101
|
Huang YK, Cheng WC, Kuo TT, Yang JC, Wu YC, Wu HH, Lo CC, Hsieh CY, Wong SC, Lu CH, Wu WL, Liu SJ, Li YC, Lin CC, Shen CN, Hung MC, Lin JT, Yeh CC, Sher YP. Inhibition of ADAM9 promotes the selective degradation of KRAS and sensitizes pancreatic cancers to chemotherapy. NATURE CANCER 2024; 5:400-419. [PMID: 38267627 DOI: 10.1038/s43018-023-00720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here, we identify a disintegrin and metalloproteinase domain (ADAM)9 as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor 1 (PAI-1), which functions as a selective autophagy receptor in conjunction with light chain 3 (LC3), triggering lysosomal degradation of KRAS. Suppression of ADAM9 by a small-molecule inhibitor restricts disease progression in spontaneous models, and combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Ting-Ting Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Heng-Hsiung Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Chien Lo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ying Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sze-Ching Wong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Ling Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Chun-Chieh Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
102
|
Szczepanski JM, Rudolf MA, Shi J. Clinical Evaluation of the Pancreatic Cancer Microenvironment: Opportunities and Challenges. Cancers (Basel) 2024; 16:794. [PMID: 38398185 PMCID: PMC10887250 DOI: 10.3390/cancers16040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Advances in our understanding of pancreatic ductal adenocarcinoma (PDAC) and its tumor microenvironment (TME) have the potential to transform treatment for the hundreds of thousands of patients who are diagnosed each year. Whereas the clinical assessment of cancer cell genetics has grown increasingly sophisticated and personalized, current protocols to evaluate the TME have lagged, despite evidence that the TME can be heterogeneous within and between patients. Here, we outline current protocols for PDAC diagnosis and management, review novel biomarkers, and highlight potential opportunities and challenges when evaluating the PDAC TME as we prepare to translate emerging TME-directed therapies to the clinic.
Collapse
Affiliation(s)
| | | | - Jiaqi Shi
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.S.); (M.A.R.)
| |
Collapse
|
103
|
Hasselluhn MC, Decker-Farrell AR, Vlahos L, Thomas DH, Curiel-Garcia A, Maurer HC, Wasko UN, Tomassoni L, Sastra SA, Palermo CF, Dalton TC, Ma A, Li F, Tolosa EJ, Hibshoosh H, Fernandez-Zapico ME, Muir A, Califano A, Olive KP. Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression. Cancer Discov 2024; 14:348-361. [PMID: 37966260 PMCID: PMC10922937 DOI: 10.1158/2159-8290.cd-23-0240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The sparse vascularity of pancreatic ductal adenocarcinoma (PDAC) presents a mystery: What prevents this aggressive malignancy from undergoing neoangiogenesis to counteract hypoxia and better support growth? An incidental finding from prior work on paracrine communication between malignant PDAC cells and fibroblasts revealed that inhibition of the Hedgehog (HH) pathway partially relieved angiosuppression, increasing tumor vascularity through unknown mechanisms. Initial efforts to study this phenotype were hindered by difficulties replicating the complex interactions of multiple cell types in vitro. Here we identify a cascade of paracrine signals between multiple cell types that act sequentially to suppress angiogenesis in PDAC. Malignant epithelial cells promote HH signaling in fibroblasts, leading to inhibition of noncanonical WNT signaling in fibroblasts and epithelial cells, thereby limiting VEGFR2-dependent activation of endothelial hypersprouting. This cascade was elucidated using human and murine PDAC explant models, which effectively retain the complex cellular interactions of native tumor tissues. SIGNIFICANCE We present a key mechanism of tumor angiosuppression, a process that sculpts the physiologic, cellular, and metabolic environment of PDAC. We further present a computational and experimental framework for the dissection of complex signaling cascades that propagate among multiple cell types in the tissue environment. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Marie C. Hasselluhn
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Amanda R. Decker-Farrell
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Lukas Vlahos
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Alvaro Curiel-Garcia
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - H. Carlo Maurer
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Urszula N. Wasko
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Lorenzo Tomassoni
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
| | - Stephen A. Sastra
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Carmine F. Palermo
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Tanner C. Dalton
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Alice Ma
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Fangda Li
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Pathology, Columbia University Irving Medical Center, New York, NY
| | | | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- J.P. Sulzberger Columbia Genome Center, Columbia University, New York, NY
- Department of Biomedical Informatics, Columbia University, New York, NY
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY
| | - Kenneth P. Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
104
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
105
|
Francescone R, Crawford HC, Vendramini-Costa DB. Rethinking the Roles of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2024; 17:737-743. [PMID: 38316215 PMCID: PMC10966284 DOI: 10.1016/j.jcmgh.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Bearing a dismal 5-year survival rate, pancreatic ductal adenocarcinoma (PDAC) is a challenging disease that features a unique fibroinflammatory tumor microenvironment. As major components of the PDAC tumor microenvironment, cancer-associated fibroblasts are still poorly understood and their contribution to the several hallmarks of PDAC, such as resistance to therapies, immunosuppression, and high incidence of metastasis, is likely underestimated. There have been encouraging advances in the understanding of these fascinating cells, but many controversies remain, leaving the field still actively exploring the full scope of their contributions in PDAC progression. Here we pose several important considerations regarding PDAC cancer-associated fibroblast functions. We posit that transcriptomic analyses be interpreted with caution, when aiming to uncover the functional contributions of these cells. Moreover, we propose that normalizing these functions, rather than eliminating them, will provide the opportunity to enhance therapeutic response. Finally, we propose that cancer-associated fibroblasts should not be studied in isolation, but in conjunction with its extracellular matrix, because their respective functions are coordinated and concordant.
Collapse
Affiliation(s)
- Ralph Francescone
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Howard C Crawford
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Debora Barbosa Vendramini-Costa
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan.
| |
Collapse
|
106
|
Ashida R, Kawabata KI, Asami R, Kitano M. Novel treatment system using endoscopic ultrasound-guided high-intensity focused ultrasound: A proof-of-concept study. Pancreatology 2024; 24:88-92. [PMID: 38036413 DOI: 10.1016/j.pan.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
AIM High-intensity focused ultrasound (HIFU) is a novel minimally invasive local treatment of solid tumors. Endoscopic ultrasound-guided HIFU (EUS-HIFU) using mechanical effects would have potential benefits, including precise detection of target lesions and enhance drug delivery. The aim of this study is to develop EUS-HIFU device and to prove our concept in porcine model using a locally injected phase change nano droplet (PCND) as the sensitizer. METHOD A phospholipid PCND contained volatile perfluoro-carbon liquids. The prototype HIFU apparatus comprised a small (20 × 20 mm) transducer with center frequency of 2.1 MHz, attachable to a linear EUS transducer. Under general anesthetic, a single porcine received EUS-guided injection of PCND. The HIFU transducer was placed laparotomically in the stomach, and the liver was ablated through the gastric wall. RESULTS PCND was injected successfully and a distinct lesion was generated at the HIFU transducer focus only in injected areas that received HIFU exposure at 4.7 kW/cm2 at a duty cycle of 5 % (mean temporal intensity, 0.245 kW/cm2) for 30 s. The generated lesions were mechanically fractionated in macroscopic view. CONCLUSION The concept of transluminal HIFU ablation using novel EUS-HIFU system was proved in a porcine animal model. This novel treatment system has great potential for future cancer treatment although further investigation in more animals and different organs are warranted.
Collapse
Affiliation(s)
- Reiko Ashida
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | | | - Rei Asami
- Imaging Technology Center, FUJIFILM Corporation, Tokyo, Japan
| | - Masayuki Kitano
- Second Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
107
|
Li X, Kong R, Hou W, Cao J, Zhang L, Qian X, Zhao L, Ying W. Integrative proteomics and n-glycoproteomics reveal the synergistic anti-tumor effects of aspirin- and gemcitabine-based chemotherapy on pancreatic cancer cells. Cell Oncol (Dordr) 2024; 47:141-156. [PMID: 37639207 DOI: 10.1007/s13402-023-00856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE AND DESIGN Pancreatic cancer is a highly malignant tumor that is well known for its poor prognosis. Based on glycosylation, we performed integrated quantitative N-glycoproteomics to investigate the synergistic anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells and explore the potential molecular mechanisms of chemotherapy in pancreatic cancer. METHODS AND RESULTS Two pancreatic cancer cell lines (PANC-1 and BxPC-3) were treated with gemcitabine, aspirin, and a combination (gemcitabine + aspirin). We found that the addition of aspirin enhanced the inhibitory effect of gemcitabine on the activity of PANC-1 and BxPC-3 cells. Quantitative N-glycoproteome, proteome, phosphorylation, and transcriptome data were obtained from integrated multi-omics analysis to evaluate the anti-tumor effects of aspirin and gemcitabine on pancreatic cancer cells. Mfuzz analysis of intact N-glycopeptide profiles revealed two consistent trends associated with the addition of aspirin, which showed a strong relationship between N-glycosylation and the synergistic effect of aspirin. Further analysis demonstrated that the dynamic regulation of sialylation and high-mannose glycoforms on ECM-related proteins (LAMP1, LAMP2, ITGA3, etc.) was a significant factor for the ability of aspirin to promote the anti-tumor activity of gemcitabine and the drug resistance of pancreatic cancer cells. CONCLUSIONS In-depth analysis of N-glycosylation-related processes and pathways in pancreatic cancer cells can provide new insight for future studies regarding pancreatic cancer therapeutic targets and drug resistance mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
- Institute of Analysis and Testing, Beijing Center for Physical & Chemical Analysis), Beijing Academy of Science and Technology, Beijing, 100094, China
| | - Ran Kong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
| | - Wenhao Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
| | - Junxia Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, No. 100 Ping Le Yuan, Chaoyang District, Beijing, 100124, China.
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38 Life Park Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
108
|
Guo F, Tao X, Wu Y, Dong D, Zhu Y, Shang D, Xiang H. Carfilzomib relieves pancreatitis-initiated pancreatic ductal adenocarcinoma by inhibiting high-temperature requirement protein A1. Cell Death Discov 2024; 10:58. [PMID: 38287020 PMCID: PMC10825157 DOI: 10.1038/s41420-024-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis is a crucial risk factor for pancreatic ductal adenocarcinoma (PDAC), and our previous study had proved high-temperature requirement protein A1 (HTRA1) exacerbates pancreatitis insult; however, the function and mechanism of HTRA1 in pancreatitis-initiated PDAC is still unclear. In the present paper, we clarified the expression of HTRA1 in PDAC using bioinformatics and immunohistochemistry of tissue chip, and found that HTRA1 is significantly upregulated in PDAC. Moreover, the proliferation, migration, invasion and adhesion of PANC-1 and SW1990 cells were promoted by overexpression of HTRA1, but inhibited by knockdown of HTRA1. Meanwhile, we found that HTRA1 arrested PANC-1 and SW1990 cells at G2/M phase. Mechanistically, HTRA1 interacted with CDK1 protein, and CDK1 inhibitor reversed the malignant phenotype of PANC-1 and pancreatitis-initiated PDAC activated by HTRA1 overexpression. Finally, we discovered a small molecule drug that can inhibit HTRA1, carfilzomib, which has been proven to inhibit the biological functions of tumor cells in vitro and intercept the progression of pancreatitis-initiated PDAC in vivo. In conclusion, the activation of HTRA1-CDK1 pathway promotes the malignant phenotype of tumor cells by blocking the cell cycle at the G2/M phase, thereby accelerating pancreatitis-initiated PDAC. Carfilzomib is an innovative candidate drug that can inhibit pancreatitis-initiated PDAC through targeted inhibition of HTRA1.
Collapse
Affiliation(s)
- Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yu Wu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
109
|
Liu A, Gammon ST, Pisaneschi F, Boda A, Ager CR, Piwnica-Worms D, Hong DS, Curran MA. Hypoxia-activated prodrug and antiangiogenic therapies cooperatively treat pancreatic cancer but elicit immunosuppressive G-MDSC infiltration. JCI Insight 2024; 9:e169150. [PMID: 37988164 PMCID: PMC10906452 DOI: 10.1172/jci.insight.169150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
We previously showed that ablation of tumor hypoxia can sensitize tumors to immune checkpoint blockade (ICB). Here, we used a Kras+/G12D TP53+/R172H Pdx1-Cre-derived (KPC-derived) model of pancreatic adenocarcinoma to examine the tumor response and adaptive resistance mechanisms involved in response to 2 established methods of hypoxia-reducing therapy: the hypoxia-activated prodrug TH-302 and vascular endothelial growth factor receptor 2 (VEGFR-2) blockade. The combination of both modalities normalized tumor vasculature, increased DNA damage and cell death, and delayed tumor growth. In contrast with prior cancer models, the combination did not alleviate overall tissue hypoxia or sensitize these KPC tumors to ICB therapy despite qualitative improvements to the CD8+ T cell response. Bulk tumor RNA sequencing, flow cytometry, and adoptive myeloid cell transfer suggested that treated tumor cells increased their capacity to recruit granulocytic myeloid-derived suppressor cells (G-MDSCs) through CCL9 secretion. Blockade of the CCL9/CCR1 axis could limit G-MDSC migration, and depletion of Ly6G-positive cells could sensitize tumors to the combination of TH-302, anti-VEGFR-2, and ICB. Together, these data suggest that pancreatic tumors modulate G-MDSC migration as an adaptive response to vascular normalization and that these immunosuppressive myeloid cells act in a setting of persistent hypoxia to maintain adaptive immune resistance.
Collapse
Affiliation(s)
- Arthur Liu
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| | - Seth T. Gammon
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - Federica Pisaneschi
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - Akash Boda
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| | - Casey R. Ager
- Mayo Clinic, Department of Immunology, Scottsdale, Arizona, USA
| | - David Piwnica-Worms
- The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Department of Cancer Systems Imaging, Houston, Texas, USA
| | - David S. Hong
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, Texas, USA
| | - Michael A. Curran
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Immunology program, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, Texas, USA
| |
Collapse
|
110
|
Yan W, Menjivar RE, Bonilla ME, Steele NG, Kemp SB, Du W, Donahue KL, Brown K, Carpenter ES, Avritt FR, Irizarry-Negron VM, Yang S, Burns WR, Zhang Y, di Magliano MP, Bednar F. Notch Signaling Regulates Immunosuppressive Tumor-Associated Macrophage Function in Pancreatic Cancer. Cancer Immunol Res 2024; 12:91-106. [PMID: 37931247 PMCID: PMC10842043 DOI: 10.1158/2326-6066.cir-23-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/08/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAM) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, expressed high levels of Notch receptors, with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells, and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators, suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Genetic inhibition of Notch in myeloid cells led to reduced tumor size and decreased macrophage infiltration in an orthotopic PDA model. Combination of pharmacologic Notch inhibition with PD-1 blockade resulted in increased cytotoxic T-cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in patients with PDA.
Collapse
Affiliation(s)
- Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rosa E. Menjivar
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica E. Bonilla
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samantha B. Kemp
- Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katelyn L. Donahue
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor MI 48109, USA
| | - Faith R. Avritt
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Sion Yang
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - William R. Burns
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
111
|
Singh S, Singh AP, Mitra R. Cancer-Associated Fibroblasts: Major Co-Conspirators in Tumor Development. Cancers (Basel) 2024; 16:211. [PMID: 38201638 PMCID: PMC10778099 DOI: 10.3390/cancers16010211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The tumor microenvironment (TME) is a critical determinant of tumor progression, metastasis, and therapeutic outcomes [...].
Collapse
Affiliation(s)
- Shubhangi Singh
- Department of International Studies (Global Health), College of Arts and Sciences, University of South Alabama, Mobile, AL 36688, USA
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Ajay P. Singh
- Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36617, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Ranjana Mitra
- Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV 89135, USA
| |
Collapse
|
112
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
113
|
Wang J, Chen T, Ruszaj DM, Mager DE, Straubinger RM. Integrated PK/PD Modeling Relates Smoothened Inhibitor Biomarkers to The Heterogeneous Intratumor Disposition of Cetuximab in Pancreatic Cancer Tumor Models. J Pharm Sci 2024; 113:72-84. [PMID: 37844759 DOI: 10.1016/j.xphs.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Therapeutic antibodies have shown little efficacy in the treatment of pancreatic ductal adenocarcinomas (PDAC). Tumor desmoplasia, hypovascularity, and poor perfusion result in insufficient tumor cell exposure, contributing to treatment failure. Smoothened inhibitors of hedgehog signaling (sHHi) increase PDAC tumor permeability, perfusion, and drug delivery, and provide a tool to develop a quantitative, mechanistic understanding as to how the temporal dynamics of tumor priming can impact intratumor distribution of monoclonal antibodies (mAb). A linked pharmacokinetic (PK)/pharmacodynamic (PD) model was developed to integrate the plasma and tumor PK of a sHHi priming agent with its effects upon downstream stromal biomarkers Gli1, hyaluronic acid, and interstitial fluid pressure in PDAC patient-derived xenograft (PDX) tumors. In parallel, in situ tumor concentrations of cetuximab (CTX: anti-epidermal growth factor receptor; EGFR) were quantified as a marker for tumor delivery of mAb or antibody-drug conjugates. A minimal, physiologically-based pharmacokinetic (mPBPK) model was constructed to link sHHi effects upon mechanistic effectors of tumor barrier compromise with the intratumor distribution of CTX, and CTX occupancy of EGFR in tumors. Integration of the mPBPK model of mAb deposition and intratumor distribution with the PK/PD model of tumor responses to priming not only identified physiological parameters that are critical for tumor antibody distribution, but also provides insight into dosing regimens that could achieve maximal tumor disposition of therapeutic antibodies under conditions of transient PDAC tumor permeability barrier compromise that mechanistically-diverse tumor priming strategies may achieve.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ting Chen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Donna M Ruszaj
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Enhanced Pharmacodynamics, LLC, Buffalo, NY, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Department of Cell Stress Biochemistry and Biophysics, Roswell Park Comprehenhsive Cancer Center, Buffalo, NY, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehenhsive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
114
|
Obaid G, Eroy M, Zhao J, Bano S, Mino-Kenudson M, Hasan T. Immunofluorescence profiling of collagen subtypes is a predictor of treatment outcomes in pancreatic cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112811. [PMID: 38000171 PMCID: PMC10841621 DOI: 10.1016/j.jphotobiol.2023.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Desmoplasia in pancreatic ductal adenocarcinoma (PDAC) is characterized by elevated levels of tumor collagen. Desmoplasia restricts drug delivery in PDAC, contributes to treatment resistance, and is associated with poor survival outcomes. We have previously shown that photodynamic therapy (PDT)-based treatment remediates desmoplasia in orthotopic PDAC tumors by reducing second harmonic generation signals from collagen by >90% and by reducing collagen alignment by >103-fold [19]. Remediating desmoplasia correlated with improved survival outcomes in mice. To understand this phenomenon at a fundamental level, it is important to dissect the impact of therapy on collagen subtypes. In this study, we demonstrate that immunofluorescence profiling of collagen subtypes I, II, III and IV in PDAC tumors 72 h following multiple treatment regimens is predictive of long-term outcomes. Treatment regimens include nanoliposomal irinotecan chemotherapy (nal-IRI; akin to ONIVYDE™), a combination of nal-IRI chemotherapy with PDT encapsulated in a single photoactivable multi-inhibitor liposome (PMIL) and an EGFR-targeted PMIL construct (TPMIL). Results show that the relative tumor content of collagen I, II and III was inversely correlated with overall survival (P ≤ 0.0013, P ≤ 0.0001, P ≤ 0.0011, respectively), while, surprisingly, the relative tumor content of collagen IV was directly correlated with overall survival (P ≤ 0.0001). Similar relationships were observed between the relative tumor content of collagen subtypes and the residual tumor volume at day 88 following treatment. Considering that the relationship between collagen subtypes and treatment outcomes is observed across multiple treatment regimens, immunofluorescence profiling at 72 h following treatment appears to be predictive of tumor growth inhibition and survival in PDAC. Early immunofluorescence collagen subtype profiling may therefore aid in treatment personalization and may inform the dosimetry and scheduling of combination regimens for PDAC, such as chemotherapy and emerging PDT-based combinations, to maximize patient survival benefit.
Collapse
Affiliation(s)
- Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jie Zhao
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mari Mino-Kenudson
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
115
|
Feng Y, Cai L, Pook M, Liu F, Chang CH, Mouti MA, Nibhani R, Militi S, Dunford J, Philpott M, Fan Y, Fan GC, Liu Q, Qi J, Wang C, Hong W, Morgan H, Wang M, Sadayappan S, Jegga AG, Oppermann U, Wang Y, Huang W, Jiang L, Pauklin S. BRD9-SMAD2/3 Orchestrates Stemness and Tumorigenesis in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2024; 166:139-154. [PMID: 37739089 PMCID: PMC11304550 DOI: 10.1053/j.gastro.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFβ/Activin-SMAD2/3 signaling pathway. RESULTS Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Liuyang Cai
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Guangdong, China
| | - Martin Pook
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Feng Liu
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Mai Abdel Mouti
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - James Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Guo-Chang Fan
- Departments of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Qi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Wanzi Hong
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Hannah Morgan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Mingyang Wang
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Department of Computer Science, University of Cincinnati College of Engineering, Cincinnati, Ohio
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Oxford Translational Myeloma Centre, Botnar Research Centre, Oxford, United Kingdom
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Wei Huang
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio.
| | - Lei Jiang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
116
|
Hu X, Peng X, Zhang Y, Fan S, Liu X, Song Y, Ren S, Chen L, Chen Y, Wang R, Peng J, Shen X, Chen Y. Shikonin reverses cancer-associated fibroblast-induced gemcitabine resistance in pancreatic cancer cells by suppressing monocarboxylate transporter 4-mediated reverse Warburg effect. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155214. [PMID: 38134861 DOI: 10.1016/j.phymed.2023.155214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Gemcitabine is a first-line chemotherapeutic agent for pancreatic cancer (PC); however, most patients who receive adjuvant gemcitabine rapidly develop resistance and recurrence. Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor stroma that contribute to gemcitabine-resistance. There is thus an urgent need to find a novel therapeutic strategy to improve the efficacy of gemcitabine in PC cells under CAF-stimulation. PURPOSE To investigate if shikonin potentiates the therapeutic effects of gemcitabine in PC cells with CAF-induced drug resistance. METHODS PC cell-stimulated fibroblasts or primary CAFs derived from PC tissue were co-cultured with PC cells to evaluate the ability of shikonin to improve the chemotherapeutic effects of gemcitabine in vitro and in vivo. Glucose uptake assay, ATP content analysis, lactate measurement, real-time PCR, immunofluorescence staining, western blot, and plasmid transfection were used to investigate the underlying mechanism. RESULTS CAFs were innately resistant to gemcitabine, but shikonin suppressed the PC cell-induced transactivation and proliferation of CAFs, reversed CAF-induced resistance, and restored the therapeutic efficacy of gemcitabine in the co-culture system. In addition, CAFs underwent a reverse Warburg effect when co-cultured with PC cells, represented by enhanced aerobic glycolytic metabolism, while shikonin reduced aerobic glycolysis in CAFs by reducing their glucose uptake, ATP concentration, lactate production and secretion, and glycolytic protein expression. Regarding the mechanism underlying these sensitizing effects, shikonin suppressed monocarboxylate transporter 4 (MCT4) expression and cellular membrane translocation to inhibit aerobic glycolysis in CAFs. Overexpression of MCT4 accordingly reversed the inhibitory effects of shikonin on PC cell-induced transactivation and aerobic glycolysis in CAFs, and reduced its sensitizing effects. Furthermore, shikonin promoted the effects of gemcitabine in reducing the growth of tumors derived from PC cells and CAF co-inoculation in BALB/C mice, with no significant systemic toxicity. CONCLUSION These results indicate that shikonin reduced MCT4 expression and activation, resulting in inhibition of aerobic glycolysis in CAFs and overcoming CAF-induced gemcitabine resistance in PC. Shikonin is a promising chemosensitizing phytochemical agent when used in combination with gemcitabine for PC treatment. The results suggest that disrupting the metabolic coupling between cancer cells and stromal cells might provide an attractive strategy for improving gemcitabine efficacy.
Collapse
Affiliation(s)
- Xiaoxia Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Xiaoyu Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Yue Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Shuangqin Fan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Xing Liu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Yuxuan Song
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Shuang Ren
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Lin Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Yi Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Rong Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China
| | - Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China.
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China.
| | - Yan Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Union Key Laboratory of Guiyang City-Guizhou Medical University, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, 550025, Guizhou, China.
| |
Collapse
|
117
|
Akbas G, Bagcı P. The Importance of Stroma and Stromal SMA Expression in Pancreatic Ductal Adenocarcinoma. Turk Patoloji Derg 2024; 40:181-189. [PMID: 38938104 PMCID: PMC11401731 DOI: 10.5146/tjpath.2024.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Pancreatic stellate cells (PSC) have been defined to be the key players in pancreatic fibrogenesis and carcinogenesis. They undergo myofibroblast-like differentiation, express α-smooth muscle actin (α-SMA), and play a crucial role in injury and inflammation sites. This study aims to evaluate the relationship between α-SMA expression and histopathological parameters of pancreatic ductal adenocarcinoma (PDAC), and investigate their association with prognosis. MATERIAL AND METHODS Eighty-one consecutive pancreatectomies diagnosed as usual pancreatic ductal adenocarcinoma were included. The stromal density was scored as loose, moderate, or dense, and α-SMA expression was evaluated immunohistochemically. RESULTS AND CONCLUSION Mean survival was 19.6 months. Male gender, larger tumor diameter ( > 3.7 cm), and older age ( > 64 years) were identified as independent poor prognostic factors. Perineural invasion significantly effected survival. A statistically significant correlation was found between high α-SMA expression and the presence of angioinvasion (p=0.01). Stromal α-SMA expression in PDAC may help determine the risk of angioinvasion.
Collapse
Affiliation(s)
- Gamze Akbas
- Department of Pathology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Pelin Bagcı
- Department of Pathology, Marmara University, School of Medicine, Istanbul, Turkey
| |
Collapse
|
118
|
Kulshrestha S, Goel A. Protein therapeutics as an emerging strategy to deal with skin cancer: A short review. Exp Dermatol 2024; 33:e14981. [PMID: 37983960 DOI: 10.1111/exd.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Cancer has turned into a global menace with an exponential increase in the rate of death every year. Amongst all forms of cancers, skin cancer is the one becoming more common day by day because of the increased exposure to ultraviolet rays, chemicals, pollutants, etc. Skin cancer is of three types namely basal cell, squamous cell and melanoma which is one of the most aggressive forms of cancer with a low survival rate and easy relapse. Melanoma is also notorious for being multi-drug resistant which accounts for its low survival rates in it. Many kinds of therapeutics are been practiced in the contemporary world, but among them, protein therapeutics is been emerging as a promising field with multiple molecular pathway targets that have revolutionized the science of oncology. Proteins acts as small-molecule targets for cancer cells by binding to the cell surface receptors. Proteins including bromodomain and extra-terminal domain (BET) and some toxin proteins are been tried on for dealing with melanoma targeting the major pathways including MAPK, NF-κB and PI3K/AKT. The protein therapeutics also targets the tumour microenvironment including myofibrils, lymphatic vessels etc., thus inducing tumour cell death. In the review, several kinds of proteins and their function toward cell death will be highlighted in the context of skin cancer. In addition to this, the review will look into the inhibition of the function of other inflammatory pathways by inflammasomes and cytokines, both of which have a role in preventing cancer.
Collapse
Affiliation(s)
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
119
|
Yang W, Chen Z, Qu L, Zhang C, Chen H, Zheng J, Chen W, Tan X, Shi C. IR-780 Dye-based Targeting of Cancer-associated Fibroblasts Improves Cancer Immunotherapy by Increasing Intra-tumoral T Lymphocytes Infiltration. Curr Cancer Drug Targets 2024; 24:642-653. [PMID: 38310462 DOI: 10.2174/0115680096261142231018104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Immune-checkpoint inhibitors (ICIs) against programmed death (PD)-1/PD-L1 pathway immunotherapy have been demonstrated to be effective in only a subset of patients with cancer, while the rest may exhibit low response or may develop drug resistance after initially responding. Previous studies have indicated that extensive collagen-rich stroma secreted by cancer-associated fibroblasts (CAFs) within the tumor microenvironment is one of the key obstructions of the immunotherapy for some tumors by decreasing the infiltrating cytotoxic T cells. However, there is still a lack of effective therapeutic strategies to control the extracellular matrix by targeting CAFs. METHODS The enhanced uptake of IR-780 by CAFs was assessed by using in vivo or ex vivo nearinfrared fluorescence imaging, confocal NIR fluorescent imaging, and CAFs isolation testing. The fibrotic phenotype down-regulation effects and in vitro CAFs killing effect of IR-780 were tested by qPCR, western blot, and flow cytometry. The in vivo therapeutic enhancement of anti-PD-L1 by IR-780 was evaluated on EMT6 and MC38 subcutaneous xenograft mice models. RESULTS IR-780 has been demonstrated to be preferentially taken up by CAFs and accumulate in the mitochondria. Further results identified low-dose IR-780 to downregulate the fibrotic phenotype, while high-dose IR-780 could directly kill both CAFs and EMT6 cells in vitro. Moreover, IR-780 significantly inhibited extracellular matrix (ECM) protein deposition in the peri-tumoral stroma on subcutaneous EMT6 and MC38 xenografts, which increased the proportion of tumor-infiltrating lymphocytes (TILs) in the deep tumor and further promoted anti-PD-L1 therapeutic efficacy. CONCLUSION This work provides a unique strategy for the inhibition of ECM protein deposition in the tumor microenvironment by targeted regulating of CAFs, which destroys the T cell barrier and further promotes tumor response to PD-L1 monoclonal antibody. IR-780 has been proposed as a potential therapeutic small-molecule adjuvant to promote the effect of immunotherapy.
Collapse
Affiliation(s)
- Wei Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Langfan Qu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, Chongqing, 401121, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wanchao Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chunmeng Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
120
|
Mo G, Lu X, Wu S, Zhu W. Strategies and rules for tuning TCR-derived therapy. Expert Rev Mol Med 2023; 26:e4. [PMID: 38095091 PMCID: PMC11062142 DOI: 10.1017/erm.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 12/05/2023] [Indexed: 04/04/2024]
Abstract
Manipulation of T cells has revolutionized cancer immunotherapy. Notably, the use of T cells carrying engineered T cell receptors (TCR-T) offers a favourable therapeutic pathway, particularly in the treatment of solid tumours. However, major challenges such as limited clinical response efficacy, off-target effects and tumour immunosuppressive microenvironment have hindered the clinical translation of this approach. In this review, we mainly want to guide TCR-T investigators on several major issues they face in the treatment of solid tumours after obtaining specific TCR sequences: (1) whether we have to undergo affinity maturation or not, and what parameter we should use as a criterion for being more effective. (2) What modifications can be added to counteract the tumour inhibitory microenvironment to make our specific T cells to be more effective and what is the safety profile of such modifications? (3) What are the new forms and possibilities for TCR-T cell therapy in the future?
Collapse
Affiliation(s)
- Guoheng Mo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
121
|
Liang G, Oh TG, Hah N, Tiriac H, Shi Y, Truitt ML, Antal CE, Atkins AR, Li Y, Fraser C, Ng S, Pinto AFM, Nelson DC, Estepa G, Bashi S, Banayo E, Dai Y, Liddle C, Yu RT, Hunter T, Engle DD, Han H, Von Hoff DD, Downes M, Evans RM. Inhibiting stromal Class I HDACs curbs pancreatic cancer progression. Nat Commun 2023; 14:7791. [PMID: 38057326 PMCID: PMC10700526 DOI: 10.1038/s41467-023-42178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.
Collapse
Affiliation(s)
- Gaoyang Liang
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Oncology Science, OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Nasun Hah
- Next Generation Sequencing Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Hervé Tiriac
- Department of Surgery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Bristol Myer Squibb, 10300 Campus Point Drive, Suite 100, San Diego, CA, 92121, USA
| | - Morgan L Truitt
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Corina E Antal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yuwenbin Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Cory Fraser
- HonorHealth Scottsdale Osborn Medical Center and Shea Medical Center, Scottsdale, AZ, 85260, USA
| | - Serina Ng
- Molecular Medicine Division, The Translational Genomic Research Institute, Phoenix, AZ, 85004, USA
| | - Antonio F M Pinto
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dylan C Nelson
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Senada Bashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Yang Dai
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Dannielle D Engle
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haiyong Han
- Molecular Medicine Division, The Translational Genomic Research Institute, Phoenix, AZ, 85004, USA
| | - Daniel D Von Hoff
- HonorHealth Scottsdale Osborn Medical Center and Shea Medical Center, Scottsdale, AZ, 85260, USA
- Molecular Medicine Division, The Translational Genomic Research Institute, Phoenix, AZ, 85004, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
122
|
Wasko UN, Jiang J, Curiel-Garcia A, Wang Y, Lee B, Orlen M, Drizyte-Miller K, Menard M, Dilly J, Sastra SA, Palermo CF, Dalton T, Hasselluhn MC, Decker-Farrell AR, Chang S, Jiang L, Wei X, Yang YC, Helland C, Courtney H, Gindin Y, Zhao R, Kemp SB, Clendenin C, Sor R, Vostrejs W, Amparo AA, Hibshman PS, Rees MG, Ronan MM, Roth JA, Bakir B, Badgley MA, Chabot JA, Kluger MD, Manji GA, Quintana E, Wang Z, Smith JAM, Holderfield M, Wildes D, Aguirre AJ, Der CJ, Vonderheide RH, Stanger BZ, Singh M, Olive KP. Tumor-selective effects of active RAS inhibition in pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569791. [PMID: 38105998 PMCID: PMC10723304 DOI: 10.1101/2023.12.03.569791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.
Collapse
Affiliation(s)
- Urszula N. Wasko
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | - Alvaro Curiel-Garcia
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | - Bianca Lee
- Revolution Medicines, Inc., Redwood City, CA
| | - Margo Orlen
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Stephen A. Sastra
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Carmine F. Palermo
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Tanner Dalton
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Marie C. Hasselluhn
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Amanda R. Decker-Farrell
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | | | - Xing Wei
- Revolution Medicines, Inc., Redwood City, CA
| | - Yu C. Yang
- Revolution Medicines, Inc., Redwood City, CA
| | | | | | | | | | - Samantha B. Kemp
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
| | - Cynthia Clendenin
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
| | - Rina Sor
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
| | - Will Vostrejs
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
| | - Amber A. Amparo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Priya S. Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Basil Bakir
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Michael A. Badgley
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - John A. Chabot
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Michael D. Kluger
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Gulam A. Manji
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | | | | | | | | | | | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- The Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert H. Vonderheide
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
- Parker Institute for Cancer Immunotherapy
| | - Ben Z. Stanger
- University of Pennsylvania Perelman School of Medicine, Department of Medicine
- University of Pennsylvania Perelman School of Medicine, Abramson Cancer Center
| | | | - Kenneth P. Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
123
|
Grierson PM, Suresh R, Tan B, Pedersen KS, Amin M, Park H, Trikalinos NA, Liu J, Boice N, Brown A, Bansod S, Wang-Gillam A, Lim KH. A Pilot Study of Paricalcitol plus Nanoliposomal Irinotecan and 5-FU/LV in Advanced Pancreatic Cancer Patients after Progression on Gemcitabine-Based Therapy. Clin Cancer Res 2023; 29:4733-4739. [PMID: 37801295 PMCID: PMC11123290 DOI: 10.1158/1078-0432.ccr-23-1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Vitamin D analogues remodel the desmoplastic stroma, and improve vascularity and efficacy of chemotherapy in preclinical pancreas cancer models. PATIENTS AND METHODS We conducted a pilot study to evaluate the safety and preliminary efficacy of the vitamin D analogue paricalcitol in combination with nanoliposomal irinotecan (Nal-iri) plus 5-fluorouracil/leucovorin (5-FU/LV) in patients with advanced pancreatic cancer who had progressed on gemcitabine-based therapy. Two dose levels (DL) of paricalcitol were tested: fixed dose weekly (75 mcg, DL1) and weight-based weekly (7 mcg/kg, /DL2). The primary endpoint was safety, and secondary endpoints included overall response rate, progression-free survival (PFS), and overall survival (OS). Correlative objectives aimed to identify molecular predictors of response and alterations in the tumor stroma. RESULTS Twenty patients (10 each in DL1 and DL2) enrolled between March 2019 and May 2021. No grade 3/4 adverse events related to paricalcitol were observed. The most common toxicities were nausea, diarrhea and fatigue, which were similar in both cohorts. Three patients discontinued study after one cycle and were not radiographically evaluable. Of the remaining 17 evaluable patients, 2 had partial response and 12 had stable disease. The median PFS for response-evaluable patients in DL1 was 4.14 months, for DL2 was 4.83 months. Intent-to-treat median OS was 6.15 and 6.66 months for DL1 and DL2, respectively. Correlative studies showed increased tumor vascularity in posttreatment samples in patients receiving the higher dose of paricalcitol (DL2). CONCLUSIONS Paricalcitol at 7 mcg/kg/week in combination with Nal-iri/ 5-FU/LV is safely tolerated, may increase tumor vascularity and warrants further investigation.
Collapse
Affiliation(s)
- Patrick M. Grierson
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Rama Suresh
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Benjamin Tan
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Katrina S. Pedersen
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Manik Amin
- Section of Hematology/Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, NH
| | - Haeseong Park
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Nikolaos A Trikalinos
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Jingxia Liu
- Division of Public Health Sciences, Department of Surgery Washington University, St. Louis, MO
| | - Nicholas Boice
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Amberly Brown
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Sapana Bansod
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Andrea Wang-Gillam
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Medical Oncology, Department of Internal Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
124
|
S K P. Cancer reduction in mice with Prakasine nanomedicine immunotherapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:572-589. [PMID: 37882207 DOI: 10.1080/21691401.2023.2270023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
In this study, non-toxic mercury nanoparticle Prakasine (PRK-NP) was synthesized as per 'Prakash theory of metal drugs' and nanoparticle's non toxicity has been demonstrated by employing in vitro MTT (dose = 320ug/ml), SBR (dose = 80ug/ml) and apoptosis assays (dose = 320ug/ml), and in vivo acute and chronic toxicity studies in mice (n = 12, dose = 900 mg/kg body weight oral), rat (n = 14, dose = 500 mg/kg body weight oral for 18 months), rabbit (n = 14, dose = 500 mg/kg body weight oral for 18 months) and dogs (n = 14, dose = 500 mg/kg body weight oral for 18 months). The MTT, SBR and apoptosis assays established no cytotoxicity, no genotoxicity and no cytolytic anticancer effects. The mice, rat, rabbit and dog studies also indicated nontoxicity. The PRK-NPs significantly reduced the breast cancer tumour in murine mammary tumour - C3H/HeJ model 35% and 43.7% in mice at doses of 200 mg/kg and 500 mg/kg respectively. Also, in xenograft mammary tumour mice model the tumour regressions are 25.7% and 83% in the doses of 500 mg/kg and 1000 mg/kg respectively, compared to standard positive control drugs without any adverse effects and toxicity. Thus, the current study beholds anticipation PRK-NPs may play a vital role in therapeutic.
Collapse
Affiliation(s)
- Prakash S K
- Naval AIDS Research Centre, Namakkal, Tamil Nadu, India
| |
Collapse
|
125
|
Gamradt P, Thierry K, Masmoudi M, Wu Z, Hernandez-Vargas H, Bachy S, Antonio T, Savas B, Hussain Z, Tomasini R, Milani P, Bertolino P, Hennino A. Stiffness-induced cancer-associated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner. PNAS NEXUS 2023; 2:pgad405. [PMID: 38111825 PMCID: PMC10727001 DOI: 10.1093/pnasnexus/pgad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a vast stromal reaction that arises mainly from cancer-associated fibroblasts (CAFs) and promotes both immune escape and tumor growth. Here, we used a mouse model with deletion of the activin A receptor ALK4 in the context of the KrasG12D mutation, which strongly drives collagen deposition that leads to tissue stiffness. By ligand-receptor analysis of single-cell RNA-sequencing data, we identified that, in stiff conditions, neoplastic ductal cells instructed CAFs through sustained platelet-derived growth factor (PDGF) signaling. Tumor-associated tissue rigidity resulted in the emergence of stiffness-induced CAFs (siCAFs) in vitro and in vivo. Similar results were confirmed in human data. siCAFs were able to strongly inhibit CD8+ T-cell responses in vitro and in vivo, promoting local immunosuppression. More importantly, targeting PDGF signaling led to diminished siCAF and reduced tumor growth. Our data show for the first time that early paracrine signaling leads to profound changes in tissue mechanics, impacting immune responses and tumor progression. Our study highlights that PDGF ligand neutralization can normalize the tissue architecture independent of the genetic background, indicating that finely tuned stromal therapy may open new therapeutic avenues in pancreatic cancer.
Collapse
Affiliation(s)
- Pia Gamradt
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Kevin Thierry
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Melissa Masmoudi
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Zhichong Wu
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hector Hernandez-Vargas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Sophie Bachy
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Tiffanie Antonio
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Berkan Savas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | | | | | | | - Philippe Bertolino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Ana Hennino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| |
Collapse
|
126
|
Fernandez JL, Årbogen S, Sadeghinia MJ, Haram M, Snipstad S, Torp SH, Einen C, Mühlenpfordt M, Maardalen M, Vikedal K, Davies CDL. A Comparative Analysis of Orthotopic and Subcutaneous Pancreatic Tumour Models: Tumour Microenvironment and Drug Delivery. Cancers (Basel) 2023; 15:5415. [PMID: 38001675 PMCID: PMC10670202 DOI: 10.3390/cancers15225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a challenging malignancy, mainly due to its resistance to chemotherapy and its complex tumour microenvironment characterised by stromal desmoplasia. There is a need for new strategies to improve the delivery of drugs and therapeutic response. Relevant preclinical tumour models are needed to test potential treatments. This paper compared orthotopic and subcutaneous PDAC tumour models and their suitability for drug delivery studies. A novel aspect was the broad range of tumour properties that were studied, including tumour growth, histopathology, functional vasculature, perfusion, immune cell infiltration, biomechanical characteristics, and especially the extensive analysis of the structure and the orientation of the collagen fibres in the two tumour models. The study unveiled new insights into how these factors impact the uptake of a fluorescent model drug, the macromolecule called 800CW. While the orthotopic model offered a more clinically relevant microenvironment, the subcutaneous model offered advantages for drug delivery studies, primarily due to its reproducibility, and it was characterised by a more efficient drug uptake facilitated by its collagen organisation and well-perfused vasculature. The tumour uptake seemed to be influenced mainly by the structural organisation and the alignment of the collagen fibres and perfusion. Recognising the diverse characteristics of these models and their multifaceted impacts on drug delivery is crucial for designing clinically relevant experiments and improving our understanding of pancreatic cancer biology.
Collapse
Affiliation(s)
- Jessica Lage Fernandez
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| | - Sara Årbogen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| | - Mohammad Javad Sadeghinia
- Department of Structural Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Margrete Haram
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.H.); (S.H.T.)
- Cancer Clinic, St. Olavs Hospital, 7006 Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- Cancer Clinic, St. Olavs Hospital, 7006 Trondheim, Norway
| | - Sverre Helge Torp
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (M.H.); (S.H.T.)
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Caroline Einen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| | - Melina Mühlenpfordt
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- EXACT Therapeutics, 0581 Oslo, Norway
| | - Matilde Maardalen
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- Department of Engineering Science, University of Oxford, Oxford OX1 3NP, UK
| | - Krister Vikedal
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Catharina de Lange Davies
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (S.Å.); (S.S.); (M.M.); (K.V.); (C.d.L.D.)
| |
Collapse
|
127
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
128
|
Singh A, Bush N, Bhullar FA, Faghih M, Moreau C, Mittal R, Seo JH, Talukdar R, Lakhtakia S, Singh VK, Akshintala VS. Pancreatic duct pressure: A review of technical aspects and clinical significance. Pancreatology 2023; 23:858-867. [PMID: 37798192 DOI: 10.1016/j.pan.2023.09.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/12/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Pancreatic duct pressure (PDP) dynamics comprise an intricately modulated system that helps maintain homeostasis of pancreatic function. It is affected by various factors, including the rate of pancreatic fluid secretion, patency of the ductal system, sphincter of Oddi function, and pancreatic fluid characteristics. Disease states such as acute and chronic pancreatitis can alter the normal PDP dynamics. Ductal hypertension or increased PDP is suspected to be involved in the pathogenesis of pancreatic pain, endocrine and exocrine pancreatic insufficiency, and recurrent pancreatitis. This review provides a comprehensive appraisal of the available literature on PDP, including the methods used in the measurement and clinical implications of elevated PDP.
Collapse
Affiliation(s)
- Anmol Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Nikhil Bush
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Furqan A Bhullar
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Mahya Faghih
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Chris Moreau
- Division of Gastroenterology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jung-Hee Seo
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Rupjyoti Talukdar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Sundeep Lakhtakia
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Vikesh K Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| |
Collapse
|
129
|
Caronni N, La Terza F, Vittoria FM, Barbiera G, Mezzanzanica L, Cuzzola V, Barresi S, Pellegatta M, Canevazzi P, Dunsmore G, Leonardi C, Montaldo E, Lusito E, Dugnani E, Citro A, Ng MSF, Schiavo Lena M, Drago D, Andolfo A, Brugiapaglia S, Scagliotti A, Mortellaro A, Corbo V, Liu Z, Mondino A, Dellabona P, Piemonti L, Taveggia C, Doglioni C, Cappello P, Novelli F, Iannacone M, Ng LG, Ginhoux F, Crippa S, Falconi M, Bonini C, Naldini L, Genua M, Ostuni R. IL-1β + macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 2023; 623:415-422. [PMID: 37914939 DOI: 10.1038/s41586-023-06685-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1β (IL-1β)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1β+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1β activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1β axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Federica La Terza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco M Vittoria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Barbiera
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mezzanzanica
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vincenzo Cuzzola
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simona Barresi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Garett Dunsmore
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Carlo Leonardi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Lusito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erica Dugnani
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
| | | | - Denise Drago
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annapaola Andolfo
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anna Mondino
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudio Doglioni
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Iannacone
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Singapore Immunology Network (SIgN), A*STAR, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Stefano Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Vita-Salute San Raffaele University, Milan, Italy
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
130
|
Di Carlo SE, Raffenne J, Varet H, Ode A, Granados DC, Stein M, Legendre R, Tuckermann J, Bousquet C, Peduto L. Depletion of slow-cycling PDGFRα +ADAM12 + mesenchymal cells promotes antitumor immunity by restricting macrophage efferocytosis. Nat Immunol 2023; 24:1867-1878. [PMID: 37798557 PMCID: PMC10602852 DOI: 10.1038/s41590-023-01642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
The capacity to survive and thrive in conditions of limited resources and high inflammation is a major driver of tumor malignancy. Here we identified slow-cycling ADAM12+PDGFRα+ mesenchymal stromal cells (MSCs) induced at the tumor margins in mouse models of melanoma, pancreatic cancer and prostate cancer. Using inducible lineage tracing and transcriptomics, we demonstrated that metabolically altered ADAM12+ MSCs induced pathological angiogenesis and immunosuppression by promoting macrophage efferocytosis and polarization through overexpression of genes such as Gas6, Lgals3 and Csf1. Genetic depletion of ADAM12+ cells restored a functional tumor vasculature, reduced hypoxia and acidosis and normalized CAFs, inducing infiltration of effector T cells and growth inhibition of melanomas and pancreatic neuroendocrine cancer, in a process dependent on TGF-β. In human cancer, ADAM12 stratifies patients with high levels of hypoxia and innate resistance mechanisms, as well as factors associated with a poor prognosis and drug resistance such as AXL. Altogether, our data show that depletion of tumor-induced slow-cycling PDGFRα+ MSCs through ADAM12 restores antitumor immunity.
Collapse
Affiliation(s)
- Selene E Di Carlo
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Jerome Raffenne
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Hugo Varet
- Transcriptome and Epigenome Platform-Biomics Pole, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anais Ode
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - David Cabrerizo Granados
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
- Laboratory for Disease Mechanisms in Cancer, KU Leuven, Leuven, Belgium
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Rachel Legendre
- Transcriptome and Epigenome Platform-Biomics Pole, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Corinne Bousquet
- INSERM U1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Lucie Peduto
- Stroma, Inflammation & Tissue Repair Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France.
| |
Collapse
|
131
|
Cohn DE, Forder A, Marshall EA, Vucic EA, Stewart GL, Noureddine K, Lockwood WW, MacAulay CE, Guillaud M, Lam WL. Delineating spatial cell-cell interactions in the solid tumour microenvironment through the lens of highly multiplexed imaging. Front Immunol 2023; 14:1275890. [PMID: 37936700 PMCID: PMC10627006 DOI: 10.3389/fimmu.2023.1275890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
The growth and metastasis of solid tumours is known to be facilitated by the tumour microenvironment (TME), which is composed of a highly diverse collection of cell types that interact and communicate with one another extensively. Many of these interactions involve the immune cell population within the TME, referred to as the tumour immune microenvironment (TIME). These non-cell autonomous interactions exert substantial influence over cell behaviour and contribute to the reprogramming of immune and stromal cells into numerous pro-tumourigenic phenotypes. The study of some of these interactions, such as the PD-1/PD-L1 axis that induces CD8+ T cell exhaustion, has led to the development of breakthrough therapeutic advances. Yet many common analyses of the TME either do not retain the spatial data necessary to assess cell-cell interactions, or interrogate few (<10) markers, limiting the capacity for cell phenotyping. Recently developed digital pathology technologies, together with sophisticated bioimage analysis programs, now enable the high-resolution, highly-multiplexed analysis of diverse immune and stromal cell markers within the TME of clinical specimens. In this article, we review the tumour-promoting non-cell autonomous interactions in the TME and their impact on tumour behaviour. We additionally survey commonly used image analysis programs and highly-multiplexed spatial imaging technologies, and we discuss their relative advantages and limitations. The spatial organization of the TME varies enormously between patients, and so leveraging these technologies in future studies to further characterize how non-cell autonomous interactions impact tumour behaviour may inform the personalization of cancer treatment..
Collapse
Affiliation(s)
- David E. Cohn
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Aisling Forder
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Erin A. Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Emily A. Vucic
- Department of Biochemistry and Molecular Pharmacology, New York University (NYU) Langone Medical Center, New York, NY, United States
| | - Greg L. Stewart
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kouther Noureddine
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Calum E. MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Martial Guillaud
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
132
|
Hu L, Gao M, Jiang H, Zhuang L, Jiang Y, Xie S, Zhang H, Wang Q, Chen Q. Triptolide inhibits epithelial ovarian tumor growth by blocking the hedgehog/Gli pathway. Aging (Albany NY) 2023; 15:11131-11151. [PMID: 37851362 PMCID: PMC10637820 DOI: 10.18632/aging.205110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
Epithelial ovarian cancer (EOC), the most predominant subtype of ovarian cancer (OC), involves poor prognosis and exhibits high aggression. Triptolide (TPL), like other Chinese herbs, has historically played a significant role in modern medicine. The screening system based on Gli-dependent luciferase reporter activity assessed the effects of over 800 natural medicinal materials on hedgehog (Hh) signaling pathway activity and discovered that TPL had an excellent inhibitory effect on Hh signaling pathway activity. However, the significance and mechanism of TPL involvement in regulating the Hh pathway have not been well explored. Thus, this work aimed to understand better how TPL affects the Hh pathway activity, which, in turn, influences the biological behavior of EOC. Our findings observed that Smo agonist SAG-induced EOC cell proliferation, migration, and invasion were drastically reversed by TPL in a concentration-dependent pattern. Further evidence suggested that TPL promotes the degradation of Gli1 and Gli2 to inhibit the activity of the Hh signaling pathway by relying on Gli1 and Gli2 ubiquitination. Our in vivo studies also confirmed that TPL could significantly inhibit the tumor growth of EOC. Taken together, our results revealed that one of the antitumor mechanisms of TPL was the targeted inhibition of the Hh/Gli pathway.
Collapse
Affiliation(s)
- Lanyan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Mai Gao
- Huankui Academy of Nanchang University, Nanchang 330036, Jiangxi, P.R. China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Ying Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Siqi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
133
|
Chattopadhyay S, Liao YP, Wang X, Nel AE. Use of Stromal Intervention and Exogenous Neoantigen Vaccination to Boost Pancreatic Cancer Chemo-Immunotherapy by Nanocarriers. Bioengineering (Basel) 2023; 10:1205. [PMID: 37892935 PMCID: PMC10604647 DOI: 10.3390/bioengineering10101205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the formidable treatment challenges of pancreatic ductal adenocarcinoma (PDAC), considerable progress has been made in improving drug delivery via pioneering nanocarriers. These innovations are geared towards overcoming the obstacles presented by dysplastic stroma and fostering anti-PDAC immune reactions. We are currently conducting research aimed at enhancing chemotherapy to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD). This is accomplished using lipid bilayer-coated nanocarriers, which enable the attainment of synergistic results. Noteworthy examples include liposomes and lipid-coated mesoporous silica nanoparticles known as "silicasomes". These nanocarriers facilitate remote chemotherapy loading, as well as the seamless integration of immunomodulators into the lipid bilayer. In this communication, we elucidate innovative ways for further improving chemo-immunotherapy. The first is the development of a liposome platform engineered by the remote loading of irinotecan while incorporating a pro-resolving lipoxin in the lipid bilayer. This carrier interfered in stromal collagen deposition, as well as boosting the irinotecan-induced ICD response. The second approach was to synthesize polymer nanoparticles for the delivery of mutated KRAS peptides in conjunction with a TLR7/8 agonist. The dual delivery vaccine particle boosted the generation of antigen-specific cytotoxic T-cells that are recruited to lymphoid structures at the cancer site, with a view to strengthening the endogenous vaccination response achieved by chemo-immunotherapy.
Collapse
Affiliation(s)
- Saborni Chattopadhyay
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - André E. Nel
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
134
|
Qin H, Chen J, Bouchekioua-Bouzaghou K, Meng YM, Griera JB, Jiang X, Kong X, Wang M, Xu Q, Wong PP. Immunization with a multi-antigen targeted DNA vaccine eliminates chemoresistant pancreatic cancer by disrupting tumor-stromal cell crosstalk. J Transl Med 2023; 21:702. [PMID: 37814317 PMCID: PMC10561406 DOI: 10.1186/s12967-023-04519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is characterised by limited responses to chemoimmunotherapy attributed to highly desmoplastic tumor microenvironment. Disrupting the tumor-stromal cell crosstalk is considered as an improved PDAC treatment strategy, whereas little progress has been made due to poor understanding of its underlying mechanism. Here, we examined the cellular role of melanoma associated antigen A isoforms (MAGEA) in regulating tumor-stromal crosstalk mediated chemoresistance. METHODS We used clinical samples to explore the correlation between MAGEA expression and patient prognosis in multiple cancers. We utilized cancer cell lines, patient derived organoids and orthotopic PDAC model to examine the function of MAGEA in chemoresistance. We performed biochemical, proteome profiler array and transcriptional analysis to uncover a mechanism that governs tumor-stromal crosstalk. We developed a multi-MAGEA antigen targeted DNA vaccine and tested its effect on PDAC tumor growth. RESULTS We establish MAGEA as a regulator of the tumor-stromal crosstalk in PDAC. We provide strong clinical evidence indicating that high MAGEA expression, including MAGEA2, MAGEA3 and MAGEA10, correlates with worse chemotherapeutic response and poor prognosis in multiple cancers, while their expression is up-regulated in chemoresistant PDAC patient derived organoids and cancer cell lines. Mechanistically, MAGEA2 prohibits gemcitabine-induced JNK-c-Jun-p53 mediated cancer cell apoptosis, while gemcitabine stimulated pancreatic stellate cells secretes GDF15 to further enhance the gemcitabine resistance of MAGEA2 expressing cells by activating GFRAL-RET mediated Akt and ERK1/2 dependent survival pathway. Strikingly, immunization with a DNA vaccine that targeting multiple MAGEA antigens, including MAGEA2, MAGEA3 and MAGEA10, elicits robust immune responses against the growth of gemcitabine resistant tumors. CONCLUSIONS These findings suggest that targeting MAGEA-mediated paracrine regulation of chemoresistance by immunotherapy can be an improved pancreatic cancer treatment strategy.
Collapse
Affiliation(s)
- Hongquan Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiali Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Katia Bouchekioua-Bouzaghou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ya-Ming Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Reserach Center for Obstetrics and Gynecology; Guangdong-HongKong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jordi Bach Griera
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
135
|
Ding YD, Shu LZ, He RS, Chen KY, Deng YJ, Zhou ZB, Xiong Y, Deng H. Listeria monocytogenes: a promising vector for tumor immunotherapy. Front Immunol 2023; 14:1278011. [PMID: 37868979 PMCID: PMC10587691 DOI: 10.3389/fimmu.2023.1278011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer receives enduring international attention due to its extremely high morbidity and mortality. Immunotherapy, which is generally expected to overcome the limits of traditional treatments, serves as a promising direction for patients with recurrent or metastatic malignancies. Bacteria-based vectors such as Listeria monocytogenes take advantage of their unique characteristics, including preferential infection of host antigen presenting cells, intracellular growth within immune cells, and intercellular dissemination, to further improve the efficacy and minimize off-target effects of tailed immune treatments. Listeria monocytogenes can reshape the tumor microenvironment to bolster the anti-tumor effects both through the enhancement of T cells activity and a decrease in the frequency and population of immunosuppressive cells. Modified Listeria monocytogenes has been employed as a tool to elicit immune responses against different tumor cells. Currently, Listeria monocytogenes vaccine alone is insufficient to treat all patients effectively, which can be addressed if combined with other treatments, such as immune checkpoint inhibitors, reactivated adoptive cell therapy, and radiotherapy. This review summarizes the recent advances in the molecular mechanisms underlying the involvement of Listeria monocytogenes vaccine in anti-tumor immunity, and discusses the most concerned issues for future research.
Collapse
Affiliation(s)
- Yi-Dan Ding
- Medical College, Nanchang University, Nanchang, China
| | - Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang, China
| | - Rui-Shan He
- Medical College, Nanchang University, Nanchang, China
| | - Kai-Yun Chen
- Office of Clinical Trials Administration, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Zhi-Bin Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| | - Ying Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
136
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
137
|
Ashina S, Masuda A, Yamakawa K, Hamada T, Tsujimae M, Tanaka T, Toyama H, Sofue K, Shiomi H, Sakai A, Kobayashi T, Abe S, Gonda M, Masuda S, Inomata N, Uemura H, Kohashi S, Nagao K, Harada Y, Miki M, Juri N, Irie Y, Kanzawa M, Itoh T, Inoue J, Imai T, Fukumoto T, Kodama Y. A comprehensive analysis of tumor-stromal collagen in relation to pathological, molecular, and immune characteristics and patient survival in pancreatic ductal adenocarcinoma. J Gastroenterol 2023; 58:1055-1067. [PMID: 37477731 PMCID: PMC10522520 DOI: 10.1007/s00535-023-02020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Abundant collagen deposition is a hallmark of pancreatic ductal adenocarcinomas (PDACs). This study clarified the interactive relationship between tumor-stromal collagen, molecular and immune characteristics, and tumor pr ogression in human PDAC. METHODS We performed a comprehensive examination using an integrative molecular pathological epidemiology database on 169 cases with resected PDAC . The amount of tumor-stromal collagen was quantified through digital imaging analysis for Elastica van Gieson-stained whole-section tumor slides. We analyzed the association of tumor-stromal collagen with gene alterations (KRAS, TP53, CDKN2A/p16, and SMAD4), immune parameters (CD4+ tumor-infiltrating lymphocytes [TILs], CD8+ TILs, FOXP3+ TILs, and tertiary lymphoid structures), and patient prognosis. RESULTS Low amounts of tumor-stromal collagen were associated with poor differentiation (multivariable OR = 3.82, 95%CI = 1.41-12.2, P = 0.008) and CDKN2A/p16 alteration (OR [95%CI] = 2.06 [1.08-4.02], P = 0.03). Tumors with low collagen levels had shorter overall survival (HR [95%CI] = 2.38 [1.59-3.56], P < 0.0001). In the S-1 and gemcitabine (GEM) treatment groups, low tumor-stromal collagen was linked to poor prognosis of patients with PDAC (S-1 group: multivariable HR [95%CI] = 2.76 [1.36-5.79], P = 0.005; GEM group: multivariate HR [95%CI] = 2.91 [1.34-6.71], P = 0.007). Additionally, low amounts of tumor-stromal collagen were also linked to low levels of CD4+ TILs (P = 0.046), CD8+ TILs (P = 0.09), and tertiary lymphoid structures (P = 0.001). CONCLUSIONS Tumor-stromal collagen deposition may play a crucial role in modulating tumor-immune microenvironment and determining response to adjuvant chemotherapy and patient survival outcomes.
Collapse
Affiliation(s)
- Shigeto Ashina
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Kohei Yamakawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masahiro Tsujimae
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takeshi Tanaka
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hirochika Toyama
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hideyuki Shiomi
- Division of Gastroenterology and Hepatobiliary and Pancreatic Diseases, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo, 650-0017, Japan
| | - Arata Sakai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shohei Abe
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Gonda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shigeto Masuda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Inomata
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hisahiro Uemura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Kohashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kae Nagao
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yoshiyuki Harada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Mika Miki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Noriko Juri
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yosuke Irie
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Maki Kanzawa
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoo Itoh
- Division of Diagnostic Pathology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Jun Inoue
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshio Imai
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
138
|
Singh M, Jana BK, Pal P, Singha I, Rajkumari A, Chowrasia P, Nath V, Mazumder B. Nanoparticles in pancreatic cancer therapy: a detailed and elaborated review on patent literature. Expert Opin Ther Pat 2023; 33:681-699. [PMID: 37991186 DOI: 10.1080/13543776.2023.2287520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Nanotechnology may open up new avenues for overcoming the challenges of pancreatic cancer therapy as a broad arsenal of anticancer medicines fail to realize their full therapeutic potential in pancreatic ductal adenocarcinoma due to the formation of multiple resistance mechanisms inside the tumor. Many studies have reported the successful use of various nano formulations in pancreatic cancer therapy. AREAS COVERED This review covers all the major nanotechnology-based patent litrature available on renowned patent data bases like Patentscope and Espacenet, through the time period of 2007-2022. This is an entirely patent centric review, and it includes both clinical and non-clinical data available on nanotechnology-based therapeutics and diagnostic tools for pancreatic cancer. EXPERT OPINION For the sake of understanding, the patents are categorized under various formulation-specific heads like metallic/non-metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes, protein nanoparticles and liposomes. This distinguishes one specific nanoparticle type from another and makes this review a one-of-a-kind comprehensive patent compilation that has not been reported so far in the history of nanotechnological formulations in pancreatic cancer.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ananya Rajkumari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pinky Chowrasia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Venessa Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
139
|
Li D, Zhang Q, Tang Y, Mao F, Zeng J, Ji A. LncRNAs associated with vascular mimicry establish a novel molecular subtype and prognostic model for pancreatic cancer. J Cancer Res Clin Oncol 2023; 149:11571-11584. [PMID: 37400573 DOI: 10.1007/s00432-023-05015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Vascular mimicry (VM) epitomizes an innovative tumor angiogenesis pathway, potentially serving as an alternate conduit under the assumption of traditional tumor angiogenesis pathway inhibition. The role of VM in pancreatic cancer (PC), however, remains unexplored. METHODS Using differential analysis and Spearman correlation, we identified key long non-coding RNAs (lncRNAs) signatures in PC from the collected set of VM-associated genes in the literature. We identified optimal clusters using the non-negative matrix decomposition (NMF) algorithm, and then compared clinicopathological features and prognostic differences between clusters. We also assessed tumor microenvironmental (TME) differences between clusters using multiple algorithms. Using univariate Cox regression analyses as well as lasso regression, we constructed and validated new lncRNA prognostic risk models for PC. We used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze model-enriched functions and pathways. Nomograms were then developed to predict patient survival in association with clinicopathological factors. In addition, single-cell RNA-sequencing (scRNA-seq) analysis was used to analyze the expression patterns of VM-related genes and lncRNAs in the PC of TME. Finally, we used the Connectivity Map (cMap) database to predict local anaesthetics that could modify the VM of PC. RESULTS In this study, we developed a novel three-cluster molecular subtype using the identified VM-associated lncRNA signatures of PC. The different subtypes have significantly different clinical characteristics and prognostic value, and also show differential treatment response and TME. Following an in-depth analysis, we constructed and validated a novel prognostic risk model for PC based on the VM-associated lncRNA signatures. Enrichment analysis suggested that high riskscores were significantly associated with functions and pathways, including extracellular matrix remodeling, et al. In addition, we predicted eight local anaesthetics that could modulate VM in PC. Finally, we discovered differential expression of VM-related genes and lncRNAs across various cell types within pancreatic cancer. CONCLUSION VM has a critical role in PC. This study pioneers the development of a VM-based molecular subtype that demonstrates substantial differentiation in PC populations. Furthermore, we highlighted the significance of VM within the immune microenvironment of PC. Moreover, VM might contribute to PC tumorigenesis through its mediation of mesenchymal remodeling and endothelial transdifferentiation-related pathways, which offers a new perspective on its role in PC.
Collapse
Affiliation(s)
- Da Li
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China
| | - Qiang Zhang
- Medical College of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yubao Tang
- Medical College of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Feiyu Mao
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China
| | - Jia Zeng
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China
| | - Anlai Ji
- Hepatobiliary Surgery Department, Yangzhou University Affiliated Hospital, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
140
|
Lau R, Yu L, Roumeliotis TI, Stewart A, Pickard L, Riisanes R, Gurel B, de Bono JS, Choudhary JS, Banerji U. Unbiased differential proteomic profiling between cancer-associated fibroblasts and cancer cell lines. J Proteomics 2023; 288:104973. [PMID: 37481068 DOI: 10.1016/j.jprot.2023.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of tumors. We aimed to profile the proteome of cancer cell lines representing three common cancer types (lung, colorectal and pancreatic) and a representative CAF cell line from each tumor type to gain insight into CAF function and novel CAF biomarkers. We used isobaric labeling, liquid chromatography and mass spectrometry to evaluate the proteome of 9 cancer and 3 CAF cell lines. Of the 9460 proteins evaluated, functional enrichment analysis revealed an upregulation of N-glycan biosynthesis and extracellular matrix proteins in CAFs. 85 proteins had 16-fold higher expression in CAFs compared to cancer cells, including previously known CAF markers like fibroblast activation protein (FAP). Novel overexpressed CAF biomarkers included heat shock protein β-6 (HSPB6/HSP20) and cyclooxygenase 1 (PTGS1/COX1). SiRNA knockdown of the genes encoding these proteins did not reduce contractility in lung CAFs, suggesting they were not crucial to this function. Immunohistochemical analysis of 30 tumor samples (10 lung, 10 colorectal and 10 pancreatic) showed restricted HSPB6 and PTGS1 expression in the stroma. Therefore, we describe an unbiased differential proteome analysis of CAFs compared to cancer cells, which revealed higher expression of HSPB6 and PTGS1 in CAFs. Data are available via ProteomeXchange (PXD040360). SIGNIFICANCE: Cancer-associated fibroblasts (CAFs) are highly abundant stromal cells present in tumors. CAFs are known to influence tumor progression and drug resistance. Characterizing the proteome of CAFs could give potential insights into new stromal drug targets and biomarkers. Mass spectrometry-based analysis comparing proteomic profiles of CAFs and cancers characterized 9460 proteins of which 85 proteins had 16-fold higher expression in CAFs compared to cancer cells. Further interrogation of this rich resource could provide insight into the function of CAFs and could reveal putative stromal targets. We describe for the first time that heat shock protein β-6 (HSPB6/HSP20) and cyclooxygenase 1 (PTGS1/COX1) are overexpressed in CAFs compared to cancer cells.
Collapse
Affiliation(s)
- Rachel Lau
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom.
| | - Lu Yu
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Theodoros I Roumeliotis
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom
| | - Adam Stewart
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Lisa Pickard
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Ruth Riisanes
- Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Bora Gurel
- Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Johann S de Bono
- Cancer Biomarkers Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Jyoti S Choudhary
- Functional Proteomics group, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, United Kingdom.
| | - Udai Banerji
- Clinical Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, 15 Cotswold Road, London SM2 5NG, United Kingdom.
| |
Collapse
|
141
|
Chen Y, Deng Q, Chen H, Yang J, Chen Z, Li J, Fu Z. Cancer-associated fibroblast-related prognostic signature predicts prognosis and immunotherapy response in pancreatic adenocarcinoma based on single-cell and bulk RNA-sequencing. Sci Rep 2023; 13:16408. [PMID: 37775715 PMCID: PMC10541448 DOI: 10.1038/s41598-023-43495-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) influence many aspects of pancreatic adenocarcinoma (PAAD) carcinogenesis, including tumor cell proliferation, angiogenesis, invasion, and metastasis. A six-gene prognostic signature was constructed for PAAD based on the 189 CAF marker genes identified in single-cell RNA-sequencing data. Multivariate analyses showed that the risk score was independently prognostic for survival in the TCGA (P < 0.001) and ICGC (P = 0.004) cohorts. Tumor infiltration of CD8 T (P = 0.005) cells and naïve B cells (P = 0.001) was greater in the low-risk than in the high-risk group, with infiltration of these cells negatively correlated with risk score. Moreover, the TMB score was lower in the low-risk than in the high-risk group (P = 0.0051). Importantly, patients in low-risk group had better immunotherapy responses than in the high-risk group in an independent immunotherapy cohort (IMvigor210) (P = 0.039). The CAV1 and SOD3 were highly expressed in CAFs of PAAD tissues, which revealed by immunohistochemical staining. In summary, this comprehensive analysis resulted in the development of a novel prognostic signature, which was associated with immune cell infiltration, drug sensitivity, and TMB, and could predict the prognosis and immunotherapy response of patients with PAAD.
Collapse
Affiliation(s)
- Yajun Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qican Deng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Jianguo Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhou Chen
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Li
- Department of Surgery, The People's Hospital of Yubei District of Chongqing, Chongqing, China.
| | - Zhongxue Fu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
142
|
Kumar BS. Recent Advances and Applications of Ambient Mass Spectrometry Imaging in Cancer Research: An Overview. Mass Spectrom (Tokyo) 2023; 12:A0129. [PMID: 37789912 PMCID: PMC10542858 DOI: 10.5702/massspectrometry.a0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Cancer metabolic variability has a significant impact on both diagnosis and treatment outcomes. The discovery of novel biological indicators and metabolic dysregulation, can significantly rely on comprehension of the modified metabolism in cancer, is a research focus. Tissue histology is a critical feature in the diagnostic testing of many ailments, such as cancer. To assess the surgical margin of the tumour on patients, frozen section histology is a tedious, laborious, and typically arbitrary method. Concurrent monitoring of ion images in tissues facilitated by the latest advancements in mass spectrometry imaging (MSI) is far more efficient than optical tissue image analysis utilized in conventional histopathology examination. This article focuses on the "desorption electrospray ionization (DESI)-MSI" technique's most recent advancements and uses in cancer research. DESI-MSI can provide wealthy information based on the variances in metabolites and lipids in normal and cancerous tissues by acquiring ion images of the lipid and metabolite variances on biopsy samples. As opposed to a systematic review, this article offers a synopsis of the most widely employed cutting-edge DESI-MSI techniques in cancer research.
Collapse
Affiliation(s)
- Bharath S. Kumar
- Correspondence to: Bharath S. Kumar, 21, B2, 27th Street, Nanganallur, Chennai, India, e-mail:
| |
Collapse
|
143
|
Wang L, Wang B, Kou E, Du L, Zhu Y. New insight into the role of fibroblasts in the epithelial immune microenvironment in the single-cell era. Front Immunol 2023; 14:1259515. [PMID: 37809065 PMCID: PMC10556469 DOI: 10.3389/fimmu.2023.1259515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The skin is exposed to environmental challenges and contains heterogeneous cell populations such as epithelial cells, stromal cells, and skin-resident immune cells. As the most abundant type of stromal cells, fibroblasts have been historically considered silent observers in the immune responses of the cutaneous epithelial immune microenvironment (EIME), with little research conducted on their heterogeneity and immune-related functions. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have overcome the limitations of bulk RNA sequencing and help recognize the functional and spatial heterogeneity of fibroblasts, as well as their crosstalk with other types of cells in the cutaneous EIME. Recently, emerging single-cell sequencing data have demonstrated that fibroblasts notably participate in the immune responses of the EIME and impact the initiation and progression of inflammatory skin diseases. Here, we summarize the latest advances in the role of fibroblasts in the cutaneous EIME of inflammatory skin diseases and discuss the distinct functions and molecular mechanisms of activated fibroblasts in fibrotic skin diseases and non-fibrotic inflammatory skin diseases. This review help unveil the multiple roles of fibroblasts in the cutaneous EIME and offer new promising therapeutic strategies for the management of inflammatory skin diseases by targeting fibroblasts or the fibroblast-centered EIME.
Collapse
Affiliation(s)
| | | | | | - Lin Du
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yuanjie Zhu
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
144
|
Li Y, Tang S, Shi X, Lv J, Wu X, Zhang Y, Wang H, He J, Zhu Y, Ju Y, Zhang Y, Guo S, Yang W, Yin H, Chen L, Gao D, Jin G. Metabolic classification suggests the GLUT1/ALDOB/G6PD axis as a therapeutic target in chemotherapy-resistant pancreatic cancer. Cell Rep Med 2023; 4:101162. [PMID: 37597521 PMCID: PMC10518604 DOI: 10.1016/j.xcrm.2023.101162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/14/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Metabolic reprogramming is known as an emerging mechanism of chemotherapy resistance, but the metabolic signatures of pancreatic ductal adenocarcinomas (PDACs) remain unclear. Here, we characterize the metabolomic profile of PDAC organoids and classify them into glucomet-PDAC (high glucose metabolism levels) and lipomet-PDAC (high lipid metabolism levels). Glucomet-PDACs are more resistant to chemotherapy than lipomet-PDACs, and patients with glucomet-PDAC have a worse prognosis. Integrated analyses reveal that the GLUT1/aldolase B (ALDOB)/glucose-6-phosphate dehydrogenase (G6PD) axis induces chemotherapy resistance by remodeling glucose metabolism in glucomet-PDAC. Increased glycolytic flux, G6PD activity, and pyrimidine biosynthesis are identified in glucomet-PDAC with high GLUT1 and low ALDOB expression, and these phenotypes could be reversed by inhibiting GLUT1 expression or by increasing ALDOB expression. Pharmacological inhibition of GLUT1 or G6PD enhances the chemotherapy response of glucomet-PDAC. Our findings uncover potential metabolic heterogeneity related to differences in chemotherapy sensitivity in PDAC and develop a promising pharmacological strategy for patients with chemotherapy-resistant glucomet-PDAC through the combination of chemotherapy and GLUT1/ALDOB/G6PD axis inhibitors.
Collapse
Affiliation(s)
- Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Jingwen Lv
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Xueyuan Wu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yehan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqin Zhu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Ju
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Innovation Center for Intervention of Chronic Disease and Promotion of Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai 200433, China.
| |
Collapse
|
145
|
Cornwell AC, Tisdale AA, Venkat S, Maraszek KE, Alahmari AA, George A, Attwood K, George M, Rempinski D, Franco-Barraza J, Seshadri M, Parker MD, Cortes Gomez E, Fountzilas C, Cukierman E, Steele NG, Feigin ME. Lorazepam Stimulates IL6 Production and Is Associated with Poor Survival Outcomes in Pancreatic Cancer. Clin Cancer Res 2023; 29:3793-3812. [PMID: 37587561 PMCID: PMC10502465 DOI: 10.1158/1078-0432.ccr-23-0547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE This research investigates the association between benzodiazepines (BZD) and cancer patient survival outcomes, the pancreatic cancer tumor microenvironment, and cancer-associated fibroblast (CAF) signaling. EXPERIMENTAL DESIGN Multivariate Cox regression modeling was used to retrospectively measure associations between Roswell Park cancer patient survival outcomes and BZD prescription records. IHC, H&E, Masson's trichrome, RNAscope, and RNA sequencing were used to evaluate the impact of lorazepam (LOR) on the murine PDAC tumor microenvironment. ELISA and qPCR were used to determine the impact of BZDs on IL6 expression or secretion by human-immortalized pancreatic CAFs. PRESTO-Tango assays, reanalysis of PDAC single-cell sequencing/TCGA data sets, and GPR68 CRISPRi knockdown CAFs were used to determine the impact of BZDs on GPR68 signaling. RESULTS LOR is associated with worse progression-free survival (PFS), whereas alprazolam (ALP) is associated with improved PFS, in pancreatic cancer patients receiving chemotherapy. LOR promotes desmoplasia (fibrosis and extracellular matrix protein deposition), inflammatory signaling, and ischemic necrosis. GPR68 is preferentially expressed on human PDAC CAFs, and n-unsubstituted BZDs, such as LOR, significantly increase IL6 expression and secretion in CAFs in a pH and GPR68-dependent manner. Conversely, ALP and other GPR68 n-substituted BZDs decrease IL6 in human CAFs in a pH and GPR68-independent manner. Across many cancer types, LOR is associated with worse survival outcomes relative to ALP and patients not receiving BZDs. CONCLUSIONS We demonstrate that LOR stimulates fibrosis and inflammatory signaling, promotes desmoplasia and ischemic necrosis, and is associated with decreased pancreatic cancer patient survival.
Collapse
Affiliation(s)
- Abigail C. Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Arwen A. Tisdale
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Swati Venkat
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kathryn E. Maraszek
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Abdulrahman A. Alahmari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Madison George
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Donald Rempinski
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark D. Parker
- Department of Physiology and Biophysics, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
- Department of Ophthalmology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Biostatistics, State University of New York at Buffalo, Buffalo, New York
| | - Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Nina G. Steele
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Michael E. Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
146
|
Bararia A, Das A, Mitra S, Banerjee S, Chatterjee A, Sikdar N. Deoxyribonucleic acid methylation driven aberrations in pancreatic cancer-related pathways. World J Gastrointest Oncol 2023; 15:1505-1519. [PMID: 37746645 PMCID: PMC10514732 DOI: 10.4251/wjgo.v15.i9.1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 09/13/2023] Open
Abstract
Pancreatic cancer (PanCa) presents a catastrophic disease with poor overall survival at advanced stages, with immediate requirement of new and effective treatment options. Besides genetic mutations, epigenetic dysregulation of signaling pathway-associated enriched genes are considered as novel therapeutic target. Mechanisms beneath the deoxyribonucleic acid methylation and its utility in developing of epi-drugs in PanCa are under trails. Combinations of epigenetic medicines with conventional cytotoxic treatments or targeted therapy are promising options to improving the dismal response and survival rate of PanCa patients. Recent studies have identified potentially valid pathways that support the prediction that future PanCa clinical trials will include vigorous testing of epigenomic therapies. Epigenetics thus promises to generate a significant amount of new knowledge of biological and medical importance. Our review could identify various components of epigenetic mechanisms known to be involved in the initiation and development of pancreatic ductal adenocarcinoma and related precancerous lesions, and novel pharmacological strategies that target these components could potentially lead to breakthroughs. We aim to highlight the possibilities that exist and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Amlan Das
- Department of Biochemistry, Royal Global University, Assam 781035, India
| | - Sangeeta Mitra
- Department of Biochemistry and Biophysics, University of Kalyani, West Bengal 741235, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Kolkata 700160, India
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
147
|
Liang G, Oh TG, Hah N, Tiriac H, Shi Y, Truitt ML, Antal CE, Atkins AR, Li Y, Fraser C, Ng S, Pinto AFM, Nelson DC, Estepa G, Bashi S, Banayo E, Dai Y, Liddle C, Yu RT, Hunter T, Engle DD, Han H, Von Hoff DD, Downes M, Evans RM. Inhibiting Stromal Class I HDACs Curbs Pancreatic Cancer Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557260. [PMID: 37745372 PMCID: PMC10515810 DOI: 10.1101/2023.09.12.557260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.
Collapse
|
148
|
Qian J, Zhang X, Wei B, Tang Z, Zhang B. The correlation between gut and intra-tumor microbiota and PDAC: Etiology, diagnostics and therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188943. [PMID: 37355177 DOI: 10.1016/j.bbcan.2023.188943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the lethal cancers in the world and its 5-year survival rate is <10%. Due to the unique TME and dense tissue structure, its curative efficacy is far from satisfactory,the immunotherapy is even more invalid. According to the recent studies, the gut and tumor microbiota have been proved to play a key role in the development, progression and prognosis of PDAC. Based on the differences of microbiome composition observed in PDAC patients and normal pancreas, many researches have been made focusing on the latent communication between gut and intra-tumor microbiota and PDAC. In this review, we will demonstrate the potential mechanism of the oncogenic effects of GM and IM and their crucial effects on modulating the TME. Besides, we focus on their interaction with chemotherapeutic and immunotherapeutic drugs and inducing the drug resistance, thus enlightening the promising role to be used to monitor the occurrence of PDAC, accurately modulate the immune environment to promote the therapeutic efficacy and predict the prognosis.
Collapse
Affiliation(s)
- Jiwei Qian
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Butian Wei
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- The Fourth affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- The Second affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31000, China.
| |
Collapse
|
149
|
An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188958. [PMID: 37495194 DOI: 10.1016/j.bbcan.2023.188958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, which is generally resistant to various treatments. Tumor angiogenesis is deemed to be a pivotal rate-determining step for tumor growth and metastasis. Therefore, anti-angiogenetic therapy is a rational strategy to treat various cancers. However, numerous clinical trials on anti-angiogenetic therapies for PC are overwhelmingly disappointing. The unique characteristics of tumor blood vessels in PC, which are desperately lacking and highly compressed by the dense desmoplastic stroma, are reconsidered to explore some optimized strategies. In this review, we mainly focus on its specific characteristics of tumor blood vessels, discuss the current dilemmas of anti-angiogenic therapy in PC and their underlying mechanisms. Furthermore, we point out the future directions, including remodeling the abnormal vasculature or even reshaping the whole tumor microenvironment in which they are embedded to improve tumor microcirculation, and then create therapeutic vulnerabilities to the current available therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Fei An
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Basic Medicine, Chang Zhi Medical College, Changzhi 046000,China; Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Bin Jia
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
150
|
Igata Y, Kojima M, Suzuki T, Ishii G, Morisue R, Suzuki T, Kudo M, Sugimoto M, Kobayashi S, Martin JD, Stylianopoulos T, Cabral H, Kano MR, Konishi M, Gotohda N. Relationships between physical and immunological tumor microenvironment in pancreatic ductal adenocarcinoma. Cancer Sci 2023; 114:3783-3792. [PMID: 37337413 PMCID: PMC10475771 DOI: 10.1111/cas.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 06/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is physically palpated as a hard tumor with an unfavorable prognosis. Assessing physical features and their association with pathological features could help to elucidate the mechanism of physical abnormalities in cancer tissues. A total of 93 patients who underwent radical surgery for pancreatic and bile duct cancers at a single center hospital during a 28-month period were recruited for this study that aimed to estimate the stiffness of PDAC tissues compared to the other neoplasms and assess relationships between tumor stiffness and pathological features. Physical alterations and pathological features of PDAC, with or without preoperative therapy, were analyzed. The immunological tumor microenvironment was evaluated using multiplexed fluorescent immunohistochemistry. The stiffness of PDAC correlated with the ratio of Azan-Mallory staining, α-smooth muscle actin, and collagen I-positive areas of the tumors. Densities of CD8+ T cells and CD204+ macrophages were associated with tumor stiffness in cases without preoperative therapy. Pancreatic ductal adenocarcinoma treated with preoperative therapy was softer than that without, and the association between tumor stiffness and immune cell infiltration was not shown after preoperative therapy. We observed the relationship between tumor stiffness and immunological features in human PDAC for the first time. Immune cell densities in the tumor center were smaller in hard tumors than in soft tumors without preoperative therapies. Preoperative therapy could alter physical and immunological aspects, warranting further study. Understanding of the correlations between physical and immunological aspects could lead to the development of new therapies.
Collapse
Affiliation(s)
- Yu Igata
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
- Course of Advanced Clinical Research of CancerJuntendo University Graduate School of MedicineTokyoJapan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | | | - Genichiro Ishii
- Department of Pathology and Clinical LaboratoriesNational Cancer Center Hospital EastKashiwaJapan
| | - Ryo Morisue
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
- Division of Pathology, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | - Toshihiro Suzuki
- Division of Pharmacology, School of MedicineTeikyo UniversityTokyoJapan
- Department of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | - Masashi Kudo
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Motokazu Sugimoto
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Shin Kobayashi
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan
| | - Masaru Konishi
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
| | - Naoto Gotohda
- Department of Hepatobiliary and Pancreatic SurgeryNational Cancer Center Hospital EastKashiwaJapan
- Course of Advanced Clinical Research of CancerJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|