges that most species of fish are, or will be subjected to. Understanding how different species cope with these changes in their environment at the individual level can shed light on how populations and ecosystems will be affected. We provide first-time estimates on the metabolic rates, thermal, and oxygen-related limits for Halobatrachus didactylus, a coastal sedentary fish that lives in intertidal environments of the Northeast Atlantic. Using respirometry in different experimental designs, we found that this species is highly resistant to acute thermal stress (CTmax: 34.82 ± 0.66 °C) and acute hypoxia (Pcrit: 0.59-1.97 mg O2 L-1). We found size-specific differences in this stress response, with smaller individuals being more sensitive. We also quantified its aerobic scope and daily activity patterns, finding this fish to be extremely sedentary, with one of the lowest standard metabolic rates found in temperate fish (SMR: 14.96 mg O2 kg-1h-1). H. didactylus activity increases at night, when its metabolic rate increases drastically (RMR: 36.01 mg O2 kg-1h-1). The maximum metabolic rate of H. didactylus was estimated to be 67.31 mg O2 kg-1h-1, producing an aerobic scope of 52.35 mg O2 kg-1h-1 (77.8% increase). The metrics obtained in this study prove that H. didactylus is remarkably resilient to acute environmental variations in temperature and oxygen content, which might enable it to adapt to the extreme abiotic conditions forecasted for the world's oceans in the near future.
Collapse
Affiliation(s)
- Juan Manuel Molina
- Instituto Argentino de Oceanografía (CONICET), Bahía Blanca B8000, Argentina
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence:
| | - Andreas Kunzmann
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany
| | - João Pena Reis
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | | |
Collapse
|
107
|
Nair P, Gibson JR, Schwartz BF, Nowlin WH. Temperature responses vary between riffle beetles from contrasting aquatic environments. J Therm Biol 2023; 112:103485. [PMID: 36796925 DOI: 10.1016/j.jtherbio.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Organisms living in environmentally stable ecosystems are hypothesized to exhibit narrow environmental tolerance ranges; however, previous experiments testing this prediction with invertebrates in spring habitats are equivocal. Here we examined the effects of elevated temperatures on four riffle beetle species (family: Elmidae) native to central and west Texas, USA. Two of these, Heterelmis comalensis and Heterelmis cf. glabra are known to occupy habitats immediately adjacent to spring openings and are thought to have stenothermal tolerance profiles. The other two, Heterelmis vulnerata and Microcylloepus pusillus are surface stream species with more cosmopolitan distributions and are assumed to be less sensitive to variation in environmental conditions. We examined performance and survival of elmids in response to increasing temperatures using dynamic and static assays. Additionally, changes in metabolic rate in response to thermal stress were assessed for all four species. Our results indicated that spring-associated H. comalensis is most sensitive while the more cosmopolitan elmid M. pusillus is least sensitive to thermal stress. However, there were differences in temperature tolerances among the two spring-associated species: H. comalensis had relatively narrow thermal tolerance in comparison to H. cf. glabra. This could be due to differences in the climatic and hydrological conditions in the geographical regions which the respective riffle beetle populations reside. However, despite these differences, H. comalensis and H. cf. glabra showed a dramatic increase in their metabolic rates with increasing temperatures indicating that these species are indeed spring specialists and likely have a stenothermal profile.
Collapse
Affiliation(s)
- Parvathi Nair
- Freeman Aquatic Building, Department of Biology, Texas State University, San Marcos, TX, 78666, USA; Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA.
| | - James R Gibson
- Aquatic Resources Center, United States Fish and Wildlife Service, San Marcos, TX, 78666, USA
| | - Benjamin F Schwartz
- Freeman Aquatic Building, Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Weston H Nowlin
- Freeman Aquatic Building, Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| |
Collapse
|
108
|
Makri V, Feidantsis K, Porlou D, Ntokou A, Georgoulis I, Giantsis IA, Anestis A, Michaelidis B. Red porgy's (Pagrus pagrus) cellular physiology and antioxidant defense in response to seasonality. J Therm Biol 2023; 113:103527. [PMID: 37055131 DOI: 10.1016/j.jtherbio.2023.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Physiological stress patterns of marine organisms in their natural habitats are considerably complex in space and time. These patterns can eventually contribute in the shaping of fish' thermal limits under natural conditions. In the view of the knowledge gap regarding red porgy's thermal physiology, in combination with the characterization of the Mediterranean Sea as a climate change ''hotspot'', the aim of the present study was to investigate this species biochemical responses to constantly changing field conditions. To achieve this goal, Heat Shock Response (HSR), MAPKs pathway, autophagy, apoptosis, lipid peroxidation and antioxidant defense were estimated and exhibited a seasonal pattern. In general, all the examined biochemical indicators expressed high levels parallel to the increasing seawater temperature in spring, although several bio-indicators have shown increased levels when fish were cold-acclimatized. Similar to other sparids, the observed patterns of physiological responses in red porgy may support the concept of eurythermy.
Collapse
|
109
|
Christensen AB, Taylor G, Lamare M, Byrne M. The added costs of winter ocean warming for metabolism, arm regeneration and survival in the brittle star Ophionereis schayeri. J Exp Biol 2023; 226:287003. [PMID: 36651231 DOI: 10.1242/jeb.244613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.
Collapse
Affiliation(s)
| | - Georgie Taylor
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
110
|
Birrell JH, Woods HA. Going with the flow - how a stream insect, Pteronarcys californica, exploits local flows to increase oxygen availability. J Exp Biol 2023; 226:286586. [PMID: 36633213 DOI: 10.1242/jeb.244609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
For insects, life in water is challenging because oxygen supply is typically low compared with in air. Oxygen limitation may occur when oxygen levels or water flows are low or when warm temperatures stimulate metabolic demand for oxygen. A potential mechanism for mitigating oxygen shortages is behavior - moving to cooler, more oxygenated or faster flowing microhabitats. Whether stream insects can make meaningful choices, however, depends on: (i) how temperature, oxygen and flow vary at microspatial scales and (ii) the ability of insects to sense and exploit that variation. To assess the extent of microspatial variation in conditions, we measured temperature, oxygen saturation and flow velocity within riffles of two streams in Montana, USA. In the lab, we then examined preferences of nymphs of the stonefly Pteronarcys californica to experimental gradients based on field-measured values. Temperature and oxygen level varied only slightly within stream riffles. By contrast, flow velocity was highly heterogeneous, often varying by more than 125 cm s-1 within riffles and 44 cm s-1 around individual cobbles. Exploiting micro-variation in flow may thus be the most reliable option for altering rates of oxygen transport. In support of this prediction, P. californica showed little ability to exploit gradients in temperature and oxygen but readily exploited micro-variation in flow - consistently choosing higher flows when conditions were warm or hypoxic. These behaviors may help stream insects mitigate low-oxygen stress from climate change and other anthropogenic disturbances.
Collapse
Affiliation(s)
- Jackson H Birrell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
111
|
Andrews KR, Seaborn T, Egan JP, Fagnan MW, New DD, Chen Z, Hohenlohe PA, Waits LP, Caudill CC, Narum SR. Whole genome resequencing identifies local adaptation associated with environmental variation for redband trout. Mol Ecol 2023; 32:800-818. [PMID: 36478624 PMCID: PMC9905331 DOI: 10.1111/mec.16810] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Aquatic ectotherms are predicted to harbour genomic signals of local adaptation resulting from selective pressures driven by the strong influence of climate conditions on body temperature. We investigated local adaptation in redband trout (Oncorhynchus mykiss gairdneri) using genome scans for 547 samples from 11 populations across a wide range of habitats and thermal gradients in the interior Columbia River. We estimated allele frequencies for millions of single nucleotide polymorphism loci (SNPs) across populations using low-coverage whole genome resequencing, and used population structure outlier analyses to identify genomic regions under divergent selection between populations. Twelve genomic regions showed signatures of local adaptation, including two regions associated with genes known to influence migration and developmental timing in salmonids (GREB1L, ROCK1, SIX6). Genotype-environment association analyses indicated that diurnal temperature variation was a strong driver of local adaptation, with signatures of selection driven primarily by divergence of two populations in the northern extreme of the subspecies range. We also found evidence for adaptive differences between high-elevation desert vs. montane habitats at a smaller geographical scale. Finally, we estimated vulnerability of redband trout to future climate change using ecological niche modelling and genetic offset analyses under two climate change scenarios. These analyses predicted substantial habitat loss and strong genetic shifts necessary for adaptation to future habitats, with the greatest vulnerability predicted for high-elevation desert populations. Our results provide new insight into the complexity of local adaptation in salmonids, and important predictions regarding future responses of redband trout to climate change.
Collapse
Affiliation(s)
- Kimberly R Andrews
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, Idaho, USA
| | - Travis Seaborn
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Joshua P Egan
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, Minnesota, USA
| | - Matthew W Fagnan
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, Idaho, USA
| | - Daniel D New
- Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, Moscow, Idaho, USA
| | - Zhongqi Chen
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, USA
| | - Paul A Hohenlohe
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, Idaho, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Christopher C Caudill
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Shawn R Narum
- Aquaculture Research Institute, University of Idaho, Hagerman, Idaho, USA.,Columbia River Inter-Tribal Fish Commission, Hagerman, Idaho, USA
| |
Collapse
|
112
|
Lattuca ME, Vanella FA, Malanga G, Rubel MD, Manríquez PH, Torres R, Alter K, Marras S, Peck MA, Domenici P, Fernández DA. Ocean acidification and seasonal temperature extremes combine to impair the thermal physiology of a sub-Antarctic fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159284. [PMID: 36209875 DOI: 10.1016/j.scitotenv.2022.159284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
To predict the potential impacts of climate change on marine organisms, it is critical to understand how multiple stressors constrain the physiology and distribution of species. We evaluated the effects of seasonal changes in seawater temperature and near-future ocean acidification (OA) on organismal and sub-organismal traits associated with the thermal performance of Eleginops maclovinus, a sub-Antarctic notothenioid species with economic importance to sport and artisanal fisheries in southern South America. Juveniles were exposed to mean winter and summer sea surface temperatures (4 and 10 °C) at present-day and near-future pCO2 levels (~500 and 1800 μatm). After a month, the Critical Thermal maximum and minimum (CTmax, CTmin) of fish were measured using the Critical Thermal Methodology and the aerobic scope of fish was measured based on the difference between their maximal and standard rates determined from intermittent flow respirometry. Lipid peroxidation and the antioxidant capacity were also quantified to estimate the oxidative damage potentially caused to gill and liver tissue. Although CTmax and CTmin were higher in individuals acclimated to summer versus winter temperatures, the increase in CTmax was minimal in juveniles exposed to the near-future compared to present-day pCO2 levels (there was a significant interaction between temperature and pCO2 on CTmax). The reduction in the thermal tolerance range under summer temperatures and near-future OA conditions was associated with a reduction in the aerobic scope observed at the elevated pCO2 level. Moreover, an oxidative stress condition was detected in the gill and liver tissues. Thus, chronic exposure to OA and the current summer temperatures pose limits to the thermal performance of juvenile E. maclovinus at the organismal and sub-organismal levels, making this species vulnerable to projected climate-driven warming.
Collapse
Affiliation(s)
- María E Lattuca
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina.
| | - Fabián A Vanella
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina
| | - Gabriela Malanga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB - UBA), Junín 956, C1113AAD CABA, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL - CONICET), Junín 956, C1113AAD CABA, Argentina
| | - Maximiliano D Rubel
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón 877, 1781681 Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Larrondo 1281, 1781421 Coquimbo, Chile
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), José de Moraleda 16, 5951369 Coyhaique, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Av. El Bosque 01789, 6200000 Punta Arenas, Chile
| | - Katharina Alter
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Coastal Systems (COS), P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands
| | - Stefano Marras
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero (CNR-IAMC), Località Sa Mardini, 09070 Torregrande, Oristano, Italy
| | - Myron A Peck
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Coastal Systems (COS), P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands
| | - Paolo Domenici
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero (CNR-IAMC), Località Sa Mardini, 09070 Torregrande, Oristano, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy
| | - Daniel A Fernández
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina; Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF - ICPA), Fuegia Basket 251, V9410BXE Ushuaia, Argentina
| |
Collapse
|
113
|
Amat‐Trigo F, Andreou D, Gillingham PK, Britton JR. Behavioural thermoregulation in cold-water freshwater fish: Innate resilience to climate warming? FISH AND FISHERIES (OXFORD, ENGLAND) 2023; 24:187-195. [PMID: 37063475 PMCID: PMC10100141 DOI: 10.1111/faf.12720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 11/09/2022] [Indexed: 06/19/2023]
Abstract
Behavioural thermoregulation enables ectotherms to access habitats providing conditions within their temperature optima, especially in periods of extreme thermal conditions, through adjustments to their behaviours that provide a "whole-body" response to temperature changes. Although freshwater fish have been detected as moving in response to temperature changes to access habitats that provide their thermal optima, there is a lack of integrative studies synthesising the extent to which this is driven by behaviour across different species and spatial scales. A quantitative global synthesis of behavioural thermoregulation in freshwater fish revealed that across 77 studies, behavioural thermoregulatory movements by fish were detected both vertically and horizontally, and from warm to cool waters and, occasionally, the converse. When fish moved from warm to cooler habitats, the extent of the temperature difference between these habitats decreased with increasing latitude, with juvenile and non-migratory fishes tolerating greater temperature differences than adult and anadromous individuals. With most studies focused on assessing movements of cold-water salmonids during summer periods, there remains an outstanding need for work on climatically vulnerable, non-salmonid fishes to understand how these innate thermoregulatory behaviours could facilitate population persistence in warming conditions.
Collapse
Affiliation(s)
- Fatima Amat‐Trigo
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - Phillipa K. Gillingham
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| | - J. Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and TechnologyBournemouth UniversityPooleUK
| |
Collapse
|
114
|
Samaras A, Tsoukali P, Katsika L, Pavlidis M, Papadakis IE. Chronic impact of exposure to low dissolved oxygen on the physiology of Dicentrarchus labrax and Sparus aurata and its effects on the acute stress response. AQUACULTURE 2023; 562:738830. [DOI: 10.1016/j.aquaculture.2022.738830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
115
|
Novel physiological data needed for progress in global change ecology. Basic Appl Ecol 2023. [DOI: 10.1016/j.baae.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
116
|
Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming. Sci Rep 2022; 12:21781. [PMID: 36526639 PMCID: PMC9758224 DOI: 10.1038/s41598-022-25419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Species distribution models predict a poleward migration for marine ectotherms with ocean warming. However, a key limitation in current species distribution models (SDM) is that they do not account for population-specific heterogeneity in physiological responses to temperature change resulting from local adaptations and acclimatization. To address this gap, we developed a novel, Physiology Integrated BioClimate Model (PIBCM) that combines habitat-specific metabolic thermal physiological tolerance of a species into a bioclimate envelope model. Using a downscaling approach, we also established a fine-resolution coastal sea-surface temperature data set for 2050-2080, that showed a high degree of location-specific variability in future thermal regimes. Combining predicted temperature data with the PIBCM model, we estimated habitat distribution for a highly eurythermal intertidal minnow, the Atlantic killifish (Fundulus heteroclitus), a species that likely presents a best-case-scenario for coastal vertebrates. We show that the killifish northern boundary shifts southwards, while distinct habitat fragmentation occurs in the southern sub-population (due to migration of adjacent fish populations to the nearest metabolically optimal thermal habitat). When compared to current SDMs (e.g., AquaMaps), our results emphasize the need for thermal physiology integrated range shift models and indicate that habitat fragmentation for coastal fishes may reshape nursery habitats for many commercially and ecologically important species.
Collapse
|
117
|
Georgoulis I, Bock C, Lannig G, Pörtner HO, Feidantsis K, Giantsis IA, Sokolova IM, Michaelidis B. Metabolic remodeling caused by heat hardening in the Mediterranean mussel Mytilus galloprovincialis. J Exp Biol 2022; 225:285988. [PMID: 36426666 DOI: 10.1242/jeb.244795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Organisms can modify and increase their thermal tolerance faster and more efficiently after a brief exposure to sublethal thermal stress. This response is called 'heat hardening' as it leads to the generation of phenotypes with increased heat tolerance. The aim of this study was to investigate the impact of heat hardening on the metabolomic profile of Mytilus galloprovincialis in order to identify the associated adjustments of biochemical pathways that might benefit the mussels' thermal tolerance. Thus, mussels were exposed sequentially to two different phases (heat hardening and acclimation phases). To gain further insight into the possible mechanisms underlying the metabolic response of the heat-hardened M. galloprovincialis, metabolomics analysis was complemented by the estimation of mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK), pyruvate kinase (PK) and alternative oxidase (AOX) implicated in the metabolic pathways of gluconeogenesis, glycolysis and redox homeostasis, respectively. Heat-hardened mussels showed evidence of higher activity of the tricarboxylic acid (TCA) cycle and diversification of upregulated metabolic pathways, possibly as a mechanism to increase ATP production and extend survival under heat stress. Moreover, formate and taurine accumulation provide an antioxidant and cytoprotective role in mussels during hypoxia and thermal stress. Overall, the metabolic responses in non-heat-hardened and heat-hardened mussels underline the upper thermal limits of M. galloprovincialis, set at 26°C, and are in accordance with the OCLTT concept. The ability of heat-hardened mussels to undergo a rapid gain and slow loss of heat tolerance may be an advantageous strategy for coping with intermittent and often extreme temperatures.
Collapse
Affiliation(s)
- Ioannis Georgoulis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christian Bock
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, D-27515 Bremerhaven, Germany
| | - Gisela Lannig
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, D-27515 Bremerhaven, Germany
| | - Hans-O Pörtner
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, Integrative Ecophysiology, Postfach 120161, D-27515 Bremerhaven, Germany
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, GR-53100 Florina, Greece
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, D-18055 Rostock, Germany
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
118
|
Influence of daily temperature maximums on the development and short-distance movement of the Asian citrus psyllid. J Therm Biol 2022; 110:103354. [DOI: 10.1016/j.jtherbio.2022.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/13/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022]
|
119
|
Begum M, Masud MM, Alam L, Mokhtar MB, Amir AA. The impact of climate variables on marine fish production: an empirical evidence from Bangladesh based on autoregressive distributed lag (ARDL) approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87923-87937. [PMID: 35819668 DOI: 10.1007/s11356-022-21845-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Several studies have highlighted the significant impact of climate change on agriculture. However, there have been little empirical enquiries into the impact of climate change on marine fish production, particularly in Bangladesh. Hence, this study aims to investigate the impact of climate change on marine fish production in Bangladesh using data from 1961 to 2019. Data were obtained from the Food and Agriculture Organization, Bangladesh Meteorological Department, the World Development Indicators, and the National Oceanic and Atmospheric Administration. The autoregressive distributed lag (ARDL) model was used to describe the dynamic link between CO2 emissions, average temperature, Sea Surface Temperature (SST), rainfall, sunshine, wind and marine fish production. The ARDL approach to cointegration revealed that SST (β = 0.258), rainfall (β =0.297), and sunshine (β =0.663) significantly influence marine fish production at 1% and 10% levels in the short run and at 1% level in the long run. The results also found that average temperature has a significant negative impact on fish production in both short and long runs. On the other hand, CO2 emissions have a negative impact on marine fish production in the short run. Specifically, for every 1% rise in CO2 emissions, marine fish production will decline by 0.11%. The findings of this study suggest that policymakers formulate better policy frameworks for climate change adaptation and sustainable management of marine fisheries at the national level. Research and development in Bangladesh's fisheries sector should also focus on marine fish species that can resist high sea surface temperatures, CO2 emissions, and average temperatures.
Collapse
Affiliation(s)
- Mahfuza Begum
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Mehedi Masud
- Department of Development Studies, Faculty of Business and Economics, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lubna Alam
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia.
| | - Mazlin Bin Mokhtar
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| | - Ahmad Aldrie Amir
- The Institute for Environment and Development (LESTARI), The National University of Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
120
|
Shokri M, Cozzoli F, Vignes F, Bertoli M, Pizzul E, Basset A. Metabolic rate and climate change across latitudes: evidence of mass-dependent responses in aquatic amphipods. J Exp Biol 2022; 225:280993. [PMID: 36337048 PMCID: PMC9720750 DOI: 10.1242/jeb.244842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Research Institute on Terrestrial Ecosystems (IRET–URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Marco Bertoli
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
121
|
Ripley DM, Quinn FA, Dickson J, Arthur J, Shiels HA. Thermal preference does not align with optimal temperature for aerobic scope in zebrafish (Danio rerio). J Exp Biol 2022; 225:278603. [PMID: 36305307 PMCID: PMC9845742 DOI: 10.1242/jeb.243774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/24/2022] [Indexed: 01/29/2023]
Abstract
Warming is predicted to have negative consequences for fishes by causing a mismatch between oxygen demand and supply, and a consequent reduction in aerobic scope (AS) and performance. This oxygen and capacity limited thermal tolerance (OCLTT) hypothesis features prominently in the literature but remains controversial. Within the OCLTT framework, we hypothesised that fish would select temperatures that maximise their AS, and thus their performance. We tested this hypothesis using intermittent flow respirometry to measure AS at, above (+2.5°C) and below (-2.5°C) the self-selected, preferred temperature (Tpref) of individual zebrafish (Danio rerio). AS was greatest 2.5°C above Tpref, which was driven by an increase in maximal metabolic rate. This mismatch between Tpref and the optimal temperature for AS suggests that factor(s) aside from AS maximisation influence the thermal preference of zebrafish.
Collapse
Affiliation(s)
- Daniel M. Ripley
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK,Authors for correspondence (; )
| | - Florence A. Quinn
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Jessica Dickson
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK,School of Veterinary Medicine and Science, The University of Nottingham, Loughborough LE12 5RD, UK
| | - Jack Arthur
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK,Authors for correspondence (; )
| |
Collapse
|
122
|
Alves-Ferreira G, Talora DC, Solé M, Cervantes-López MJ, Heming NM. Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.987237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Climate change can affect species distribution patterns in three different ways: pushing them to disperse to new suitable areas, forcing them to adapt to novel climatic conditions, or driving them to extinction. However, the biological and geographical traits that lead to these different responses remain poorly explored. Here, we evaluated how ecological and biogeographic traits influence amphibians’ response to climate change. We performed a systematic review searching for studies that evaluated the effects of future climate change on amphibian’s distribution. Our research returned 31 articles that projected the distribution of 331 amphibians. Our results demonstrate that species inhabiting an elevation above 515 m will lose a significant portion of their climatically suitable area. We also found that as isothermality increases, the amount of area suitable in response to climate change also increases. Another important discovery was that as the size of the baseline area increases, the greater must be the loss of climatically suitable areas. On the other hand, species with very small areas tend to keep their current climatically suitable area in the future. Furthermore, our results indicate that species that inhabit dry habitats tend to expand their suitable area in response to climate change. This result can be explained by the environmental characteristics of these habitats, which tend to present extreme seasonal climates with well-defined periods of drought and rain. We also found that anurans that inhabit exclusively forests are projected to lose a greater portion of their suitable areas, when compared to species that inhabit both forest and open areas, wetlands, and dry and rupestrian environments. The biogeographical realm also influenced anuran’s range shifts, with Afrotropic and Nearctic species projected to expand their geographical ranges. The assessment of climate change effects on amphibian distribution has been the focus of a growing number of studies. Despite this, some regions and species remain underrepresented. Current literature evaluates about 4% of the 7,477 species of Anura and 8% of the 773 species of Caudata and some regions rich in amphibian species remain severely underrepresented, such as Madagascar. Thus, future studies should focus on regions and taxas that remain underrepresented.
Collapse
|
123
|
McInturf AG, Zillig KW, Cook K, Fukumoto J, Jones A, Patterson E, Cocherell DE, Michel CJ, Caillaud D, Fangue NA. In hot water? Assessing the link between fundamental thermal physiology and predation of juvenile Chinook salmon. Ecosphere 2022. [DOI: 10.1002/ecs2.4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alexandra G. McInturf
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Animal Behavior Graduate Group University of California Davis California USA
- Coastal Oregon Marine Experiment Station Oregon State University Newport Oregon USA
| | - Ken W. Zillig
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Graduate Group in Ecology University of California Davis California USA
| | - Katherine Cook
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Jacqueline Fukumoto
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Anna Jones
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Emily Patterson
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Dennis E. Cocherell
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Cyril J. Michel
- NOAA Southwest Fisheries Science Center, Fisheries Ecology Division Santa Cruz California USA
| | - Damien Caillaud
- Department of Anthropology University of California Davis California USA
| | - Nann A. Fangue
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| |
Collapse
|
124
|
Distribution of the Order Lampriformes in the Mediterranean Sea with Notes on Their Biology, Morphology, and Taxonomy. BIOLOGY 2022; 11:biology11101534. [PMID: 36290437 PMCID: PMC9598601 DOI: 10.3390/biology11101534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Lampriformes are circumglobally distributed and contain several families of strictly marine bony fishes that have a peculiar morphology. Lampriformes systematics is affected by limitations in biometric, meristic, and molecular data; for this reason, it underwent several rearrangements in the past. This review aimed to describe the biological and ecological characteristics of the order Lampriformes, summarizing the current taxonomy of the group. The main aim was to clarify what is known about the distribution of the order Lampriformes in the Mediterranean Sea, collecting all the scarce and fragmented reports and notes on their occurrence. Knowledge scarcity is due to their solitary nature, in addition to their low to absent economic value. Despite this, the order Lampriformes represents a taxon of high biological and ecological importance. The high depth range of distribution characterizes their lifestyle. In the Mediterranean Sea, four families are present-Lampridae, Lophotidae, Regalecidae, and Trachipteridae-with the following species respectively, Lampris guttatus (Brünnich, 1788), Lophotus lacepede (Giorna, 1809), Regalecus glesne (Ascanius, 1772), Trachipterus arcticus (Brünnich, 1788), T. trachypterus (Gmelin, 1789), and Zu cristatus (Bonelli, 1819). Data deficiencies affect information on this taxon; the present review, which collected all the reports of the Mediterranean Sea, creates a baseline for depicting the biogeography of these rare and important species.
Collapse
|
125
|
Zhu W, Zhao C, Zhao T, Chang L, Chen Q, Liu J, Li C, Xie F, Jiang J. Rising floor and dropping ceiling: organ heterogeneity in response to cold acclimation of the largest extant amphibian. Proc Biol Sci 2022; 289:20221394. [PMID: 36196548 PMCID: PMC9532983 DOI: 10.1098/rspb.2022.1394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Low temperature imposes strong selective pressure on ectotherms. To maximize their overall fitness under cold conditions, the ectotherms may either try to maintain their physiological activities through metabolic compensation or enter into metabolic depression; however, some species adopt both strategies to cope with different degrees of cold. Nevertheless, how these two seemingly opposite strategies are coordinated has rarely been elucidated. Here, we investigated the molecular strategy underlying the cold acclimation of Andrias davidianus, the largest extant amphibian, using multi-organ metabolomics and transcriptomics. The results showed remarkable organ heterogeneity in response to cold. While most organs showed transcriptional upregulation of metabolic processes, the heart exhibited downregulation. This heterogeneity explained the adaptive reorganization in resource allocation, which compensates for metabolic maintenance by compromising growth. Importantly, the cardiac function might constitute a 'ceiling' to constrain the space for compensation, especially under colder conditions. Additionally, the opposite transcriptional regulation of oxidative phosphorylation and other pathways might also shape the overall metabolic capacity under cold conditions. The heterogeneity in cold responses may have directed a shift in cold adaptive strategy from compensation to depression with a drop in temperature. These results provide a novel insight into the regulatory mechanisms underlying cold survival strategies of ectotherms.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
126
|
King EE, Stillman JH. Mild temperatures differentiate while extreme temperatures unify gene expression profiles among populations of Dicosmoecus gilvipes in California. Front Physiol 2022; 13:990390. [PMID: 36277198 PMCID: PMC9581119 DOI: 10.3389/fphys.2022.990390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Accurately predicting the effects of future warming on aquatic ectotherms requires an understanding how thermal history, including average temperature and variation, affects populations of the same species. However, many laboratory studies simplify the thermal environment to focus on specific organismal responses and sacrifice environmental realism. Here, we paired laboratory-based transcriptomic RNA-seq analysis to identify thermally responsive genes with NanoString analysis of a subset of those genes to characterize natural field-based variation in thermal physiology among populations. We tested gene expression responses of three populations of field-acclimatized larval caddisflies (Dicosmoecus gilvipes) from streams in different eco-regions (mountain, valley, and coast) following exposure to current and future summertime temperatures. We hypothesized that distinct thermal histories across eco-regions could differentiate populations at baseline “control” levels of gene expression, as well as gene expression changes in response to daily warming and heat shock. Population-specific patterns of gene expression were apparent under the control and daily warming conditions suggesting that local acclimatization or local adaptation may differentiate populations, while responses to extreme temperatures were similar across populations, indicating that response to thermal stress is canalized. Underlying gene co-expression patterns in the daily warming and heat shock treatments were different, demonstrating the distinct physiological mechanisms involved with thermal acclimatization and response to thermal stress. These results highlight the importance and limitations of studies of the thermal biology of wild-caught organisms in their natural environment, and provide an important resource for researchers of caddisflies and aquatic insects in general.
Collapse
Affiliation(s)
- Emily E. King
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Emily E. King,
| | - Jonathon H. Stillman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
127
|
Wang Y, Zhou X, Chen J, Xie B, Huang L. Climate-induced habitat suitability changes intensify fishing impacts on the life history of large yellow croaker ( Larimichthys crocea). Ecol Evol 2022; 12:e9342. [PMID: 36203636 PMCID: PMC9526033 DOI: 10.1002/ece3.9342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Intense fishing pressure and climate change are major threats to the fish population and coastal fisheries. Larimichthys crocea (large yellow croaker) is a long-lived fish, which performs seasonal migrations from its spawning and nursery grounds along the coast of the East China Sea (ECS) to overwintering grounds offshore. This study used length-based analysis and habitat suitability index (HSI) model to evaluate the current life-history parameters and overwintering habitat suitability of L. crocea, respectively. We compared recent (2019) and historical (1971-1982) life-history parameters and overwintering HSI to analyze the fishing pressure and climate change effects on the overall population and overwintering phase of L. crocea. The length-based analysis indicated serious overfishing of L. crocea, characterized by reduced catch, size truncation, constrained distribution, and advanced maturation causing a recruitment bottleneck. The overwintering HSI modeling results indicated that climate change has led to decreased sea surface temperature during L. crocea overwintering phase over the last half-century, which in turn led to area decrease and an offshore-oriented shifting of optimal overwintering habitat of L. crocea. The fishing-caused size truncation may have constrained the migratory ability, and distribution of L. crocea subsequently led to the mismatch of the optimal overwintering habitat against climate change background, namely habitat bottleneck. Hence, while heavy fishing was the major cause of L. crocea collapse, climate-induced overwintering habitat suitability may have intensified the fishery collapse of L. crocea population. It is important for management to consider both overfishing and climate change issues when developing stock enhancement activities and policy regulations, particularly for migratory long-lived fish that share a similar life history to L. crocea. Combined with China's current restocking and stock enhancement initiatives, we propose recommendations for the future restocking of L. crocea in China.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| | - Xijie Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| | - Jiajie Chen
- Scientific Observing and Experimental Station of Fisheries Resources and Environment of East China Sea and Yangtze EstuaryMinistry of Agriculture; East China Sea Fisheries Research Institute,Chinese Academy of Fishery SciencesShanghaiChina
| | - Bin Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsCollege of the Environment and Ecology, Xiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental StudiesXiamen UniversityXiamenChina
| |
Collapse
|
128
|
Scharsack JP, Franke F. Temperature effects on teleost immunity in the light of climate change. JOURNAL OF FISH BIOLOGY 2022; 101:780-796. [PMID: 35833710 DOI: 10.1111/jfb.15163] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Temperature is an important environmental modulator of teleost immune activity. Susceptibility of teleosts to temperature variation depends on the species-specific adaptive temperature range, and the activity of the teleost immune system is generally temperature-dependent. Similar to many physiological and metabolic traits of ectotherms, temperature modulates the activity of immune traits. At low temperatures, acquired immunity of many teleost species is down-modulated, and their immuno-competence mainly depends on innate immunity. At intermediate temperatures, both innate and acquired immunity are fully active and provide optimal protection, including long-lasting immunological memory. When temperatures increase and reach the upper permissive range, teleost immunity is compromised. Moreover, temperature shifts may have negative effects on teleost immune functions, in particular if shifts occur rapidly with high amplitudes. On the contrary, short-term temperature increase may help teleost immunity to fight against pathogens transiently. A major challenge to teleosts therefore is to maintain immuno-competence throughout the temperature range they are exposed to. Climate change coincides with rising temperatures, and more frequent and more extreme temperature shifts. Both are likely to influence the immuno-competence of teleosts. Nonetheless, teleosts exist in habitats that differ substantially in temperature, ranging from below zero in the Arctic's to above 40°C in warm springs, illustrating their enormous potential to adapt to different temperature regimes. The present review seeks to discuss how changes in temperature variation, induced by climate change, might influence teleost immunity.
Collapse
Affiliation(s)
- Jörn Peter Scharsack
- Department for Fish Diseases, Thuenen-Institute of Fisheries Ecology, Bremerhaven, Germany
| | - Frederik Franke
- Bavarian State Institute of Forestry, Department of Biodiversity, Nature Protection & Wildlife Management, Freising, Germany
| |
Collapse
|
129
|
Reddin CJ, Aberhan M, Raja NB, Kocsis ÁT. Global warming generates predictable extinctions of warm- and cold-water marine benthic invertebrates via thermal habitat loss. GLOBAL CHANGE BIOLOGY 2022; 28:5793-5807. [PMID: 35851980 DOI: 10.1111/gcb.16333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic global warming is redistributing marine life and may threaten tropical benthic invertebrates with several potential extinction mechanisms. The net impact of climate change on geographical extinction risk nevertheless remains uncertain. Evidence of widespread climate-driven extinctions and of potentially unidentified mechanisms exists in the fossil record. We quantify organism extinction risk across thermal habitats, estimated by paleoclimate reconstructions, over the past 300 million years. Extinction patterns at seven known events of rapid global warming (hyperthermals) differ significantly from typical patterns, resembling those driven by global geometry under simulated global warming. As isotherms move poleward with warming, the interaction between the geometry of the globe and the temperature-latitude relationship causes an uneven loss of thermal habitat and a bimodal latitudinal distribution of extinctions. Genera with thermal optima warmer than ~21°C show raised extinction odds, while extinction odds continually increase for genera with optima below ~11°C. Genera preferring intermediate temperatures generally have no additional extinction risk during hyperthermals, except under extreme conditions as the end-Permian mass extinction. Widespread present-day climate-driven range shifts indicate that occupancy loss is already underway. Given the most-likely projections of modern warming, our model, validated by seven past hyperthermal events, indicates that sustained warming has the potential to annihilate cold-water habitat and its endemic species completely within centuries.
Collapse
Affiliation(s)
- Carl J Reddin
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Aberhan
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Nussaïbah B Raja
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ádám T Kocsis
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany
- MTA-MTM-ELTE Research Group for Paleontology, Budapest, Hungary
| |
Collapse
|
130
|
Morbey YE, Pauly D. Juvenile-to-adult transition invariances in fishes: Perspectives on proximate and ultimate causation. JOURNAL OF FISH BIOLOGY 2022; 101:874-884. [PMID: 35762307 DOI: 10.1111/jfb.15146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
To bridge physiological and evolutionary perspectives on size at maturity in fishes, the authors focus on the approximately invariant ratio between the estimated oxygen supply at size at maturity (Qm ) relative to that at asymptotic size (Q∞ ) among species within a taxonomic group, and show how two important theories related to this phenomenon complement each other. Gill-oxygen limitation theory proposes a mechanistic basis for a universal oxygen supply-based threshold for maturation, which applies among and within species. On the contrary, the authors show that a generalisation of life-history theory for the invariance of size at maturity (Lm ) relative to asymptotic size (L∞ ) can provide an evolutionary rationale for an oxygen-limited maturation threshold (Qm /Q∞ ). Extending previous inter- and intraspecific analyses, the authors show that maturation invariances also occur in lake whitefish Coregonus clupeaformis (Mitchill 1818), but at both scales, theory seems to underestimate the value of the maturation threshold. They highlight some key uncertainties in the model that should be addressed to help resolve the mismatch.
Collapse
Affiliation(s)
- Yolanda E Morbey
- Department of Biology, Western University, London, Ontario, Canada
| | - Daniel Pauly
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
131
|
Alós J, Aarestrup K, Abecasis D, Afonso P, Alonso-Fernandez A, Aspillaga E, Barcelo-Serra M, Bolland J, Cabanellas-Reboredo M, Lennox R, McGill R, Özgül A, Reubens J, Villegas-Ríos D. Toward a decade of ocean science for sustainable development through acoustic animal tracking. GLOBAL CHANGE BIOLOGY 2022; 28:5630-5653. [PMID: 35929978 PMCID: PMC9541420 DOI: 10.1111/gcb.16343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The ocean is a key component of the Earth's dynamics, providing a great variety of ecosystem services to humans. Yet, human activities are globally changing its structure and major components, including marine biodiversity. In this context, the United Nations has proclaimed a Decade of Ocean Science for Sustainable Development to tackle the scientific challenges necessary for a sustainable use of the ocean by means of the Sustainable Development Goal 14 (SDG14). Here, we review how Acoustic animal Tracking, a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the SDG14. We show that acoustic tracking can be used to reduce and monitor the effects of marine pollution including noise, light, and plastic pollution. Acoustic tracking can be effectively used to monitor the responses of marine biodiversity to human-made infrastructures and habitat restoration, as well as to determine the effects of hypoxia, ocean warming, and acidification. Acoustic tracking has been historically used to inform fisheries management, the design of marine protected areas, and the detection of essential habitats, rendering this technique particularly attractive to achieve the sustainable fishing and spatial protection target goals of the SDG14. Finally, acoustic tracking can contribute to end illegal, unreported, and unregulated fishing by providing tools to monitor marine biodiversity against poachers and promote the development of Small Islands Developing States and developing countries. To fully benefit from acoustic tracking supporting the SDG14 Targets, trans-boundary collaborative efforts through tracking networks are required to promote ocean information sharing and ocean literacy. We therefore propose acoustic tracking and tracking networks as relevant contributors to tackle the scientific challenges that are necessary for a sustainable use of the ocean promoted by the United Nations.
Collapse
Affiliation(s)
- Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Kim Aarestrup
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - David Abecasis
- Center of Marine Sciences, Universidade do Algarve (CCMAR), Faro, Portugal
| | - Pedro Afonso
- Institute of Marine Research (IMAR/Okeanos), University of the Azores, Horta, Portugal
| | | | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | | | - Jonathan Bolland
- Hull International Fisheries Institute, University of Hull, Hull, UK
| | | | - Robert Lennox
- NORCE Norwegian Research Center AS, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| | | | - Aytaç Özgül
- Ege University, Faculty of Fisheries, Izmir, Turkey
| | | | - David Villegas-Ríos
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain
| |
Collapse
|
132
|
Pereira DMC, Resende AC, Schleger IC, Neundorf AKA, Romão S, Souza MRDPD, Herrerias T, Donatti L. Integrated biomarker response index as an ally in the observation of metabolic biomarkers in muscle of Astyanax lacustris exposed to thermal variation. Biochimie 2022:S0300-9084(22)00276-0. [DOI: 10.1016/j.biochi.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
|
133
|
Lucey N, Aube C, Herwig A, Collin R. Compound Extreme Events Induce Rapid Mortality in a Tropical Sea Urchin. THE BIOLOGICAL BULLETIN 2022; 243:239-254. [PMID: 36548978 DOI: 10.1086/722283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractThe frequency, magnitude, and duration of marine heatwaves and deoxygenation events are increasing globally. Recent research suggests that their co-occurrence is more common than previously thought and that their combination can have rapid, dire biological impacts. We used the sea urchin Echinometra lucunter to determine whether mortality occurs faster when deoxygenation events are combined with extreme heating (compound events), compared to deoxygenation events alone. We also tested whether prior exposure to local heatwave conditions accentuates the impacts of compound events. Animals were first exposed for five days to either ambient temperature (28 °C) or a warmer temperature that met the minimum criteria for a local heatwave (30.5 °C). Animals were then exposed to hypoxia, defined as oxygen levels 35% below their average critical oxygen limit, combined with ambient or extreme field temperatures (28 °C, 32 °C). Subsets of animals were removed from the hypoxic treatments every 3 hours for 24 hours to determine how long they could survive. Prior exposure to heatwave conditions did not help or hinder survival under hypoxic conditions, and animals exposed to hypoxia under ambient temperatures experienced little mortality. However, when hypoxia was coupled with extreme temperatures (32 °C), 55% of the animals died within 24 hours. On the reefs at our Panama study site, we found that extreme hypoxic conditions only ever occurred during marine heatwave events, with four compound events occurring in 2018. These results show that short durations (∼1 day) of compound events can be catastrophic and that increases in their duration will severely threaten sea urchin populations.
Collapse
|
134
|
Woods HA, Moran AL, Atkinson D, Audzijonyte A, Berenbrink M, Borges FO, Burnett KG, Burnett LE, Coates CJ, Collin R, Costa-Paiva EM, Duncan MI, Ern R, Laetz EMJ, Levin LA, Lindmark M, Lucey NM, McCormick LR, Pierson JJ, Rosa R, Roman MR, Sampaio E, Schulte PM, Sperling EA, Walczyńska A, Verberk WCEP. Integrative Approaches to Understanding Organismal Responses to Aquatic Deoxygenation. THE BIOLOGICAL BULLETIN 2022; 243:85-103. [PMID: 36548975 DOI: 10.1086/722899] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractOxygen bioavailability is declining in aquatic systems worldwide as a result of climate change and other anthropogenic stressors. For aquatic organisms, the consequences are poorly known but are likely to reflect both direct effects of declining oxygen bioavailability and interactions between oxygen and other stressors, including two-warming and acidification-that have received substantial attention in recent decades and that typically accompany oxygen changes. Drawing on the collected papers in this symposium volume ("An Oxygen Perspective on Climate Change"), we outline the causes and consequences of declining oxygen bioavailability. First, we discuss the scope of natural and predicted anthropogenic changes in aquatic oxygen levels. Although modern organisms are the result of long evolutionary histories during which they were exposed to natural oxygen regimes, anthropogenic change is now exposing them to more extreme conditions and novel combinations of low oxygen with other stressors. Second, we identify behavioral and physiological mechanisms that underlie the interactive effects of oxygen with other stressors, and we assess the range of potential organismal responses to oxygen limitation that occur across levels of biological organization and over multiple timescales. We argue that metabolism and energetics provide a powerful and unifying framework for understanding organism-oxygen interactions. Third, we conclude by outlining a set of approaches for maximizing the effectiveness of future work, including focusing on long-term experiments using biologically realistic variation in experimental factors and taking truly cross-disciplinary and integrative approaches to understanding and predicting future effects.
Collapse
|
135
|
Coates CJ, Belato FA, Halanych KM, Costa-Paiva EM. Structure-Function Relationships of Oxygen Transport Proteins in Marine Invertebrates Enduring Higher Temperatures and Deoxygenation. THE BIOLOGICAL BULLETIN 2022; 243:134-148. [PMID: 36548976 DOI: 10.1086/722472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractPredictions for climate change-to lesser and greater extents-reveal a common scenario in which marine waters are characterized by a deadly trio of stressors: higher temperatures, lower oxygen levels, and acidification. Ectothermic taxa that inhabit coastal waters, such as shellfish, are vulnerable to rapid and prolonged environmental disturbances, such as heatwaves, pollution-induced eutrophication, and dysoxia. Oxygen transport capacity of the hemolymph (blood equivalent) is considered the proximal driver of thermotolerance and respiration in many invertebrates. Moreover, maintaining homeostasis under environmental duress is inextricably linked to the activities of the hemolymph-based oxygen transport or binding proteins. Several protein groups fulfill this role in marine invertebrates: copper-based extracellular hemocyanins, iron-based intracellular hemoglobins and hemerythrins, and giant extracellular hemoglobins. In this brief text, we revisit the distribution and multifunctional properties of oxygen transport proteins, notably hemocyanins, in the context of climate change, and the consequent physiological reprogramming of marine invertebrates.
Collapse
|
136
|
Abstract
Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.
Collapse
|
137
|
Rodriguez-Burgos AM, Briceño-Zuluaga FJ, Ávila Jiménez JL, Hearn A, Peñaherrera-Palma C, Espinoza E, Ketchum J, Klimley P, Steiner T, Arauz R, Joan E. The impact of climate change on the distribution of Sphyrna lewini in the tropical eastern Pacific. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105696. [PMID: 35932509 DOI: 10.1016/j.marenvres.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Variability and climate change due to anthropic influence have brought about alterations to marine ecosystems, that, in turn, have affected the physiology and metabolism of ectotherm species, such as the common hammerhead shark (Sphyrna lewini). However, the impact that climate variability may have on this species' distribution, particularly in the Eastern Tropical Pacific Marine Corridor, which is considered an area with great marine biodiversity, is unknown. The purpose of this research was to evaluate the effect of derivate impact of climate change on the oceanographic distribution of the hammerhead shark (Sphyrna lewini) in the Eastern Tropical Pacific Marine Corridor, contrasting the present and future scenarios for 2050. The methodology used was an ecological niche model based on the KUENM R package software that uses the maximum entropy algorithm (MaxEnt). The modelling was made for the year 2050 under RCP2.6 and RCP8.5 scenarios. A total of 952 models were made, out of which only one met the statistical parameters established as optimal, for future scenarios. The environmental suitability for S.lewini shows that this species would migrate to the south in the Chilean Pacific, associated with a possible warming that the equatorial zone will have and the possible cooling that the subtropical zone of the South Pacific will have by 2050, the product of changes in oceanographic dynamics.
Collapse
Affiliation(s)
- Aura María Rodriguez-Burgos
- Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia; JEAI-IRD-UMNG: CHARISMA, Cajicá, Colombia.
| | - Francisco Javier Briceño-Zuluaga
- Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, Colombia; JEAI-IRD-UMNG: CHARISMA, Cajicá, Colombia.
| | | | - Alex Hearn
- Galapagos Science Center, Universidad San Francisco de Quito, Ecuador; MigraMar, Sir Francis Drake Boulevard, Olema, California, USA.
| | | | - Eduardo Espinoza
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA; Dirección del Parque Nacional Galápagos, Instituto Nacional de Biodiversidad (INABIO), Ecuador.
| | - James Ketchum
- Pelagios Kakunjá, Centro de Investigaciones Biológicas del Noroeste, Mexico.
| | - Peter Klimley
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA; University of California Davis, USA.
| | | | - Randall Arauz
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA; Fins Attached, USA.
| | - Elpis Joan
- MigraMar, Sir Francis Drake Boulevard, Olema, California, USA.
| |
Collapse
|
138
|
Peltonen H, Weigel B. Responses of coastal fishery resources to rapid environmental changes. JOURNAL OF FISH BIOLOGY 2022; 101:686-698. [PMID: 35722827 PMCID: PMC9543972 DOI: 10.1111/jfb.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/10/2022] [Indexed: 05/05/2023]
Abstract
Coastal systems experience strong impacts of ongoing environmental change, affecting fish communities and subsequently fishery yields. In the Baltic Sea, the combined effects of climate-induced changes and eutrophication-related pressures constitute major threats to its living resources. Although much work has been devoted to uncovering environmental impacts on the commercially most valuable fish stocks, only little is known about community-wide responses of fished species and how environmental change may affect their yield. In this study, the authors use a joint species distribution modelling framework to disentangle environmental impacts on species-specific fishery yields of 16 fished species along the coast of Finland over four decades. The authors show that environmental covariates substantially contributed to variations in fishery yields and are likely to have strong impacts on fished resources also in the future. Salinity and near-bottom oxygen concentration emerged as the strongest environmental drivers of yields at the community level, whereas temperature was particularly important for cod (Gadus morhua) and sprat (Sprattus sprattus) yields. The authors found shore density to be an important predictor for fisheries resources especially for freshwater fish. The results of this study suggest that the changes in environmental conditions during the past four decades had a positive effect on the yields of freshwater and warm-affinity species, whereas yields of marine cold-affinity species have been mainly negatively affected by contracting favourable habitats, becoming warmer and less saline.
Collapse
Affiliation(s)
| | - Benjamin Weigel
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
139
|
Shartau RB, Harter TS, Baker DW, Aboagye DL, Allen PJ, Val AL, Crossley DA, Kohl ZF, Hedrick MS, Damsgaard C, Brauner CJ. Acute CO 2 tolerance in fishes is associated with air breathing but not the Root effect, red cell βNHE, or habitat. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111304. [PMID: 36049728 DOI: 10.1016/j.cbpa.2022.111304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022]
Abstract
High CO2 (hypercapnia) can impose significant physiological challenges associated with acid-base regulation in fishes, impairing whole animal performance and survival. Unlike other environmental conditions such as temperature and O2, the acute CO2 tolerance thresholds of fishes are not understood. While some fish species are highly tolerant, the extent of acute CO2 tolerance and the associated physiological and ecological traits remain largely unknown. To investigate this, we used a recently developed ramping assay, termed the Carbon Dioxide maximum (CDmax), that increases CO2 exposure until loss of equilibrium (LOE) is observed. We investigated if there was a relationship between CO2 tolerance and the Root effect, β-adrenergic sodium proton exchanger (βNHE), air-breathing, and fish habitat in 17 species. We hypothesized that CO2 tolerance would be higher in fishes that lack both a Root effect and βNHE, breathe air, and reside in tropical habitats. Our results showed that CDmax ranged from 2.7 to 26.7 kPa, while LOE was never reached in four species at the maximum PCO2 we could measure (26.7 kPa); CO2 tolerance was only associated with air-breathing, but not the presence of a Root effect or a red blood cell (RBC) βNHE, or fish habitat. This study demonstrates that the diverse group of fishes investigated here are incredibly tolerant of CO2 and that although this tolerance is associated with air-breathing, further investigations are required to understand the basis for CO2 tolerance.
Collapse
Affiliation(s)
- R B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX, USA; Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - T S Harter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA.
| | - D W Baker
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC, Canada.
| | - D L Aboagye
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS, USA
| | - P J Allen
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS, USA.
| | - A L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, AM, Brazil
| | - D A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | - Z F Kohl
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - M S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | - C Damsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - C J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
140
|
Gomez Isaza DF, Rodgers EM. Exercise training does not affect heat tolerance in Chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111229. [PMID: 35500866 DOI: 10.1016/j.cbpa.2022.111229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/21/2023]
Abstract
The progression of climate warming will expose ectotherms to transient heatwave events and temperatures above their tolerance range at increased frequencies. It is therefore pivotal that we understand species' physiological limits and the capacity for various controls to plastically alter these thresholds. Exercise training could have beneficial impacts on organismal heat tolerance through improvements in cardio-respiratory capacity, but this remains unexplored. Using juvenile Chinook salmon (Oncorhynchus tshawytscha), we tested the hypothesis that exercise training improves heat tolerance through enhancements in oxygen-carrying capacity. Fish were trained once daily at 60% of their maximum sustainable swim speed, UCRIT, for 60 min. Tolerance to acute warming was assessed following three weeks of exercise training, measured as the critical thermal maximum (CTMAX). CTMAX measurements were coupled with examinations of the oxygen carrying capacity (haematocrit, haemoglobin concentration, relative ventricle size, and relative splenic mass) as critical components of the oxygen transport cascade in fish. Contrary to our hypothesis, we found that exercise training did not raise the CTMAX of juvenile Chinook salmon with a mean CTMAX increase of just 0.35 °C compared to unexercised control fish. Training also failed to improve the oxygen carrying capacity of fish. Exercise training remains a novel strategy against acute warming that requires substantial fine-tuning before it can be applied to the management of commercial and wild fishes.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia. https://twitter.com/@_danielgomez94
| | - Essie M Rodgers
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
141
|
Muir CA, Garner SR, Damjanovski S, Neff BD. Temperature-dependent plasticity mediates heart morphology and thermal performance of cardiac function in juvenile Atlantic salmon (Salmo salar). J Exp Biol 2022; 225:276049. [PMID: 35860948 DOI: 10.1242/jeb.244305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
In many fishes, upper thermal tolerance is thought to be limited in part by the heart's ability to meet increased oxygen demands during periods of high temperature. Temperature-dependent plasticity within the cardiovascular system may help fishes cope with the thermal stress imposed by increasing water temperatures. In this study, we examined plasticity in heart morphology and function in juvenile Atlantic salmon (Salmo salar) reared under control (+0°C) or elevated (+4°C) temperatures. Using noninvasive Doppler echocardiography, we measured the effect of acute warming on maximum heart rate, stroke distance, and derived cardiac output. A 4°C increase in average developmental temperature resulted in a>5°C increase in the Arrhenius breakpoint temperature for maximum heart rate and enabled the hearts of these fish to continue beating rhythmically to temperatures approximately 2°C higher than control fish. However, these differences in thermal performance were not associated with plasticity in maximum cardiovascular capacity, as peak measures of heart rate, stroke distance, and derived cardiac output did not differ between temperature treatments. Histological analysis of the heart revealed that while ventricular roundness and relative ventricle size did not differ between treatments, the proportion of compact myocardium in the ventricular wall was significantly greater in fish raised at elevated temperatures. Our findings contribute to the growing understanding of how the thermal environment can affect phenotypes later in life and identifies a morphological strategy that may help fishes cope with acute thermal stress.
Collapse
Affiliation(s)
- Carlie A Muir
- Department of Biology, Western University, London, ON, Canada
| | - Shawn R Garner
- Department of Biology, Western University, London, ON, Canada
| | | | - Bryan D Neff
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
142
|
Fu SJ, Dong YW, Killen SS. Aerobic scope in fishes with different lifestyles and across habitats: Trade-offs among hypoxia tolerance, swimming performance and digestion. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111277. [PMID: 35870773 DOI: 10.1016/j.cbpa.2022.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
Exercise and aerobic scope in fishes have attracted scientists' attention for several decades. While it has been suggested that aerobic scope may limit behavioral expression and tolerance to environmental stressors in fishes, the exact importance of aerobic scope in an ecological context remains poorly understood. In this review, we examine the ecological relevance of aerobic scope by reconsidering and reanalyzing the existing literature on Chinese freshwater fishes across a wide-range of habitats and lifestyles. The available evidence suggests that natural selection in fast-flowing aquatic habitats may favor species with a high aerobic scope and anaerobic capacity for locomotion, whereas in relatively slow-flowing habitats, hypoxia tolerance may be favored at the cost of reduced locomotor capacity. In addition, while physical activity can usually cause fishes from fast-flowing habitats to reach their aerobic metabolic ceiling (i.e., maximum metabolic rate), possibly due to selection pressure on locomotion, most species from slow-flowing habitats can only reach their metabolic ceiling during digestion, either alone or in combination with physical activity. Overall, we suggest that fish exhibit a continuum of metabolic types, from a 'visceral metabolic type' with a higher digestive performance to a 'locomotion metabolic type' which appears to have reduced capacity for digestion but enhanced locomotor performance. Generally, locomotor-type species can either satisfy the demands of their high swimming capacity with a high oxygen uptake capacity or sacrifice digestion while swimming. In contrast, most visceral-type species show a pronounced decrease in swimming performance while digesting, probably owing to conflicts within their aerobic scope. In conclusion, the ecological relevance of aerobic scope and the consequent effects on other physiological functions are closely related to habitat and the lifestyle of a given species. These results suggest that swimming performance, digestion and hypoxia tolerance might coevolve due to dependence on metabolic traits such as aerobic scope.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behavior, College of Life Sciences, Chongqing Normal University, Chongqing 400047, China.
| | - Yun-Wei Dong
- Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
143
|
Telemeco RS, Gangloff EJ, Cordero GA, Rodgers EM, Aubret F. From performance curves to performance surfaces: Interactive effects of temperature and oxygen availability on aerobic and anaerobic performance in the common wall lizard. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rory S. Telemeco
- Department of Biology California State University Fresno Fresno CA USA
| | - Eric J. Gangloff
- Department of Biological Sciences Ohio Wesleyan University Delaware OH USA
| | - G. Antonio Cordero
- Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology University of Lisbon Lisbon Portugal
| | - Essie M. Rodgers
- School of Biological Sciences, University of Canterbury Christchurch New Zealand
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du CNRS – UPR 2001 Moulis France
| |
Collapse
|
144
|
Millington RC, Rogers A, Cox P, Bozec Y, Mumby PJ. Combined direct and indirect impacts of warming on the productivity of coral reef fishes. Ecosphere 2022. [DOI: 10.1002/ecs2.4108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rebecca C. Millington
- College of Engineering, Mathematics and Physical Science University of Exeter Exeter UK
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Alice Rogers
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| | - Peter Cox
- College of Engineering, Mathematics and Physical Science University of Exeter Exeter UK
| | - Yves‐Marie Bozec
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Peter J. Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
145
|
Spinks RK, Donelson JM, Bonzi LC, Ravasi T, Munday PL. Parents exposed to warming produce offspring lower in weight and condition. Ecol Evol 2022; 12:e9044. [PMID: 35866024 PMCID: PMC9288889 DOI: 10.1002/ece3.9044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
The parental environment can alter offspring phenotypes via the transfer of non-genetic information. Parental effects may be viewed as an extension of (within-generation) phenotypic plasticity. Smaller size, poorer physical condition, and skewed sex ratios are common responses of organisms to global warming, yet whether parental effects alleviate, exacerbate, or have no impact on these responses has not been widely tested. Further, the relative non-genetic influence of mothers and fathers and ontogenetic timing of parental exposure to warming on offspring phenotypes is poorly understood. Here, we tested how maternal, paternal, and biparental exposure of a coral reef fish (Acanthochromis polyacanthus) to elevated temperature (+1.5°C) at different ontogenetic stages (development vs reproduction) influences offspring length, weight, condition, and sex. Fish were reared across two generations in present-day and projected ocean warming in a full factorial design. As expected, offspring of parents exposed to present-day control temperature that were reared in warmer water were shorter than their siblings reared in control temperature; however, within-generation plasticity allowed maintenance of weight, resulting in a higher body condition. Parental exposure to warming, irrespective of ontogenetic timing and sex, resulted in decreased weight and condition in all offspring rearing temperatures. By contrast, offspring sex ratios were not strongly influenced by their rearing temperature or that of their parents. Together, our results reveal that phenotypic plasticity may help coral reef fishes maintain performance in a warm ocean within a generation, but could exacerbate the negative effects of warming between generations, regardless of when mothers and fathers are exposed to warming. Alternatively, the multigenerational impact on offspring weight and condition may be a necessary cost to adapt metabolism to increasing temperatures. This research highlights the importance of examining phenotypic plasticity within and between generations across a range of traits to accurately predict how organisms will respond to climate change.
Collapse
Affiliation(s)
- Rachel K. Spinks
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Lucrezia C. Bonzi
- Division of Biological and Environmental Sciences and Engineering, Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Timothy Ravasi
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
146
|
Brownscombe JW, Raby GD, Murchie KJ, Danylchuk AJ, Cooke SJ. An energetics-performance framework for wild fishes. JOURNAL OF FISH BIOLOGY 2022; 101:4-12. [PMID: 35439327 DOI: 10.1111/jfb.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
There is growing evidence that bioenergetics can explain relationships between environmental conditions and fish behaviour, distribution and fitness. Fish energetic needs increase predictably with water temperature, but metabolic performance (i.e., aerobic scope) exhibits varied relationships, and there is debate about its role in shaping fish ecology. Here we present an energetics-performance framework, which posits that ecological context determines whether energy expenditure or metabolic performance influence fish behaviour and fitness. From this framework, we present testable predictions about how temperature-driven variability in energetic demands and metabolic performance interact with ecological conditions to influence fish behaviour, distribution and fitness. Specifically, factors such as prey availability and the spatial distributions of prey and predators may alter fish temperature selection relative to metabolic and energetic optima. Furthermore, metabolic flexibility is a key determinant of how fish will respond to changing conditions, such as those predicted with climate change. With few exceptions, these predictions have rarely been tested in the wild due partly to difficulties in remotely measuring aspects of fish energetics. However, with recent advances in technology and measurement techniques, we now have a better capacity to measure bioenergetics parameters in the wild. Testing these predictions will provide a more mechanistic understanding of how ecological factors affect fish fitness and population dynamics, advancing our knowledge of how species and ecosystems will respond to rapidly changing environments.
Collapse
Affiliation(s)
- Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Karen J Murchie
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
147
|
A framework to understand the role of biological time in responses to fluctuating climate drivers. Sci Rep 2022; 12:10429. [PMID: 35729311 PMCID: PMC9213464 DOI: 10.1038/s41598-022-13603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
Understanding biological responses to environmental fluctuations (e.g. heatwaves) is a critical goal in ecology. Biological responses (e.g. survival) are usually measured with respect to different time reference frames, i.e. at specific chronological times (e.g. at specific dates) or biological times (e.g. at reproduction). Measuring responses on the biological frame is central to understand how environmental fluctuation modifies fitness and population persistence. We use a framework, based on partial differential equations (PDEs) to explore how responses to the time scale and magnitude of fluctuations in environmental variables (= drivers) depend on the choice of reference frame. The PDEs and simulations enabled us to identify different components, responsible for the phenological and eco-physiological effects of each driver on the response. The PDEs also highlight the conditions when the choice of reference frame affects the sensitivity of the response to a driver and the type of join effect of two drivers (additive or interactive) on the response. Experiments highlighted the importance of studying how environmental fluctuations affect biological time keeping mechanisms, to develop mechanistic models. Our main result, that the effect of the environmental fluctuations on the response depends on the scale used to measure time, applies to both field and laboratory conditions. In addition, our approach, applied to experimental conditions, can helps us quantify how biological time mediates the response of organisms to environmental fluctuations.
Collapse
|
148
|
Bomfim FF, Melão MGG, Gebara RC, Lansac-Tôha FA. Warming alters the metabolic rates and life-history parameters of Ceriodaphnia silvestrii (Cladocera). AN ACAD BRAS CIENC 2022; 94:e20200604. [PMID: 35703690 DOI: 10.1590/0001-3765202220200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/13/2020] [Indexed: 11/22/2022] Open
Abstract
Temperature rise has effects on the metabolic process of organisms, population structure, and ecosystem functioning. Here, we tested the effects of warming on the metabolic rates and life-history parameters of the widespread cladoceran Ceriodaphnia silvestrii. Two scenarios of global warming were established, an increase of 2 °C and an increase of 4 °C; the control temperature was 22°C. Our results showed that warming altered C. silvestrii metabolic rates, by increasing the rates of assimilation and secondary production, and decreasing the rates of filtration and ingestion. Warming also increased C. silvestrii fecundity and the body size of neonates and juveniles, and decreased the embryonic and post-embryonic time of development. C. silvestrii might be an important food resource at intermediary temperature as it had higher assimilation rates, even filtering fewer algae. At the highest temperature, we observed a substantial decrease in assimilation and secondary production, which could be a sign of stress starting. The increase in temperature by global warming will affect the cladocerans' metabolic processes and the population survival, even a small increase (2°C) might induce drastic fluctuations in such processes and affect the carbon and energy availability inside aquatic food-webs.
Collapse
Affiliation(s)
- Francieli F Bomfim
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia Ictiologia e Aquicultura (Nupélia), Av. Colombo, 5790, Campus Universitário, 87020-900 Maringá, PR, Brazil
| | - Maria G G Melão
- Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Renan C Gebara
- Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Fábio A Lansac-Tôha
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia Ictiologia e Aquicultura (Nupélia), Av. Colombo, 5790, Campus Universitário, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
149
|
Theurich N, Briski E, Cuthbert RN. Predicting ecological impacts of the invasive brush-clawed shore crab under environmental change. Sci Rep 2022; 12:9988. [PMID: 35705603 PMCID: PMC9200808 DOI: 10.1038/s41598-022-14008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Globally, the number of invasive non-indigenous species is continually rising, representing a major driver of biodiversity declines and a growing socio-economic burden. Hemigrapsus takanoi, the Japanese brush-clawed shore crab, is a highly successful invader in European seas. However, the ecological consequences of this invasion have remained unexamined under environmental changes-such as climatic warming and desalination, which are projected in the Baltic Sea-impeding impact prediction and management. Recently, the comparative functional response (resource use across resource densities) has been pioneered as a reliable approach to quantify and predict the ecological impacts of invasive non-indigenous species under environmental contexts. This study investigated the functional response of H. takanoi factorially between different crab sexes and under environmental conditions predicted for the Baltic Sea in the contexts of climate warming (16 and 22 °C) and desalination (15 and 10), towards blue mussel Mytilus edulis prey provided at different densities. Hemigrapsus takanoi displayed a potentially population-destabilising Type II functional response (i.e. inversely-density dependent) towards mussel prey under all environmental conditions, characterised by high feeding rates at low prey densities that could extirpate prey populations-notwithstanding high in-field abundances of M. edulis. Males exhibited higher feeding rates than females under all environmental conditions. Higher temperatures reduced the feeding rate of male H. takanoi, but did not affect the feeding rate of females. Salinity did not have a clear effect on feeding rates for either sex. These results provide insights into interactions between biological invasions and climate change, with future warming potentially lessening the impacts of this rapidly spreading marine invader, depending on the underlying population demographics and abundances.
Collapse
Affiliation(s)
- Nora Theurich
- GEOMAR Helmholtz-Zentrum Für Ozeanforschung Kiel, Kiel, Germany.
| | | | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum Für Ozeanforschung Kiel, Kiel, Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
150
|
Verheyen J, Delnat V, Theys C. Daily temperature fluctuations can magnify the toxicity of pesticides. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100919. [PMID: 35390505 DOI: 10.1016/j.cois.2022.100919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
We review the effect of daily temperature fluctuations (DTF), a key thermal factor predicted to increase under climate change, on pesticide toxicity. The effect of DTF on pesticide toxicity may be explained by: (i) a DTF-specific mechanism (caused by Jensen's inequality) and (ii) general mechanisms underlying an increased pesticide toxicity at both higher (increased energetic costs, pesticide uptake and metabolic conversion) and lower constant temperatures (lower organismal metabolic and associated elimination rates, increased sodium channel modulated nervous system vulnerability and energetic costs). Furthermore, DTF may enhance pesticide-induced reductions in heat tolerance due to stronger effects on oxygen demand (increase) and oxygen supply (decrease). Our literature review showed considerable support that DTF increase the negative impact of pesticides on insects, especially in terms of decreased survival. Therefore, we suggest that considering DTF in ecotoxicological studies may be of great importance to better protect biodiversity in our warming world.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Vienna Delnat
- Evolutionary Stress Ecology and Ecotoxicology, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Charlotte Theys
- Evolutionary Stress Ecology and Ecotoxicology, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|