101
|
Lees JA, Croucher NJ, Goldblatt D, Nosten F, Parkhill J, Turner C, Turner P, Bentley SD. Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. eLife 2017; 6:e26255. [PMID: 28742023 PMCID: PMC5576492 DOI: 10.7554/elife.26255] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023] Open
Abstract
Streptococcus pneumoniae is a leading cause of invasive disease in infants, especially in low-income settings. Asymptomatic carriage in the nasopharynx is a prerequisite for disease, but variability in its duration is currently only understood at the serotype level. Here we developed a model to calculate the duration of carriage episodes from longitudinal swab data, and combined these results with whole genome sequence data. We estimated that pneumococcal genomic variation accounted for 63% of the phenotype variation, whereas the host traits considered here (age and previous carriage) accounted for less than 5%. We further partitioned this heritability into both lineage and locus effects, and quantified the amount attributable to the largest sources of variation in carriage duration: serotype (17%), drug-resistance (9%) and other significant locus effects (7%). A pan-genome-wide association study identified prophage sequences as being associated with decreased carriage duration independent of serotype, potentially by disruption of the competence mechanism. These findings support theoretical models of pneumococcal competition and antibiotic resistance.
Collapse
Affiliation(s)
- John A Lees
- Infection GenomicsWellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | - Nicholas J Croucher
- Department of Infectious Disease EpidemiologySt. Mary’s Campus, Imperial College LondonLondonUnited Kingdom
| | - David Goldblatt
- Institute of Child HealthUniversity College LondonLondonUnited Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Julian Parkhill
- Infection GenomicsWellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | - Claudia Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Paul Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Stephen D Bentley
- Infection GenomicsWellcome Trust Sanger InstituteHinxtonUnited Kingdom
| |
Collapse
|
102
|
Blanquart F, Wymant C, Cornelissen M, Gall A, Bakker M, Bezemer D, Hall M, Hillebregt M, Ong SH, Albert J, Bannert N, Fellay J, Fransen K, Gourlay AJ, Grabowski MK, Gunsenheimer-Bartmeyer B, Günthard HF, Kivelä P, Kouyos R, Laeyendecker O, Liitsola K, Meyer L, Porter K, Ristola M, van Sighem A, Vanham G, Berkhout B, Kellam P, Reiss P, Fraser C. Viral genetic variation accounts for a third of variability in HIV-1 set-point viral load in Europe. PLoS Biol 2017; 15:e2001855. [PMID: 28604782 PMCID: PMC5467800 DOI: 10.1371/journal.pbio.2001855] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/09/2017] [Indexed: 12/20/2022] Open
Abstract
HIV-1 set-point viral load-the approximately stable value of viraemia in the first years of chronic infection-is a strong predictor of clinical outcome and is highly variable across infected individuals. To better understand HIV-1 pathogenesis and the evolution of the viral population, we must quantify the heritability of set-point viral load, which is the fraction of variation in this phenotype attributable to viral genetic variation. However, current estimates of heritability vary widely, from 6% to 59%. Here we used a dataset of 2,028 seroconverters infected between 1985 and 2013 from 5 European countries (Belgium, Switzerland, France, the Netherlands and the United Kingdom) and estimated the heritability of set-point viral load at 31% (CI 15%-43%). Specifically, heritability was measured using models of character evolution describing how viral load evolves on the phylogeny of whole-genome viral sequences. In contrast to previous studies, (i) we measured viral loads using standardized assays on a sample collected in a strict time window of 6 to 24 months after infection, from which the viral genome was also sequenced; (ii) we compared 2 models of character evolution, the classical "Brownian motion" model and another model ("Ornstein-Uhlenbeck") that includes stabilising selection on viral load; (iii) we controlled for covariates, including age and sex, which may inflate estimates of heritability; and (iv) we developed a goodness of fit test based on the correlation of viral loads in cherries of the phylogenetic tree, showing that both models of character evolution fit the data well. An overall heritability of 31% (CI 15%-43%) is consistent with other studies based on regression of viral load in donor-recipient pairs. Thus, about a third of variation in HIV-1 virulence is attributable to viral genetic variation.
Collapse
Affiliation(s)
- François Blanquart
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Chris Wymant
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
| | | | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Swee Hoe Ong
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Norbert Bannert
- Division for HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Katrien Fransen
- HIV/STI reference laboratory, WHO collaborating centre, Institute of Tropical Medicine, Department of Clinical Science, Antwerpen, Belgium
| | - Annabelle J. Gourlay
- Department of Infection and Population Health, University College London, London, United Kingdom
| | - M. Kate Grabowski
- Department of Epidemiology, John Hopkins University, Baltimore, Maryland, United States of America
| | | | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Pia Kivelä
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Oliver Laeyendecker
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Kirsi Liitsola
- Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Laurence Meyer
- INSERM CESP U1018, Université Paris Sud, Université Paris Saclay, APHP, Service de Santé Publique, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kholoud Porter
- Department of Infection and Population Health, University College London, London, United Kingdom
| | - Matti Ristola
- Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | | | - Guido Vanham
- Virology Unit, Immunovirology Research Pole, Biomedical Sciences Department, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Kellam
- Kymab Ltd, Cambridge, United Kingdom
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London, United Kingdom
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, the Netherlands
- Department of Global Health, Academic Medical Center, Amsterdam, the Netherlands
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
103
|
Bachmann N, Turk T, Kadelka C, Marzel A, Shilaih M, Böni J, Aubert V, Klimkait T, Leventhal GE, Günthard HF, Kouyos R. Parent-offspring regression to estimate the heritability of an HIV-1 trait in a realistic setup. Retrovirology 2017; 14:33. [PMID: 28535768 PMCID: PMC5442860 DOI: 10.1186/s12977-017-0356-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/15/2017] [Indexed: 12/01/2022] Open
Abstract
Background Parent-offspring (PO) regression is a central tool to determine the heritability of phenotypic traits; i.e., the relative extent to which those traits are controlled by genetic factors. The applicability of PO regression to viral traits is unclear because the direction of viral transmission—who is the donor (parent) and who is the recipient (offspring)—is typically unknown and viral phylogenies are sparsely sampled. Methods We assessed the applicability of PO regression in a realistic setting using Ornstein–Uhlenbeck simulated data on phylogenies built from 11,442 Swiss HIV Cohort Study (SHCS) partial pol sequences and set-point viral load (SPVL) data from 3293 patients. Results We found that the misidentification of donor and recipient plays a minor role in estimating heritability and showed that sparse sampling does not influence the mean heritability estimated by PO regression. A mixed-effect model approach yielded the same heritability as PO regression but could be extended to clusters of size greater than 2 and allowed for the correction of confounding effects. Finally, we used both methods to estimate SPVL heritability in the SHCS. We employed a wide range of transmission pair criteria to measure heritability and found a strong dependence of the heritability estimates to these criteria. For the most conservative genetic distance criteria, for which heritability estimates are conceptually expected to be closest to true heritability, we found estimates ranging from 32 to 46% across different bootstrap criteria. For less conservative distance criteria, we found estimates ranging down to 8%. All estimates did not change substantially after adjusting for host-demographic factors in the mixed-effect model (±2%). Conclusions For conservative transmission pair criteria, both PO regression and mixed-effect models are flexible and robust tools to estimate the contribution of viral genetic effects to viral traits under real-world settings. Overall, we find a strong effect of viral genetics on SPVL that is not confounded by host demographics. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0356-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadine Bachmann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland. .,Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| | - Teja Turk
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Claus Kadelka
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alex Marzel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Mohaned Shilaih
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Vincent Aubert
- Divisions of Immunology and Allergy, University Hospital Lausanne, Lausanne, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | - Gabriel E Leventhal
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, USA
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland. .,Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
104
|
Guzzo C, Ichikawa D, Park C, Phillips D, Liu Q, Zhang P, Kwon A, Miao H, Lu J, Rehm C, Arthos J, Cicala C, Cohen MS, Fauci AS, Kehrl JH, Lusso P. Virion incorporation of integrin α4β7 facilitates HIV-1 infection and intestinal homing. Sci Immunol 2017; 2:2/11/eaam7341. [PMID: 28763793 DOI: 10.1126/sciimmunol.aam7341] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The intestinal mucosa is a key anatomical site for HIV-1 replication and CD4+ T cell depletion. Accordingly, in vivo treatment with an antibody to the gut-homing integrin α4β7 was shown to reduce viral transmission, delay disease progression, and induce persistent virus control in macaques challenged with simian immunodeficiency virus (SIV). We show that integrin α4β7 is efficiently incorporated into the envelope of HIV-1 virions. Incorporated α4β7 is functionally active as it binds mucosal addressin cell adhesion molecule-1 (MAdCAM-1), promoting HIV-1 capture by and infection of MAdCAM-expressing cells, which in turn mediate trans-infection of bystander cells. Functional α4β7 is present in circulating virions from HIV-infected patients and SIV-infected macaques, with peak levels during the early stages of infection. In vivo homing experiments documented selective and specific uptake of α4β7+ HIV-1 virions by high endothelial venules in the intestinal mucosa. These results extend the paradigm of tissue homing to a retrovirus and are relevant for the pathogenesis, treatment, and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Christina Guzzo
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - David Ichikawa
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chung Park
- B-Cell Molecular Immunology Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Damilola Phillips
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Qingbo Liu
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peng Zhang
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alice Kwon
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Huiyi Miao
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jacky Lu
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Catherine Rehm
- Clinical Research Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - James Arthos
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Claudia Cicala
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Myron S Cohen
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anthony S Fauci
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
105
|
Stephenson JF, Young KA, Fox J, Jokela J, Cable J, Perkins SE. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160093. [PMID: 28289260 PMCID: PMC5352819 DOI: 10.1098/rstb.2016.0093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts ('donors') to parasite-naive 'recipients'. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Jessica F Stephenson
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Center for Adaptation to a Changing Environment, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyle A Young
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
| | - Jordan Fox
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Jukka Jokela
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Sarah E Perkins
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
106
|
Lythgoe KA, Gardner A, Pybus OG, Grove J. Short-Sighted Virus Evolution and a Germline Hypothesis for Chronic Viral Infections. Trends Microbiol 2017; 25:336-348. [PMID: 28377208 PMCID: PMC5405858 DOI: 10.1016/j.tim.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus' adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a 'germline' lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Joe Grove
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, WC1E 6BT, UK
| |
Collapse
|
107
|
Replication Capacity of Viruses from Acute Infection Drives HIV-1 Disease Progression. J Virol 2017; 91:JVI.01806-16. [PMID: 28148791 DOI: 10.1128/jvi.01806-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
The viral genotype has been shown to play an important role in HIV pathogenesis following transmission. However, the viral phenotypic properties that contribute to disease progression remain unclear. Most studies have been limited to the evaluation of Gag function in the context of a recombinant virus backbone. Using this approach, important biological information may be lost, making the evaluation of viruses obtained during acute infection, representing the transmitted virus, a more biologically relevant model. Here, we evaluate the roles of viral infectivity and the replication capacity of viruses from acute infection in disease progression in women who seroconverted in the CAPRISA 004 tenofovir microbicide trial. We show that viral replication capacity, but not viral infectivity, correlates with the set point viral load (Spearman r = 0.346; P = 0.045) and that replication capacity (hazard ratio [HR] = 4.52; P = 0.01) can predict CD4 decline independently of the viral load (HR = 2.9; P = 0.004) or protective HLA alleles (HR = 0.61; P = 0.36). We further demonstrate that Gag-Pro is not the main driver of this association, suggesting that additional properties of the transmitted virus play a role in disease progression. Finally, we find that although viruses from the tenofovir arm were 2-fold less infectious, they replicated at rates similar to those of viruses from the placebo arm. This indicates that the use of tenofovir gel did not select for viral variants with higher replication capacity. Overall, this study supports a strong influence of the replication capacity in acute infection on disease progression, potentially driven by interaction of multiple genes rather than a dominant role of the major structural gene gagIMPORTANCE HIV disease progression is known to differ between individuals, and defining which fraction of this variation can be attributed to the virus is important both clinically and epidemiologically. In this study, we show that the replication capacity of viruses isolated during acute infection predicts subsequent disease progression and drives CD4 decline independently of the viral load. This provides further support for the hypothesis that the replication capacity of the transmitted virus determines the initial damage to the immune system, setting the pace for later disease progression. However, we did not find evidence that the major structural gene gag drives this correlation, highlighting the importance of other genes in determining disease progression.
Collapse
|
108
|
Nozoe T, Kussell E, Wakamoto Y. Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data. PLoS Genet 2017; 13:e1006653. [PMID: 28267748 PMCID: PMC5360348 DOI: 10.1371/journal.pgen.1006653] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 03/21/2017] [Accepted: 02/26/2017] [Indexed: 12/17/2022] Open
Abstract
Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. Selection is a ubiquitous process in biological populations in which individuals are endowed with heterogeneous reproductive abilities, and it occurs even among genetically homogeneous cells due to the existence of phenotypic noise. Unlike genotypes, which can remain stable for many generations, phenotypic fluctuations at the single cell level are often comparable to cellular generation times. For this reason, quantifying the contribution of specific phenotypic states to cellular fitness remains a major challenge. Here, we develop a method to measure the fitness landscape and selection strength acting on diverse cellular phenotypes by employing a novel conceptual framework in which cellular histories are regarded as a basic unit of selection. With this framework, one can tell quantitatively whether a population adapts to environmental changes by selection or through individual responses. This new analytical approach to genetics reveals the roles of heterogeneous expression patterns and dynamics without directly perturbing genes. Applications in diverse fields including stem cell differentiation and viral evolution are discussed.
Collapse
Affiliation(s)
- Takashi Nozoe
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Edo Kussell
- Center for Genomics and Systems Biology, Department of Biology, Department of Physics, New York University, New York, New York, United States of America
| | - Yuichi Wakamoto
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
109
|
Chakraborty AK, Barton JP. Rational design of vaccine targets and strategies for HIV: a crossroad of statistical physics, biology, and medicine. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:032601. [PMID: 28059778 DOI: 10.1088/1361-6633/aa574a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Vaccination has saved more lives than any other medical procedure. Pathogens have now evolved that have not succumbed to vaccination using the empirical paradigms pioneered by Pasteur and Jenner. Vaccine design strategies that are based on a mechanistic understanding of the pertinent immunology and virology are required to confront and eliminate these scourges. In this perspective, we describe just a few examples of work aimed to achieve this goal by bringing together approaches from statistical physics with biology and clinical research.
Collapse
Affiliation(s)
- Arup K Chakraborty
- Departments of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Departments of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Departments of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America. Ragon Institute of MIT, MGH, & Harvard, Cambridge, MA 02139, United States of America
| | | |
Collapse
|
110
|
Smith DRM, Mideo N. Modelling the evolution of HIV-1 virulence in response to imperfect therapy and prophylaxis. Evol Appl 2017; 10:297-309. [PMID: 28250813 PMCID: PMC5322411 DOI: 10.1111/eva.12458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Average HIV-1 virulence appears to have evolved in different directions in different host populations since antiretroviral therapy first became available, and models predict that HIV drugs can select for either higher or lower virulence, depending on how treatment is administered. However, HIV virulence evolution in response to "leaky" therapy (treatment that imperfectly suppresses viral replication) and the use of preventive drugs (pre-exposure prophylaxis) has not been explored. Using adaptive dynamics, we show that higher virulence can evolve when antiretroviral therapy is imperfectly effective and that this evolution erodes some of the long-term clinical and epidemiological benefits of HIV treatment. The introduction of pre-exposure prophylaxis greatly reduces infection prevalence, but can further amplify virulence evolution when it, too, is leaky. Increasing the uptake rate of these imperfect interventions increases selection for higher virulence and can lead to counterintuitive increases in infection prevalence in some scenarios. Although populations almost always fare better with access to interventions than without, untreated individuals could experience particularly poor clinical outcomes when virulence evolves. These findings predict that antiretroviral drugs may have underappreciated evolutionary consequences, but that maximizing drug efficacy can prevent this evolutionary response. We suggest that HIV virulence evolution should be closely monitored as access to interventions continues to improve.
Collapse
Affiliation(s)
- David R. M. Smith
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Nicole Mideo
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| |
Collapse
|
111
|
Nemeth J, Vongrad V, Metzner KJ, Strouvelle VP, Weber R, Pedrioli P, Aebersold R, Günthard HF, Collins BC. In Vivo and in Vitro Proteome Analysis of Human Immunodeficiency Virus (HIV)-1-infected, Human CD4 + T Cells. Mol Cell Proteomics 2017; 16:S108-S123. [PMID: 28223351 DOI: 10.1074/mcp.m116.065235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/03/2017] [Indexed: 01/06/2023] Open
Abstract
Host-directed therapies against HIV-1 are thought to be critical for long term containment of the HIV-1 pandemic but remain elusive. Because HIV-1 infects and manipulates important effectors of both the innate and adaptive immune system, identifying modulations of the host cell systems in humans during HIV-1 infection may be crucial for the development of immune based therapies. Here, we quantified the changes of the proteome in human CD4+ T cells upon HIV-1 infection, both in vitro and in vivo A SWATH-MS approach was used to measure the proteome of human primary CD4+ T cells infected with HIV-1 in vitro as well as CD4+ T cells from HIV-1-infected patients with paired samples on and off antiretroviral treatment. In the in vitro experiment, the proteome of CD4+ T cells was quantified over a time course following HIV-1 infection. 1,725 host cell proteins and 4 HIV-1 proteins were quantified, with 145 proteins changing significantly during the time course. Changes in the proteome peaked 24 h after infection, concomitantly with significant HIV-1 protein production. In the in vivo branch of the study, CD4+ T cells from viremic patients and those with no detectable viral load after treatment were sorted, and the proteomes were quantified. We consistently detected 895 proteins, 172 of which were considered to be significantly different between the viremic patients and patients undergoing successful treatment. The proteome of the in vitro-infected CD4+ T cells was modulated on multiple functional levels, including TLR-4 signaling and the type 1 interferon signaling pathway. Perturbations in the type 1 interferon signaling pathway were recapitulated in CD4+ T cells from patients. The study shows that proteome maps generated by SWATH-MS indicate a range of functionally significant changes in the proteome of HIV-infected human CD4+ T cells. Exploring these perturbations in more detail may help identify new targets for immune based interventions.
Collapse
Affiliation(s)
- Johannes Nemeth
- From the ‡Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091.,§Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093
| | - Valentina Vongrad
- From the ‡Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091.,‖Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Karin J Metzner
- From the ‡Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091.,‖Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Victoria P Strouvelle
- From the ‡Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091.,‖Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Rainer Weber
- From the ‡Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091
| | - Patrick Pedrioli
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093
| | - Ruedi Aebersold
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093.,**Faculty of Science, University of Zurich, Zurich 8057; and
| | - Huldrych F Günthard
- From the ‡Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091; .,‖Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Ben C Collins
- §Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093;
| |
Collapse
|
112
|
Estimating the Respective Contributions of Human and Viral Genetic Variation to HIV Control. PLoS Comput Biol 2017; 13:e1005339. [PMID: 28182649 PMCID: PMC5300119 DOI: 10.1371/journal.pcbi.1005339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/03/2017] [Indexed: 02/02/2023] Open
Abstract
We evaluated the fraction of variation in HIV-1 set point viral load attributable to viral or human genetic factors by using joint host/pathogen genetic data from 541 HIV infected individuals. We show that viral genetic diversity explains 29% of the variation in viral load while host factors explain 8.4%. Using a joint model including both host and viral effects, we estimate a total of 30% heritability, indicating that most of the host effects are reflected in viral sequence variation. Viral loads of Human Immunodeficiency Virus infections are correlated between the donor and the recipient of the transmission pair. Similarly, human genetic factors may modulate viral load. In this study we estimate the extents to which viral load is heritable either via the viral genotype (from donor to recipient) or via the host’s Human Leukocyte Antigen (HLA) genotype. We find that a major fraction of inter individual variability is explained by the similarity of the viral genotypes, and that human genetic variation in the HLA region provide little additional explanatory power.
Collapse
|
113
|
HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis 2017; 8:e2542. [PMID: 28079886 PMCID: PMC5386374 DOI: 10.1038/cddis.2016.467] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
Human immunodeficiency virus-associated neurological disorders (HANDs) affect the majority of AIDS patients and are a significant problem among HIV-1-infected individuals who live longer because of combined anti-retroviral therapies. HIV-1 utilizes a number of viral proteins and subsequent cytokine inductions to unleash its toxicity on neurons. Among HIV-1 viral proteins, Nef is a small protein expressed abundantly in astrocytes of HIV-1-infected brains and has been suggested to have a role in the pathogenesis of HAND. In order to explore its effect in the central nervous system, HIV-1 Nef was expressed in primary human fetal astrocytes (PHFAs) using an adenovirus. Our results revealed that HIV-1 Nef is released in extracellular vesicles (EVs) derived from PHFA cells expressing the protein. Interestingly, HIV-1 Nef release in EVs was enriched significantly when the cells were treated with autophagy activators perifosine, tomaxifen, MG-132, and autophagy inhibitors LY294002 and wortmannin suggesting a novel role of autophagy signaling in HIV-1 Nef release from astrocytes. Next, Nef-carrying EVs were purified from astrocyte cultures and neurotoxic effects on neurons were analyzed. We observed that HIV-1 Nef-containing EVs were readily taken up by neurons as demonstrated by immunocytochemistry and immunoblotting. Furthermore, treatment of neurons with Nef-carrying EVs induced oxidative stress as evidenced by a decrease in glutathione levels. To further investigate its neurotoxic effects, we expressed HIV-1 Nef in primary neurons by adenoviral transduction. Intracellular expression of HIV-1 Nef caused axonal and neurite degeneration of neurons. Furthermore, expression of HIV-1 Nef decreased the levels of phospho-tau while enhancing total tau in primary neurons. In addition, treatment of primary neurons with Nef-carrying EVs suppressed functional neuronal action potential assessed by multielectrode array studies. Collectively, these data suggested that HIV-1 Nef can be a formidable contributor to neurotoxicity along with other factors, which leads to HAND in HIV-1-infected AIDS patients.
Collapse
|
114
|
Baele G, Suchard MA, Rambaut A, Lemey P. Emerging Concepts of Data Integration in Pathogen Phylodynamics. Syst Biol 2017; 66:e47-e65. [PMID: 28173504 PMCID: PMC5837209 DOI: 10.1093/sysbio/syw054] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/02/2016] [Indexed: 12/24/2022] Open
Abstract
Phylodynamics has become an increasingly popular statistical framework to extract evolutionary and epidemiological information from pathogen genomes. By harnessing such information, epidemiologists aim to shed light on the spatio-temporal patterns of spread and to test hypotheses about the underlying interaction of evolutionary and ecological dynamics in pathogen populations. Although the field has witnessed a rich development of statistical inference tools with increasing levels of sophistication, these tools initially focused on sequences as their sole primary data source. Integrating various sources of information, however, promises to deliver more precise insights in infectious diseases and to increase opportunities for statistical hypothesis testing. Here, we review how the emerging concept of data integration is stimulating new advances in Bayesian evolutionary inference methodology which formalize a marriage of statistical thinking and evolutionary biology. These approaches include connecting sequence to trait evolution, such as for host, phenotypic and geographic sampling information, but also the incorporation of covariates of evolutionary and epidemic processes in the reconstruction procedures. We highlight how a full Bayesian approach to covariate modeling and testing can generate further insights into sequence evolution, trait evolution, and population dynamics in pathogen populations. Specific examples demonstrate how such approaches can be used to test the impact of host on rabies and HIV evolutionary rates, to identify the drivers of influenza dispersal as well as the determinants of rabies cross-species transmissions, and to quantify the evolutionary dynamics of influenza antigenicity. Finally, we briefly discuss how data integration is now also permeating through the inference of transmission dynamics, leading to novel insights into tree-generative processes and detailed reconstructions of transmission trees. [Bayesian inference; birth–death models; coalescent models; continuous trait evolution; covariates; data integration; discrete trait evolution; pathogen phylodynamics.
Collapse
Affiliation(s)
- Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Kings Buildings, Edinburgh EH9 3FL, UK
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
115
|
Doekes HM, Fraser C, Lythgoe KA. Effect of the Latent Reservoir on the Evolution of HIV at the Within- and Between-Host Levels. PLoS Comput Biol 2017; 13:e1005228. [PMID: 28103248 PMCID: PMC5245781 DOI: 10.1371/journal.pcbi.1005228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/31/2016] [Indexed: 02/06/2023] Open
Abstract
The existence of long-lived reservoirs of latently infected CD4+ T cells is the major barrier to curing HIV, and has been extensively studied in this light. However, the effect of these reservoirs on the evolutionary dynamics of the virus has received little attention. Here, we present a within-host quasispecies model that incorporates a long-lived reservoir, which we then nest into an epidemiological model of HIV dynamics. For biologically plausible parameter values, we find that the presence of a latent reservoir can severely delay evolutionary dynamics within a single host, with longer delays associated with larger relative reservoir sizes and/or homeostatic proliferation of cells within the reservoir. These delays can fundamentally change the dynamics of the virus at the epidemiological scale. In particular, the delay in within-host evolutionary dynamics can be sufficient for the virus to evolve intermediate viral loads consistent with maximising transmission, as is observed, and not the very high viral loads that previous models have predicted, an effect that can be further enhanced if viruses similar to those that initiate infection are preferentially transmitted. These results depend strongly on within-host characteristics such as the relative reservoir size, with the evolution of intermediate viral loads observed only when the within-host dynamics are sufficiently delayed. In conclusion, we argue that the latent reservoir has important, and hitherto under-appreciated, roles in both within- and between-host viral evolution.
Collapse
Affiliation(s)
- Hilje M. Doekes
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katrina A. Lythgoe
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
116
|
Abstract
In this chapter, we will review recent research on the virology of HIV-1 transmission and the impact of the transmitted virus genotype on subsequent disease progression. In most instances of HIV-1 sexual transmission, a single genetic variant, or a very limited number of variants from the diverse viral quasi-species present in the transmitting partner establishes systemic infection. Transmission involves both stochastic and selective processes, such that in general a minority variant in the donor is transmitted. While there is clear evidence for selection, the biological properties that mediate transmission remain incompletely defined. Nevertheless, the genotype of the transmitted founder virus, which reflects prior exposure to and escape from host immune responses, clearly influences disease progression. Some escape mutations impact replicative capacity, while others effectively cloak the virus from the newly infected host's immune response by preventing recognition. It is the balance between the impact of escape mutations on viral fitness and susceptibility to the host immunogenetics that defines HIV-1 disease progression.
Collapse
|
117
|
Gulbudak H, Cannataro VL, Tuncer N, Martcheva M. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System. Bull Math Biol 2016; 79:325-355. [PMID: 28032207 DOI: 10.1007/s11538-016-0239-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022]
Abstract
Vector-borne disease transmission is a common dissemination mode used by many pathogens to spread in a host population. Similar to directly transmitted diseases, the within-host interaction of a vector-borne pathogen and a host's immune system influences the pathogen's transmission potential between hosts via vectors. Yet there are few theoretical studies on virulence-transmission trade-offs and evolution in vector-borne pathogen-host systems. Here, we consider an immuno-epidemiological model that links the within-host dynamics to between-host circulation of a vector-borne disease. On the immunological scale, the model mimics antibody-pathogen dynamics for arbovirus diseases, such as Rift Valley fever and West Nile virus. The within-host dynamics govern transmission and host mortality and recovery in an age-since-infection structured host-vector-borne pathogen epidemic model. By considering multiple pathogen strains and multiple competing host populations differing in their within-host replication rate and immune response parameters, respectively, we derive evolutionary optimization principles for both pathogen and host. Invasion analysis shows that the [Formula: see text] maximization principle holds for the vector-borne pathogen. For the host, we prove that evolution favors minimizing case fatality ratio (CFR). These results are utilized to compute host and pathogen evolutionary trajectories and to determine how model parameters affect evolution outcomes. We find that increasing the vector inoculum size increases the pathogen [Formula: see text], but can either increase or decrease the pathogen virulence (the host CFR), suggesting that vector inoculum size can contribute to virulence of vector-borne diseases in distinct ways.
Collapse
Affiliation(s)
- Hayriye Gulbudak
- School of Biological Sciences and School of Mathematics, Georgia Institute of Technology, 310 Ferst Dr, Atlanta, GA, 30332, USA.
| | - Vincent L Cannataro
- Department of Biology, University of Florida, 220 Bartram Hall, PO Box 118525, Gainesville, FL, 32611-8525, USA
| | - Necibe Tuncer
- Department of Mathematical Sciences, Florida Atlantic University, Science Building, Room 234, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Maia Martcheva
- Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL, 32611-8105, USA
| |
Collapse
|
118
|
White MT, Shirreff G, Karl S, Ghani AC, Mueller I. Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria. Proc Biol Sci 2016; 283:20160048. [PMID: 27030414 PMCID: PMC4822465 DOI: 10.1098/rspb.2016.0048] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022] Open
Abstract
There is substantial variation in the relapse frequency of Plasmodium vivax malaria, with fast-relapsing strains in tropical areas, and slow-relapsing strains in temperate areas with seasonal transmission. We hypothesize that much of the phenotypic diversity in P. vivax relapses arises from selection of relapse frequency to optimize transmission potential in a given environment, in a process similar to the virulence trade-off hypothesis. We develop mathematical models of P. vivax transmission and calculate the basic reproduction number R0 to investigate how transmission potential varies with relapse frequency and seasonality. In tropical zones with year-round transmission, transmission potential is optimized at intermediate relapse frequencies of two to three months: slower-relapsing strains increase the opportunity for onward transmission to mosquitoes, but also increase the risk of being outcompeted by faster-relapsing strains. Seasonality is an important driver of relapse frequency for temperate strains, with the time to first relapse predicted to be six to nine months, coinciding with the duration between seasonal transmission peaks. We predict that there is a threshold degree of seasonality, below which fast-relapsing tropical strains are selected for, and above which slow-relapsing temperate strains dominate, providing an explanation for the observed global distribution of relapse phenotypes.
Collapse
Affiliation(s)
- Michael T White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - George Shirreff
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Stephan Karl
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Ivo Mueller
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Melbourne, VIC 3052, Australia Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia Centre de Recerca en Salut Internacional de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
119
|
The evolution of sex-specific virulence in infectious diseases. Nat Commun 2016; 7:13849. [PMID: 27959327 PMCID: PMC5159935 DOI: 10.1038/ncomms13849] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Fatality rates of infectious diseases are often higher in men than women. Although this difference is often attributed to a stronger immune response in women, we show that differences in the transmission routes that the sexes provide can result in evolution favouring pathogens with sex-specific virulence. Because women can transmit pathogens during pregnancy, birth or breast-feeding, pathogens adapt, evolving lower virulence in women. This can resolve the long-standing puzzle on progression from Human T-cell Lymphotropic Virus Type 1 (HTLV-1) infection to lethal Adult T-cell Leukaemia (ATL); a progression that is more likely in Japanese men than women, while it is equally likely in Caribbean women and men. We argue that breastfeeding, being more prolonged in Japan than in the Caribbean, may have driven the difference in virulence between the two populations. Our finding signifies the importance of investigating the differences in genetic expression profile of pathogens in males and females. Many infectious diseases are more likely to progress to serious illness or death in men than in women, which has been attributed to a stronger immune response in women. Here, the authors propose that pathogen transmission from mother to child favours the evolution of lower virulence in women, and argue that the higher risk of HTLV-1 infection progressing to leukaemia in Japanese men is due to prolonged breastfeeding in Japan.
Collapse
|
120
|
|
121
|
El-Hossary EM, Cheng C, Hamed MM, El-Sayed Hamed AN, Ohlsen K, Hentschel U, Abdelmohsen UR. Antifungal potential of marine natural products. Eur J Med Chem 2016; 126:631-651. [PMID: 27936443 DOI: 10.1016/j.ejmech.2016.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022]
Abstract
Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source.
Collapse
Affiliation(s)
- Ebaa M El-Hossary
- National Centre for Radiation Research & Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, Cairo, Egypt
| | - Cheng Cheng
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany
| | - Mostafa M Hamed
- Drug Design and Optimization Department, Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | | | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2/D15, 97080 Würzburg, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, 97082 Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
122
|
Blanquart F, Grabowski MK, Herbeck J, Nalugoda F, Serwadda D, Eller MA, Robb ML, Gray R, Kigozi G, Laeyendecker O, Lythgoe KA, Nakigozi G, Quinn TC, Reynolds SJ, Wawer MJ, Fraser C. A transmission-virulence evolutionary trade-off explains attenuation of HIV-1 in Uganda. eLife 2016; 5:e20492. [PMID: 27815945 PMCID: PMC5115872 DOI: 10.7554/elife.20492] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/01/2016] [Indexed: 01/25/2023] Open
Abstract
Evolutionary theory hypothesizes that intermediate virulence maximizes pathogen fitness as a result of a trade-off between virulence and transmission, but empirical evidence remains scarce. We bridge this gap using data from a large and long-standing HIV-1 prospective cohort, in Uganda. We use an epidemiological-evolutionary model parameterised with this data to derive evolutionary predictions based on analysis and detailed individual-based simulations. We robustly predict stabilising selection towards a low level of virulence, and rapid attenuation of the virus. Accordingly, set-point viral load, the most common measure of virulence, has declined in the last 20 years. Our model also predicts that subtype A is slowly outcompeting subtype D, with both subtypes becoming less virulent, as observed in the data. Reduction of set-point viral loads should have resulted in a 20% reduction in incidence, and a three years extension of untreated asymptomatic infection, increasing opportunities for timely treatment of infected individuals.
Collapse
Affiliation(s)
- François Blanquart
- MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- School of Public Health, Imperial College London, London, United Kingdom
| | - Mary Kate Grabowski
- Department of Epidemiology, Johns Hopkins University, Baltimore, United States
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Joshua Herbeck
- International Clinical Research Center, University of Washington, Seattle, United States
- Department of Global Health, University of Washington, Seattle, United States
| | | | - David Serwadda
- Rakai Health Sciences Program, Entebbe, Uganda
- School of Public Health, Makerere University, Kampala, Uganda
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, United States
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, United States
| | - Ronald Gray
- Department of Epidemiology, Johns Hopkins University, Baltimore, United States
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
- Rakai Health Sciences Program, Entebbe, Uganda
| | | | - Oliver Laeyendecker
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Katrina A Lythgoe
- MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- School of Public Health, Imperial College London, London, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Thomas C Quinn
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Steven J Reynolds
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Maria J Wawer
- Department of Epidemiology, Johns Hopkins University, Baltimore, United States
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Christophe Fraser
- MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- School of Public Health, Imperial College London, London, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
123
|
Shet A, Nagaraja P, Dixit NM. Viral Decay Dynamics and Mathematical Modeling of Treatment Response: Evidence of Lower in vivo Fitness of HIV-1 Subtype C. J Acquir Immune Defic Syndr 2016; 73:245-251. [PMID: 27273158 PMCID: PMC5172519 DOI: 10.1097/qai.0000000000001101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite the high prevalence of HIV-1 subtype C (HIV-1C) worldwide, information on HIV-1C viral dynamics and response to antiretroviral therapy (ART) is limited. We sought to measure viral load decay dynamics during treatment and estimate the within-host basic reproductive ratio, R0, and the critical efficacy, εc, for successful treatment of HIV-1C infection. METHODS Individuals initiated on first-line ART in India and monitored for 6 months of treatment were considered. Viral load, CD4 count, and adherence data were collected at baseline, 4, 12, 16 and 24 weeks after ART initiation. Drug resistance genotyping was performed at baseline. R0 and εc were estimated using a mathematical model. RESULTS Among 257 patients with complete data, mean baseline viral load was 5.7 log10 copies per milliliter and median CD4 count was 165 cells per cubic millimeter. Primary drug resistance was present in 3.1% at baseline. At 6 months, 87.5% had undetectable viral load, indicating excellent response to ART despite high baseline viremia. After excluding those with transmitted resistance, suboptimal adherence and viral rebound, data from 112 patients were analyzed using a mathematical model. We estimated the median R0 to be 5.3. The corresponding εc was ∼0.8. CONCLUSIONS These estimates of R0 and εc are smaller than current estimates for HIV-1B, suggesting that HIV-1C exhibits lower in vivo fitness compared with HIV-1B, which allows successful treatment despite high baseline viral loads. The lower fitness, and potentially lower virulence, together with high viral loads may underlie the heightened transmission potential of HIV-1C and its growing global spread.
Collapse
Affiliation(s)
- Anita Shet
- Department of Pediatrics, Division of Infectious Diseases, St. John's Medical College Hospital, Bangalore, India
| | - Pradeep Nagaraja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India; and
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India; and
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
124
|
Lythgoe KA, Blanquart F, Pellis L, Fraser C. Large Variations in HIV-1 Viral Load Explained by Shifting-Mosaic Metapopulation Dynamics. PLoS Biol 2016; 14:e1002567. [PMID: 27706164 PMCID: PMC5051940 DOI: 10.1371/journal.pbio.1002567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/08/2016] [Indexed: 12/17/2022] Open
Abstract
The viral population of HIV-1, like many pathogens that cause systemic infection, is structured and differentiated within the body. The dynamics of cellular immune trafficking through the blood and within compartments of the body has also received wide attention. Despite these advances, mathematical models, which are widely used to interpret and predict viral and immune dynamics in infection, typically treat the infected host as a well-mixed homogeneous environment. Here, we present mathematical, analytical, and computational results that demonstrate that consideration of the spatial structure of the viral population within the host radically alters predictions of previous models. We study the dynamics of virus replication and cytotoxic T lymphocytes (CTLs) within a metapopulation of spatially segregated patches, representing T cell areas connected by circulating blood and lymph. The dynamics of the system depend critically on the interaction between CTLs and infected cells at the within-patch level. We show that for a wide range of parameters, the system admits an unexpected outcome called the shifting-mosaic steady state. In this state, the whole body’s viral population is stable over time, but the equilibrium results from an underlying, highly dynamic process of local infection and clearance within T-cell centers. Notably, and in contrast to previous models, this new model can explain the large differences in set-point viral load (SPVL) observed between patients and their distribution, as well as the relatively low proportion of cells infected at any one time, and alters the predicted determinants of viral load variation. A novel metapopulation model of HIV suggests that within-host infections are characterized by a highly dynamic process of localized infection followed by clearance within T cell centers. When a person is infected with HIV, the initial peak level of virus in the blood is usually very high before a lower, relatively stable level is reached and maintained for the duration of the chronic infection. This stable level is known as the set-point viral load (SPVL) and is associated with severity of infection. SPVL is also highly variable among patients, ranging from 100 to a million copies of the virus per mL of blood. The replicative capacity of the infecting virus and the strength of the immune response both influence SPVL. However, standard mathematical models show that variation in these two factors cannot easily reproduce the observed distribution of SPVL among patients. Standard models typically treat infected individuals as well-mixed systems, but in reality viral replication is localised in T-cell centres, or patches, found in secondary lymphoid tissue. To account for this population structure, we developed a carefully parameterised metapopulation model. We find the system can reach a steady state at which the viral load in the blood is relatively stable, representing SPVL, but surprisingly, the patches are highly dynamic, characterised by bursts of infection followed by elimination of virus due to localised host immune responses. Significantly, this model can reproduce the wide distribution of SPVLs found among infected individuals for realistic distributions of viral replicative capacity and strength of immune response. Our model can also be used in the future to understand other aspects of chronic HIV infection.
Collapse
Affiliation(s)
- Katrina A. Lythgoe
- Department of Zoology, Tinbergen Building, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St. Mary’s Campus, London, United Kingdom
- * E-mail:
| | - François Blanquart
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Lorenzo Pellis
- Mathematics Institute, Zeeman Building, University of Warwick, Coventry, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St. Mary’s Campus, London, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
125
|
Sauter R, Huang R, Ledergerber B, Battegay M, Bernasconi E, Cavassini M, Furrer H, Hoffmann M, Rougemont M, Günthard HF, Held L. CD4/CD8 ratio and CD8 counts predict CD4 response in HIV-1-infected drug naive and in patients on cART. Medicine (Baltimore) 2016; 95:e5094. [PMID: 27759638 PMCID: PMC5079322 DOI: 10.1097/md.0000000000005094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plasma HIV viral load is related to declining CD4 lymphocytes. The extent to which CD8 cells, in addition to RNA viral load, predict the depletion of CD4 cells is not well characterized so far. We examine if CD8 cell count is a prognostic factor for CD4 cell counts during an HIV infection.A longitudinal analysis is conducted using data from the Swiss HIV cohort study collected between January 2000 and October 2014. Linear mixed regression models were applied to observations from HIV-1-infected treatment naive patients (NAIVE) and cART-treated patients to predict the short-term evolution of CD4 cell counts. For each subgroup, it was quantified to which extent CD8 cell counts or CD4/CD8 ratios are prognostic factors for disease progression.In both subgroups, 2500 NAIVE and 8902 cART patients, past CD4 cells are positively (P < 0.0001) and past viral load is negatively (P < 0.0001) associated with the outcome. Including additionally past CD8 cell counts improves the fit significantly (P < 0.0001) and increases the marginal explained variation 31.7% to 40.7% for the NAIVE and from 44.1% to 50.7% for the cART group. The past CD4/CD8 ratio (instead of the past CD8 level) is positively associated with the outcome, increasing the explained variation further to 41.8% for NAIVE and 51.9% for cART.
Collapse
Affiliation(s)
- Rafael Sauter
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| | - Ruizhu Huang
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Switzerland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Mathieu Rougemont
- Division of Infectious Diseases, University Hospital Geneva, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Leonhard Held
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
- Correspondence: Leonhard Held, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland (e-mail: )
| |
Collapse
|
126
|
van Regenmortel MHV. The metaphor that viruses are living is alive and well, but it is no more than a metaphor. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 59:117-24. [PMID: 26970895 DOI: 10.1016/j.shpsc.2016.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/27/2016] [Indexed: 05/12/2023]
Abstract
Virologists often use anthropomorphic metaphors to vividly describe the properties of viruses and this has led some virologists to claim that viruses are living microorganisms. The discovery of giant viruses that are larger and have a more complex genome than small bacteria has fostered the interpretation that viral factories, which are the compartments in virus-infected cells where the virus is being replicated, are able to transform themselves into a new type of living viral organism called a virocell. However, because of the widespread occurrence of horizontal gene transfer, endosymbiosis and hybridization in the evolution of viral genomes, it has not been possible to include metaphorical virocells in the so-called Tree of Life which itself is a metaphor. In the case of viruses that cause human diseases, the infection process is usually presented metaphorically as a war between host and virus and it is assumed that a virus such as the human immunodeficiency virus (HIV) is able to develop new strategies and mechanisms for escaping protective host immune responses. However, the ability of the virus to defeat the immune system is solely due to stochastic mutations arising from the error-prone activity of the viral enzyme reverse transcriptase. The following two types of metaphors will be distinguished: an intentionality metaphor commonly used for attributing goals and intentions to organisms and the living virus metaphor that considers viruses to be actually living organisms.
Collapse
Affiliation(s)
- M H V van Regenmortel
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, 300, Boulevard Sébastien Brant, CS 10413 67412 Illkirch cedex, France.
| |
Collapse
|
127
|
Roberts HE, Goulder PJR, McLean AR. The impact of antiretroviral therapy on population-level virulence evolution of HIV-1. J R Soc Interface 2016; 12:20150888. [PMID: 26609066 PMCID: PMC4707861 DOI: 10.1098/rsif.2015.0888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In HIV-infected patients, an individual's set point viral load (SPVL) strongly predicts disease progression. Some think that SPVL is evolving, indicating that the virulence of the virus may be changing, but the data are not consistent. In addition, the widespread use of antiretroviral therapy (ART) has the potential to drive virulence evolution. We develop a simple deterministic model designed to answer the following questions: what are the expected patterns of virulence change in the initial decades of an epidemic? Could administration of ART drive changes in virulence evolution and, what is the potential size and direction of this effect? We find that even without ART we would not expect monotonic changes in average virulence. Transient decreases in virulence following the peak of an epidemic are not necessarily indicative of eventual evolution to avirulence. In the short term, we would expect widespread ART to cause limited downward pressure on virulence. In the long term, the direction of the effect is determined by a threshold condition, which we define. We conclude that, given the surpassing benefits of ART to the individual and in reducing onward transmission, virulence evolution considerations need have little bearing on how we treat.
Collapse
Affiliation(s)
- Hannah E Roberts
- Nuffield Department of Clinical Medicine, The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford OX1 3SY, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Angela R McLean
- The Institute for Emerging Infections, The Oxford Martin School, Oxford OX1 3BD, UK Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
128
|
Aralaguppe SG, Winner D, Singh K, Sarafianos SG, Quiñones-Mateu ME, Sönnerborg A, Neogi U. Increased replication capacity following evolution of PYxE insertion in Gag-p6 is associated with enhanced virulence in HIV-1 subtype C from East Africa. J Med Virol 2016; 89:106-111. [PMID: 27328744 DOI: 10.1002/jmv.24610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND A lower virulence of HIV-1 subtype C (HIV-1C) is suggested to be related to the global dominance of HIV-1C. In this observational study, combining in vivo (clinical monitoring) and in vitro (genotypic, biochemical, and phenotypic assays), we explored whether HIV-1C from East Africa (HIV-1CEA ) is more pathogenic due to the evolution of a PYxE-insertion (CPYxEi ) in the gag-p6 that also could affect the therapy response. METHODS HIV-1B (n = 112) and HIV-1CEA (n = 128)-infected individuals residing in Sweden were analyzed with regard to Gag-p6 genotype and clinically monitored. Based on the Gag-p6 characteristics, three HIV-1CEA and one HIV-1 B patient-derived p2-INT-recombinant virus (gag-p2/NCp7/p1/p6/pol-PR/RT/IN) were constructed to analyze viral growth kinetics (VGKs) and drug sensitivity assays. Reverse transcriptase (RT) from the same samples was cloned into the heterodimer expression plasmid (pRT6H-PROT) to analyze catalytic efficiency of RT. RESULTS A higher viral failure rate and lower pre-therapy CD4+ T-cell counts were observed in HIV-1CEA -infected patients compared to HIV-1B-infected patients. In Gag-p6, PTAP-duplication was more common in HIV-1C. HIV-1CEA -infected patients with signature CPYxEi, evidenced very low pre-therapy CD4+ T-cell counts and suboptimal gain in CD4+ T-cells following therapy, as compared to the non-CPYxEi -strains indicating higher virulence. VGKs showed a statistically significant higher replication capacity (RC) for the CPYxEi viruses than the other two non-CPYxEi strains. No statistically significant difference was observed in the catalytic efficiency among HIV-1C RTs. CONCLUSIONS This is the first evidence of polymerase independent increased virulence and RC in HIV-1CEA following PYxE-insertion that is associated with suboptimal CD4+ T-cell gain following therapy initiation. J. Med. Virol. 89:106-111, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shambhu G Aralaguppe
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Dane Winner
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Kamalendra Singh
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Stefan G Sarafianos
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
129
|
Herbeck JT, Mittler JE, Gottlieb GS, Goodreau SM, Murphy JT, Cori A, Pickles M, Fraser C. Evolution of HIV virulence in response to widespread scale up of antiretroviral therapy: a modeling study. Virus Evol 2016; 2:vew028. [PMID: 29492277 PMCID: PMC5822883 DOI: 10.1093/ve/vew028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There are global increases in the use of HIV antiretroviral therapy (ART), guided by clinical benefits of early ART initiation and the efficacy of treatment as prevention of transmission. Separately, it has been shown theoretically and empirically that HIV virulence can evolve over time; observed virulence levels may reflect an adaptive balance between infected lifespan and per-contact transmission rate. However, the potential effects of widespread ART usage on HIV virulence are unknown. To predict these effects, we used an agent-based stochastic model to simulate evolutionary trends in HIV virulence, using set point viral load as a proxy for virulence. We calibrated our model to prevalence and incidence trends of South Africa. We explored two distinct ART scenarios: (1) ART initiation based on HIV-infected individuals reaching a CD4 count threshold; and (2) ART initiation based on individual time elapsed since HIV infection (a scenario that mimics "universal testing and treatment" (UTT) aspirations). In each case, we considered a range in population uptake of ART. We found that HIV virulence is generally unchanged in scenarios of CD4-based initiation. However, with ART initiation based on time since infection, virulence can increase moderately within several years of ART rollout, under high coverage levels and early treatment initiation (albeit within the context of epidemics that are rapidly decreasing in size). Sensitivity analyses suggested the impact of ART on virulence is relatively insensitive to model calibration. Our modeling study suggests that increasing HIV virulence driven by UTT is likely not a major public health concern, but should be monitored in sentinel surveillance, in a manner similar to transmitted resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Joshua T Herbeck
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - John E Mittler
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Geoffrey S Gottlieb
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Steven M Goodreau
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - James T Murphy
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Anne Cori
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Michael Pickles
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| | - Christophe Fraser
- International Clinical Research Center, Department of Global Health, University of Washington, Seattle, WA 98104, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Departments of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK
| |
Collapse
|
130
|
Abstract
Models of viral population dynamics have contributed enormously to our understanding of the pathogenesis and transmission of several infectious diseases, the coevolutionary dynamics of viruses and their hosts, the mechanisms of action of drugs, and the effectiveness of interventions. In this chapter, we review major advances in the modeling of the population dynamics of the human immunodeficiency virus (HIV) and briefly discuss adaptations to other viruses.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
131
|
Ramiro RS, Pollitt LC, Mideo N, Reece SE. Facilitation through altered resource availability in a mixed-species rodent malaria infection. Ecol Lett 2016; 19:1041-50. [PMID: 27364562 PMCID: PMC5025717 DOI: 10.1111/ele.12639] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/03/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
A major challenge in disease ecology is to understand how co-infecting parasite species interact. We manipulate in vivo resources and immunity to explain interactions between two rodent malaria parasites, Plasmodium chabaudi and P. yoelii. These species have analogous resource-use strategies to the human parasites Plasmodium falciparum and P. vivax: P. chabaudi and P. falciparum infect red blood cells (RBC) of all ages (RBC generalist); P. yoelii and P. vivax preferentially infect young RBCs (RBC specialist). We find that: (1) recent infection with the RBC generalist facilitates the RBC specialist (P. yoelii density is enhanced ~10 fold). This occurs because the RBC generalist increases availability of the RBC specialist's preferred resource; (2) co-infections with the RBC generalist and RBC specialist are highly virulent; (3) and the presence of an RBC generalist in a host population can increase the prevalence of an RBC specialist. Thus, we show that resources shape how parasite species interact and have epidemiological consequences.
Collapse
Affiliation(s)
- Ricardo S Ramiro
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| | - Laura C Pollitt
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK.,Centre for Immunity, Infection & Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Sarah E Reece
- Institutes of Evolutionary Biology, and Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3JFL, UK.,Centre for Immunity, Infection & Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JFL, UK
| |
Collapse
|
132
|
CHEN Y, WANG Z, HUANG A, YUAN J, WEI D, YE H. A trend towards increasing viral load in newly diagnosed HIV-infected inpatients in southeast China. Epidemiol Infect 2016; 144:1679-82. [PMID: 26732896 PMCID: PMC9150606 DOI: 10.1017/s0950268815003155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 01/23/2023] Open
Abstract
Peripheral blood viral load is an important indicator of viral production and clearance. Previous studies have suggested that viral load might predict the rate of decrease in CD4+ cell count and progression to AIDS and death. Here, we conducted a retrospective analysis of the trends in HIV-1 viral load in southeast China. Among inpatients newly diagnosed with HIV infection, we found that viral load has increased over the past decade from 4·20 log10 copies/ml in 2002 to 6·61 log10 copies/ml in 2014, with a mean increase of 0·19 log10 copies/ml each year. However, the CD4+ cell count was stable and insensitive to changes in viral load. Thus, increasing viral load appears to be an emerging trend in newly diagnosed HIV-infected inpatients.
Collapse
Affiliation(s)
- Y. CHEN
- Fuzhou Infectious Disease Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - Z. WANG
- Fuzhou Infectious Disease Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - A. HUANG
- Fuzhou Infectious Disease Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - J. YUAN
- Fuzhou Infectious Disease Hospital of Fujian Medical University, Fuzhou, P.R. China
| | - D. WEI
- Fuzhou Infectious Disease Hospital of Fujian Medical University, Fuzhou, P.R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P.R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, P.R. China
| | - H. YE
- Fuzhou Infectious Disease Hospital of Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
133
|
Abstract
Human leukocyte antigen class I (HLA)-restricted CD8(+) T lymphocyte (CTL) responses are crucial to HIV-1 control. Although HIV can evade these responses, the longer-term impact of viral escape mutants remains unclear, as these variants can also reduce intrinsic viral fitness. To address this, we here developed a metric to determine the degree of HIV adaptation to an HLA profile. We demonstrate that transmission of viruses that are pre-adapted to the HLA molecules expressed in the recipient is associated with impaired immunogenicity, elevated viral load and accelerated CD4(+) T cell decline. Furthermore, the extent of pre-adaptation among circulating viruses explains much of the variation in outcomes attributed to the expression of certain HLA alleles. Thus, viral pre-adaptation exploits 'holes' in the immune response. Accounting for these holes may be key for vaccine strategies seeking to elicit functional responses from viral variants, and to HIV cure strategies that require broad CTL responses to achieve successful eradication of HIV reservoirs.
Collapse
|
134
|
Potential Pitfalls in Estimating Viral Load Heritability. Trends Microbiol 2016; 24:687-698. [PMID: 27185643 DOI: 10.1016/j.tim.2016.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023]
Abstract
In HIV patients, the set-point viral load (SPVL) is the most widely used predictor of disease severity. Yet SPVL varies over several orders of magnitude between patients. The heritability of SPVL quantifies how much of the variation in SPVL is due to transmissible viral genetics. There is currently no clear consensus on the value of SPVL heritability, as multiple studies have reported apparently discrepant estimates. Here we illustrate that the discrepancies in estimates are most likely due to differences in the estimation methods, rather than the study populations. Importantly, phylogenetic estimates run the risk of being strongly confounded by unrealistic model assumptions. Care must be taken when interpreting and comparing the different estimates to each other.
Collapse
|
135
|
Handel A, Rohani P. Crossing the scale from within-host infection dynamics to between-host transmission fitness: a discussion of current assumptions and knowledge. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0302. [PMID: 26150668 DOI: 10.1098/rstb.2014.0302] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The progression of an infection within a host determines the ability of a pathogen to transmit to new hosts and to maintain itself in the population. While the general connection between the infection dynamics within a host and the population-level transmission dynamics of pathogens is widely acknowledged, a comprehensive and quantitative understanding that would allow full integration of the two scales is still lacking. Here, we provide a brief discussion of both models and data that have attempted to provide quantitative mappings from within-host infection dynamics to transmission fitness. We present a conceptual framework and provide examples of studies that have taken first steps towards development of a quantitative framework that scales from within-host infections to population-level fitness of different pathogens. We hope to illustrate some general themes, summarize some of the recent advances and-maybe most importantly-discuss gaps in our ability to bridge these scales, and to stimulate future research on this important topic.
Collapse
Affiliation(s)
- Andreas Handel
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Pejman Rohani
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
136
|
Defining the roles for Vpr in HIV-1-associated neuropathogenesis. J Neurovirol 2016; 22:403-15. [PMID: 27056720 DOI: 10.1007/s13365-016-0436-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing that the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection.
Collapse
|
137
|
Haynes BF, Shaw GM, Korber B, Kelsoe G, Sodroski J, Hahn BH, Borrow P, McMichael AJ. HIV-Host Interactions: Implications for Vaccine Design. Cell Host Microbe 2016; 19:292-303. [PMID: 26922989 DOI: 10.1016/j.chom.2016.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Development of an effective AIDS vaccine is a global priority. However, the extreme diversity of HIV type 1 (HIV-1), which is a consequence of its propensity to mutate to escape immune responses, along with host factors that prevent the elicitation of protective immune responses, continue to hinder vaccine development. Breakthroughs in understanding of the biology of the transmitted virus, the structure and nature of its envelope trimer, vaccine-induced CD8 T cell control in primates, and host control of broadly neutralizing antibody elicitation have given rise to new vaccine strategies. Despite this promise, emerging data from preclinical trials reinforce the need for additional insight into virus-host biology in order to facilitate the development of a successful vaccine.
Collapse
Affiliation(s)
- Barton F Haynes
- Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA.
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Joseph Sodroski
- Dana Farber-Cancer Institute, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
138
|
Abstract
Whole-genome sequencing has opened the way for investigating the dynamics and genomic evolution of bacterial pathogens during the colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in an infected host--in particular, the evolution of drug resistance and host adaptation in patients who are chronically infected with opportunistic pathogens--has revealed remarkable patterns of convergent evolution, suggestive of an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections and to suggest the best option for treatment.
Collapse
|
139
|
Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort. PLoS Pathog 2016; 12:e1005369. [PMID: 26766578 PMCID: PMC4713061 DOI: 10.1371/journal.ppat.1005369] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.
Collapse
|
140
|
Host Response in HIV Infection. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
141
|
Khouri R, Vandamme AM. Virus genetic variability involvement in transmissibility of HIV-1 immune activation and disease progression. Future Virol 2015. [DOI: 10.2217/fvl.15.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ricardo Khouri
- LIMI-LIP, CPqGM, Oswaldo Cruz Foundation (FIOCRUZ), Salvador-Bahia, Brazil
- KU Leuven – University of Leuven, Department of Microbiology & Immunology, Rega Institute for Medical Research, Clinical & Epidemiological Virology, Leuven, Belgium
| | - Anne-Mieke Vandamme
- KU Leuven – University of Leuven, Department of Microbiology & Immunology, Rega Institute for Medical Research, Clinical & Epidemiological Virology, Leuven, Belgium
- Center for Global Health & Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
142
|
Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. Proc Natl Acad Sci U S A 2015; 112:14658-63. [PMID: 26553974 DOI: 10.1073/pnas.1514867112] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous genome-wide association studies (GWAS) of HIV-1-infected populations have been underpowered to detect common variants with moderate impact on disease outcome and have not assessed the phenotypic variance explained by genome-wide additive effects. By combining the majority of available genome-wide genotyping data in HIV-infected populations, we tested for association between ∼8 million variants and viral load (HIV RNA copies per milliliter of plasma) in 6,315 individuals of European ancestry. The strongest signal of association was observed in the HLA class I region that was fully explained by independent effects mapping to five variable amino acid positions in the peptide binding grooves of the HLA-B and HLA-A proteins. We observed a second genome-wide significant association signal in the chemokine (C-C motif) receptor (CCR) gene cluster on chromosome 3. Conditional analysis showed that this signal could not be fully attributed to the known protective CCR5Δ32 allele and the risk P1 haplotype, suggesting further causal variants in this region. Heritability analysis demonstrated that common human genetic variation-mostly in the HLA and CCR5 regions-explains 25% of the variability in viral load. This study suggests that analyses in non-European populations and of variant classes not assessed by GWAS should be priorities for the field going forward.
Collapse
|
143
|
Abstract
More than 75 million people worldwide have been infected with human immunodeficiency virus (HIV), and there are now approximately 37 million individuals living with the infection. Untreated HIV replication causes progressive CD4(+) T cell loss and a wide range of immunological abnormalities, leading to an increased risk of infectious and oncological complications. HIV infection also contributes to cardiovascular disease, bone disease, renal and hepatic dysfunction and several other common morbidities. Antiretroviral drugs are highly effective at inhibiting HIV replication, and for individuals who can access and adhere to these drugs, combination antiretroviral therapy leads to durable (and probably lifelong) suppression of viral replication. Viral suppression enables immune recovery and the near elimination of the risk for developing acquired immune deficiency syndrome (AIDS). Despite effective treatment, HIV-infected individuals have a higher than expected risk of heart, bone, liver, kidney and neurological disease. When used optimally by an infected (or by an uninfected) person, antiretroviral drugs can virtually eliminate the risk of HIV transmission. Despite major advances in prevention sciences, HIV transmission remains common in many vulnerable populations, including men who have sex with men, injection drug users and sex workers. Owing to a lack of widespread HIV testing and the costs and toxicities associated with antiretroviral drugs, the majority of the infected population is not on effective antiretroviral therapy. To reverse the pandemic, improved prevention, treatment and implementation approaches are necessary.
Collapse
Affiliation(s)
- Steven G Deeks
- University of California, San Francisco, Department of Medicine, 995 Potrero Avenue, San Francisco, California 94110, USA
| | - Julie Overbaugh
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Andrew Phillips
- Department of Infection and Population Health, University College London, London, UK
| | - Susan Buchbinder
- University of California, San Francisco, Department of Medicine, 995 Potrero Avenue, San Francisco, California 94110, USA.,San Francisco Department of Health, San Francisco, California, USA
| |
Collapse
|
144
|
Breed MW, Elser SE, Torben W, Jordan APO, Aye PP, Midkiff C, Schiro F, Sugimoto C, Alvarez-Hernandez X, Blair RV, Somasunderam A, Utay NS, Kuroda MJ, Pahar B, Wiseman RW, O'Connor DH, LaBranche CC, Montefiori DC, Marsh M, Li Y, Piatak M, Lifson JD, Keele BF, Fultz PN, Lackner AA, Hoxie JA. Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. J Virol 2015; 89:10156-75. [PMID: 26223646 PMCID: PMC4580161 DOI: 10.1128/jvi.01134-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Deletion of Gly-720 and Tyr-721 from a highly conserved GYxxØ trafficking signal in the SIVmac239 envelope glycoprotein cytoplasmic domain, producing a virus termed ΔGY, leads to a striking perturbation in pathogenesis in rhesus macaques (Macaca mulatta). Infected macaques develop immune activation and progress to AIDS, but with only limited and transient infection of intestinal CD4(+) T cells and an absence of microbial translocation. Here we evaluated ΔGY in pig-tailed macaques (Macaca nemestrina), a species in which SIVmac239 infection typically leads to increased immune activation and more rapid progression to AIDS than in rhesus macaques. In pig-tailed macaques, ΔGY also replicated acutely to high peak plasma RNA levels identical to those for SIVmac239 and caused only transient infection of CD4(+) T cells in the gut lamina propria and no microbial translocation. However, in marked contrast to rhesus macaques, 19 of 21 pig-tailed macaques controlled ΔGY replication with plasma viral loads of <15 to 50 RNA copies/ml. CD4(+) T cells were preserved in blood and gut for up to 100 weeks with no immune activation or disease progression. Robust antiviral CD4(+) T cell responses were seen, particularly in the gut. Anti-CD8 antibody depletion demonstrated CD8(+) cellular control of viral replication. Two pig-tailed macaques progressed to disease with persisting viremia and possible compensatory mutations in the cytoplasmic tail. These studies demonstrate a marked perturbation in pathogenesis caused by ΔGY's ablation of the GYxxØ trafficking motif and reveal, paradoxically, that viral control is enhanced in a macaque species typically predisposed to more pathogenic manifestations of simian immunodeficiency virus (SIV) infection. IMPORTANCE The pathogenesis of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) reflects a balance between viral replication, host innate and adaptive antiviral immune responses, and sustained immune activation that in humans and Asian macaques is associated with persistent viremia, immune escape, and AIDS. Among nonhuman primates, pig-tailed macaques following SIV infection are predisposed to more rapid disease progression than are rhesus macaques. Here, we show that disruption of a conserved tyrosine-based cellular trafficking motif in the viral transmembrane envelope glycoprotein cytoplasmic tail leads in pig-tailed macaques to a unique phenotype in which high levels of acute viral replication are followed by elite control, robust cellular responses in mucosal tissues, and no disease. Paradoxically, control of this virus in rhesus macaques is only partial, and progression to AIDS occurs. This novel model should provide a powerful tool to help identify host-specific determinants for viral control with potential relevance for vaccine development.
Collapse
Affiliation(s)
- Matthew W Breed
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Samra E Elser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Andrea P O Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Chie Sugimoto
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | - Robert V Blair
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | | | | | - Marcelo J Kuroda
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Roger W Wiseman
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | - David H O'Connor
- University of Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | | | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College, London, United Kingdom
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana, USA
| | - James A Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
145
|
Abstract
Mathematical modelling provides an effective way to challenge conventional wisdom about
parasite evolution and investigate why parasites ‘do what they do’ within the host. Models
can reveal when intuition cannot explain observed patterns, when more complicated biology
must be considered, and when experimental and statistical methods are likely to mislead.
We describe how models of within-host infection dynamics can refine experimental design,
and focus on the case study of malaria to highlight how integration between models and
data can guide understanding of parasite fitness in three areas: (1) the adaptive
significance of chronic infections; (2) the potential for tradeoffs between virulence and
transmission; and (3) the implications of within-vector dynamics. We emphasize that models
are often useful when they highlight unexpected patterns in parasite evolution, revealing
instead why intuition yields the wrong answer and what combination of theory and data are
needed to advance understanding.
Collapse
|
146
|
Abstract
PURPOSE OF REVIEW An improved understanding of how recombination affects the evolutionary history of HIV is crucial to understand its current and future evolution. The present review aims to disentangle the manifold effects of recombination on HIV by discussing its effects on the evolutionary history and the adaptive potential of HIV in the context of concepts from evolutionary genetics and genomics. RECENT FINDINGS The increasing occurrence of secondary contacts between divergent subtype populations (during coinfection) results in increased observations of recombinants worldwide. Recombination is heterogeneous along the HIV genome. Consequences of recombination of HIV evolution are, in combination with other demographic processes, expected to either homogenize the genetic composition of HIV populations (homogenization) or provide the potential for novel adaptations (diversification). New methods in population genomics allow deep characterization of recombinant genome (the segment composition and origin) and their evolutionary trajectories. SUMMARY HIV recombinants increase worldwide and invade geographical regions where pure subtypes were previously predominant. This trend is expected to continue in the future, as ease to travel worldwide increases opportunities for recombination between divergent HIV strains. While the effects of recombination in HIV are much researched, more effort is required to characterize current HIV recombinant composition and dynamics. This can be achieved with new population genetic and genomic methods.
Collapse
|
147
|
Abstract
PURPOSE OF REVIEW Rapid expansion of genomic technologies has resulted in an unprecedented ability to interrogate the impact of human genetic variation on disease. HIV-1 infection is a unique model for studying this impact because host genetic variation influences both clinical outcome and the genetic sequence and evolution of the pathogen itself. RECENT FINDINGS Several candidate gene studies have proposed novel associations with HIV acquisition and/or disease progression; however, many of these are not supported by larger genome-wide association studies. Thus, controversy remains as to which host and viral genetic factors truly impact HIV infection. Novel methods for assessing the genetic (viral and host) component of disease progression are becoming important areas of investigation. SUMMARY To fully understand the impact of human genetic variation in HIV disease, the field will need to come together to set a standard for discovery of new genes. Additionally, novel avenues of investigation such as sequencing studies (to define the role of rare variants), studies of epistasis and host/viral genome interaction will be of great value.
Collapse
|
148
|
Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-1 In Vivo. PLoS Biol 2015; 13:e1002251. [PMID: 26375597 PMCID: PMC4574155 DOI: 10.1371/journal.pbio.1002251] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
Rates of spontaneous mutation critically determine the genetic diversity and evolution of RNA viruses. Although these rates have been characterized in vitro and in cell culture models, they have seldom been determined in vivo for human viruses. Here, we use the intrapatient frequency of premature stop codons to quantify the HIV-1 genome-wide rate of spontaneous mutation in DNA sequences from peripheral blood mononuclear cells. This reveals an extremely high mutation rate of (4.1 ± 1.7) × 10−3 per base per cell, the highest reported for any biological entity. Sequencing of plasma-derived sequences yielded a mutation frequency 44 times lower, indicating that a large fraction of viral genomes are lethally mutated and fail to reach plasma. We show that the HIV-1 reverse transcriptase contributes only 2% of mutations, whereas 98% result from editing by host cytidine deaminases of the A3 family. Hypermutated viral sequences are less abundant in patients showing rapid disease progression compared to normal progressors, highlighting the antiviral role of A3 proteins. However, the amount of A3-mediated editing varies broadly, and we find that low-edited sequences are more abundant among rapid progressors, suggesting that suboptimal A3 activity might enhance HIV-1 genetic diversity and pathogenesis. The rate of spontaneous mutation of the HIV-1 genome within its human host is exceptionally high, is mostly driven by host cytidine deaminases, and probably plays a role in disease progression. The high levels of genetic diversity of the HIV-1 virus grant it the ability to escape the immune system, to rapidly evolve drug resistance, and to circumvent vaccination strategies. However, our knowledge of HIV-1 mutation rates has been largely restricted to in vitro and cell culture studies because of the inherent complexity of measuring these rates in vivo. Here, by analyzing the frequency of premature stop codons, we show that the HIV-1 mutation rate in vivo is two orders of magnitude higher than that predicted by in vitro studies, making it the highest reported mutation rate for any biological system. A large component of this rate is from host cellular cytidine deaminases, which induce mutations in the viral DNA as a defense mechanism. While the HIV-1 genome is hypermutated in blood cells, only a very small fraction of these mutations reach the plasma, indicating that many viruses are defective as a result of the extremely high mutation load. In addition, we find that the HIV-1 mutation rate tends to be higher in patients showing normal disease progression than in those undergoing rapid progression, emphasizing the negative impact on viral fitness of hypermutation by host cytidine deaminases. However, we also observe subpopulations of weakly-mutated viral genomes whose sequence diversity may influence viral pathogenesis. Our work highlights the fine balance for HIV-1 between enough mutation to evade host responses and too much mutation that can inactivate the virus.
Collapse
Affiliation(s)
- José M. Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Ron Geller
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
| | - José López-Aldeguer
- Hospital Universitario La Fe, Valencia, Spain
- CoRIS and HIV Biobank, Spanish AIDS Research Network, Spain
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
149
|
Suthar AB, Granich RM, Kato M, Nsanzimana S, Montaner JSG, Williams BG. Programmatic Implications of Acute and Early HIV Infection. J Infect Dis 2015; 212:1351-60. [PMID: 26310309 DOI: 10.1093/infdis/jiv430] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/18/2015] [Indexed: 02/01/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection includes acute, early, chronic, and late stages. Acute HIV infection lasts approximately 3 weeks and early HIV infection, which includes acute HIV infection, lasts approximately 7 weeks. Many testing and blood screening algorithms detect HIV antibodies about 3 weeks after HIV infection. Incidence estimates are based on results of modeling, cohort studies, surveillance, and/or assays. Viral load is the key modifiable risk factor for HIV transmission and peaks during acute and early HIV infection. Empirical evidence characterizing the impact of acute and early HIV infection on the spread of the HIV epidemic are limited. Time trends of HIV prevalence collected from concentrated and generalized epidemics suggest that acute and early HIV infection may have a limited role in population HIV transmission. Collectively, these data suggest that acute and early HIV infection is relatively short and does not currently require fundamentally different programmatic approaches to manage the HIV/AIDS epidemic in most settings. Research and surveillance will inform which epidemic contexts and phases may require tailored strategies for these stages of HIV infection.
Collapse
Affiliation(s)
- Amitabh B Suthar
- South African Centre for Epidemiological Modelling and Analysis, University of Stellenbosch, South Africa
| | - Reuben M Granich
- International Association of Providers of AIDS Care, Washington D.C
| | - Masaya Kato
- World Health Organization Vietnam Country Office, Hanoi
| | | | | | - Brian G Williams
- Wits Reproductive Health Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
150
|
Abstract
Why is it that some parasites cause high levels of host damage (i.e. virulence) whereas others are relatively benign? There are now numerous reviews of virulence evolution in the literature but it is nevertheless still difficult to find a comprehensive treatment of the theory and data on the subject that is easily accessible to non-specialists. Here we attempt to do so by distilling the vast theoretical literature on the topic into a set of relatively few robust predictions. We then provide a comprehensive assessment of the available empirical literature that tests these predictions. Our results show that there have been some notable successes in integrating theory and data but also that theory and empiricism in this field do not ‘speak’ to each other very well. We offer a few suggestions for how the connection between the two might be improved.
Collapse
|