101
|
Cai Y, Hossain MJ, Hériché JK, Politi AZ, Walther N, Koch B, Wachsmuth M, Nijmeijer B, Kueblbeck M, Martinic-Kavur M, Ladurner R, Alexander S, Peters JM, Ellenberg J. Experimental and computational framework for a dynamic protein atlas of human cell division. Nature 2018; 561:411-415. [PMID: 30202089 DOI: 10.1038/s41586-018-0518-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/25/2018] [Indexed: 11/09/2022]
Abstract
Essential biological functions, such as mitosis, require tight coordination of hundreds of proteins in space and time. Localization, the timing of interactions and changes in cellular structure are all crucial to ensure the correct assembly, function and regulation of protein complexes1-4. Imaging of live cells can reveal protein distributions and dynamics but experimental and theoretical challenges have prevented the collection of quantitative data, which are necessary for the formulation of a model of mitosis that comprehensively integrates information and enables the analysis of the dynamic interactions between the molecular parts of the mitotic machinery within changing cellular boundaries. Here we generate a canonical model of the morphological changes during the mitotic progression of human cells on the basis of four-dimensional image data. We use this model to integrate dynamic three-dimensional concentration data of many fluorescently knocked-in mitotic proteins, imaged by fluorescence correlation spectroscopy-calibrated microscopy5. The approach taken here to generate a dynamic protein atlas of human cell division is generic; it can be applied to systematically map and mine dynamic protein localization networks that drive cell division in different cell types, and can be conceptually transferred to other cellular functions.
Collapse
Affiliation(s)
- Yin Cai
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Roche Diagnostics, Waiblingen, Germany
| | - M Julius Hossain
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Antonio Z Politi
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Nike Walther
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Birgit Koch
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Malte Wachsmuth
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Luxendo GmbH, Heidelberg, Germany
| | - Bianca Nijmeijer
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Moritz Kueblbeck
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marina Martinic-Kavur
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Genos, Glycoscience Research Laboratory, Zagreb, Croatia
| | - Rene Ladurner
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.,Stanford School of Medicine, Stanford, CA, USA
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
102
|
Toyoda Y, Akarlar B, Sarov M, Ozlu N, Saitoh S. Extracellular glucose level regulates dependence on
GRP
78 for cell surface localization of multipass transmembrane proteins in HeLa cells. FEBS Lett 2018; 592:3295-3304. [PMID: 30156266 DOI: 10.1002/1873-3468.13232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Affiliation(s)
| | - Busra Akarlar
- Department of Molecular Biology and Genetics Koc University Istanbul Turkey
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics Koc University Istanbul Turkey
| | | |
Collapse
|
103
|
Pires HR, Boxem M. Mapping the Polarity Interactome. J Mol Biol 2018; 430:3521-3544. [DOI: 10.1016/j.jmb.2017.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
|
104
|
Findlay S, Heath J, Luo VM, Malina A, Morin T, Coulombe Y, Djerir B, Li Z, Samiei A, Simo-Cheyou E, Karam M, Bagci H, Rahat D, Grapton D, Lavoie EG, Dove C, Khaled H, Kuasne H, Mann KK, Klein KO, Greenwood CM, Tabach Y, Park M, Côté JF, Masson JY, Maréchal A, Orthwein A. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J 2018; 37:embj.2018100158. [PMID: 30154076 PMCID: PMC6138439 DOI: 10.15252/embj.2018100158] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Vincent M Luo
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abba Malina
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Théo Morin
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Billel Djerir
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Zhigang Li
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Arash Samiei
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Estelle Simo-Cheyou
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Halil Bagci
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Damien Grapton
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Elise G Lavoie
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Christian Dove
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Husam Khaled
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M Greenwood
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, MGill University, Montreal, QC, Canada
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Jean-Francois Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada.,Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montreal, QC, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
105
|
Conditional control of fluorescent protein degradation by an auxin-dependent nanobody. Nat Commun 2018; 9:3297. [PMID: 30120238 PMCID: PMC6098157 DOI: 10.1038/s41467-018-05855-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 07/27/2018] [Indexed: 01/08/2023] Open
Abstract
The conditional and reversible depletion of proteins by auxin-mediated degradation is a powerful tool to investigate protein functions in cells and whole organisms. However, its wider applications require fusing the auxin-inducible degron (AID) to individual target proteins. Thus, establishing the auxin system for multiple proteins can be challenging. Another approach for directed protein degradation are anti-GFP nanobodies, which can be applied to GFP stock collections that are readily available in different experimental models. Here, we combine the advantages of auxin and nanobody-based degradation technologies creating an AID-nanobody to degrade GFP-tagged proteins at different cellular structures in a conditional and reversible manner in human cells. We demonstrate efficient and reversible inactivation of the anaphase promoting complex/cyclosome (APC/C) and thus provide new means to study the functions of this essential ubiquitin E3 ligase. Further, we establish auxin degradation in a vertebrate model organism by employing AID-nanobodies in zebrafish. Current approaches to conditionally deplete target proteins require site-specific genetic engineering or have poor temporal control. Here the authors overcome these limitations by combining the AID system with nanobodies to reversibly degrade GFP-tagged proteins in living cells and zebrafish.
Collapse
|
106
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
107
|
Sallee MD, Zonka JC, Skokan TD, Raftrey BC, Feldman JL. Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS Biol 2018; 16:e2005189. [PMID: 30080857 PMCID: PMC6103517 DOI: 10.1371/journal.pbio.2005189] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/21/2018] [Accepted: 07/20/2018] [Indexed: 11/19/2022] Open
Abstract
Non-centrosomal microtubule organizing centers (ncMTOCs) are found in most differentiated cells, but how these structures regulate microtubule organization and dynamics is largely unknown. We optimized a tissue-specific degradation system to test the role of the essential centrosomal microtubule nucleators γ-tubulin ring complex (γ-TuRC) and AIR-1/Aurora A at the apical ncMTOC, where they both localize in Caenorhabditis elegans embryonic intestinal epithelial cells. As at the centrosome, the core γ-TuRC component GIP-1/GCP3 is required to recruit other γ-TuRC components to the apical ncMTOC, including MZT-1/MZT1, characterized here for the first time in animal development. In contrast, AIR-1 and MZT-1 were specifically required to recruit γ-TuRC to the centrosome, but not to centrioles or to the apical ncMTOC. Surprisingly, microtubules remain robustly organized at the apical ncMTOC upon γ-TuRC and AIR-1 co-depletion, and upon depletion of other known microtubule regulators, including TPXL-1/TPX2, ZYG-9/ch-TOG, PTRN-1/CAMSAP, and NOCA-1/Ninein. However, loss of GIP-1 removed a subset of dynamic EBP-2/EB1-marked microtubules, and the remaining dynamic microtubules grew faster. Together, these results suggest that different microtubule organizing centers (MTOCs) use discrete proteins for their function, and that the apical ncMTOC is composed of distinct populations of γ-TuRC-dependent and -independent microtubules that compete for a limited pool of resources.
Collapse
Affiliation(s)
- Maria D. Sallee
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jennifer C. Zonka
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Taylor D. Skokan
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Brian C. Raftrey
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jessica L. Feldman
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
108
|
Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, Olivieri M, Álvarez-Quilón A, Moatti N, Zimmermann M, Annunziato S, Krastev DB, Song F, Brandsma I, Frankum J, Brough R, Sherker A, Landry S, Szilard RK, Munro MM, McEwan A, Goullet de Rugy T, Lin ZY, Hart T, Moffat J, Gingras AC, Martin A, van Attikum H, Jonkers J, Lord CJ, Rottenberg S, Durocher D. The shieldin complex mediates 53BP1-dependent DNA repair. Nature 2018; 560:117-121. [PMID: 30022168 PMCID: PMC6141009 DOI: 10.1038/s41586-018-0340-7] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023]
Abstract
53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.
Collapse
Affiliation(s)
- Sylvie M Noordermeer
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Marco Barazas
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Alexanda K Ling
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michele Olivieri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Nathalie Moatti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Michal Zimmermann
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stefano Annunziato
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dragomir B Krastev
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Inger Brandsma
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Jessica Frankum
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Alana Sherker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sébastien Landry
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Meagan M Munro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andrea McEwan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Théo Goullet de Rugy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Sven Rottenberg
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
109
|
Tovey CA, Tubman CE, Hamrud E, Zhu Z, Dyas AE, Butterfield AN, Fyfe A, Johnson E, Conduit PT. γ-TuRC Heterogeneity Revealed by Analysis of Mozart1. Curr Biol 2018; 28:2314-2323.e6. [PMID: 29983314 PMCID: PMC6065531 DOI: 10.1016/j.cub.2018.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Microtubules are essential for various cell processes [1] and are nucleated by multi-protein γ-tubulin ring complexes (γ-TuRCs) at various microtubule organizing centers (MTOCs), including centrosomes [2-6]. Recruitment of γ-TuRCs to different MTOCs at different times influences microtubule array formation, but how this is regulated remains an open question. It also remains unclear whether all γ-TuRCs within the same organism have the same composition and how any potential heterogeneity might influence γ-TuRC recruitment. MOZART1 (Mzt1) was recently identified as a γ-TuRC component [7, 8] and is conserved in nearly all eukaryotes [6, 9]. Mzt1 has so far been studied in cultured human cells, yeast, and plants; its absence leads to failures in γ-TuRC recruitment and cell division, resulting in cell death [7, 9-15]. Mzt1 is small (∼8.5 kDa), binds directly to core γ-TuRC components [9, 10, 14, 15], and appears to mediate the interaction between γ-TuRCs and proteins that tether γ-TuRCs to MTOCs [9, 15]. Here, we use Drosophila to investigate the function of Mzt1 in a multicellular animal for the first time. Surprisingly, we find that Drosophila Mzt1 is expressed only in the testes and is present in γ-TuRCs recruited to basal bodies, but not to mitochondria, in developing sperm cells. mzt1 mutants are viable but have defects in basal body positioning and γ-TuRC recruitment to centriole adjuncts; sperm formation is affected and mutants display a rapid age-dependent decline in sperm motility and male fertility. Our results reveal that tissue-specific and MTOC-specific γ-TuRC heterogeneity exist in Drosophila and highlight the complexity of γ-TuRC recruitment in a multicellular animal.
Collapse
Affiliation(s)
- Corinne A Tovey
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Chloe E Tubman
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Eva Hamrud
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Zihan Zhu
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Anna E Dyas
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Andrew N Butterfield
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Alex Fyfe
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
110
|
Chakraborty D, Paszkowski-Rogacz M, Berger N, Ding L, Mircetic J, Fu J, Iesmantavicius V, Choudhary C, Anastassiadis K, Stewart AF, Buchholz F. lncRNA Panct1 Maintains Mouse Embryonic Stem Cell Identity by Regulating TOBF1 Recruitment to Oct-Sox Sequences in Early G1. Cell Rep 2018; 21:3012-3021. [PMID: 29241531 DOI: 10.1016/j.celrep.2017.11.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in diverse biological processes, including embryonic stem cell (ESC) maintenance. However, their functional mechanisms remain largely undefined. Here, we show that the lncRNA Panct1 regulates the transient recruitment of a putative X-chromosome-encoded protein A830080D01Rik, hereafter referred to as transient octamer binding factor 1 (TOBF1), to genomic sites resembling the canonical Oct-Sox motif. TOBF1 physically interacts with Panct1 and exhibits a cell-cycle-specific punctate localization in ESCs. At the chromatin level, this correlates with its recruitment to promoters of pluripotency genes. Strikingly, mutating an octamer-like motif in Panct1 RNA abrogates the strength of TOBF1 localization and recruitment to its targets. Taken together, our data reveal a tightly controlled spatial and temporal pattern of lncRNA-mediated gene regulation in a cell-cycle-dependent manner and suggest that lncRNAs might function as barcodes for identifying genomic addresses for maintaining cellular states.
Collapse
Affiliation(s)
- Debojyoti Chakraborty
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicolas Berger
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Jovan Mircetic
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Jun Fu
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47, 01307 Dresden, Germany
| | - Vytautas Iesmantavicius
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Konstantinos Anastassiadis
- Stem Cell Engineering, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47, 01307 Dresden, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, TU Dresden, BioInnovationsZentrum, Tatzberg 47, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
111
|
NEK7 regulates dendrite morphogenesis in neurons via Eg5-dependent microtubule stabilization. Nat Commun 2018; 9:2330. [PMID: 29899413 PMCID: PMC5997995 DOI: 10.1038/s41467-018-04706-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Organization of microtubules into ordered arrays is best understood in mitotic systems, but remains poorly characterized in postmitotic cells such as neurons. By analyzing the cycling cell microtubule cytoskeleton proteome through expression profiling and targeted RNAi screening for candidates with roles in neurons, we have identified the mitotic kinase NEK7. We show that NEK7 regulates dendrite morphogenesis in vitro and in vivo. NEK7 kinase activity is required for dendrite growth and branching, as well as spine formation and morphology. NEK7 regulates these processes in part through phosphorylation of the kinesin Eg5/KIF11, promoting its accumulation on microtubules in distal dendrites. Here, Eg5 limits retrograde microtubule polymerization, which is inhibitory to dendrite growth and branching. Eg5 exerts this effect through microtubule stabilization, independent of its motor activity. This work establishes NEK7 as a general regulator of the microtubule cytoskeleton, controlling essential processes in both mitotic cells and postmitotic neurons. NEK7 is a kinase known for its role in mitotic spindle assembly, driving centrosome separation in prophase through regulation of the kinesin Eg5. Here, the authors show that NEK7 and Eg5 also control dendrite morphogenesis in postmitotic neurons.
Collapse
|
112
|
Degradation of a Novel DNA Damage Response Protein, Tankyrase 1 Binding Protein 1, following Adenovirus Infection. J Virol 2018; 92:JVI.02034-17. [PMID: 29593045 PMCID: PMC5974482 DOI: 10.1128/jvi.02034-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Infection by most DNA viruses activates a cellular DNA damage response (DDR), which may be to the detriment or advantage of the virus. In the case of adenoviruses, they neutralize antiviral effects of DDR activation by targeting a number of proteins for rapid proteasome-mediated degradation. We have now identified a novel DDR protein, tankyrase 1 binding protein 1 (TNKS1BP1) (also known as Tab182), which is degraded during infection by adenovirus serotype 5 and adenovirus serotype 12. In both cases, degradation requires the action of the early region 1B55K (E1B55K) and early region 4 open reading frame 6 (E4orf6) viral proteins and is mediated through the proteasome by the action of cullin-based cellular E3 ligases. The degradation of Tab182 appears to be serotype specific, as the protein remains relatively stable following infection with adenovirus serotypes 4, 7, 9, and 11. We have gone on to confirm that Tab182 is an integral component of the CNOT complex, which has transcriptional regulatory, deadenylation, and E3 ligase activities. The levels of at least 2 other members of the complex (CNOT3 and CNOT7) are also reduced during adenovirus infection, whereas the levels of CNOT4 and CNOT1 remain stable. The depletion of Tab182 with small interfering RNA (siRNA) enhances the expression of early region 1A proteins (E1As) to a limited extent during adenovirus infection, but the depletion of CNOT1 is particularly advantageous to the virus and results in a marked increase in the expression of adenovirus early proteins. In addition, the depletion of Tab182 and CNOT1 results in a limited increase in the viral DNA level during infection. We conclude that the cellular CNOT complex is a previously unidentified major target for adenoviruses during infection. IMPORTANCE Adenoviruses target a number of cellular proteins involved in the DNA damage response for rapid degradation. We have now shown that Tab182, which we have confirmed to be an integral component of the mammalian CNOT complex, is degraded following infection by adenovirus serotypes 5 and 12. This requires the viral E1B55K and E4orf6 proteins and is mediated by cullin-based E3 ligases and the proteasome. In addition to Tab182, the levels of other CNOT proteins are also reduced during adenovirus infection. Thus, CNOT3 and CNOT7, for example, are degraded, whereas CNOT4 and CNOT1 are not. The siRNA-mediated depletion of components of the complex enhances the expression of adenovirus early proteins and increases the concentration of viral DNA produced during infection. This study highlights a novel protein complex, CNOT, which is targeted for adenovirus-mediated protein degradation. To our knowledge, this is the first time that the CNOT complex has been identified as an adenoviral target.
Collapse
|
113
|
King BL, Rosenstein MC, Smith AM, Dykeman CA, Smith GA, Yin VP. RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. NPJ Regen Med 2018; 3:10. [PMID: 29872545 PMCID: PMC5973935 DOI: 10.1038/s41536-018-0049-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Regeneration is an endogenous process of tissue repair that culminates in complete restoration of tissue and organ function. While regenerative capacity in mammals is limited to select tissues, lower vertebrates like zebrafish and salamanders are endowed with the capacity to regenerate entire limbs and most adult tissues, including heart muscle. Numerous profiling studies have been conducted using these research models in an effort to identify the genetic circuits that accompany tissue regeneration. Most of these studies, however, are confined to an individual injury model and/or research organism and focused primarily on protein encoding transcripts. Here we describe RegenDbase, a new database with the functionality to compare and contrast gene regulatory pathways within and across tissues and research models. RegenDbase combines pipelines that integrate analysis of noncoding RNAs in combination with protein encoding transcripts. We created RegenDbase with a newly generated comprehensive dataset for adult zebrafish heart regeneration combined with existing microarray and RNA-sequencing studies on multiple injured tissues. In this current release, we detail microRNA-mRNA regulatory circuits and the biological processes these interactions control during the early stages of heart regeneration. Moreover, we identify known and putative novel lncRNAs and identify their potential target genes based on proximity searches. We postulate that these candidate factors underscore robust regenerative capacity in lower vertebrates. RegenDbase provides a systems-level analysis of tissue regeneration genetic circuits across injury and animal models and addresses the growing need to understand how noncoding RNAs influence these changes in gene expression.
Collapse
Affiliation(s)
- Benjamin L. King
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| | - Michael C. Rosenstein
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Present Address: RockStep Solutions, Portland, ME 04101 USA
| | - Ashley M. Smith
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
| | - Christina A. Dykeman
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
| | - Grace A. Smith
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 USA
- University of Maine Honors College, University of Maine, Orono, ME 04469 USA
| | - Viravuth P. Yin
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
114
|
Abstract
Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.
Collapse
Affiliation(s)
- Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Current affiliation: Boston Combined Residency Program (Child Neurology), Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Byoung-Il Bae
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
115
|
Elmore ZC, Guillen RX, Gould KL. The kinase domain of CK1 enzymes contains the localization cue essential for compartmentalized signaling at the spindle pole. Mol Biol Cell 2018; 29:1664-1674. [PMID: 29742018 PMCID: PMC6080649 DOI: 10.1091/mbc.e18-02-0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CK1 protein kinases contribute to multiple biological processes, but how they are tailored to function in compartmentalized signaling events is largely unknown. Hhp1 and Hhp2 (Hhp1/2) are the soluble CK1 family members in Schizosaccharomyces pombe. One of their functions is to inhibit the septation initiation network (SIN) during a mitotic checkpoint arrest. The SIN is assembled by Sid4 at spindle pole bodies (SPBs), and though Hhp1/2 colocalize there, it is not known how they are targeted there or whether their SPB localization is required for SIN inhibition. Here, we establish that Hhp1/2 localize throughout the cell cycle to SPBs, as well as to the nucleus, cell tips, and division site. We find that their catalytic domains but not their enzymatic function are used for SPB targeting and that this targeting strategy is conserved in human CK1δ/ε localization to centrosomes. Further, we pinpoint amino acids in the Hhp1 catalytic domain required for SPB interaction; mutation of these residues disrupts Hhp1 association with the core SPB protein Ppc89, and the inhibition of cytokinesis in the setting of spindle stress. Taken together, these data have enabled us to define a molecular mechanism used by CK1 enzymes to target a specific cellular locale for compartmentalized signaling.
Collapse
Affiliation(s)
- Zachary C Elmore
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rodrigo X Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
116
|
Jiang P, Zheng S, Lu L. Mitotic-Spindle Organizing Protein MztA Mediates Septation Signaling by Suppressing the Regulatory Subunit of Protein Phosphatase 2A-ParA in Aspergillus nidulans. Front Microbiol 2018; 9:988. [PMID: 29774021 PMCID: PMC5951981 DOI: 10.3389/fmicb.2018.00988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
The proper timing and positioning of cytokinesis/septation is crucial for hyphal growth and conidiation in Aspergillus nidulans. The septation initiation network (SIN) components are a conserved spindle pole body (SPB) localized signaling cascade and the terminal kinase complex SidB-MobA, which must localize on the SPB in this pathway to trigger septation/cytokinesis. The regulatory subunit of phosphatase PP2A-ParA has been identified to be a negative regulator capable of inactivating the SIN. However, little is known about how ParA regulates the SIN pathway and whether ParA regulates the septum formation process through affecting the SPB-localized SIN proteins. In this study, through RNA-Seq and genetic approaches, we identified a new positive septation regulator, a putative mitotic-spindle organizing protein and a yeast Mzt1 homolog MztA, which acts antagonistically toward PP2A-ParA to coordinately regulate the SPB-localized SIN proteins SidB-MobA during septation. These findings imply that regulators, phosphatase PP2A-ParA and MztA counteract the septation function probably through balancing the polymerization and depolymerization of microtubules at the SPB.
Collapse
Affiliation(s)
- Ping Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shujun Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
117
|
Zou XD, An K, Wu YD, Ye ZQ. PPI network analyses of human WD40 protein family systematically reveal their tendency to assemble complexes and facilitate the complex predictions. BMC SYSTEMS BIOLOGY 2018; 12:41. [PMID: 29745845 PMCID: PMC5998875 DOI: 10.1186/s12918-018-0567-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background WD40 repeat proteins constitute one of the largest families in eukaryotes, and widely participate in various fundamental cellular processes by interacting with other molecules. Based on individual WD40 proteins, previous work has demonstrated that their structural characteristics should confer great potential of interaction and complex formation, and has speculated that they may serve as hubs in the protein-protein interaction (PPI) network. However, what roles the whole family plays in organizing the PPI network, and whether this information can be utilized in complex prediction remain unclear. To address these issues, quantitative and systematic analyses of WD40 proteins from the perspective of PPI networks are highly required. Results In this work, we built two human PPI networks by using data sets with different confidence levels, and studied the network properties of the whole human WD40 protein family systematically. Our analyses have quantitatively confirmed that the human WD40 protein family, as a whole, tends to be hubs with an odds ratio of about 1.8 or greater, and the network decomposition has revealed that they are prone to enrich near the global center of the whole network with a fold change of two in the median k-values. By integrating expression profiles, we have further shown that WD40 hub proteins are inclined to be intramodular, which is indicative of complex assembling. Based on this information, we have further predicted 1674 potential WD40-associated complexes by choosing a clique-based method, which is more sensitive than others, and an indirect evaluation by co-expression scores has demonstrated its reliability. Conclusions At the systems level but not sporadic examples’ level, this work has provided rich knowledge for better understanding WD40 proteins’ roles in organizing the PPI network. These findings and predicted complexes can offer valuable clues for prioritizing candidates for further studies. Electronic supplementary material The online version of this article (10.1186/s12918-018-0567-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu-Dong Zou
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Ke An
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China. .,College of Chemistry, Peking University, Beijing, 100871, People's Republic of China.
| | - Zhi-Qiang Ye
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
118
|
Dix CL, Matthews HK, Uroz M, McLaren S, Wolf L, Heatley N, Win Z, Almada P, Henriques R, Boutros M, Trepat X, Baum B. The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Dev Cell 2018; 45:132-145.e3. [PMID: 29634933 DOI: 10.1016/j.devcel.2018.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/17/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022]
Abstract
Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.
Collapse
Affiliation(s)
- Christina L Dix
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Helen K Matthews
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Susannah McLaren
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Lucie Wolf
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Nicholas Heatley
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Zaw Win
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Pedro Almada
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Ricardo Henriques
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08028, Spain
| | - Buzz Baum
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
119
|
Mastrodonato V, Morelli E, Vaccari T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress 2018; 2:72-81. [PMID: 31225470 PMCID: PMC6551745 DOI: 10.15698/cst2018.04.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.
Collapse
Affiliation(s)
| | - Elena Morelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| |
Collapse
|
120
|
Mo Z, Zhao X, Liu H, Hu Q, Chen XQ, Pham J, Wei N, Liu Z, Zhou J, Burgess RW, Pfaff SL, Caskey CT, Wu C, Bai G, Yang XL. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun 2018. [PMID: 29520015 PMCID: PMC5843656 DOI: 10.1038/s41467-018-03461-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dominant mutations in glycyl-tRNA synthetase (GlyRS) cause a subtype of Charcot-Marie-Tooth neuropathy (CMT2D). Although previous studies have shown that GlyRS mutants aberrantly interact with Nrp1, giving insight into the disease’s specific effects on motor neurons, these cannot explain length-dependent axonal degeneration. Here, we report that GlyRS mutants interact aberrantly with HDAC6 and stimulate its deacetylase activity on α-tubulin. A decrease in α-tubulin acetylation and deficits in axonal transport are observed in mice peripheral nerves prior to disease onset. An HDAC6 inhibitor used to restore α-tubulin acetylation rescues axonal transport deficits and improves motor functions of CMT2D mice. These results link the aberrant GlyRS-HDAC6 interaction to CMT2D pathology and suggest HDAC6 as an effective therapeutic target. Moreover, the HDAC6 interaction differs from Nrp1 interaction among GlyRS mutants and correlates with divergent clinical presentations, indicating the existence of multiple and different mechanisms in CMT2D. Mutations in glycyl-tRNA synthetase (GlyRS) cause Charcot-Marie-Tooth disease, a neuromuscular disorder characterized by axonal degeneration. Here the authors show that mutant GlyRS interacts with histone deacetylase 6, resulting in increased deacetylation of α-tubulin and axonal transport deficits.
Collapse
Affiliation(s)
- Zhongying Mo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiaobei Zhao
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Huaqing Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Qinghua Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xu-Qiao Chen
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Jessica Pham
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ze Liu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiadong Zhou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Samuel L Pfaff
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Chengbiao Wu
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, 92093, USA.,Veterans Affairs San Diego Healthcare System, San Diego, 92161, CA, USA
| | - Ge Bai
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
121
|
Zang Y, Wang H, Cui Z, Jin M, Liu C, Han W, Wang Y, Cong Y. Development of a yeast internal-subunit eGFP labeling strategy and its application in subunit identification in eukaryotic group II chaperonin TRiC/CCT. Sci Rep 2018; 8:2374. [PMID: 29403048 PMCID: PMC5799240 DOI: 10.1038/s41598-017-18962-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/18/2017] [Indexed: 11/23/2022] Open
Abstract
Unambiguous subunit assignment in a multicomponent complex is critical for thorough understanding of the machinery and its functionality. The eukaryotic group II chaperonin TRiC/CCT folds approximately 10% of cytosolic proteins and is important for the maintenance of cellular homeostasis. TRiC consists of two rings and each ring has eight homologous but distinct subunits. Unambiguous subunit identification of a macromolecular machine such as TRiC through intermediate or low-resolution cryo-EM map remains challenging. Here we present a yeast internal-subunit eGFP labeling strategy termed YISEL, which can quickly introduce an eGFP tag in the internal position of a target subunit by homologous recombination, and the tag labeled protein can be expressed in endogenous level. Through this method, the labeling efficiency and tag-occupancy is ensured, and the inserted tag is usually less mobile compared to that fused to the terminus. It can also be used to bio-engineer other tag in the internal position of a protein in yeast. By applying our YISEL strategy and combined with cryo-EM 3D reconstruction, we unambiguously identified all the subunits in the cryo-EM map of TRiC, demonstrating the potential for broad application of this strategy in accurate and efficient subunit identification in other challenging complexes.
Collapse
Affiliation(s)
- Yunxiang Zang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huping Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhicheng Cui
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Han
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yanxing Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
122
|
Shi G, Wang Y, Zhang C, Zhao Z, Sun X, Zhang S, Fan J, Zhou C, Zhang J, Zhang H, Liu J. Identification of genes involved in the four stages of colorectal cancer: Gene expression profiling. Mol Cell Probes 2018; 37:39-47. [PMID: 29179987 DOI: 10.1016/j.mcp.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/09/2017] [Accepted: 11/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a common cancer with high morbidity and mortality. However, its molecular mechanism is not clear, nor the genes related to CRC stages. METHODS Gene expression data in CRC and healthy colorectal tissues were obtained from gene expression omnibus. Limma package was used to identify the differentially expressed genes (DEGs) between control and CRC (stage I, II, III, and IV), obtaining 4 DEG sets. VennPlex was utilized to find all DEGs and intersection DEGs. Functional interactions between all DEGs and protein-protein interactions (PPIs) between intersection DEGs were analyzed using ReactomeFIViz and STRING, respectively, and networks were visualized. Known CRC-related genes were down-loaded from Comparative Toxicogenomics Database and mapped to PPI network. RESULTS Totally, 851, 760, 729, and 878 DEGs were found between control and CRC stage I, II, III, and IV, respectively. Taken together, 1235 DEGs were found, as well as 128 up-regulated intersection DEGs, 365 down-regulated intersection DEGs, and 0 contra-regulated DEG. A functional interaction network of all DEGs and a PPI network of intersection DEGs were constructed, in which CDC20, PTTG1, and MAD2L1 interacted with BUB1B; UGT2B17 interacted with ADH1B; MCM7 interacted with MCM2. BUB1B, ADH1B, and MCM2 were known CRC-related genes. Gradually upregulated expressions of CDC20, PTTG1, MAD2L1, UGT2B17, and MCM7 in stage I, II, III, and IV CRC were confirmed by using quantitative PCR. Besides, up-regulated intersection DEGs enriched in pathways about Cell cycle, DNA replication, and p53 signaling. CONCLUSION CDC20, PTTG1, MAD2L1, UGT2B17, and MCM7 might be CRC stage-related genes.
Collapse
Affiliation(s)
- Guiling Shi
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Yijia Wang
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Chunze Zhang
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Zhenying Zhao
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China; School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Xiuying Sun
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Shiwu Zhang
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Jinling Fan
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Cunxia Zhou
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Jihong Zhang
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China
| | - Huijuan Zhang
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China.
| | - Jun Liu
- Tianjin Union Medical Center, 190 Jieyuan Road, Hongqiao District, Tianjin 300121, PR China.
| |
Collapse
|
123
|
Yagi N, Matsunaga S, Hashimoto T. Insights into cortical microtubule nucleation and dynamics in Arabidopsis leaf cells. J Cell Sci 2018; 131:jcs.203778. [PMID: 28615412 DOI: 10.1242/jcs.203778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Plant microtubules (MTs) are nucleated from the γ-tubulin-containing ring complex (γTuRC). In cortical MT arrays of interphase plant cells, γTuRC is preferentially recruited to the lattice of preexisting MTs, where it initiates MT nucleation in either a branch- or bundle-forming manner, or dissociates without mediating nucleation. In this study, we analyzed how γTuRCs influence MT nucleation and dynamics in cotyledon pavement cells of Arabidopsis thaliana We found that γTuRC nucleated MTs at angles of ∼40° toward the plus-ends of existing MTs, or in predominantly antiparallel bundles. A small fraction of γTuRCs was motile and tracked MT ends. When γTuRCs decorated the depolymerizing MT end, they reduced the depolymerization rate. Non-nucleating γTuRCs associated with the MT lattice promoted MT regrowth after a depolymerization phase. These results suggest that γTuRCs not only nucleate MT growth but also regulate MT dynamics by stabilizing MT ends. On rare occasions, a non-MT-associated γTuRC was pushed in the direction of the MT minus-end, while nucleating a new MT, suggesting that the polymerizing plus-end is anchored to the plasma membrane.
Collapse
Affiliation(s)
- Noriyoshi Yagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
124
|
Basak O, Krieger TG, Muraro MJ, Wiebrands K, Stange DE, Frias-Aldeguer J, Rivron NC, van de Wetering M, van Es JH, van Oudenaarden A, Simons BD, Clevers H. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci U S A 2018; 115:E610-E619. [PMID: 29311336 PMCID: PMC5789932 DOI: 10.1073/pnas.1715911114] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnfrsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Ki67iresCreER allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.
Collapse
Affiliation(s)
- Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Teresa G Krieger
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Mauro J Muraro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Kay Wiebrands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Daniel E Stange
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Javier Frias-Aldeguer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - Nicolas C Rivron
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229ER, Maastricht, The Netherlands
| | - Marc van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
- Princess Máxima Centre, 3584 CT, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom;
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands;
- Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands
- Princess Máxima Centre, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
125
|
A High-Resolution Proteomic Landscaping of Primary Human Dental Stem Cells: Identification of SHED- and PDLSC-Specific Biomarkers. Int J Mol Sci 2018; 19:ijms19010158. [PMID: 29304003 PMCID: PMC5796107 DOI: 10.3390/ijms19010158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/25/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways.
Collapse
|
126
|
Fan H, Lv P, Huo X, Wu J, Wang Q, Cheng L, Liu Y, Tang QQ, Zhang L, Zhang F, Zheng X, Wu H, Wen B. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res 2017; 28:192-202. [PMID: 29273625 PMCID: PMC5793783 DOI: 10.1101/gr.224576.117] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022]
Abstract
Eukaryotic chromosomes are folded into higher-order conformations to coordinate genome functions. In addition to long-range chromatin loops, recent chromosome conformation capture (3C)-based studies have indicated higher levels of chromatin structures including compartments and topologically associating domains (TADs), which may serve as units of genome organization and functions. However, the molecular machinery underlying these hierarchically three-dimensional (3D) chromatin architectures remains poorly understood. Via high-throughput assays, including in situ Hi-C, DamID, ChIP-seq, and RNA-seq, we investigated roles of the Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), a nuclear matrix (NM)-associated protein, in 3D genome organization. Upon the depletion of HNRNPU in mouse hepatocytes, the coverage of lamina-associated domains (LADs) in the genome increases from 53.1% to 68.6%, and a global condensation of chromatin was observed. Furthermore, disruption of HNRNPU leads to compartment switching on 7.5% of the genome, decreases TAD boundary strengths at borders between A (active) and B (inactive) compartments, and reduces chromatin loop intensities. Long-range chromatin interactions between and within compartments or TADs are also significantly remodeled upon HNRNPU depletion. Intriguingly, HNRNPU mainly associates with active chromatin, and 80% of HNRNPU peaks coincide with the binding of CTCF or RAD21. Collectively, we demonstrated that HNRNPU functions as a major factor maintaining 3D chromatin architecture, suggesting important roles of NM-associated proteins in genome organization.
Collapse
Affiliation(s)
- Hui Fan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pin Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiangru Huo
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jicheng Wu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Lu Cheng
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Qi-Qun Tang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Bo Wen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Institutes of Biomedical Sciences, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
127
|
Rale MJ, Kadzik RS, Petry S. Phase Transitioning the Centrosome into a Microtubule Nucleator. Biochemistry 2017; 57:30-37. [PMID: 29256606 DOI: 10.1021/acs.biochem.7b01064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Centrosomes are self-assembling, micron-scale, nonmembrane bound organelles that nucleate microtubules (MTs) and organize the microtubule cytoskeleton of the cell. They orchestrate critical cellular processes such as ciliary-based motility, vesicle trafficking, and cell division. Much is known about the role of the centrosome in these contexts, but we have a less comprehensive understanding of how the centrosome assembles and generates microtubules. Studies over the past 10 years have fundamentally shifted our view of these processes. Subdiffraction imaging has probed the amorphous haze of material surrounding the core of the centrosome revealing a complex, hierarchically organized structure whose composition and size changes profoundly during the transition from interphase to mitosis. New biophysical insights into protein phase transitions, where a diffuse protein spontaneously separates into a locally concentrated, nonmembrane bounded compartment, have provided a fresh perspective into how the centrosome might rapidly condense from diffuse cytoplasmic components. In this Perspective, we focus on recent findings that identify several centrosomal proteins that undergo phase transitions. We discuss how to reconcile these results with the current model of the underlying organization of proteins in the centrosome. Furthermore, we reflect on how these findings impact our understanding of how the centrosome undergoes self-assembly and promotes MT nucleation.
Collapse
Affiliation(s)
- Michael J Rale
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Rachel S Kadzik
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | - Sabine Petry
- Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
128
|
EB1-binding-myomegalin protein complex promotes centrosomal microtubules functions. Proc Natl Acad Sci U S A 2017; 114:E10687-E10696. [PMID: 29162697 DOI: 10.1073/pnas.1705682114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Control of microtubule dynamics underlies several fundamental processes such as cell polarity, cell division, and cell motility. To gain insights into the mechanisms that control microtubule dynamics during cell motility, we investigated the interactome of the microtubule plus-end-binding protein end-binding 1 (EB1). Via molecular mapping and cross-linking mass spectrometry we identified and characterized a large complex associating a specific isoform of myomegalin termed "SMYLE" (for short myomegalin-like EB1 binding protein), the PKA scaffolding protein AKAP9, and the pericentrosomal protein CDK5RAP2. SMYLE was associated through an evolutionarily conserved N-terminal domain with AKAP9, which in turn was anchored at the centrosome via CDK5RAP2. SMYLE connected the pericentrosomal complex to the microtubule-nucleating complex (γ-TuRC) via Galectin-3-binding protein. SMYLE associated with nascent centrosomal microtubules to promote microtubule assembly and acetylation. Disruption of SMYLE interaction with EB1 or AKAP9 prevented microtubule nucleation and their stabilization at the leading edge of migrating cells. In addition, SMYLE depletion led to defective astral microtubules and abnormal orientation of the mitotic spindle and triggered G1 cell-cycle arrest, which might be due to defective centrosome integrity. As a consequence, SMYLE loss of function had a profound impact on tumor cell motility and proliferation, suggesting that SMYLE might be an important player in tumor progression.
Collapse
|
129
|
Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, Müller DJ. Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nat Commun 2017; 8:1266. [PMID: 29097687 PMCID: PMC5668354 DOI: 10.1038/s41467-017-01147-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023] Open
Abstract
To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson's disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape.
Collapse
Affiliation(s)
- Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,Division of Cell Biology, Life Science Institute, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka, 839-0864, Japan
| | - Cedric J Cattin
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin P Stewart
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139-4307, USA.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139-4307, USA
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Mirko Theis
- UCC, Medical System biology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Am Tatzberg 47/49, 01307, Dresden, Germany
| | - Teymuras V Kurzchalia
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.,UCC, Medical System biology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Am Tatzberg 47/49, 01307, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
130
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
131
|
Microtubins: a novel class of small synthetic microtubule targeting drugs that inhibit cancer cell proliferation. Oncotarget 2017; 8:104007-104021. [PMID: 29262617 PMCID: PMC5732783 DOI: 10.18632/oncotarget.21945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/16/2017] [Indexed: 11/25/2022] Open
Abstract
Microtubule targeting drugs like taxanes, vinca alkaloids, and epothilones are widely-used and effective chemotherapeutic agents that target the dynamic instability of microtubules and inhibit spindle functioning. However, these drugs have limitations associated with their production, solubility, efficacy and unwanted toxicities, thus driving the need to identify novel antimitotic drugs that can be used as anticancer agents. We have discovered and characterized the Microtubins (Microtubule inhibitors), a novel class of small synthetic compounds, which target tubulin to inhibit microtubule polymerization, arrest cancer cells predominantly in mitosis, activate the spindle assembly checkpoint and trigger an apoptotic cell death. Importantly, the Microtubins do not compete for the known vinca or colchicine binding sites. Additionally, through chemical synthesis and structure-activity relationship studies, we have determined that specific modifications to the Microtubin phenyl ring can activate or inhibit its bioactivity. Combined, these data define the Microtubins as a novel class of compounds that inhibit cancer cell proliferation by perturbing microtubule polymerization and they could be used to develop novel cancer therapeutics.
Collapse
|
132
|
Connell M, Chen H, Jiang J, Kuan CW, Fotovati A, Chu TLH, He Z, Lengyell TC, Li H, Kroll T, Li AM, Goldowitz D, Frappart L, Ploubidou A, Patel MS, Pilarski LM, Simpson EM, Lange PF, Allan DW, Maxwell CA. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. eLife 2017; 6:e28672. [PMID: 28994651 PMCID: PMC5681225 DOI: 10.7554/elife.28672] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.
Collapse
Affiliation(s)
- Marisa Connell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Helen Chen
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Jihong Jiang
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Chia-Wei Kuan
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
| | - Abbas Fotovati
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tony LH Chu
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Zhengcheng He
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tess C Lengyell
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Huaibiao Li
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Torsten Kroll
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Amanda M Li
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Lucien Frappart
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Aspasia Ploubidou
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Millan S Patel
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Linda M Pilarski
- Cross Cancer Institute, Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Philipp F Lange
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| | - Douglas W Allan
- Department of Cellular and Physiological SciencesLife Sciences Centre, University of British ColumbiaVancouverCanada
| | - Christopher A Maxwell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| |
Collapse
|
133
|
Harikumar A, Edupuganti RR, Sorek M, Azad GK, Markoulaki S, Sehnalová P, Legartová S, Bártová E, Farkash-Amar S, Jaenisch R, Alon U, Meshorer E. An Endogenously Tagged Fluorescent Fusion Protein Library in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 9:1304-1314. [PMID: 28966122 PMCID: PMC5639459 DOI: 10.1016/j.stemcr.2017.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023] Open
Abstract
Embryonic stem cells (ESCs), with their dual capacity to self-renew and differentiate, are commonly used to study differentiation, epigenetic regulation, lineage choices, and more. Using non-directed retroviral integration of a YFP/Cherry exon into mouse ESCs, we generated a library of over 200 endogenously tagged fluorescent fusion proteins and present several proof-of-concept applications of this library. We show the utility of this library to track proteins in living cells; screen for pluripotency-related factors; identify heterogeneously expressing proteins; measure the dynamics of endogenously labeled proteins; track proteins recruited to sites of DNA damage; pull down tagged fluorescent fusion proteins using anti-Cherry antibodies; and test for interaction partners. Thus, this library can be used in a variety of different directions, either exploiting the fluorescent tag for imaging-based techniques or utilizing the fluorescent fusion protein for biochemical pull-down assays, including immunoprecipitation, co-immunoprecipitation, chromatin immunoprecipitation, and more.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Raghu Ram Edupuganti
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Matan Sorek
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gajendra Kumar Azad
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Petra Sehnalová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Shlomit Farkash-Amar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
134
|
Schellenberg MJ, Lieberman JA, Herrero-Ruiz A, Butler LR, Williams JG, Muñoz-Cabello AM, Mueller GA, London RE, Cortés-Ledesma F, Williams RS. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links. Science 2017; 357:1412-1416. [PMID: 28912134 DOI: 10.1126/science.aam6468] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc.
Collapse
Affiliation(s)
- Matthew J Schellenberg
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jenna Ariel Lieberman
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Logan R Butler
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jason G Williams
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ana M Muñoz-Cabello
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC-Universidad de Sevilla Universidad Pablo de Olavide, 41092 Sevilla, Spain.
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA.
| |
Collapse
|
135
|
Mills CA, Suzuki A, Arceci A, Mo JY, Duncan A, Salmon ED, Emanuele MJ. Nucleolar and spindle-associated protein 1 (NUSAP1) interacts with a SUMO E3 ligase complex during chromosome segregation. J Biol Chem 2017; 292:17178-17189. [PMID: 28900032 DOI: 10.1074/jbc.m117.796045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Indexed: 01/10/2023] Open
Abstract
The mitotic spindle is composed of dynamic microtubules and associated proteins that together direct chromosome movement during mitosis. The spindle plays a vital role in accurate chromosome segregation fidelity and is a therapeutic target in cancer. Nevertheless, the molecular mechanisms by which many spindle-associated proteins function remains unknown. The nucleolar and spindle-associated protein NUSAP1 is a microtubule-binding protein implicated in spindle stability and chromosome segregation. We show here that NUSAP1 localizes to dynamic spindle microtubules in a unique chromosome-centric pattern, in the vicinity of overlapping microtubules, during metaphase and anaphase of mitosis. Mass spectrometry-based analysis of endogenous NUSAP1 interacting proteins uncovered a cell cycle-regulated interaction between the RanBP2-RanGAP1-UBC9 SUMO E3 ligase complex and NUSAP1. Like NUSAP1 depletion, RanBP2 depletion impaired the response of cells to the microtubule poison Taxol. NUSAP1 contains a conserved SAP domain (SAF-A/B, Acinus, and PIAS). SAP domains are common among many other SUMO E3s, and are implicated in substrate recognition and ligase activity. We speculate that NUSAP1 contributes to accurate chromosome segregation by acting as a co-factor for RanBP2-RanGAP1-UBC9 during cell division.
Collapse
Affiliation(s)
- Christine A Mills
- From the Lineberger Comprehensive Cancer Center.,Departments of Pharmacology and
| | | | - Anthony Arceci
- From the Lineberger Comprehensive Cancer Center.,Curriculum in Genetics and Molecular Biology, and
| | - Jin Yao Mo
- Department of Medicine and Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alex Duncan
- From the Lineberger Comprehensive Cancer Center.,Department of Medicine and Division of Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | | | - Michael J Emanuele
- From the Lineberger Comprehensive Cancer Center, .,Departments of Pharmacology and.,Curriculum in Genetics and Molecular Biology, and
| |
Collapse
|
136
|
Üretmen Kagıalı ZC, Şentürk A, Özkan Küçük NE, Qureshi MH, Özlü N. Proteomics in Cell Division. Proteomics 2017; 17. [PMID: 28548456 DOI: 10.1002/pmic.201600100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Cell division requires a coordinated action of the cell cycle machinery, cytoskeletal elements, chromosomes, and membranes. Cell division studies have greatly benefitted from the mass spectrometry (MS)-based proteomic approaches for probing the biochemistry of highly dynamic complexes and their coordination with each other as a cell progresses into division. In this review, the authors first summarize a wide-range of proteomic studies that focus on the identification of sub-cellular components/protein complexes of the cell division machinery including kinetochores, mitotic spindle, midzone, and centrosomes. The authors also highlight MS-based large-scale analyses of the cellular components that are largely understudied during cell division such as the cell surface and lipids. Then, the authors focus on posttranslational modification analyses, especially phosphorylation and the resulting crosstalk with other modifications as a cell undergoes cell division. Combining proteomic approaches that probe the biochemistry of cell division components with functional genomic assays will lead to breakthroughs toward a systems-level understanding of cell division.
Collapse
Affiliation(s)
| | - Aydanur Şentürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Mohammad Haroon Qureshi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Biomedical Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
137
|
Prior R, Van Helleputte L, Benoy V, Van Den Bosch L. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies. Neurobiol Dis 2017; 105:300-320. [DOI: 10.1016/j.nbd.2017.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/29/2017] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
|
138
|
Starnawska A, Hansen CS, Sparsø T, Mazin W, Olsen L, Bertalan M, Buil A, Bybjerg-Grauholm J, Bækvad-Hansen M, Hougaard DM, Mortensen PB, Pedersen CB, Nyegaard M, Werge T, Weinsheimer S. Differential DNA methylation at birth associated with mental disorder in individuals with 22q11.2 deletion syndrome. Transl Psychiatry 2017; 7:e1221. [PMID: 28850114 PMCID: PMC5611746 DOI: 10.1038/tp.2017.181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/03/2017] [Accepted: 06/07/2017] [Indexed: 12/11/2022] Open
Abstract
Individuals with 22q11.2 deletion syndrome (DS) have an increased risk of comorbid mental disorders including schizophrenia, attention deficit hyperactivity disorder, depression, as well as intellectual disability. Although most 22q11.2 deletion carriers have the long 3-Mb form of the hemizygous deletion, there remains a large variation in the development and progression of psychiatric disorders, which suggests that alternative factors contribute to the pathogenesis. In this study we investigated whether neonatal DNA methylation signatures in individuals with the 22q11.2 deletion associate with mental disorder later in life. DNA methylation was measured genome-wide from neonatal dried blood spots in a cohort of 164 individuals with 22q11.2DS, including 48 individuals diagnosed with a psychiatric disorder. Among several CpG sites with P-value<10-6, we identified cg23546855 (P-value=2.15 × 10-7) mapping to STK32C to be associated with a later psychiatric diagnosis. Pathway analysis of the top findings resulted in the identification of several Gene Ontology pathways to be significantly enriched (P-value<0.05 after Benjamini-Hochberg correction); among them are the following: neurogenesis, neuron development, neuron projection development, astrocyte development, axonogenesis and axon guidance. In addition, we identified differentially methylated CpG sites in LRP2BP (P-value=5.37 × 10-8) to be associated with intellectual disability (F70-79), in TOP1 (P-value=1.86 × 10-7) with behavioral disorders (F90-98), in NOSIP (P-value=5.12 × 10-8) with disorders of psychological development (F80-89) and in SEMA4B (P-value=4.02 × 10-7) with schizophrenia spectrum disorders (F20-29). In conclusion, our study suggests an association of DNA methylation differences at birth with development of mental disorder later in life in 22q11.2DS individuals.
Collapse
Affiliation(s)
- A Starnawska
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - C S Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Section of Neonatal Genetics, Department for Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - T Sparsø
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center, Sct. Hans, Mental Health Services, Roskilde, Denmark
| | - W Mazin
- Pediatric Oncology Research Laboratory, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - L Olsen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center, Sct. Hans, Mental Health Services, Roskilde, Denmark
| | - M Bertalan
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center, Sct. Hans, Mental Health Services, Roskilde, Denmark
| | - A Buil
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center, Sct. Hans, Mental Health Services, Roskilde, Denmark
| | - J Bybjerg-Grauholm
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Section of Neonatal Genetics, Department for Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - M Bækvad-Hansen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Section of Neonatal Genetics, Department for Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - D M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Section of Neonatal Genetics, Department for Congenital Disorders, Danish Centre for Neonatal Screening, Statens Serum Institute, Copenhagen, Denmark
| | - P B Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - C B Pedersen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
| | - M Nyegaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Center for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - T Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center, Sct. Hans, Mental Health Services, Roskilde, Denmark
- Institute of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Weinsheimer
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center, Sct. Hans, Mental Health Services, Roskilde, Denmark
| |
Collapse
|
139
|
Zhou Y, Hu W, Chen P, Abe M, Shi L, Tan SY, Li Y, Zong L. Ki67 is a biological marker of malignant risk of gastrointestinal stromal tumors: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e7911. [PMID: 28834915 PMCID: PMC5572037 DOI: 10.1097/md.0000000000007911] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ki67 is a good marker of cell proliferation in a variety of tumors. High ki67 levels are usually associated with poor prognosis. However, the relationship between Ki67 expression and the risk of malignancy of gastrointestinal stromal tumors (GISTs) is still poorly defined. The current meta-analysis was initiated to address this issue. METHODS Studies reporting Ki67 expression and the risk of malignancy in GIST were found by searching Cochrane Library, PubMed, Medline, and Embase until October 31, 2016. A total of 9 studies involving 982 patients were included. Pooled odds ratio (OR) estimates and 95% confidence intervals (CIs) were calculated using a fixed-effect model. RESULTS Meta-analysis showed no significant difference in the incidence of Ki67 overexpression between the very low NIH group and the low NIH group (OR: 0.66, 95% CI: 0.25-1.76; P = .41, Pheterogeneity = .25). However, the incidence of Ki67 overexpression gradually increased from the low NIH group to the high NIH group (OR: 0.46, 95% CI: 0.27-0.80; P = .005, Pheterogeneity = .13) and (OR: 0.22, 95% CI: 0.15-0.34; P < .00001, Pheterogeneity = .33). CONCLUSIONS There were more GIST patients with Ki67 overexpression in the intermediate and high NIH groups than in the low NIH group. Ki67 overexpression may be a useful marker of the risk of malignant GIST transformation.
Collapse
Affiliation(s)
- Yu Zhou
- Department of General Surgery, Suzhou Municipal Hospital (North Campus), Suzhou, Jiangsu Province, China
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (the Northern Jiangsu People's Hospital), Yangzhou, Jiangsu Province, China
| | - Wenqing Hu
- Department of Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Ping Chen
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (the Northern Jiangsu People's Hospital), Yangzhou, Jiangsu Province, China
| | - Masanobu Abe
- Division for Health Service Promotion, University of Tokyo, Tokyo, Japan
| | - Lei Shi
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (the Northern Jiangsu People's Hospital), Yangzhou, Jiangsu Province, China
| | - Si-yuan Tan
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (the Northern Jiangsu People's Hospital), Yangzhou, Jiangsu Province, China
| | - Yong Li
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (the Northern Jiangsu People's Hospital), Yangzhou, Jiangsu Province, China
| | - Liang Zong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (the Northern Jiangsu People's Hospital), Yangzhou, Jiangsu Province, China
- Department of Gastrointestinal Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
140
|
Fal K, Asnacios A, Chabouté ME, Hamant O. Nuclear envelope: a new frontier in plant mechanosensing? Biophys Rev 2017; 9:389-403. [PMID: 28801801 PMCID: PMC5578935 DOI: 10.1007/s12551-017-0302-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
In animals, it is now well established that forces applied at the cell surface are propagated through the cytoskeleton to the nucleus, leading to deformations of the nuclear structure and, potentially, to modification of gene expression. Consistently, altered nuclear mechanics has been related to many genetic disorders, such as muscular dystrophy, cardiomyopathy and progeria. In plants, the integration of mechanical signals in cell and developmental biology has also made great progress. Yet, while the link between cell wall stresses and cytoskeleton is consolidated, such cortical mechanical cues have not been integrated with the nucleoskeleton. Here, we propose to take inspiration from studies on animal nuclei to identify relevant methods amenable to probing nucleus mechanics and deformation in plant cells, with a focus on microrheology. To identify potential molecular targets, we also compare the players at the nuclear envelope, namely lamina and LINC complex, in both plant and animal nuclei. Understanding how mechanical signals are transduced to the nucleus across kingdoms will likely have essential implications in development (e.g. how mechanical cues add robustness to gene expression patterns), in the nucleoskeleton-cytoskeleton nexus (e.g. how stress is propagated in turgid/walled cells), as well as in transcriptional control, chromatin biology and epigenetics.
Collapse
Affiliation(s)
- Kateryna Fal
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France
| | - Atef Asnacios
- Laboratoire Matières et Systèmes Complexes, Université Paris-Diderot and CNRS, UMR 7057, Sorbonne Paris Cité, Paris, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342, Lyon, France.
| |
Collapse
|
141
|
Zhang Y, Sun H, Zhang J, Brasier AR, Zhao Y. Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification-Mass Spectrometry-based Protein-Protein Interaction Analysis. J Proteome Res 2017; 16:3068-3082. [PMID: 28726418 DOI: 10.1021/acs.jproteome.7b00432] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Affinity purification-mass spectrometry (AP-MS) has become the method of choice for discovering protein-protein interactions (PPIs) under native conditions. The success of AP-MS depends on the efficiency of trypsin digestion and the recovery of the tryptic peptides for MS analysis. Several different protocols have been used for trypsin digestion of protein complexes in AP-MS studies, but no systematic studies have been conducted on the impact of trypsin digestion conditions on the identification of PPIs. Here, we used NFκB/RelA and Bromodomain-containing protein 4 (BRD4) as baits and test five distinct trypsin digestion methods (two using "on-beads," three using "elution-digestion" protocols). Although the performance of the trypsin digestion protocols change slightly depending on the different baits, antibodies and cell lines used, we found that elution-digestion methods consistently outperformed on-beads digestion methods. The high-abundance interactors can be identified universally by all five methods, but the identification of low-abundance RelA interactors is significantly affected by the choice of trypsin digestion method. We also found that different digestion protocols influence the selected reaction monitoring (SRM)-MS quantification of PPIs, suggesting that optimization of trypsin digestion conditions may be required for robust targeted analysis of PPIs.
Collapse
Affiliation(s)
- Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Jing Zhang
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch (UTMB) , Galveston, Texas 77555, United States.,Institute for Translational Sciences, UTMB , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, UTMB , Galveston, Texas 77555, United States
| |
Collapse
|
142
|
Chen JV, Buchwalter RA, Kao LR, Megraw TL. A Splice Variant of Centrosomin Converts Mitochondria to Microtubule-Organizing Centers. Curr Biol 2017; 27:1928-1940.e6. [PMID: 28669756 DOI: 10.1016/j.cub.2017.05.090] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
Abstract
Non-centrosomal microtubule organizing centers (MTOCs) direct microtubule (MT) organization to exert diverse cell-type-specific functions. In Drosophila spermatids, the giant mitochondria provide structural platforms for MT reorganization to support elongation of the extremely long sperm. However, the molecular basis for this mitochondrial MTOC and other non-centrosomal MTOCs has not been discerned. Here we report that Drosophila centrosomin (cnn) expresses two major protein variants: the centrosomal form (CnnC) and a non-centrosomal form in testes (CnnT). CnnC is established as essential for functional centrosomes, the major MTOCs in animal cells. We show that CnnT is expressed exclusively in testes by alternative splicing and localizes to giant mitochondria in spermatids. In cell culture, CnnT targets to the mitochondrial surface, recruits the MT nucleator γ-tubulin ring complex (γ-TuRC), and is sufficient to convert mitochondria to MTOCs independent of core pericentriolar proteins that regulate MT assembly at centrosomes. We mapped two separate domains in CnnT: one that is necessary and sufficient to target it to mitochondria and another that is necessary and sufficient to recruit γ-TuRCs and nucleate MTs. In elongating spermatids, CnnT forms speckles on the giant mitochondria that are required to recruit γ-TuRCs to organize MTs and support spermiogenesis. This molecular characterization of the mitochondrial MTOC defines a minimal molecular requirement for MTOC generation and implicates the potent role of Cnn (or its related) proteins in the direct regulation of MT assembly and organization of non-centrosomal MTOCs.
Collapse
Affiliation(s)
- Jieyan V Chen
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| | - Rebecca A Buchwalter
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Ling-Rong Kao
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
143
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
144
|
Fischer-Friedrich E, Toyoda Y, Cattin CJ, Müller DJ, Hyman AA, Jülicher F. Rheology of the Active Cell Cortex in Mitosis. Biophys J 2017; 111:589-600. [PMID: 27508442 DOI: 10.1016/j.bpj.2016.06.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
The cell cortex is a key structure for the regulation of cell shape and tissue organization. To reach a better understanding of the mechanics and dynamics of the cortex, we study here HeLa cells in mitosis as a simple model system. In our assay, single rounded cells are dynamically compressed between two parallel plates. Our measurements indicate that the cortical layer is the dominant mechanical element in mitosis as opposed to the cytoplasmic interior. To characterize the time-dependent rheological response, we extract a complex elastic modulus that characterizes the resistance of the cortex against area dilation. In this way, we present a rheological characterization of the cortical actomyosin network in the linear regime. Furthermore, we investigate the influence of actin cross linkers and the impact of active prestress on rheological behavior. Notably, we find that cell mechanics values in mitosis are captured by a simple rheological model characterized by a single timescale on the order of 10 s, which marks the onset of fluidity in the system.
Collapse
Affiliation(s)
- Elisabeth Fischer-Friedrich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Institute of Life Science, Kurume University, Kurume, Japan
| | - Cedric J Cattin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
| |
Collapse
|
145
|
Cloutier P, Poitras C, Durand M, Hekmat O, Fiola-Masson É, Bouchard A, Faubert D, Chabot B, Coulombe B. R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat Commun 2017; 8:15615. [PMID: 28561026 PMCID: PMC5460035 DOI: 10.1038/ncomms15615] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
The R2TP/Prefoldin-like (R2TP/PFDL) complex has emerged as a cochaperone complex involved in the assembly of a number of critical protein complexes including snoRNPs, nuclear RNA polymerases and PIKK-containing complexes. Here we report on the use of multiple target affinity purification coupled to mass spectrometry to identify two additional complexes that interact with R2TP/PFDL: the TSC1–TSC2 complex and the U5 small nuclear ribonucleoprotein (snRNP). The interaction between R2TP/PFDL and the U5 snRNP is mostly mediated by the previously uncharacterized factor ZNHIT2. A more general function for the zinc-finger HIT domain in binding RUVBL2 is exposed. Disruption of ZNHIT2 and RUVBL2 expression impacts the protein composition of the U5 snRNP suggesting a function for these proteins in promoting the assembly of the ribonucleoprotein. A possible implication of R2TP/PFDL as a major effector of stress-, energy- and nutrient-sensing pathways that regulate anabolic processes through the regulation of its chaperoning activity is discussed. The R2TP/Prefoldin-like cochaperone complex is involved in the assembly of a number of protein complexes. Here the authors provide evidence that RUVBL1/RUVBL2, subunits of that cochaperone complex, directly interact with ZNHIT2 to regulate assembly of U5 small ribonucleoprotein.
Collapse
Affiliation(s)
- Philippe Cloutier
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Mathieu Durand
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Omid Hekmat
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Émilie Fiola-Masson
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Annie Bouchard
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Denis Faubert
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7
| | - Benoit Chabot
- Laboratory of Functional Genomics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8.,Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1E 4K8
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, Canada H2W 1R7.,Département de Biochimie, Université de Montréal, Montreal, Quebec, Canada H3T 1J4
| |
Collapse
|
146
|
Batzenschlager M, Schmit AC, Herzog E, Fuchs J, Schubert V, Houlné G, Chabouté ME. MGO3 and GIP1 act synergistically for the maintenance of centromeric cohesion. Nucleus 2017; 8:98-105. [PMID: 28033038 DOI: 10.1080/19491034.2016.1276142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The control of genomic maintenance during S phase is crucial in eukaryotes. It involves the establishment of sister chromatid cohesion, ensuring faithful chromosome segregation, as well as proper DNA replication and repair to preserve genetic information. In animals, nuclear periphery proteins - including inner nuclear membrane proteins and nuclear pore-associated components - are key factors which regulate DNA integrity. Corresponding functional homologues are not so well known in plants which may have developed specific mechanisms due to their sessile life. We have already characterized the Gamma-tubulin Complex Protein 3-interacting proteins (GIPs) as essential regulators of centromeric cohesion at the nuclear periphery. GIPs were also shown to interact with TSA1, first described as a partner of the epigenetic regulator MGOUN3 (MGO3)/BRUSHY1 (BRU1)/TONSOKU (TSK) involved in genomic maintenance. Here, using genetic analyses, we show that the mgo3gip1 mutants display an impaired and pleiotropic development including fasciation. We also provide evidence for the contribution of both MGO3 and GIP1 to the regulation of centromeric cohesion in Arabidopsis.
Collapse
Affiliation(s)
- Morgane Batzenschlager
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Anne-Catherine Schmit
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Etienne Herzog
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Joerg Fuchs
- b Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben , Stadt Seeland , Germany
| | - Veit Schubert
- b Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben , Stadt Seeland , Germany
| | - Guy Houlné
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| | - Marie-Edith Chabouté
- a Institut de Biologie Moléculaire des Plantes, CNRS , Université de Strasbourg , Strasbourg , France
| |
Collapse
|
147
|
Zhang H, Li S, Liu P, Lee FHF, Wong AHC, Liu F. Proteomic analysis of the cullin 4B interactome using proximity-dependent biotinylation in living cells. Proteomics 2017; 17. [PMID: 28225217 DOI: 10.1002/pmic.201600163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
Abstract
Cullin 4B (CUL4B) mutations have been implicated in mental retardation and dopamine-related behaviors due to disruptions in their interaction with cullin-RING E3 ligases (CRLs). Thus, further identification of CUL4B substrates can increase the knowledge of protein homeostasis and illuminate the role of CUL4B in neuropsychiatric disease. However, the transient nature of the coupling between CUL4B and its substrates is difficult to detect in vivo using current approaches, thus hampers efforts to investigate functions of CRLs within unperturbed living systems. In this study, we sought to discover CUL4B interactants with or without dopamine stimulation. BirA (118G) proximity-dependent biotin labeling combined with LC-MS was employed to biotinylate and identify transient and weak interactants of CUL4B. After purification with streptavidin beads and identified by LC-MS, a total of 150 biotinylated proteins were identified at baseline condition, 53 of which are well-known CUL4B interactants. After dopamine stimulation, 29 proteins disappeared and were replaced by 21 different protein interactants. The altered CUL4B interactants suggest that CUL4B regulates protein turnover and homeostasis in response to dopamine stimulation. Our results demonstrate the potential of this approach to identify novel CUL4B-related molecules in respond to cellular stimuli, which may be applied to other types of signaling pathways.
Collapse
Affiliation(s)
- Hailong Zhang
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shupeng Li
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pingting Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Frankie H F Lee
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Albert H C Wong
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
148
|
McKinley KL, Cheeseman IM. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. Dev Cell 2017; 40:405-420.e2. [PMID: 28216383 DOI: 10.1016/j.devcel.2017.01.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/23/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Abstract
Defining the genes that are essential for cellular proliferation is critical for understanding organismal development and identifying high-value targets for disease therapies. However, the requirements for cell-cycle progression in human cells remain incompletely understood. To elucidate the consequences of acute and chronic elimination of cell-cycle proteins, we generated and characterized inducible CRISPR/Cas9 knockout human cell lines targeting 209 genes involved in diverse cell-cycle processes. We performed single-cell microscopic analyses to systematically establish the effects of the knockouts on subcellular architecture. To define variations in cell-cycle requirements between cultured cell lines, we generated knockouts across cell lines of diverse origins. We demonstrate that p53 modulates the phenotype of specific cell-cycle defects through distinct mechanisms, depending on the defect. This work provides a resource to broadly facilitate robust and long-term depletion of cell-cycle proteins and reveals insights into the requirements for cell-cycle progression.
Collapse
Affiliation(s)
- Kara L McKinley
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
149
|
Abstract
The mitotic spindle has a crucial role in ensuring the accurate segregation of chromosomes into the two daughter cells during cell division, which is paramount for maintaining genome integrity. It is a self-organized and dynamic macromolecular structure that is constructed from microtubules, microtubule-associated proteins and motor proteins. Thirty years of research have led to the identification of centrosome-, chromatin- and microtubule-mediated microtubule nucleation pathways that each contribute to mitotic spindle assembly. Far from being redundant pathways, data are now emerging regarding how they function together to ensure the timely completion of mitosis. We are also beginning to comprehend the multiple mechanisms by which cells regulate spindle scaling. Together, this research has increased our understanding of how cells coordinate hundreds of proteins to assemble the dynamic, precise and robust structure that is the mitotic spindle.
Collapse
|
150
|
Yamada M, Goshima G. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. BIOLOGY 2017; 6:biology6010006. [PMID: 28125061 PMCID: PMC5371999 DOI: 10.3390/biology6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
Abstract
In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles.
Collapse
Affiliation(s)
- Moé Yamada
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|