101
|
Gordon N, Gallagher PT, Neupane NP, Mandigo AC, McCann JK, Dylgjeri E, Vasilevskaya I, McNair C, Paller CJ, Kelly WK, Knudsen KE, Shafi AA, Schiewer MJ. PARP inhibition and pharmacological ascorbate demonstrate synergy in castration-resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533944. [PMID: 36993449 PMCID: PMC10055378 DOI: 10.1101/2023.03.23.533944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death for men in the United States. While organ-confined disease has reasonable expectation of cure, metastatic PCa is universally fatal upon recurrence during hormone therapy, a stage termed castration-resistant prostate cancer (CRPC). Until such time as molecularly defined subtypes can be identified and targeted using precision medicine, it is necessary to investigate new therapies that may apply to the CRPC population as a whole. The administration of ascorbate, more commonly known as ascorbic acid or Vitamin C, has proved lethal to and highly selective for a variety of cancer cell types. There are several mechanisms currently under investigation to explain how ascorbate exerts anti-cancer effects. A simplified model depicts ascorbate as a pro-drug for reactive oxygen species (ROS), which accumulate intracellularly and generate DNA damage. It was therefore hypothesized that poly(ADP-ribose) polymerase (PARP) inhibitors, by inhibiting DNA damage repair, would augment the toxicity of ascorbate. Results Two distinct CRPC models were found to be sensitive to physiologically relevant doses of ascorbate. Moreover, additional studies indicate that ascorbate inhibits CRPC growth in vitro via multiple mechanisms including disruption of cellular energy dynamics and accumulation of DNA damage. Combination studies were performed in CRPC models with ascorbate in conjunction with escalating doses of three different PARP inhibitors (niraparib, olaparib, and talazoparib). The addition of ascorbate augmented the toxicity of all three PARP inhibitors and proved synergistic with olaparib in both CRPC models. Finally, the combination of olaparib and ascorbate was tested in vivo in both castrated and non-castrated models. In both cohorts, the combination treatment significantly delayed tumor growth compared to monotherapy or untreated control. Conclusions These data indicate that pharmacological ascorbate is an effective monotherapy at physiological concentrations and kills CRPC cells. Ascorbate-induced tumor cell death was associated with disruption of cellular energy dynamics and accumulation of DNA damage. The addition of PARP inhibition increased the extent of DNA damage and proved effective at slowing CRPC growth both in vitro and in vivo. These findings nominate ascorbate and PARPi as a novel therapeutic regimen that has the potential to improve CRPC patient outcomes.
Collapse
Affiliation(s)
- Nicolas Gordon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter T. Gallagher
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Amy C. Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jennifer K. McCann
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Irina Vasilevskaya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Channing J. Paller
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ayesha A. Shafi
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20817, USA. The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Matthew J. Schiewer
- Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmacology/Physiology/Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
102
|
Liu X, Cui H, Li M, Chai Z, Wang H, Jin X, Dai F, Liu Y, Zhou B. Tumor killing by a dietary curcumin mono-carbonyl analog that works as a selective ROS generator via TrxR inhibition. Eur J Med Chem 2023; 250:115191. [PMID: 36758308 DOI: 10.1016/j.ejmech.2023.115191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
In comparison with normal cells, cancer cells feature intrinsic oxidative stress, thereby being more vulnerable to further production of reactive oxygen species (ROS) by pro-oxidative anticancer agents (PAAs). However, PAAs also inevitably generate ROS in normal cells, resulting in their narrow therapeutic window and toxic side effects that greatly limit their clinical application. To develop PAAs that generate ROS selectively in cancer cells over in normal cells, we rationally designed three series of 21 dietary curcumin 5-carbon mono-carbonyl analogs differentiated by either placement of the cyclohexanone, piperidone, and methylpiperidone linkers, or introduction of electron-withdrawing trifluoromethyl and electron-donating methoxyl groups on its two aromatic rings in the ortho, meta, or para position to the linkers. From the designed molecules, 2c, characterized of the presence of the meta-CF3-substituted mode and the piperidone linker, was identified as a potent selective ROS-generating agent, allowing its ability to kill selectively human non-small cell lung cancer NCI-H460 (IC50 = 0.44 μM) over human normal lung MRC-5 cells with a selectivity index of 32.0. Additionally, it was more potent and selective than the conventional chemotherapeutic agents (5-fluorouracil and camptothecin) did. Mechanistical investigation reveals that by means of its Michael acceptor unit and structure characteristics as described above, 2c could covalently modify the Sec-498 residue of intracellular thioredoxin reductase (TrxR) to generate ROS selectively, resulting in ROS-dependent apoptosis and ferroptosis of NCI-H460 cells. Noticeably, 2c inhibited significantly the growth of NCI-H460 cell xenograft tumor in nude mice without obvious toxicity to liver and kidney. Together, this work highlights a practical strategy of targeting TrxR overexpressed in cancer cells to develop PAAs capable of generating ROS selectively, as evidenced by the example of 2c.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Hongmei Cui
- School of Public Health, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Mi Li
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Zuohu Chai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Haibo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China; Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, 730000, China.
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
103
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
104
|
Boughanem H, Kompella P, Tinahones FJ, Macias-Gonzalez M. An overview of vitamins as epidrugs for colorectal cancer prevention. Nutr Rev 2023; 81:455-479. [PMID: 36018754 DOI: 10.1093/nutrit/nuac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression altering epigenomic modifications such as DNA methylation, histone modification, and chromosome remodeling is crucial to regulating many biological processes. Several lifestyle factors, such as diet and natural, bioactive food compounds, such as vitamins, modify epigenetic patterns. However, epigenetic dysregulation can increase the risk of many diseases, including cancer. Various studies have provided supporting and contrasting evidence on the relationship between vitamins and cancer risk. Though there is a gap in knowledge about whether dietary vitamins can induce epigenetic modifications in the context of colorectal cancer (CRC), the possibility of using them as epidrugs for CRC treatment is being explored. This is promising because such studies might be informative about the most effective way to use vitamins in combination with DNA methyltransferase inhibitors and other approved therapies to prevent and treat CRC. This review summarizes the available epidemiological and observational studies involving dietary, circulating levels, and supplementation of vitamins and their relationship with CRC risk. Additionally, using available in vitro, in vivo, and human observational studies, the role of vitamins as potential epigenetic modifiers in CRC is discussed. This review is focused on the action of vitamins as modifiers of DNA methylation because aberrant DNA methylation, together with genetic alterations, can induce the initiation and progression of CRC. Although this review presents some studies with promising results, studies with better study designs are necessary. A thorough understanding of the underlying molecular mechanisms of vitamin-mediated epigenetic regulation of CRC genes can help identify effective therapeutic targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Hatim Boughanem
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Pallavi Kompella
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,is with the Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Francisco J Tinahones
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Macias-Gonzalez
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
105
|
Shuai C, Chen X, He C, Chen M, Peng S, Yang W. Fe-doped mesoporous silica catalyzes ascorbic acid oxidation for tumor-specific therapy in scaffold. Colloids Surf B Biointerfaces 2023; 225:113251. [PMID: 36931045 DOI: 10.1016/j.colsurfb.2023.113251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Ascorbic acid (AA) is a promising antitumor agent, yet its autooxidation is too slow which constrains the further application. Fortunately, the autoxidation process can be accelerated by transition metal catalysts, especially Fe3+ ions. In this study, AA was loaded to Fe-doped mesoporous silica (designated as AA@Fe-SiO2), which was introduced into poly-L-lactic acid (PLLA) and then prepared into a scaffold. Mechanistically, AA@Fe-SiO2 degraded in acidic tumor microenvironment because excessive H+ substituted Fe atoms in the iron silicate framework, releasing Fe3+ and AA. The Fe3+ boosted the pro-oxidation reaction of AA, generating numerous hydrogen peroxide (H2O2) and Fe2+. Then, Fe2+ reacted with H2O2 to initiate Fenton reactions favoring hydroxyl radical generation, triggering oxidative damage on tumor cells to implement tumor-specific therapy. Results showed that the release amount of AA in acidic solution was about 3 times higher than that in neutral solution, which was attributed to the pH-dependency of the degradation of AA@Fe-SiO2 in scaffold. Furthermore, the scaffold generated numerous ascorbate radical intermediate and increased the H2O2 concentration by 120.2%, demonstrating that Fe3+ remarkably accelerated the oxidation rate of AA. Cell experimental results showed that the scaffold caused massive apoptosis of tumor cells, while no obvious cytotoxicity to normal cells, confirming the antitumor specificity of scaffold. This work paves a promising way to construct a biodegradable and catalytic scaffold, featuring effective tumor-specific therapy.
Collapse
Affiliation(s)
- Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China; Shenzhen Institute of Information Technology, School of Sino-German Robotics, Shenzhen 518115, China
| | - Xuan Chen
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chongxian He
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Min Chen
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China; NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha 410013, China; School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.
| | - Wenjing Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
106
|
Temraz S, Jabbour J, Nassar F, El Helou R, Hadla R, Mezher M, El Lakkiss A, Charafeddine M, Nasr R, Shamseddine A. Can plasma vitamin C predict survival in stage IV colorectal cancer patients? Results of a prospective cohort study. Front Nutr 2023; 10:1110405. [PMID: 36969825 PMCID: PMC10038077 DOI: 10.3389/fnut.2023.1110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background and AimsIn light of the inconclusive evidence on the association between vitamin C status and colorectal cancer (CRC) outcome, this study assessed the prognostic value of vitamin C in participants with metastatic CRC (mCRC).MethodsAdults with mCRC and cancer-free controls were recruited in this prospective cohort study to allow for comparison of vitamin C levels with healthy individuals from the same population. Sociodemographic, lifestyle, medical variables, BRAF and KRAS mutations, as well as Vitamin C plasma level and food intake were evaluated. Predictors of diminished vitamin C level were assessed via multivariate logistic regression. Mortality and progression free survival (PFS) among mCRC participants were analyzed based on plasma vitamin C level.ResultsThe cancer group (n = 46) was older (mean age: 60 ± 14 vs. 42 ± 9.6, p = 0.047) and included more males (29% vs. 19%, p < 0.001) than the cancer-free group (n = 45). There was a non-significant difference in the vitamin C intake between the two groups; however, the mean plasma vitamin C level was lower in the cancer group (3.5 ± 3.7 vs. 9.2 ± 5.6 mg/l, p < 0.001). After adjusting for age and gender, the cancer group was more likely to be deficient compared to the cancer-free group [Adjusted Odds Ratio (95%CI): 5.4 (2.1–14)]. There was a non-significant trend for higher mortality in the vitamin C deficient cancer group (31% vs. 12%, p = 0.139). PFS did not differ based on vitamin C deficiency and patients with BRAF and KRAS mutations did not have significant differences in vitamin C levels.ConclusionmCRC patients have lower plasma vitamin C levels than healthy controls. The trend toward higher mortality in the vitamin C deficient cancer group was not statistically significant. Whether this phenomenon affects survival and response to treatment warrants further exploration in phase III clinical trials.
Collapse
Affiliation(s)
- Sally Temraz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana Jabbour
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
- Department of Clinical Nutrition, American University of Beirut Medical Center, Beirut, Lebanon
| | - Farah Nassar
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Remie El Helou
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ruba Hadla
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maria Mezher
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmed El Lakkiss
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maya Charafeddine
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Beirut, Lebanon
- *Correspondence: Rihab Nasr,
| | - Ali Shamseddine
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Ali Shamseddine,
| |
Collapse
|
107
|
Dang Z, Gao M, Wang L, Wu J, Guo Y, Zhu Z, Huang H, Kang G. Synthetic bacterial therapies for intestinal diseases based on quorum- sensing circuits. Biotechnol Adv 2023; 65:108142. [PMID: 36977440 DOI: 10.1016/j.biotechadv.2023.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Bacterial therapy has become a key strategy against intestinal infectious diseases in recent years. Moreover, regulating the gut microbiota through traditional fecal microbiota transplantation and supplementation of probiotics faces controllability, efficacy, and safety challenges. The infiltration and emergence of synthetic biology and microbiome provide an operational and safe treatment platform for live bacterial biotherapies. Synthetic bacterial therapy can artificially manipulate bacteria to produce and deliver therapeutic drug molecules. This method has the advantages of solid controllability, low toxicity, strong therapeutic effects, and easy operation. As an essential tool for dynamic regulation in synthetic biology, quorum sensing (QS) has been widely used for designing complex genetic circuits to control the behavior of bacterial populations and achieve predefined goals. Therefore, QS-based synthetic bacterial therapy might become a new direction for the treatment of diseases. The pre-programmed QS genetic circuit can achieve a controllable production of therapeutic drugs on particular ecological niches by sensing specific signals released from the digestive system in pathological conditions, thereby realizing the integration of diagnosis and treatment. Based on this as well as the modular idea of synthetic biology, QS-based synthetic bacterial therapies are divided into an environmental signal sensing module (senses gut disease physiological signals), a therapeutic molecule producing module (plays a therapeutic role against diseases), and a population behavior regulating module (QS system). This review article summarized the structure and function of these three modules and discussed the rational design of QS gene circuits as a novel intervention strategy for intestinal diseases. Moreover, the application prospects of QS-based synthetic bacterial therapy were summarized. Finally, the challenges faced by these methods were analyzed to make the targeted recommendations for developing a successful therapeutic strategy for intestinal diseases.
Collapse
|
108
|
Overcoming EGFR Resistance in Metastatic Colorectal Cancer Using Vitamin C: A Review. Biomedicines 2023; 11:biomedicines11030678. [PMID: 36979659 PMCID: PMC10045351 DOI: 10.3390/biomedicines11030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 02/26/2023] Open
Abstract
Targeted monoclonal antibody therapy against Epidermal Growth Factor Receptor (EGFR) is a leading treatment modality against metastatic colorectal cancer (mCRC). However, with the emergence of KRAS and BRAF mutations, resistance was inevitable. Cells harboring these mutations overexpress Glucose Transporter 1 (GLUT1) and sodium-dependent vitamin C transporter 2 (SVCT2), which enables intracellular vitamin C transport, leading to reactive oxygen species generation and finally cell death. Therefore, high dose vitamin C is proposed to overcome this resistance. A comprehensive search strategy was adopted using Pubmed and MEDLINE databases (up to 11 August 2022). There are not enough randomized clinical trials to support its use in the clinical management of mCRC, except for a subgroup analysis from a phase III study. High dose vitamin C shows a promising role in overcoming EGFR resistance in mCRC with wild KRAS mutation with resistance to anti-epidermal growth factor inhibitors and in patients with KRAS and BRAF mutations.
Collapse
|
109
|
Qin S, Wang G, Chen L, Geng H, Zheng Y, Xia C, Wu S, Yao J, Deng L. Pharmacological vitamin C inhibits mTOR signaling and tumor growth by degrading Rictor and inducing HMOX1 expression. PLoS Genet 2023; 19:e1010629. [PMID: 36787291 PMCID: PMC9928125 DOI: 10.1371/journal.pgen.1010629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
Pharmacological vitamin C (VC) is a potential natural compound for cancer treatment. However, the mechanism underlying its antitumor effects remains unclear. In this study, we found that pharmacological VC significantly inhibits the mTOR (including mTORC1 and mTORC2) pathway activation and promotes GSK3-FBXW7-mediated Rictor ubiquitination and degradation by increasing the cellular ROS. Moreover, we identified that HMOX1 is a checkpoint for pharmacological-VC-mediated mTOR inactivation, and the deletion of FBXW7 or HMOX1 suppresses the regulation of pharmacological VC on mTOR activation, cell size, cell viability, and autophagy. More importantly, it was observed that the inhibition of mTOR by pharmacological VC supplementation in vivo produces positive therapeutic responses in tumor growth, while HMOX1 deficiency rescues the inhibitory effect of pharmacological VC on tumor growth. These results demonstrate that VC influences cellular activities and tumor growth by inhibiting the mTOR pathway through Rictor and HMOX1, which may have therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Senlin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Guoyan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huijun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (J.Y); (L.D)
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (J.Y); (L.D)
| |
Collapse
|
110
|
Tang YL, Li DD, Duan JY, Sheng LM, Wang X. Resistance to targeted therapy in metastatic colorectal cancer: Current status and new developments. World J Gastroenterol 2023; 29:926-948. [PMID: 36844139 PMCID: PMC9950860 DOI: 10.3748/wjg.v29.i6.926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal and common malignancies in the world. Chemotherapy has been the conventional treatment for metastatic CRC (mCRC) patients. However, the effects of chemotherapy have been unsatisfactory. With the advent of targeted therapy, the survival of patients with CRC have been prolonged. Over the past 20 years, targeted therapy for CRC has achieved substantial progress. However, targeted therapy has the same challenge of drug resistance as chemotherapy. Consequently, exploring the resistance mechanism and finding strategies to address the resistance to targeted therapy, along with searching for novel effective regimens, is a constant challenge in the mCRC treatment, and it is also a hot research topic. In this review, we focus on the current status on resistance to existing targeted therapies in mCRC and discuss future developments.
Collapse
Affiliation(s)
- Yuan-Ling Tang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan-Dan Li
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yu Duan
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei-Ming Sheng
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
111
|
Chen Z, Higashi K, Shigehisa Y, Ueda K, Yamamoto K, Moribe K. Understanding the rod-to-tube transformation of self-assembled ascorbyl dipalmitate lipid nanoparticles stabilized with PEGylated lipids. NANOSCALE 2023; 15:2602-2613. [PMID: 36484313 DOI: 10.1039/d2nr04987b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We previously established a nanoparticle-based drug delivery system (DDS) for high-dose ascorbic acid therapy by self-assembly of a lipid-modified ascorbic acid derivative, L-ascorbyl 2,6-dipalmitate (ASC-DP). The particles' morphology should be modified for effective DDSs. Here, we modulated the morphology of self-assembled ASC-DP nanoparticles using two different PEGylated lipids, distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) and cholesterol-polyethylene glycol (Chol-PEG), with various PEG molecular weights. At the preparation molar ratio of 10 : 1 (ASC-DP/PEGylated lipid), rod-like nanoparticles emerged in the ASC-DP/DSPE-PEG system, whereas the ASC-DP/Chol-PEG system yielded tube-like nanoparticles. The internal structures of both rod-like ASC-DP/DSPE-PEG and tube-like ASC-DP/Chol-PEG nanoparticles were similar to that of repeated ASC-DP bilayers. The particles' surfaces featured PEGylated lipids, which stabilized the structure and dispersion of the nanoparticles. For both systems, the particle size increased slightly with increasing the PEGylated lipid's PEG molecular weight. Increasing the PEG molecular weight decreased the inner tunnel size of tube-like ASC-DP/Chol-PEG nanoparticles. A mechanism has been proposed for the rod-to-tube transformation. Surface-layer free-energy changes owing to the mixing of multiple lipids and PEG chain repulsion are thought to underlie the inner tunnels' formation. The rod-to-tube morphology of self-assembled ASC-DP nanoparticles can be modulated by controlling the PEGylated lipids' structure, including the lipid species and the PEG chain length.
Collapse
Affiliation(s)
- Ziqiao Chen
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yuki Shigehisa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Keiji Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
112
|
Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci 2023; 13:25. [PMID: 36755301 PMCID: PMC9906896 DOI: 10.1186/s13578-023-00977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
Collapse
Affiliation(s)
- Jieping Zhang
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Shaomin Zou
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| |
Collapse
|
113
|
Yamasaki H, Imai H, Tanaka A, Otaki JM. Pleiotropic Functions of Nitric Oxide Produced by Ascorbate for the Prevention and Mitigation of COVID-19: A Revaluation of Pauling's Vitamin C Therapy. Microorganisms 2023; 11:397. [PMID: 36838362 PMCID: PMC9963342 DOI: 10.3390/microorganisms11020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Linus Pauling, who was awarded the Nobel Prize in Chemistry, suggested that a high dose of vitamin C (l-ascorbic acid) might work as a prevention or treatment for the common cold. Vitamin C therapy was tested in clinical trials, but clear evidence was not found at that time. Although Pauling's proposal has been strongly criticized for a long time, vitamin C therapy has continued to be tested as a treatment for a variety of diseases, including coronavirus infectious disease 2019 (COVID-19). The pathogen of COVID-19, SARS-CoV-2, belongs to the β-coronavirus lineage, which includes human coronavirus, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). This review intends to shed new light on vitamin C antiviral activity that may prevent SARS-CoV-2 infection through the chemical production of nitric oxide (NO). NO is a gaseous free radical that is largely produced by the enzyme NO synthase (NOS) in cells. NO produced by upper epidermal cells contributes to the inactivation of viruses and bacteria contained in air or aerosols. In addition to enzymatic production, NO can be generated by the chemical reduction of inorganic nitrite (NO2-), an alternative mechanism for NO production in living organisms. Dietary vitamin C, largely contained in fruits and vegetables, can reduce the nitrite in saliva to produce NO in the oral cavity when chewing foods. In the stomach, salivary nitrite can also be reduced to NO by vitamin C secreted from the epidermal cells of the stomach. The strong acidic pH of gastric juice facilitates the chemical reduction of salivary nitrite to produce NO. Vitamin C contributes in multiple ways to the host innate immune system as a first-line defense mechanism against pathogens. Highlighting chemical NO production by vitamin C, we suggest that controversies on the therapeutic effects of vitamin C in previous clinical trials may partly be due to less appreciation of the pleiotropic functions of vitamin C as a universal bioreductant.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | | | | | | |
Collapse
|
114
|
Abstract
Reprogrammed metabolism is a hallmark of colorectal cancer (CRC). CRC cells are geared toward rapid proliferation, requiring nutrients and the removal of cellular waste in nutrient-poor environments. Intestinal stem cells (ISCs), the primary cell of origin for CRCs, must adapt their metabolism along the adenoma-carcinoma sequence to the unique features of their complex microenvironment that include interactions with intestinal epithelial cells, immune cells, stromal cells, commensal microbes, and dietary components. Emerging evidence implicates modifiable risk factors related to the environment, such as diet, as important in CRC pathogenesis. Here, we focus on describing the metabolism of ISCs, diets that influence CRC initiation, CRC genetics and metabolism, and the tumor microenvironment. The mechanistic links between environmental factors, metabolic adaptations, and the tumor microenvironment in enhancing or supporting CRC tumorigenesis are becoming better understood. Thus, greater knowledge of CRC metabolism holds promise for improved prevention and treatment.
Collapse
Affiliation(s)
- Joseph C Sedlak
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Massachusetts General Hospital, Department of Pathology, Boston, Massachusetts, USA
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA;
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
115
|
Burkard M, Niessner H, Leischner C, Piotrowsky A, Renner O, Marongiu L, Lauer UM, Busch C, Sinnberg T, Venturelli S. High-Dose Ascorbate in Combination with Anti-PD1 Checkpoint Inhibition as Treatment Option for Malignant Melanoma. Cells 2023; 12:254. [PMID: 36672190 PMCID: PMC9857291 DOI: 10.3390/cells12020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Ascorbate acts as a prooxidant when administered parenterally at high supraphysiological doses, which results in the generation of hydrogen peroxide in dependence on oxygen. Most cancer cells are susceptible to the emerging reactive oxygen species (ROS). Accordingly, we evaluated high-dose ascorbate for the treatment of the B16F10 melanoma model. To investigate the effects of ascorbate on the B16F10 cell line in vitro, viability, cellular impedance, and ROS production were analyzed. In vivo, C57BL/6NCrl mice were subcutaneously injected into the right flank with B16F10 cells and tumor-bearing mice were treated intraperitoneally with ascorbate (3 g/kg bodyweight), immunotherapy (anti-programmed cell death protein 1 (PD1) antibody J43; 2 mg/kg bodyweight), or both treatments combined. The efficacy and toxicity were analyzed by measuring the respective tumor sizes and mouse weights accompanied by histological analysis of the protein levels of proliferating cell nuclear antigen (Pcna), glucose transporter 1 (Glut-1), and CD3. Treatment of B16F10 melanoma-carrying mice with high-dose ascorbate yielded plasma levels in the pharmacologically effective range, and ascorbate showed efficacy as a monotherapy and when combined with PD1 inhibition. Our data suggest the applicability of ascorbate as an additional therapeutic agent that can be safely combined with immunotherapy and has the potential to potentiate anti-PD1-based immune checkpoint blockades.
Collapse
Affiliation(s)
- Markus Burkard
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
| | - Christian Leischner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Christian Busch
- Dermatologie zum Delfin, Stadthausstraße 12, 8400 Winterthur, Switzerland
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, 72076 Tuebingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, Institute of Nutritional Sciences, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| |
Collapse
|
116
|
Begum S, Jabeen S, Rizvi SAH. The pattern of RNA integrity and the expression of housekeeping genes are influenced by sodium hypochlorite and ascorbic acid. AMERICAN JOURNAL OF STEM CELLS 2023; 12:12-22. [PMID: 36937027 PMCID: PMC10018005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/20/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Basic biological science research deals with nucleic acid isolation. Post-isolation nucleic acid integrity has a pivotal role in further elucidating gene expression and other molecular mechanisms. RNA (ribonucleic acid), cDNA (complementary deoxyribonucleic acid), and PCR (Polymerase chain reaction) products' integrity and quality are affected by several factors in biochemical and biophysical degradation modes. Inadequate evidence was noted about the direct effects of sodium hypochlorite and L-ascorbic acid. OBJECTIVES This study aims to test the effects of sodium hypochlorite (SHC) and L-ascorbic acid (LAA) in total RNA and PCR products, respectively, in an acellular condition. METHODS The study was categorized into three steps total RNA, cDNA, and PCR product evaluations. mBM-MSCs were used to extract RNA and then treated with SHC. Crude total RNA and, after DNase 1 treatment, the bands of total RNA samples were visualized by agarose gel electrophoresis. cDNAs were synthesized from SHC-treated (0.25%) and untreated RNAs, which were also expressed on the gel. LAA (5 µM, 15 µM, 25 µM, and 50 µM) were added to cDNAs synthesized from SHC- and non-SHC-treated samples. Housekeeping genes, Gapdh (Glyceraldehyde 3-phosphate dehydrogenase), and 18S rRNA (18S Ribosomal ribonucleic acid) were amplified in both groups. RESULTS SHC-treated samples produced clearer bands on an agarose gel. Its treatment did not affect the integrated densities of agarose bands which revealed non-significant (P ≤ 0.05) differences in SHC-treated, untreated RNA, and cDNA. However, significant variations were observed at the PCR level. SHC-treated samples expressed decreased housekeeping gene expression in amplified products (Gapdh and 18S rRNA) and slightly but non-significantly high band intensities appeared in the presence of LAA. Significant variable differences (*P ≤ 0.05) were observed between SHC-treated and non-treated groups after LAA treatment. CONCLUSIONS SHC (0.25%) is favorable in removing RNases and maintaining the integrity of RNA. cDNA synthesis did not affect by SHC treatment, and it follows the same as untreated samples after DNase 1 treatment. LAA drew a positive impact to improve the quality of PCR products in terms of band intensities, which is insignificant in SHC-treated RNA. Interestingly, it was revealed from our study that 5-25 µM LAA has the most beneficial role in the acquisition of PCR products, i.e. gene expression. These concentrations can be safely used to improve the quality of gene expression. This phenomenon can be used to achieve other, rarer, desired gene expressions. Further research is needed to explore the effects of SHC on the acquisition of PCR products using other solutions.
Collapse
Affiliation(s)
- Sumreen Begum
- Sindh Institute of Urology and Transplantation (SIUT) Karachi-74200, Pakistan
| | - Sehrish Jabeen
- Sindh Institute of Urology and Transplantation (SIUT) Karachi-74200, Pakistan
| | | |
Collapse
|
117
|
Yang H, Zhou X, Fu D, Le C, Wang J, Zhou Q, Liu X, Yuan Y, Ding K, Xiao Q. Targeting RAS mutants in malignancies: successes, failures, and reasons for hope. Cancer Commun (Lond) 2023; 43:42-74. [PMID: 36316602 PMCID: PMC9859734 DOI: 10.1002/cac2.12377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 10/13/2022] [Indexed: 01/22/2023] Open
Abstract
RAS genes are the most frequently mutated oncogenes and play critical roles in the development and progression of malignancies. The mutation, isoform (KRAS, HRAS, and NRAS), position, and type of substitution vary depending on the tissue types. Despite decades of developing RAS-targeted therapies, only small subsets of these inhibitors are clinically effective, such as the allele-specific inhibitors against KRASG12C . Targeting the remaining RAS mutants would require further experimental elucidation of RAS signal transduction, RAS-altered metabolism, and the associated immune microenvironment. This study reviews the mechanisms and efficacy of novel targeted therapies for different RAS mutants, including KRAS allele-specific inhibitors, combination therapies, immunotherapies, and metabolism-associated therapies.
Collapse
Affiliation(s)
- Hang Yang
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Xinyi Zhou
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Dongliang Fu
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Chenqin Le
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| | - Jiafeng Wang
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Quan Zhou
- Department of Cell BiologySchool of Basic Medical SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Xiangrui Liu
- Department of Pharmacology and Department of Gastroenterology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ying Yuan
- Department of Medical Oncologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiang310058P. R. China
| | - Kefeng Ding
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Qian Xiao
- Department of Colorectal Surgery and OncologyKey Laboratory of Cancer Prevention and InterventionMinistry of EducationThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310009P. R. China
| |
Collapse
|
118
|
Singh G, Thakur N, Kumar U. RAS: Circuitry and therapeutic targeting. Cell Signal 2023; 101:110505. [PMID: 36341985 DOI: 10.1016/j.cellsig.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022]
Abstract
Cancer has affected the lives of millions worldwide and is truly regarded as a devastating disease process. Despite advanced understanding of the genomic underpinning of cancer development and progression, therapeutic challenges are still persistent. Among all the human cancers, around 33% are attributed to mutations in RAS oncogene, a crucial component of the signaling pathways. With time, our understanding of RAS circuitry has improved and now the fact that it activates several downstream effectors, depending on the type and grades of cancer has been established. The circuitry is controlled via post-transcriptional mechanisms and frequent distortions in these mechanisms lead to important metabolic as well as immunological states that favor cancer cells' growth, survival, plasticity and metastasis. Therefore, understanding RAS circuitry can help researchers/clinicians to develop novel and potent therapeutics that, in turn, can save the lives of patients suffering from RAS-mutant cancers. There are many challenges presented by resistance and the potential strategies with a particular focus on novel combinations for overcoming these, that could move beyond transitory responses in the direction of treatment. Here in this review, we will look at how understanding the circuitry of RAS can be put to use in making strategies for developing therapeutics against RAS- driven malignancies.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India
| | - Neelam Thakur
- Department of Biosciences (UIBT), Chandigarh University, NH-05, Ludhiana - Chandigarh State Hwy, Sahibzada Ajit Singh Nagar, Punjab 140413, India; Department of Zoology, Sardar Patel University, Vallabh Government College Campus, Paddal, Kartarpur, Mandi, Himachal Pradesh 175001, India.
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Adhyatmik Nagar, NH09, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
119
|
ArulJothi KN, Kumaran K, Senthil S, Nidhu AB, Munaff N, Janitri VB, Kirubakaran R, Singh SK, Gupt G, Dua K, Krishnan A. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Med Oncol 2023; 40:43. [PMID: 36472716 PMCID: PMC9734980 DOI: 10.1007/s12032-022-01900-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer is the second (11.4%) most commonly diagnosed cancer and the first (18%) to cause cancer-related deaths worldwide. The incidence of lung cancer varies significantly among men, women, and high and low-middle-income countries. Air pollution, inhalable agents, and tobacco smoking are a few of the critical factors that determine lung cancer incidence and mortality worldwide. Reactive oxygen species are known factors of lung carcinogenesis resulting from the xenobiotics and their mechanistic paths are under critical investigation. Reactive oxygen species exhibit dual roles in cells, as a tumorigenic and anti-proliferative factor, depending on spatiotemporal context. During the precancerous state, ROS promotes cancer origination through oxidative stress and base-pair substitution mutations in pro-oncogenes and tumor suppressor genes. At later stages of tumor progression, they help the cancer cells in invasion, and metastases by activating the NF-kB and MAPK pathways. However, at advanced stages, when ROS exceeds the threshold, it promotes cell cycle arrest and induces apoptosis in cancer cells. ROS activates extrinsic apoptosis through death receptors and intrinsic apoptosis through mitochondrial pathways. Moreover, ROS upregulates the expression of beclin-1 which is a critical component to initiate autophagy, another form of programmed cell death. ROS is additionally involved in an intermediatory step in necroptosis, which catalyzes and accelerates this form of cell death. Various therapeutic interventions have been attempted to exploit this cytotoxic potential of ROS to treat different cancers. Growing body of evidence suggests that ROS is also associated with chemoresistance and cancer cell immunity. Considering the multiple roles of ROS, this review highlights the exploitation of ROS for various therapeutic interventions. However, there are still gaps in the literature on the dual roles of ROS and the involvement of ROS in cancer cell immunity and therapy resistance.
Collapse
Affiliation(s)
- K. N. ArulJothi
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - K. Kumaran
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Sowmya Senthil
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - A. B. Nidhu
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Nashita Munaff
- grid.412742.60000 0004 0635 5080Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - V. B. Janitri
- grid.262613.20000 0001 2323 3518Rochester Institute of Technology, Rochester, NY USA
| | - Rangasamy Kirubakaran
- grid.444708.b0000 0004 1799 6895Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Missions Research Foundation, Salem, Tamil Nadu India
| | - Sachin Kumar Singh
- grid.449005.cSchool of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab India ,grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Gaurav Gupt
- grid.448952.60000 0004 1767 7579School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017 India ,grid.412431.10000 0004 0444 045XDepartment of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India ,grid.449906.60000 0004 4659 5193Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia ,grid.117476.20000 0004 1936 7611Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Anand Krishnan
- grid.412219.d0000 0001 2284 638XDepartment of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| |
Collapse
|
120
|
Chen Y, Yang Z, Wang S, Ma Q, Li L, Wu X, Guo Q, Tao L, Shen X. Boosting ROS-Mediated Lysosomal Membrane Permeabilization for Cancer Ferroptosis Therapy. Adv Healthc Mater 2023; 12:e2202150. [PMID: 36408929 DOI: 10.1002/adhm.202202150] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Indexed: 11/22/2022]
Abstract
Due to the deficient catalase, abundant reduced iron and low acidic environment in lysosomes, inducing lysosomal membrane permeabilization (LMP) through Fenton reaction-based reactive oxygen species (ROS) generation recently attracts increasing attention in cancer therapy. However, the lysosomal membranes are protected by highly glycosylated membrane proteins and several endolysosomal damage-response mechanisms can rapidly repair the injured lysosomes. To produce sufficient ROS and cause complete lysosomal membranes rupture, a lysosome-targeted ROS inducer, N-(3-Aminopropyl) morpholine grafted cross-linked lipoic acid vesicles with vitamin C-loading (VC@N3AM cLAVs), is developed. VC@N3AM cLAVs efficiently accumulate in lysosomes and convert into two redox couples LA/DHLA (dihydrolipoic acid, reduced form of LA) and VC/DHA (dehydroascorbic acid, oxidized form of VC) by the lysosomal glutathione, which can not only produce a large amount of H2 O2 by pro-oxidant action but also accelerate iron transformation through the cyclic redox reactions between each other and cause the efficient conversion of the generated H2 O2 into highly toxic •OH. Both in vitro and in vivo experiments demonstrate that VC@N3AM cLAVs can effectively enhance ROS production and boost LMP, finally initiation irreversible death of tumor cells via ferroptosis pathway, thus representing a potential anticancer drug for cancer therapy.
Collapse
Affiliation(s)
- Ying Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Zengqiu Yang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Sibu Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Qin Ma
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Lingyan Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Xingjie Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Qianqian Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China.,The Department of Pharmacology of Materia Medical (the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| |
Collapse
|
121
|
Begimbetova D, Kukanova A, Fazyl F, Manekenova K, Omarov T, Burska AN, Khamijan M, Gulyayev A, Yermekbayeva B, Makishev A, Saliev T, Batyrbekov K, Aitbayev C, Spatayev Z, Sarbassov D. The Oxidative Drug Combination for Suppressing KRAS G12D Inducible Tumour Growth. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-14. [DOI: doi10.1155/2022/9426623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Background. Kirsten rat sarcoma (KRAS) protein is an essential contributor to the development of pancreatic ductal adenocarcinoma (PDAC). KRAS G12D and G12V mutant tumours are significant challenges in cancer therapy due to high resistance to the treatment. Objective. To determine how effective is the ATO/D-VC combination in suppression of PDAC the mouse transgenic model. This study investigated the antitumour effect of a novel combination of arsenic trioxide (ATO) and D-ascorbic acid isomer (D-VC). Such a combination can be used to treat KRAS mutant cancer by inducing catastrophic oxidative stress. Methods. In this study, we examined the effectiveness of ATO and D-VC on xenograft models—AK192 cells transplanted into mice. Previously, it has been shown that a high concentration of Vitamin C (VC) selectively can kill the cells expressing KRAS. Results. The results of this study demonstrated that the combination of VC with a low dose of the oxidizing drug ATO led to the enhancement of the therapeutic effect. These findings suggest that the combined treatment using ATO and D-VC is a promising approach to overcome the limitation of drug selectivity and efficacy.
Collapse
Affiliation(s)
| | - Assiya Kukanova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Oncology, Astana Medical University, Astana, Kazakhstan
| | - Fatima Fazyl
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Kenzhekyz Manekenova
- Department of Pathological Anatomy, Astana Medical University, Astana, Kazakhstan
| | - Talgat Omarov
- Department of Pathological Anatomy, Astana Medical University, Astana, Kazakhstan
| | - Agata N. Burska
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Medina Khamijan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Alexandr Gulyayev
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Abay Makishev
- Department of Oncology, Astana Medical University, Astana, Kazakhstan
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | | | | | - Dos Sarbassov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
122
|
Begimbetova D, Kukanova A, Fazyl F, Manekenova K, Omarov T, Burska AN, Khamijan M, Gulyayev A, Yermekbayeva B, Makishev A, Saliev T, Batyrbekov K, Aitbayev C, Spatayev Z, Sarbassov D. The Oxidative Drug Combination for Suppressing KRAS G12D Inducible Tumour Growth. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-14. [DOI: https:/doi.org/10.1155/2022/9426623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Background. Kirsten rat sarcoma (KRAS) protein is an essential contributor to the development of pancreatic ductal adenocarcinoma (PDAC). KRAS G12D and G12V mutant tumours are significant challenges in cancer therapy due to high resistance to the treatment. Objective. To determine how effective is the ATO/D-VC combination in suppression of PDAC the mouse transgenic model. This study investigated the antitumour effect of a novel combination of arsenic trioxide (ATO) and D-ascorbic acid isomer (D-VC). Such a combination can be used to treat KRAS mutant cancer by inducing catastrophic oxidative stress. Methods. In this study, we examined the effectiveness of ATO and D-VC on xenograft models—AK192 cells transplanted into mice. Previously, it has been shown that a high concentration of Vitamin C (VC) selectively can kill the cells expressing KRAS. Results. The results of this study demonstrated that the combination of VC with a low dose of the oxidizing drug ATO led to the enhancement of the therapeutic effect. These findings suggest that the combined treatment using ATO and D-VC is a promising approach to overcome the limitation of drug selectivity and efficacy.
Collapse
Affiliation(s)
| | - Assiya Kukanova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Oncology, Astana Medical University, Astana, Kazakhstan
| | - Fatima Fazyl
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Kenzhekyz Manekenova
- Department of Pathological Anatomy, Astana Medical University, Astana, Kazakhstan
| | - Talgat Omarov
- Department of Pathological Anatomy, Astana Medical University, Astana, Kazakhstan
| | - Agata N. Burska
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Medina Khamijan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Alexandr Gulyayev
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Abay Makishev
- Department of Oncology, Astana Medical University, Astana, Kazakhstan
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | | | | | - Dos Sarbassov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
123
|
The Oxidative Drug Combination for Suppressing KRAS G12D Inducible Tumour Growth. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9426623. [PMID: 36619305 PMCID: PMC9822755 DOI: 10.1155/2022/9426623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 01/01/2023]
Abstract
Background Kirsten rat sarcoma (KRAS) protein is an essential contributor to the development of pancreatic ductal adenocarcinoma (PDAC). KRAS G12D and G12V mutant tumours are significant challenges in cancer therapy due to high resistance to the treatment. Objective To determine how effective is the ATO/D-VC combination in suppression of PDAC the mouse transgenic model. This study investigated the antitumour effect of a novel combination of arsenic trioxide (ATO) and D-ascorbic acid isomer (D-VC). Such a combination can be used to treat KRAS mutant cancer by inducing catastrophic oxidative stress. Methods In this study, we examined the effectiveness of ATO and D-VC on xenograft models-AK192 cells transplanted into mice. Previously, it has been shown that a high concentration of Vitamin C (VC) selectively can kill the cells expressing KRAS. Results The results of this study demonstrated that the combination of VC with a low dose of the oxidizing drug ATO led to the enhancement of the therapeutic effect. These findings suggest that the combined treatment using ATO and D-VC is a promising approach to overcome the limitation of drug selectivity and efficacy.
Collapse
|
124
|
Pal S, Sharma A, Mathew SP, Jaganathan BG. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Front Immunol 2022; 13:955476. [PMID: 36618350 PMCID: PMC9815821 DOI: 10.3389/fimmu.2022.955476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a heterogeneous disease characterized by various genetic and phenotypic aberrations. Cancer cells undergo genetic modifications that promote their proliferation, survival, and dissemination as the disease progresses. The unabated proliferation of cancer cells incurs an enormous energy demand that is supplied by metabolic reprogramming. Cancer cells undergo metabolic alterations to provide for increased energy and metabolite requirement; these alterations also help drive the tumor progression. Dysregulation in glucose uptake and increased lactate production via "aerobic glycolysis" were described more than 100 years ago, and since then, the metabolic signature of various cancers has been extensively studied. However, the extensive research in this field has failed to translate into significant therapeutic intervention, except for treating childhood-ALL with amino acid metabolism inhibitor L-asparaginase. Despite the growing understanding of novel metabolic alterations in tumors, the therapeutic targeting of these tumor-specific dysregulations has largely been ineffective in clinical trials. This chapter discusses the major pathways involved in the metabolism of glucose, amino acids, and lipids and highlights the inter-twined nature of metabolic aberrations that promote tumorigenesis in different types of cancer. Finally, we summarise the therapeutic interventions which can be used as a combinational therapy to target metabolic dysregulations that are unique or common in blood, breast, colorectal, lung, and prostate cancer.
Collapse
Affiliation(s)
- Soumik Pal
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sam Padalumavunkal Mathew
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India,*Correspondence: Bithiah Grace Jaganathan,
| |
Collapse
|
125
|
Wang W, Yuan H, Han J, Liu W. PCLassoLog: A protein complex-based, group Lasso-logistic model for cancer classification and risk protein complex discovery. Comput Struct Biotechnol J 2022; 21:365-377. [PMID: 36582441 PMCID: PMC9791601 DOI: 10.1016/j.csbj.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Risk gene identification has attracted much attention in the past two decades. Since most genes need to be translated into proteins and cooperate with other proteins to form protein complexes to carry out cellular functions, which significantly extends the functional diversity of individual proteins, revealing the molecular mechanism of cancer from a comprehensive perspective needs to shift from identifying individual risk genes toward identifying risk protein complexes. Here, we embed protein complexes into the regularized learning framework and propose a protein complex-based, group Lasso-logistic model (PCLassoLog) to discover risk protein complexes. Experiments on deep proteomic data of two cancer types show that PCLassoLog yields superior predictive performance on independent datasets. More importantly, PCLassoLog identifies risk protein complexes that not only contain individual risk proteins but also incorporate close partners that synergize with them. Furthermore, selection probabilities are calculated and two other protein complex-based models are proposed to complement PCLassoLog in identifying reliable risk protein complexes. Based on PCLassoLog, a pan-cancer analysis is performed to identify risk protein complexes in 12 cancer types. Finally, PCLassoLog is used to discover risk protein complexes associated with gene mutation. We implement all protein complex-based models as an R package PCLassoReg, which may serve as an effective tool to discover risk protein complexes in various contexts.
Collapse
Affiliation(s)
- Wei Wang
- College of Science, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Haiyan Yuan
- College of Science, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China,Corresponding authors.
| | - Wei Liu
- College of Science, Heilongjiang Institute of Technology, Harbin 150050, China,Corresponding authors.
| |
Collapse
|
126
|
Zhang F, Yang P, Mao W, Zhong C, Zhang J, Chang L, Wu X, Liu H, Zhang Y, Gou S, Ni J. Short, mirror-symmetric antimicrobial peptides centered on "RRR" have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater 2022; 154:145-167. [PMID: 36241015 DOI: 10.1016/j.actbio.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The increasingly severe bacterial resistance worldwide pushes people to discover and design potential antibacterial drugs unavoidably. In this work, a series of short, mirror-symmetric peptides were designed and successfully synthesized, centered on "RRR" and labeled with hydrophobic amino acids at both ends. Based on the structure-activity relationship analysis, LWWR (LWWRRRWWL-NH2) was screened as a desirable mirror-symmetric peptide for further study. As expected, LWWR displayed broad-spectrum antibacterial activity against the standard bacteria and antibiotic-resistant strains. Undoubtedly, the high stability of LWWR in a complex physiological environment was an essential guarantee to maximizing its antibacterial activity. Indeed, LWWR also exhibited a rapid bactericidal speed and a low tendency to develop bacterial resistance, based on the multiple actions of non-receptor-mediated membrane actions and intra-cellular mechanisms. Surprisingly, although LWWR showed similar in vivo antibacterial activity compared with Polymyxin B and Melittin, the in vivo safety of LWWR was far higher than that of them, so LWWR had better therapeutic potential. In summary, the desirable mirror-symmetric peptide LWWR was promised as a potential antibacterial agent to confront the antibiotics resistance crisis. STATEMENT OF SIGNIFICANCE: Witnessing the growing problem of antibiotic resistance, a series of short, mirror-symmetric peptides based on the symmetric center "RRR" and hydrophobic terminals were designed and synthesized in this study. Among, LWWR (LWWRRRWWL-NH2) presented broad-spectrum antibacterial activity both in vitro and in vivo due to its multiple mechanisms and good stability. Meanwhile, the low drug resistance and toxicity of LWWR also suggested its potential for clinical application. The findings of this study will provide some inspiration for the design and development of potential antibacterial agents, and contribute to the elimination of bacterial infections worldwide as soon as possible.
Collapse
Affiliation(s)
- Fangyan Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
127
|
Wang M, Chen X, Fu G, Ge M. Glutathione peroxidase 2 overexpression promotes malignant progression and cisplatin resistance of KRAS‑mutated lung cancer cells. Oncol Rep 2022; 48:207. [PMID: 36222298 PMCID: PMC9579749 DOI: 10.3892/or.2022.8422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) aberrations frequently occur in patients with lung cancer. Oncogenic KRAS is characterized by excessive reactive oxygen species (ROS) accumulation, thus, ROS detoxification may contribute to KRAS‑driven lung tumorigenesis. In the present study, the influence of glutathione peroxidase 2 (GPX2) on malignant progression and cisplatin resistance of KRAS‑driven lung cancer was explored. The RNA sequencing data from TCGA lung cancer samples and GEO database were downloaded and analyzed. The effects of GPX2 on KRAS‑driven lung tumorigenesis were evaluated by western blotting, cell viability assay, soft agar assay, Transwell assay, tumor xenograft model, flow cytometry, BrdU incorporation assay, transcriptome RNA sequencing, luciferase reporter assay and RNA immunoprecipitation. In the present study, GPX2 was upregulated in patients with non‑small cell lung carcinoma (NSCLC), and positively correlated with poor overall survival. Ectopic GPX2 expression facilitated malignant progression of KRASG12C‑transformed BEAS‑2B cells. Moreover, GPX2 overexpression promoted growth, migration, invasion, tumor xenograft growth and cisplatin resistance of KRAS‑mutated NSCLC cells, while GPX2 knockdown exhibited the opposite effects. GPX2 overexpression reduced ROS accumulation and increased matrix metalloproteinase‑1 (MMP1) expression in KRAS‑mutated NSCLC cells. In addition, GPX2 was directly targeted by miR‑325‑3p, while MMP1 knockdown or miR‑325‑3p overexpression partially abrogated the effects of GPX2 in NSCLC cells. In conclusion, the results indicated that GPX2 facilitated malignant progression and cisplatin resistance of KRAS‑driven lung cancer, and inhibition of GPX2 may be a feasible strategy for lung cancer treatment, particularly in patients with active KRAS mutations.
Collapse
Affiliation(s)
- Mei Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guang Fu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mingjian Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
128
|
Ying M, Hu X. Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells. Semin Cancer Biol 2022; 87:32-47. [PMID: 36374644 DOI: 10.1016/j.semcancer.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells are characterized by sustained proliferation, which requires a huge demand of fuels to support energy production and biosynthesis. Energy is produced by the oxidation of the fuels during catabolism, and biosynthesis is achieved by the reduction of smaller units or precursors. Therefore, the oxidation-reduction (redox) reactions in cancer cells are more active compared to those in the normal counterparts. The higher activity of redox metabolism also induces a more severe oxidative stress, raising the question of how cancer cells maintain the redox balance. In this review, we overview the redox metabolism of cancer cells in an electron-tracing view. The electrons are derived from the nutrients in the tumor microenvironment and released during catabolism. Most of the electrons are transferred to NAD(P) system and then directed to four destinations: energy production, ROS generation, reductive biosynthesis and antioxidant system. The appropriate distribution of these electrons achieved by the function of redox regulation network is essential to maintain redox homeostasis in cancer cells. Interfering with the electron distribution and disrupting redox balance by targeting the redox regulation network may provide therapeutic implications for cancer treatment.
Collapse
Affiliation(s)
- Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| |
Collapse
|
129
|
Vahid F, Rahmani W, Davoodi SH. The association between dietary total antioxidant capacity and quality of nutrients with odds of colorectal cancer: A hospital-based case-control study. Clin Nutr ESPEN 2022; 52:277-284. [PMID: 36513466 DOI: 10.1016/j.clnesp.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Dietary quality and patterns have been associated with reduced incidence and increased colorectal cancer (CRC) survival. Two validated scores representing the quality of diet defined respectively by their content in micronutrients (nutritional quality index (INQ)) and antioxidant (dietary antioxidant index (DAI)) were used for assessing dietary quality. INQ standardizes all micronutrients using the recommended values and adjusts nutrients intakes based on total energy. Major dietary antioxidants are standardized based on the global mean and then divided by the global standard deviation to calculate the DAI. We hypothesize that a quality diet with higher scores of DAI can reduce CRC odds. METHODS In this hospital-based case-control study, 207 definite CRC cases and 220 controls met the inclusion criteria. Cases and controls were frequency-matched for age (±5 years) and sex. A 168-item semi-quantitative food frequency questionnaire was completed. Adjusted and unadjusted odds ratios (OR) and 95% confidence intervals (CI) were reported in logistic and multivariable regression models. RESULTS DAI as a continuous (OR = 0.91, 95% CI: 0.85-0.98) and as a categorical (OR = 0.58, 95% CI: 0.37-0.92) variable and the INQs of vitamin A (OR = 0.30, 95% CI: 0.10-0.89), riboflavin (OR = 0.55, 95% CI: 0.32-0.94), magnesium (OR = 0.37, 95% CI: 0.18-0.77) and selenium (ORmultiple adjusted = 0.55, 95% CI: 0.36-0.86) in the regression crude models, and multivariable adjustments significantly have a protective association in reducing the odds of CRC (all p-values <0.05). CONCLUSIONS It can be concluded that dietary antioxidants, including vitamins A, C, E, zinc, selenium, and manganese from a high-quality diet, including vegetables, whole grains, and fruits, can significantly reduce CRC incidence.
Collapse
Affiliation(s)
- Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg.
| | | | - Sayed Hossein Davoodi
- Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
130
|
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS NANO 2022; 16:17497-17551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite their clinical success in drug delivery applications, the potential of theranostic nanomedicines is hampered by mechanistic uncertainty and a lack of science-informed regulatory guidance. Both the therapeutic efficacy and the toxicity of nanoformulations are tightly controlled by the complex interplay of the nanoparticle's physicochemical properties and the individual patient/tumor biology; however, it can be difficult to correlate such information with observed outcomes. Additionally, as nanomedicine research attempts to gradually move away from large-scale animal testing, the need for computer-assisted solutions for evaluation will increase. Such models will depend on a clear understanding of structure-activity relationships. This review provides a comprehensive overview of the field of cancer nanomedicine and provides a knowledge framework and foundational interaction maps that can facilitate future research, assessments, and regulation. By forming three complementary maps profiling nanobio interactions and pathways at different levels of biological complexity, a clear picture of a nanoparticle's journey through the body and the therapeutic and adverse consequences of each potential interaction are presented.
Collapse
Affiliation(s)
- Brian Youden
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Andrew J Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
| | - Xu Zhang
- Department of Biology, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| |
Collapse
|
131
|
Huang H, Lin L, Bu F, Su Y, Zheng X, Chen Y. Reductive Stress Boosts the Horizontal Transfer of Plasmid-Borne Antibiotic Resistance Genes: The Neglected Side of the Intracellular Redox Spectrum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15594-15606. [PMID: 36322896 DOI: 10.1021/acs.est.2c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) among bacteria is becoming a global challenge to the "One Health" concept. During conjugation, the donor/recipient usually encounter diverse stresses induced by the surrounding environment. Previous studies mainly focused on the effects of oxidative stress on plasmid conjugation, but ignored the potential contribution of reductive stress (RS), the other side of the intracellular redox spectrum. Herein, we demonstrated for the first time that RS induced by dithiothreitol could significantly boost the horizontal transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella Typhimurium, and Pseudomonas putida KT2440). Phenotypic and genotypic tests confirmed that RS upregulated genes encoding the transfer apparatus of plasmid RP4, which was attributed to the promoted consumption of intracellular glutamine in the donor rather than the widely reported SOS response. Moreover, RS was verified to benefit ATP supply by activating glycolysis (e.g., GAPDH) and the respiratory chain (e.g., appBC), triggering the deficiency of intracellular free Mg2+ by promoting its binding, and reducing membrane permeability by stimulating cardiolipin biosynthesis, all of which were beneficial to the functioning of transfer apparatus. Overall, our findings uncovered the neglected risks of RS in ARG spreading and updated the regulatory mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lin Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Bu
- Shanghai Electric Environmental Protection Group, Shanghai Electric Group Co. Ltd, Shanghai 200092, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
132
|
Bilbao‐Asensio M, Ruiz‐de‐Angulo A, Arguinzoniz AG, Cronin J, Llop J, Zabaleta A, Michue‐Seijas S, Sosnowska D, Arnold JN, Mareque‐Rivas JC. Redox‐Triggered Nanomedicine via Lymphatic Delivery: Inhibition of Melanoma Growth by Ferroptosis Enhancement and a Pt(IV)‐Prodrug Chemoimmunotherapy Approach. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marc Bilbao‐Asensio
- Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP UK
| | | | | | - James Cronin
- Swansea University Medical School Singleton Park Swansea SA2 8PP UK
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Laboratory CIC biomaGUNE Paseo Miramón 182 San Sebastián 20014 Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra Centro de Investigación Médica Aplicada (CIMA) IdiSNA Instituto de Investigación Sanitaria de Navarra Pamplona 31009 Spain
| | - Saul Michue‐Seijas
- Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP UK
| | - Dominika Sosnowska
- School of Cancer and Pharmaceutical Sciences King's College London London SE1 1UL UK
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences King's College London London SE1 1UL UK
| | | |
Collapse
|
133
|
Burska AN, Ilyassova B, Dildabek A, Khamijan M, Begimbetova D, Molnár F, Sarbassov DD. Enhancing an Oxidative "Trojan Horse" Action of Vitamin C with Arsenic Trioxide for Effective Suppression of KRAS-Mutant Cancers: A Promising Path at the Bedside. Cells 2022; 11:3454. [PMID: 36359850 PMCID: PMC9657932 DOI: 10.3390/cells11213454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The turn-on mutations of the KRAS gene, coding a small GTPase coupling growth factor signaling, are contributing to nearly 25% of all human cancers, leading to highly malignant tumors with poor outcomes. Targeting of oncogenic KRAS remains a most challenging task in oncology. Recently, the specific G12C mutant KRAS inhibitors have been developed but with a limited clinical outcome because they acquire drug resistance. Alternatively, exploiting a metabolic breach of KRAS-mutant cancer cells related to a glucose-dependent sensitivity to oxidative stress is becoming a promising indirect cancer targeting approach. Here, we discuss the use of a vitamin C (VC) acting in high dose as an oxidative "Trojan horse" agent for KRAS-mutant cancer cells that can be potentiated with another oxidizing drug arsenic trioxide (ATO) to obtain a potent and selective cytotoxic impact. Moreover, we outline the advantages of VC's non-natural enantiomer, D-VC, because of its distinctive pharmacokinetics and lower toxicity. Thus, the D-VC and ATO combination shows a promising path to treat KRAS-mutant cancers in clinical settings.
Collapse
Affiliation(s)
- Agata N. Burska
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Aruzhan Dildabek
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Medina Khamijan
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ferdinand Molnár
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dos D. Sarbassov
- Department of Biology, Nazarbayev University, Astana 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
134
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
135
|
Ma Z, Yang M, Foda MF, Zhang K, Li S, Liang H, Zhao Y, Han H. Polarization of Tumor-Associated Macrophages Promoted by Vitamin C-Loaded Liposomes for Cancer Immunotherapy. ACS NANO 2022; 16:17389-17401. [PMID: 36166666 DOI: 10.1021/acsnano.2c08446] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
While checkpoint blockade immunotherapy as a promising clinical modality has revolutionized cancer treatment, it is of benefit to only a subset of patients because of the tumor immunosuppressive microenvironment. Herein, we report that the specified delivery of vitamin C at the tumor site by responsive lipid nanoparticles can efficiently induce oxidative toxicity and the polarization of M1 macrophages, promoting the infiltration of activating cytotoxic T lymphocytes in the tumor microenvironment for intensive immune checkpoint blocking therapy. Both in vitro and in vivo assays demonstrate successful vitamin C-induced polarization of M2 macrophages to M1 macrophages. In vivo transcriptome analysis also reveals the activation mechanism of vitamin C immunity. More importantly, the combination approach displays much better immune response and immune process within the tumor microenvironment than clinical programmed cell death ligand 1 (Anti-PD-L1) alone. This work provides a powerful therapeutic application of vitamin C to amplify Anti-PD-L1 immunotherapy in cancer treatment, which brings hope to patients with clinically insensitive immunity.
Collapse
Affiliation(s)
- Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Kai Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shuting Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
136
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
137
|
Zhou RW, Xu J, Martin TC, Zachem AL, He J, Ozturk S, Demircioglu D, Bansal A, Trotta AP, Giotti B, Gryder B, Shen Y, Wu X, Carcamo S, Bosch K, Hopkins B, Tsankov A, Steinhagen R, Jones DR, Asara J, Chipuk JE, Brody R, Itzkowitz S, Chio IIC, Hasson D, Bernstein E, Parsons RE. A local tumor microenvironment acquired super-enhancer induces an oncogenic driver in colorectal carcinoma. Nat Commun 2022; 13:6041. [PMID: 36253360 PMCID: PMC9576746 DOI: 10.1038/s41467-022-33377-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Tumors exhibit enhancer reprogramming compared to normal tissue. The etiology is largely attributed to cell-intrinsic genomic alterations. Here, using freshly resected primary CRC tumors and patient-matched adjacent normal colon, we find divergent epigenetic landscapes between CRC tumors and cell lines. Intriguingly, this phenomenon extends to highly recurrent aberrant super-enhancers gained in CRC over normal. We find one such super-enhancer activated in epithelial cancer cells due to surrounding inflammation in the tumor microenvironment. We restore this super-enhancer and its expressed gene, PDZK1IP1, following treatment with cytokines or xenotransplantation into nude mice, thus demonstrating cell-extrinsic etiology. We demonstrate mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. We show this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens.
Collapse
Affiliation(s)
- Royce W Zhou
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Xu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tiphaine C Martin
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexis L Zachem
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John He
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sait Ozturk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew P Trotta
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yao Shen
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xuewei Wu
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Saul Carcamo
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kaitlyn Bosch
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Benjamin Hopkins
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander Tsankov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Randolph Steinhagen
- Division of Colon and Rectal Surgery, Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY, 10016, USA
| | - John Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel Brody
- Mount Sinai Biorepository, Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven Itzkowitz
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY, 10032, USA
| | - Dan Hasson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
138
|
Kim JH, Hwang S, Lee JH, Im SS, Son J. Vitamin C Suppresses Pancreatic Carcinogenesis through the Inhibition of Both Glucose Metabolism and Wnt Signaling. Int J Mol Sci 2022; 23:ijms232012249. [PMID: 36293106 PMCID: PMC9603812 DOI: 10.3390/ijms232012249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Cumulative studies have indicated that high-dose vitamin C has antitumor effects against a variety of cancers. However, the molecular mechanisms underlying these inhibitory effects against tumorigenesis and metastasis, particularly in relation to pancreatic cancer, are unclear. Here, we report that vitamin C at high concentrations impairs the growth and survival of pancreatic ductal adenocarcinoma (PDAC) cells by inhibiting glucose metabolism. Vitamin C was also found to trigger apoptosis in a caspase-independent manner. We further demonstrate that it suppresses the invasion and metastasis of PDAC cells by inhibiting the Wnt/β-catenin-mediated epithelial-mesenchymal transition (EMT). Taken together, our results suggest that vitamin C has therapeutic effects against pancreatic cancer.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sein Hwang
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Hye Lee
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Se Seul Im
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jaekyoung Son
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
139
|
Jankowski CS, Rabinowitz JD. Selenium Modulates Cancer Cell Response to Pharmacologic Ascorbate. Cancer Res 2022; 82:3486-3498. [PMID: 35916672 PMCID: PMC9532358 DOI: 10.1158/0008-5472.can-22-0408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
High-dose ascorbate (vitamin C) has shown promising anticancer activity. Two redox mechanisms have been proposed: hydrogen peroxide generation by ascorbate itself or glutathione depletion by dehydroascorbate (formed by ascorbate oxidation). Here we show that the metabolic effects and cytotoxicity of high-dose ascorbate in vitro result from hydrogen peroxide independently of dehydroascorbate. These effects were suppressed by selenium through antioxidant selenoenzymes including glutathione peroxidase 1 (GPX1) but not the classic ferroptosis-inhibiting selenoenzyme GPX4. Selenium-mediated protection from ascorbate was powered by NADPH from the pentose phosphate pathway. In vivo, dietary selenium deficiency resulted in significant enhancement of ascorbate activity against glioblastoma xenografts. These data establish selenoproteins as key mediators of cancer redox homeostasis. Cancer sensitivity to free radical-inducing therapies, including ascorbate, may depend on selenium, providing a dietary approach for improving their anticancer efficacy. SIGNIFICANCE Selenium restriction augments ascorbate efficacy and extends lifespan in a mouse xenograft model of glioblastoma, suggesting that targeting selenium-mediated antioxidant defenses merits clinical evaluation in combination with ascorbate and other pro-oxidant therapies.
Collapse
Affiliation(s)
- Connor S.R. Jankowski
- Department of Molecular Biology
- Lewis-Sigler Institute for Integrative Genomics
- Ludwig Institute for Cancer Research, Princeton Branch
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics
- Ludwig Institute for Cancer Research, Princeton Branch
- Department of Chemistry, Princeton University
| |
Collapse
|
140
|
Wang F, He MM, Xiao J, Zhang YQ, Yuan XL, Fang WJ, Zhang Y, Wang W, Hu XH, Ma ZG, Yao YC, Zhuang ZX, Zhou FX, Ying JE, Yuan Y, Zou QF, Guo ZQ, Wu XY, Jin Y, Mai ZJ, Wang ZQ, Qiu H, Guo Y, Shi SM, Chen SZ, Luo HY, Zhang DS, Wang FH, Li YH, Xu RH. A Randomized, Open-Label, Multicenter, Phase 3 Study of High-Dose Vitamin C Plus FOLFOX ± Bevacizumab versus FOLFOX ± Bevacizumab in Unresectable Untreated Metastatic Colorectal Cancer (VITALITY Study). Clin Cancer Res 2022; 28:4232-4239. [PMID: 35929990 PMCID: PMC9527503 DOI: 10.1158/1078-0432.ccr-22-0655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Accepted: 08/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To compare the efficacy and safety of high-dose vitamin C plus FOLFOX ± bevacizumab versus FOLFOX ± bevacizumab as first-line treatment in patients with metastatic colorectal cancer (mCRC). PATIENTS AND METHODS Between 2017 and 2019, histologically confirmed patients with mCRC (n = 442) with normal glucose-6-phosphate dehydrogenase status and no prior treatment for metastatic disease were randomized (1:1) into a control (FOLFOX ± bevacizumab) and an experimental [high-dose vitamin C (1.5 g/kg/d, intravenously for 3 hours from D1 to D3) plus FOLFOX ± bevacizumab] group. Randomization was based on the primary tumor location and bevacizumab prescription. RESULTS The progression-free survival (PFS) of the experimental group was not superior to the control group [median PFS, 8.6 vs. 8.3 months; HR, 0.86; 95% confidence interval (CI), 0.70-1.05; P = 0.1]. The objective response rate (ORR) and overall survival (OS) of the experimental and control groups were similar (ORR, 44.3% vs. 42.1%; P = 0.9; median OS, 20.7 vs. 19.7 months; P = 0.7). Grade 3 or higher treatment-related adverse events occurred in 33.5% and 30.3% of patients in the experimental and control groups, respectively. In prespecified subgroup analyses, patients with RAS mutation had significantly longer PFS (median PFS, 9.2 vs. 7.8 months; HR, 0.67; 95% CI, 0.50-0.91; P = 0.01) with vitamin C added to chemotherapy than with chemotherapy only. CONCLUSIONS High-dose vitamin C plus chemotherapy failed to show superior PFS compared with chemotherapy in patients with mCRC as first-line treatment but may be beneficial in patients with mCRC harboring RAS mutation.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Corresponding Authors: Rui-Hua Xu, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Phone: 86-20-8734-3468; E-mail: ; and Feng-Hua Wang,
| | - Ming-Ming He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Jian Xiao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yan-Qiao Zhang
- Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Xiang-Lin Yuan
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei-Jia Fang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yan Zhang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wei Wang
- The First People's Hospital of Foshan, Foshan, P.R. China
| | - Xiao-Hua Hu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Zhi-Gang Ma
- Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Yi-Chen Yao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhi-Xiang Zhuang
- The Second Affiliated Hospital of Soochow University, Soochow, P.R. China
| | - Fu-Xiang Zhou
- Zhongnan Hospital of Wuhan University, Hubei Clinical Cancer Study Center, Wuhan, P.R. China
| | - Jie-Er Ying
- Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | - Ying Yuan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Qing-Feng Zou
- Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zeng-Qing Guo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Xiang-Yuan Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zong-Jiong Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Zhi-Qiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hong Qiu
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Si-Mei Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Shuang-Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Hui-Yan Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Dong-Sheng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Feng-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P.R. China
- Corresponding Authors: Rui-Hua Xu, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Phone: 86-20-8734-3468; E-mail: ; and Feng-Hua Wang,
| |
Collapse
|
141
|
Huang Y, Zhong L, Li X, Wu P, He J, Tang C, Tang Z, Su J, Feng Z, Wang B, Ma Y, Peng H, Bai Z, Zhong Y, Liang Y, Lu W, Luo R, Li J, Li H, Deng Z, Lan X, Liu Z, Zhang K, Zhao Y. In Situ Silver-Based Electrochemical Oncolytic Bioreactor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109973. [PMID: 35998517 DOI: 10.1002/adma.202109973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
In this study, it is shown for the first time that a reduced graphene oxide (rGO) carrier has a 20-fold higher catalysis rate than graphene oxide in Ag+ reduction. Based on this, a tumor microenvironment-enabled in situ silver-based electrochemical oncolytic bioreactor (SEOB) which switched Ag+ prodrugs into in situ therapeutic silver nanoparticles with and above 95% transition rate is constructed to inhibit the growths of various tumors. In this SEOB-enabled intratumoral nanosynthetic medicine, intratumoral H2 O2 and rGO act as the reductant and the catalyst, respectively. Chelation of aptamers to the SEOB-unlocked prodrugs increases the production of silver nanoparticles in tumor cells, especially in the presence of Vitamin C, which is broken down in tumor cells to supply massive amounts of H2 O2 . Consequently, apoptosis and pyroptosis are induced to cooperatively contribute to the considerably-elevated anti-tumor effects on subcutaneous HepG2 and A549 tumors and orthotopic implanted HepG2 tumors in livers of nude mice. The specific aptamer targeting and intratumoral silver nanoparticle production guarantee excellent biosafety since it fails to elicit tissue damages in monkeys, which greatly increases the clinical translation potential of the SEOB system.
Collapse
Affiliation(s)
- Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiaotong Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Chao Tang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhiping Tang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jing Su
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhenbo Feng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yun Ma
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Hongmei Peng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhihao Bai
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yi Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Ying Liang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wenxi Lu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Ruiyu Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jinghua Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Haiping Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhiming Deng
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xianli Lan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Ziqun Liu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Kun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
142
|
Lv L, Xu Z, Zhao M, Gao J, Jiang R, Wang Q, Shi X. Mannose inhibits Plasmodium parasite growth and cerebral malaria development via regulation of host immune responses. Front Immunol 2022; 13:859228. [PMID: 36211381 PMCID: PMC9546034 DOI: 10.3389/fimmu.2022.859228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
D-mannose can be transported into a variety of cells via glucose transporter (GLUT), and supraphysiological levels of D-mannose impairs tumor growth and modulates immune cell function through mechanisms such as interference with glycolysis and induction of oxidative stress. Blood-stage Plasmodium mainly depends on glycolysis for energy supply and pathological immune response plays a vital role in cerebral malaria. However, it is not clear whether mannose affects malaria blood-stage infection. Here, we fed D-mannose to Plasmodium berghei-infected mice and found weight loss and reduced parasitemia without apparent side effects. Compromised parasitemia in C57BL/6 mice was accompanied by an increase in splenic macrophages compared to an untreated group. When mannose was applied to a rodent experimental cerebral malaria (ECM) model, the incidence of ECM decreased. Expression of activation marker CD69 on T cells in peripheral blood and the brain were reduced, and cerebral migration of activated T cells was prevented by decreased expression of CXCR3. These findings suggest that mannose inhibits Plasmodium infection by regulating multiple host immune responses and could serve as a potential strategy for facilitating malaria treatment.
Collapse
Affiliation(s)
- Li Lv
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihao Xu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Meichen Zhao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Jian Gao
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Rumeng Jiang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
| | - Qian Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Qian Wang, ; Xiaoyu Shi,
| | - Xiaoyu Shi
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin, China
- *Correspondence: Qian Wang, ; Xiaoyu Shi,
| |
Collapse
|
143
|
Sannigrahi MK, Rajagopalan P, Lai L, Liu X, Sahu V, Nakagawa H, Jalaly JB, Brody RM, Morgan IM, Windle BE, Wang X, Gimotty PA, Kelly DP, White EA, Basu D. HPV E6 regulates therapy responses in oropharyngeal cancer by repressing the PGC-1α/ERRα axis. JCI Insight 2022; 7:159600. [PMID: 36134662 PMCID: PMC9675449 DOI: 10.1172/jci.insight.159600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023] Open
Abstract
Therapy with radiation plus cisplatin kills HPV+ oropharyngeal squamous cell carcinomas (OPSCCs) by increasing reactive oxygen species beyond cellular antioxidant capacity. To explore why these standard treatments fail for some patients, we evaluated whether the variation in HPV oncoprotein levels among HPV+ OPSCCs affects mitochondrial metabolism, a source of antioxidant capacity. In cell line and patient-derived xenograft models, levels of HPV full-length E6 (fl-E6) inversely correlated with oxidative phosphorylation, antioxidant capacity, and therapy resistance, and fl-E6 was the only HPV oncoprotein to display such correlations. Ectopically expressing fl-E6 in models with low baseline levels reduced mitochondrial mass, depleted antioxidant capacity, and sensitized to therapy. In this setting, fl-E6 repressed the peroxisome proliferator-activated receptor gamma co-activator 1α/estrogen-related receptor α (PGC-1α/ERRα) pathway for mitochondrial biogenesis by reducing p53-dependent PGC-1α transcription. Concordant observations were made in 3 clinical cohorts, where expression of mitochondrial components was higher in tumors of patients with reduced survival. These tumors contained the lowest fl-E6 levels, the highest p53 target gene expression, and an activated PGC-1α/ERRα pathway. Our findings demonstrate that E6 can potentiate treatment responses by depleting mitochondrial antioxidant capacity and provide evidence for low E6 negatively affecting patient survival. E6's interaction with the PGC-1α/ERRα axis has implications for predicting and targeting treatment resistance in OPSCC.
Collapse
Affiliation(s)
| | | | - Ling Lai
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Varun Sahu
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Hiroshi Nakagawa
- Department of Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Jalal B. Jalaly
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert M. Brody
- Department of Otorhinolaryngology — Head and Neck Surgery and
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Kelly
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Devraj Basu
- Department of Otorhinolaryngology — Head and Neck Surgery and
| |
Collapse
|
144
|
Fujii J, Osaki T, Bo T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022; 27:6187. [PMID: 36234722 PMCID: PMC9572970 DOI: 10.3390/molecules27196187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Ascorbate (vitamin C in primates) functions as a cofactor for a number of enzymatic reactions represented by prolyl hydroxylases and as an antioxidant due to its ability to donate electrons, which is mostly accomplished through non-enzymatic reaction in mammals. Ascorbate directly reacts with radical species and is converted to ascorbyl radical followed by dehydroascorbate. Ambiguities in physiological relevance of ascorbate observed during in vivo situations could be attributed in part to presence of other redox systems and the pro-oxidant properties of ascorbate. Most mammals are able to synthesize ascorbate from glucose, which is also considered to be an obstacle to verify its action. In addition to animals with natural deficiency in the ascorbate synthesis, such as guinea pigs and ODS rats, three strains of mice with genetic removal of the responsive genes (GULO, RGN, or AKR1A) for the ascorbate synthesis have been established and are being used to investigate the physiological roles of ascorbate. Studies using these mice, along with ascorbate transporter (SVCT)-deficient mice, largely support its ability in protection against oxidative insults. While combined actions of ascorbate in regulating epigenetics and antioxidation appear to effectively prevent cancer development, pharmacological doses of ascorbate and dehydroascorbate may exert tumoricidal activity through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tsukasa Osaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
145
|
Maekawa T, Miyake T, Tani M, Uemoto S. Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment. Front Oncol 2022; 12:981547. [PMID: 36203466 PMCID: PMC9531273 DOI: 10.3389/fonc.2022.981547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Ascorbic acid has attracted substantial attention for its potential antitumor effects by acting as an antioxidant in vivo and as a cofactor in diverse enzymatic reactions. However, solid proof of its clinical efficacy against cancer and the mechanism behind its effect have not been established. Moreover, cancer forms cancer-specific microenvironments and interacts with various cells, such as cancer-associated fibroblasts (CAFs), to maintain cancer growth and progression; however, the effect of ascorbic acid on the cancer microenvironment is unclear. This review discusses the effects and mechanisms of ascorbic acid on cancer, including the role of ascorbic acid concentration. In addition, we present future perspectives on the effects of ascorbic acid on cancer cells and the CAF microenvironment. Ascorbic acid has a variety of effects, which contributes to the complexity of these effects. Oral administration of ascorbic acid results in low blood concentrations (<0.2 mM) and acts as a cofactor for antioxidant effects, collagen secretion, and HIFα degradation. In contrast, intravenous treatment achieves large blood concentrations (>1 mM) and has oxidative-promoting actions that exert anticancer effects via reactive oxygen species. Therefore, intravenous administration at high concentrations is required to achieve the desired effects on cancer cells during treatment. Partial data on the effect of ascorbic acid on fibroblasts indicate that it may also modulate collagen secretion in CAFs and impart tumor-suppressive effects. Thus, future studies should verify the effect of ascorbic acid on CAFs. The findings of this review can be used to guide further research and clinical trials.
Collapse
Affiliation(s)
- Takeru Maekawa
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Toru Miyake
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
- *Correspondence: Toru Miyake,
| | - Masaji Tani
- Division of Gastrointestinal, Breast, Pediatric, and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | | |
Collapse
|
146
|
Managing Cancer Drug Resistance from the Perspective of Inflammation. JOURNAL OF ONCOLOGY 2022; 2022:3426407. [PMID: 36245983 PMCID: PMC9553519 DOI: 10.1155/2022/3426407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
The development of multidrug resistance in cancer chemotherapy is a major obstacle to the effective treatment of human malignant tumors. Several epidemiological studies have demonstrated that inflammation is closely related to cancer and plays a key role in the development of both solid and liquid tumors. Therefore, targeting inflammation and the molecules involved in the inflammatory process may be a good strategy for treating drug-resistant tumors. In this review, we discuss the molecular mechanisms underlying inflammation in regulating anticancer drug resistance by modulating drug action and drug-mediated cell death pathways. Inflammation alters the effectiveness of drugs through modulation of the expression of multidrug efflux transporters (e.g., ABCG2, ABCB1, and ABCC1) and drug-metabolizing enzymes (e.g., CYP1A2 and CYP3A4). In addition, inflammation can protect cancer cells from drug-mediated cell death by regulating DNA damage repair, downstream adaptive response (e.g., apoptosis, autophagy, and oncogenic bypass signaling), and tumor microenvironment. Intriguingly, manipulating inflammation may affect drug resistance through various molecular mechanisms validated by in vitro/in vivo models. In this review, we aim to summarize the underlying molecular mechanisms that inflammation participates in cancer drug resistance and discuss the potential clinical strategies targeting inflammation to overcome drug resistance.
Collapse
|
147
|
Fukushi A, Kim HD, Chang YC, Kim CH. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int J Mol Sci 2022; 23:ijms231710037. [PMID: 36077431 PMCID: PMC9456516 DOI: 10.3390/ijms231710037] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022] Open
Abstract
Aerobic glycolysis is an emerging hallmark of many human cancers, as cancer cells are defined as a “metabolically abnormal system”. Carbohydrates are metabolically reprogrammed by its metabolizing and catabolizing enzymes in such abnormal cancer cells. Normal cells acquire their energy from oxidative phosphorylation, while cancer cells acquire their energy from oxidative glycolysis, known as the “Warburg effect”. Energy–metabolic differences are easily found in the growth, invasion, immune escape and anti-tumor drug resistance of cancer cells. The glycolysis pathway is carried out in multiple enzymatic steps and yields two pyruvate molecules from one glucose (Glc) molecule by orchestral reaction of enzymes. Uncontrolled glycolysis or abnormally activated glycolysis is easily observed in the metabolism of cancer cells with enhanced levels of glycolytic proteins and enzymatic activities. In the “Warburg effect”, tumor cells utilize energy supplied from lactic acid-based fermentative glycolysis operated by glycolysis-specific enzymes of hexokinase (HK), keto-HK-A, Glc-6-phosphate isomerase, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase, phosphofructokinase (PFK), phosphor-Glc isomerase (PGI), fructose-bisphosphate aldolase, phosphoglycerate (PG) kinase (PGK)1, triose phosphate isomerase, PG mutase (PGAM), glyceraldehyde-3-phosphate dehydrogenase, enolase, pyruvate kinase isozyme type M2 (PKM2), pyruvate dehydrogenase (PDH), PDH kinase and lactate dehydrogenase. They are related to glycolytic flux. The key enzymes involved in glycolysis are directly linked to oncogenesis and drug resistance. Among the metabolic enzymes, PKM2, PGK1, HK, keto-HK-A and nucleoside diphosphate kinase also have protein kinase activities. Because glycolysis-generated energy is not enough, the cancer cell-favored glycolysis to produce low ATP level seems to be non-efficient for cancer growth and self-protection. Thus, the Warburg effect is still an attractive phenomenon to understand the metabolic glycolysis favored in cancer. If the basic properties of the Warburg effect, including genetic mutations and signaling shifts are considered, anti-cancer therapeutic targets can be raised. Specific therapeutics targeting metabolic enzymes in aerobic glycolysis and hypoxic microenvironments have been developed to kill tumor cells. The present review deals with the tumor-specific Warburg effect with the revisited viewpoint of recent progress.
Collapse
Affiliation(s)
- Abekura Fukushi
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Hee-Do Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
| | - Yu-Chan Chang
- Department of Biomedicine Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| | - Cheorl-Ho Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
- Correspondence: (Y.-C.C.); (C.-H.K.); Fax: +82-31-290-7015 (C.-H.K.)
| |
Collapse
|
148
|
Ramírez E, Jara N, Ferrada L, Salazar K, Martínez F, Oviedo MJ, Tereszczuk J, Ramírez-Carbonell S, Vollmann-Zwerenz A, Hau P, Nualart F. Glioblastoma Invasiveness and Collagen Secretion Are Enhanced by Vitamin C. Antioxid Redox Signal 2022; 37:538-559. [PMID: 35166128 DOI: 10.1089/ars.2021.0089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aims: Glioblastoma (GB) is one of the most aggressive brain tumors. These tumors modify their metabolism, increasing the expression of glucose transporters, GLUTs, which incorporate glucose and the oxidized form of vitamin C, dehydroascorbic acid (DHA). We hypothesized that GB cells preferentially take up DHA, which is intracellularly reduced and compartmentalized into the endoplasmic reticulum (ER), promoting collagen biosynthesis and an aggressive phenotype. Results: Our results showed that GB cells take up DHA using GLUT1, while GLUT3 and sodium-dependent vitamin C transporter 2 (SVCT2) are preferably intracellular. Using a baculoviral system and reticulum-enriched extracts, we determined that SVCT2 is mainly located in the ER and corresponds to a short isoform. Ascorbic acid (AA) was compartmentalized, stimulating collagen IV secretion and increasing in vitro and in situ cell migration. Finally, orthotopic xenografts induced in immunocompetent guinea pigs showed that vitamin C deficiency retained collagen, reduced blood vessel invasion, and affected glomeruloid vasculature formation, all pathological conditions associated with malignancy. Innovation and Conclusion: We propose a functional role for vitamin C in GB development and progression. Vitamin C is incorporated into the ER of GB cells, where it favors the synthesis of collagen, thus impacting tumor development. Collagen secreted by tumor cells favors the formation of the glomeruloid vasculature and enhances perivascular invasion. Antioxid. Redox Signal. 37, 538-559.
Collapse
Affiliation(s)
- Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Nery Jara
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - María José Oviedo
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Joanna Tereszczuk
- Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| | - Sebastián Ramírez-Carbonell
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Arabel Vollmann-Zwerenz
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Center for Advanced Microscopy CMA BIO-BIO, University of Concepcion, Concepcion, Chile
| |
Collapse
|
149
|
Larsson SC, Mason AM, Vithayathil M, Carter P, Kar S, Zheng JS, Burgess S. Circulating vitamin C and digestive system cancers: Mendelian randomization study. Clin Nutr 2022; 41:2031-2035. [PMID: 35986965 PMCID: PMC7613472 DOI: 10.1016/j.clnu.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND & AIMS Vitamin C is an antioxidant with a potential role in the prevention of digestive system cancers, but there is yet no consensus whether vitamin C has a causal role in these cancers. The aim of this study was to utilize Mendelian randomization to decipher the potential causal associations of vitamin C with risk of digestive system cancers. METHODS Ten genetic variants previously found to be significantly associated with circulating vitamin C were used as instrumental variables. Effect size estimates for the genetic associations of the vitamin C-associated genetic variants with six major malignancies of digestive system were obtained from the FinnGen (N = 309 154) and UK Biobank (N = 367 542) studies. Results from the two studies were combined using meta-analysis. RESULTS Genetically predicted higher circulating vitamin C showed a suggestive association with lower risk of small intestine and colorectal cancer after accounting for multiple testing. The odds ratio per 1 standard deviation increment in circulating vitamin C was 0.55 (95% confidence interval 0.32-0.94; P = 0.029) for small intestine cancer and 0.84 (95% confidence interval 0.73-0.96; P = 0.013) for colorectal cancer. There was a suggestive association between genetically predicted higher circulating vitamin C with lower risk of liver cancer in FinnGen but no association in the meta-analysis (odds ratio 0.69; 95% CI 0.36-1.32; P = 0.265). Genetically predicted circulating vitamin C was not associated with cancers of the esophagus, stomach, or pancreas. CONCLUSION This Mendelian randomization study indicates that vitamin C might play a role in the prevention of small intestine and colorectal cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
| | | | - Paul Carter
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Stephen Burgess
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
150
|
Abe C, Miyazawa T, Miyazawa T. Current Use of Fenton Reaction in Drugs and Food. Molecules 2022; 27:molecules27175451. [PMID: 36080218 PMCID: PMC9457891 DOI: 10.3390/molecules27175451] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is the most abundant mineral in the human body and plays essential roles in sustaining life, such as the transport of oxygen to systemic organs. The Fenton reaction is the reaction between iron and hydrogen peroxide, generating hydroxyl radical, which is highly reactive and highly toxic to living cells. “Ferroptosis”, a programmed cell death in which the Fenton reaction is closely involved, has recently received much attention. Furthermore, various applications of the Fenton reaction have been reported in the medical and nutritional fields, such as cancer treatment or sterilization. Here, this review summarizes the recent growing interest in the usefulness of iron and its biological relevance through basic and practical information of the Fenton reaction and recent reports.
Collapse
|