101
|
Lerner A, Shoenfeld Y, Matthias T. Probiotics: If It Does Not Help It Does Not Do Any Harm. Really? Microorganisms 2019; 7:E104. [PMID: 30979072 PMCID: PMC6517882 DOI: 10.3390/microorganisms7040104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics per definition should have beneficial effects on human health, and their consumption has tremendously increased in the last decades. In parallel, the amount of published material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. The present review describes the dark side of the probiotics, in terms of problematic research design, incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines applied worldwide. The shift in the scientific world towards a better understanding of the human microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy and substantiate their beneficial effects.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- AESKU.KIPP Institute, 55234 Wendelsheim, Germany.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 5262000, Israel.
| | | |
Collapse
|
102
|
Aguilera ER, Nguyen Y, Sasaki J, Pfeiffer JK. Bacterial Stabilization of a Panel of Picornaviruses. mSphere 2019; 4:e00183-19. [PMID: 30944213 PMCID: PMC6449606 DOI: 10.1128/msphere.00183-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/20/2022] Open
Abstract
Several viruses encounter various bacterial species within the host and in the environment. Despite these close encounters, the effects of bacteria on picornaviruses are not completely understood. Previous work determined that poliovirus (PV), an enteric virus, has enhanced virion stability when exposed to bacteria or bacterial surface polysaccharides such as lipopolysaccharide. Virion stabilization by bacteria may be important for interhost transmission, since a mutant PV with reduced bacterial binding had a fecal-oral transmission defect in mice. Therefore, we investigated whether bacteria broadly enhance stability of picornaviruses from three different genera: Enterovirus (PV and coxsackievirus B3 [CVB3]), Kobuvirus (Aichi virus), and Cardiovirus (mengovirus). Furthermore, to delineate strain-specific effects, we examined two strains of CVB3 and a PV mutant with enhanced thermal stability. We determined that specific bacterial strains enhance thermal stability of PV and CVB3, while mengovirus and Aichi virus are stable at high temperatures in the absence of bacteria. Additionally, we determined that bacteria or lipopolysaccharide can stabilize PV, CVB3, Aichi virus, and mengovirus during exposure to bleach. These effects are likely mediated through direct interactions with bacteria, since viruses bound to bacteria in a pulldown assay. Overall, this work reveals shared and distinct effects of bacteria on a panel of picornaviruses.IMPORTANCE Recent studies have shown that bacteria promote infection and stabilization of poliovirus particles, but the breadth of these effects on other members of the Picornaviridae family is unknown. Here, we compared the effects of bacteria on four distinct members of the Picornaviridae family. We found that bacteria reduced inactivation of all of the viruses during bleach treatment, but not all viral strains were stabilized by bacteria during heat treatment. Overall, our data provide insight into how bacteria play differential roles in picornavirus stability.
Collapse
Affiliation(s)
- Elizabeth R Aguilera
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Y Nguyen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Sasaki
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
103
|
Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nat Microbiol 2019; 4:1120-1128. [PMID: 30936486 PMCID: PMC6588490 DOI: 10.1038/s41564-019-0416-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Commensal microbes profoundly impact host immunity to enteric viral infections1. We have shown that the bacterial microbiota and host antiviral cytokine interferon-λ (IFN-λ) determine the persistence of murine norovirus in the gut2,3. However, the effects of the virome in modulating enteric infections remain unexplored. Here, we report that murine astrovirus can complement primary immunodeficiency to protect against murine norovirus and rotavirus infections. Protection against infection was horizontally transferable between immunocompromised mouse strains by co-housing and fecal transplantation. Furthermore, protection against enteric pathogens corresponded with the presence of a specific strain of murine astrovirus in the gut, and this complementation of immunodeficiency required IFN-λ signalling in gut epithelial cells. Our study demonstrates that elements of the virome can protect against enteric pathogens in an immunodeficient host.
Collapse
|
104
|
Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the 'missing link' between gut bacteria and host immunity? Therap Adv Gastroenterol 2019; 12:1756284819836620. [PMID: 30936943 PMCID: PMC6435874 DOI: 10.1177/1756284819836620] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/14/2019] [Indexed: 02/04/2023] Open
Abstract
The human gut virome includes a diverse collection of viruses that infect our own cells as well as other commensal organisms, directly impacting on our well-being. Despite its predominance, the virome remains one of the least understood components of the gut microbiota, with appropriate analysis toolkits still in development. Based on its interconnectivity with all living cells, it is clear that the virome cannot be studied in isolation. Here we review the current understanding of the human gut virome, specifically in relation to other constituents of the microbiome, its evolution and life-long association with its host, and our current understanding in the context of inflammatory bowel disease and associated therapies. We propose that the gut virome and the gut bacterial microbiome share similar trajectories and interact in both health and disease and that future microbiota studies should in parallel characterize the gut virome to uncover its role in health and disease.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- Gastrointestinal Research Group, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK Gut Health Group, The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Jonathan P. Segal
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, The Quadram Institute, Norwich Research Park, Norwich, Norfolk, UK Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Ailsa L. Hart
- St. Mark’s Hospital, Watford Road, Harrow, UK Imperial College London, South Kensington Campus, Department of Surgery and Cancer, London, UK
| | | |
Collapse
|
105
|
Amarasiri M, Sano D. Specific Interactions between Human Norovirus and Environmental Matrices: Effects on the Virus Ecology. Viruses 2019; 11:E224. [PMID: 30841581 PMCID: PMC6466409 DOI: 10.3390/v11030224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 02/07/2023] Open
Abstract
Human norovirus is the major cause of non-bacterial epidemic gastroenteritis. Human norovirus binds to environmental solids via specific and non-specific interactions, and several specific receptors for human norovirus have been reported. Among them, histo-blood group antigens (HBGA) are the most studied specific receptor. Studies have identified the presence of HBGA-like substances in the extracellular polymeric substances (EPS) and lipopolysaccharides (LPS) of human enteric bacteria present in aquatic environments, gastrointestinal cells, gills, and palps of shellfish, and cell walls, leaves, and veins of lettuce. These HBGA-like substances also interact with human norovirus in a genotype-dependent manner. Specific interactions between human norovirus and environmental matrices can affect norovirus removal, infectivity, inactivation, persistence, and circulation. This review summarizes the current knowledge and future directions related to the specific interactions between human norovirus and HBGA-like substances in environmental matrices and their possible effects on the fate and circulation of human norovirus.
Collapse
Affiliation(s)
- Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
106
|
Kumari R, Palaniyandi S, Hildebrandt GC. Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease. Dig Dis Sci 2019; 64:669-677. [PMID: 30523482 DOI: 10.1007/s10620-018-5369-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Hematopoietic cell transplantation is an intensive therapy used to treat high-risk hematological malignant disorders and other life-threatening hematological and genetic diseases. Graft-versus-host disease (GVHD) presents a barrier to its wider application. A conditioning regimen and medications given to patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT) are capable of disturbing the homeostatic crosstalk between the microbiome and the host immune system and of leading to dysbiosis. Intestinal inflammation in the context of GVHD is associated with loss in microbial diversity that could serve as an independent predictor of mortality. Successful gastrointestinal decontamination using high doses of non-absorbable antibiotics likely affect allo-HCT outcomes leading to significantly less acute GVHD (aGVHD). Butyrate-producing Clostridia directly result in the increased presence of regulatory T cells in the gut, which are protective in GVHD development. Beyond the microbiome, Candida, a member of the mycobiome, colonization in the gut has been considered as a risk factor in pathophysiology of aGVHD and reduction in GVHD is observed with antifungal prophylaxis with fluconazole. Reduced number of goblet cells and Paneth cells have been shown to associate with GVHD and has a significant impact on the micro- and mycobiome density and their composition. Lower levels of 3-indoxyl sulfate at initial stages after allo-HCT are related with worse GVHD outcomes and increased mortality. Increased understanding of the vital role of the gut microbiome in GVHD can give directions to move the field towards the development of improved innovative approaches for preventing or treating GVHD following allo-HCT.
Collapse
Affiliation(s)
- Reena Kumari
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Senthilnathan Palaniyandi
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA
| | - Gerhard Carl Hildebrandt
- Division of Hematology & Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, 900 S. Limestone, Lexington, KY, 40536-0093, USA. .,Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, 800 Rose Street, Lexington, KY, 40536-0093, USA.
| |
Collapse
|
107
|
The 13th International Double-Stranded RNA Virus Symposium, Houffalize, Belgium, 24 to 28 September 2018. J Virol 2019; 93:JVI.01964-18. [PMID: 30723139 DOI: 10.1128/jvi.01964-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
The triennial International Double-Stranded RNA Virus Symposium, this year organized by J. Matthijnssens, J. S. L. Parker, P. Danthi, and P. Van Damme in Belgium, gathered over 200 scientists to discuss novel observations and hypotheses in the field. The keynote lecture on functional interactions of bacteria and viruses in the gut microbiome was presented by Julie Pfeiffer. Workshops were held on viral diversity, molecular epidemiology, molecular virology, immunity and pathogenesis, virus structure, the viral use and abuse of cellular pathways, and applied double-stranded RNA (dsRNA) virology. The establishment of a plasmid only-based reverse genetics system for rotaviruses by several Japanese research groups in 2017 has now been reproduced by various other research groups and was discussed in detail. The visualization of dsRNA virus replication steps in living cells received much attention. Mechanisms of the cellular innate immune response to virus infection and of viral pathogenesis were explored. Knowledge of the gut microbiome's influence on specific immune responses has increased rapidly, also due to the availability of relevant animal models of virus infection. The method of cryo-electron microscopic (cryo-EM) tomography has elucidated various asymmetric structures in viral particles. The use of orthoreoviruses for oncolytic virotherapy was critically assessed. The application of llama-derived single chain nanobodies for passive immunotherapy was considered attractive. In a satellite symposium the introduction, impact and further developments of rotavirus vaccines were reviewed. The Jean Cohen Lecturer of this meeting was Harry B. Greenberg, who presented aspects of his research on rotaviruses over a period of more than 40 years. He was also interviewed at the meeting by Vincent Racaniello for the 513th session of This Week in Virology.
Collapse
|
108
|
Todd KV, Tripp RA. Human Norovirus: Experimental Models of Infection. Viruses 2019; 11:v11020151. [PMID: 30759780 PMCID: PMC6410082 DOI: 10.3390/v11020151] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis worldwide. HuNoV infections lead to substantial societal and economic burdens. There are currently no licensed vaccines or therapeutics for the prevention or treatment of HuNoVs. A lack of well-characterized in vitro and in vivo infection models has limited the development of HuNoV countermeasures. Experimental infection of human volunteers and the use of related viruses such as murine NoV have provided helpful insights into HuNoV biology and vaccine and therapeutic development. There remains a need for robust animal models and reverse genetic systems to further HuNoV research. This review summarizes available HuNoV animal models and reverse genetic systems, while providing insight into their usefulness for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Kyle V Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
109
|
Yitbarek A, Weese JS, Alkie TN, Parkinson J, Sharif S. Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens. FEMS Microbiol Ecol 2019; 94:4705883. [PMID: 29228270 DOI: 10.1093/femsec/fix165] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
The impact of low pathogenic influenza viruses such as subtype H9N2, which infect the respiratory and the gastrointestinal tracts of chickens, on microbial composition are not known. Twenty-day-old specific pathogen-free chickens were assigned to two treatment groups, control (uninfected) and H9N2-infected (challenged via the oral-nasal route). Fecal genomic DNA was extracted, and the V3-V4 regions of the 16S rRNA gene were sequenced using the Illumina Miseq® platform. Sequences were curated using Mothur as described in the MiSeq SOP. Infection of chickens with H9N2 resulted in an increase in phylum Proteobacteria, and differential enrichment with the genera Vampirovibrio, Pseudoflavonifractor, Ruminococcus, Clostridium cluster XIVb and Isobaculum while control chickens were differentially enriched with genera Novosphingobium, Sphingomonas, Bradyrhizobium and Bifidobacterium. Analysis of pre- and post-H9N2 infection of the same chickens showed that, before infection, the fecal microbiota was characterized by Lachnospiracea and Ruminococcaceae family and the genera Clostridium sensu stricto, Roseburia and Lachnospiraceae incertae sedis. However, post-H9N2 infection, class Deltaproteobacteria, orders Clostridiales and Bacteroidiales and the genus Alistipes were differentially enriched. Findings from the current study show that influenza virus infection in chickens results in the shift of the gut microbiota, and the disruption of the host-microbial homeostasis in the gut might be one of the mechanisms by which influenza virus infection is established in chickens.
Collapse
Affiliation(s)
- Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Tamiru Negash Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John Parkinson
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada.,Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
110
|
Antonelli G, Pistello M. Virology: a scientific discipline facing new challenges. Clin Microbiol Infect 2018; 25:133-135. [PMID: 30580032 DOI: 10.1016/j.cmi.2018.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 11/15/2022]
Affiliation(s)
- G Antonelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, and Policlinico "Umberto I" Hospital, "Sapienza" University of Rome, Italy.
| | - M Pistello
- Retrovirus Centre and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
111
|
Proal A, Marshall T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr 2018; 6:373. [PMID: 30564562 PMCID: PMC6288442 DOI: 10.3389/fped.2018.00373] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The illness ME/CFS has been repeatedly tied to infectious agents such as Epstein Barr Virus. Expanding research on the human microbiome now allows ME/CFS-associated pathogens to be studied as interacting members of human microbiome communities. Humans harbor these vast ecosystems of bacteria, viruses and fungi in nearly all tissue and blood. Most well-studied inflammatory conditions are tied to dysbiosis or imbalance of the human microbiome. While gut microbiome dysbiosis has been identified in ME/CFS, microbes and viruses outside the gut can also contribute to the illness. Pathobionts, and their associated proteins/metabolites, often control human metabolism and gene expression in a manner that pushes the body toward a state of illness. Intracellular pathogens, including many associated with ME/CFS, drive microbiome dysbiosis by directly interfering with human transcription, translation, and DNA repair processes. Molecular mimicry between host and pathogen proteins/metabolites further complicates this interference. Other human pathogens disable mitochondria or dysregulate host nervous system signaling. Antibodies and/or clonal T cells identified in patients with ME/CFS are likely activated in response to these persistent microbiome pathogens. Different human pathogens have evolved similar survival mechanisms to disable the host immune response and host metabolic pathways. The metabolic dysfunction driven by these organisms can result in similar clusters of inflammatory symptoms. ME/CFS may be driven by this pathogen-induced dysfunction, with the nature of dysbiosis and symptom presentation varying based on a patient's unique infectious and environmental history. Under such conditions, patients would benefit from treatments that support the human immune system in an effort to reverse the infectious disease process.
Collapse
Affiliation(s)
- Amy Proal
- Autoimmunity Research Foundation, Thousand Oaks, CA, United States
| | | |
Collapse
|
112
|
Keen EC, Dantas G. Close Encounters of Three Kinds: Bacteriophages, Commensal Bacteria, and Host Immunity. Trends Microbiol 2018; 26:943-954. [PMID: 29909042 PMCID: PMC6436384 DOI: 10.1016/j.tim.2018.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022]
Abstract
Recent years have witnessed an explosion of interest in the human microbiota. Although commensal bacteria have dominated research efforts to date, mounting evidence suggests that endogenous viral populations (the 'virome') play key roles in basic human physiology. The most numerous constituents of the human virome are not eukaryotic viruses but rather bacteriophages, viruses that infect bacteria. Here, we review phages' interactions with their immediate (prokaryotic) and extended (eukaryotic) hosts and with each other, with a particular emphasis on the temperate phages and prophages which dominate the human virome. We also discuss key outstanding questions in this emerging field and emphasize the urgent need for functional studies in animal models to complement previous in vitro work and current computational approaches.
Collapse
Affiliation(s)
- Eric C Keen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
113
|
Haak BW, Prescott HC, Wiersinga WJ. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis. Front Immunol 2018; 9:2042. [PMID: 30250472 PMCID: PMC6139316 DOI: 10.3389/fimmu.2018.02042] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Alongside advances in understanding the pathophysiology of sepsis, there have been tremendous strides in understanding the pervasive role of the gut microbiota in systemic host resistance. In pre-clinical models, a diverse and balanced gut microbiota enhances host immunity to both enteric and systemic pathogens. Disturbance of this balance increases susceptibility to sepsis and sepsis-related organ dysfunction, while restoration of the gut microbiome is protective. Patients with sepsis have a profoundly distorted composition of the intestinal microbiota, but the impact and therapeutic potential of the microbiome is not well-established in human sepsis. Modulation of the microbiota consists of either resupplying the pool of beneficial microbes by administration of probiotics, improving the intestinal microenvironment to enhance the growth of beneficial species by dietary interventions and prebiotics, or by totally recolonizing the gut with a fecal microbiota transplantation (FMT). We propose that there are three potential opportunities to utilize these treatment modalities over the course of sepsis: to decrease sepsis incidence, to improve sepsis outcome, and to decrease late mortality after sepsis. Exploring these three avenues will provide insight into how disturbances of the microbiota can predispose to, or even perpetuate the dysregulated immune response associated with this syndrome, which in turn could be associated with improved sepsis management.
Collapse
Affiliation(s)
- Bastiaan W Haak
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States.,VA Center for Clinical Management Research, Ann Arbor, MI, United States
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
114
|
Affiliation(s)
- Serre-Yu Wong
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, United States of America
- Department of Medicine, Henry D. Janowitz Division of Gastroenterology, Susan and Leonard Feinstein Inflammatory Bowel Disease Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
115
|
A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat Commun 2018; 9:3347. [PMID: 30131493 PMCID: PMC6104080 DOI: 10.1038/s41467-018-05864-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
There is a need for large-scale, longitudinal studies to determine the mechanisms by which the gut microbiome and its interactions with the host affect human health and disease. Current methods for profiling the microbiome typically utilize next-generation sequencing applications that are expensive, slow, and complex. Here, we present a synthetic biology platform for affordable, on-demand, and simple analysis of microbiome samples using RNA toehold switch sensors in paper-based, cell-free reactions. We demonstrate species-specific detection of mRNAs from 10 different bacteria that affect human health and four clinically relevant host biomarkers. We develop a method to quantify mRNA using our toehold sensors and validate our platform on clinical stool samples by comparison to RT-qPCR. We further highlight the potential clinical utility of the platform by showing that it can be used to rapidly and inexpensively detect toxin mRNA in the diagnosis of Clostridium difficile infections. Currently, gut microbiome profiling largely relies on next-generation sequencing, which is slow and expensive. Here, the authors develop a low-cost, paper-based synthetic biology platform that allows species-specific quantification of bacterial mRNAs and clinically relevant host biomarkers.
Collapse
|
116
|
Harris VC, Haak BW, Handley SA, Jiang B, Velasquez DE, Hykes BL, Droit L, Berbers GAM, Kemper EM, van Leeuwen EMM, Boele van Hensbroek M, Wiersinga WJ. Effect of Antibiotic-Mediated Microbiome Modulation on Rotavirus Vaccine Immunogenicity: A Human, Randomized-Control Proof-of-Concept Trial. Cell Host Microbe 2018; 24:197-207.e4. [PMID: 30092197 PMCID: PMC11514417 DOI: 10.1016/j.chom.2018.07.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/21/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
Abstract
Rotavirus vaccines (RVV) protect against childhood gastroenteritis caused by rotavirus (RV) but have decreased effectiveness in low- and middle-income settings. This proof-of-concept, randomized-controlled, open-label trial tested if microbiome modulation can improve RVV immunogenicity. Healthy adults were randomized and administered broad-spectrum (oral vancomycin, ciprofloxacin, metronidazole), narrow-spectrum (vancomycin), or no antibiotics and then vaccinated with RVV, 21 per group per protocol. Baseline anti-RV IgA was high in all subjects. Although antibiotics did not alter absolute anti-RV IgA titers, RVV immunogenicity was boosted at 7 days in the narrow-spectrum group. Further, antibiotics increased fecal shedding of RV while also rapidly altering gut bacterial beta diversity. Beta diversity associated with RVV immunogenicity boosting at day 7 and specific bacterial taxa that distinguish RVV boosters and RV shedders were identified. Despite the negative primary endpoint, this study demonstrates that microbiota modification alters the immune response to RVV and supports further exploration of microbiome manipulation to improve RVV immunogenicity.
Collapse
Affiliation(s)
- Vanessa C Harris
- Amsterdam UMC, University of Amsterdam, Department of Medicine, Division of Infectious Diseases and Center for Experimental and Molecular Medicine (CEMM), 1105 AZ, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Global Health - Amsterdam Institute for Global Health and Development (AIGHD), 1105 AZ, Amsterdam, the Netherlands.
| | - Bastiaan W Haak
- Amsterdam UMC, University of Amsterdam, Department of Medicine, Division of Infectious Diseases and Center for Experimental and Molecular Medicine (CEMM), 1105 AZ, Amsterdam, the Netherlands
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Baoming Jiang
- Division of Viral Diseases, Center for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Daniel E Velasquez
- Division of Viral Diseases, Center for Disease Control and Prevention (CDC), Atlanta, GA 30329, USA
| | - Barry L Hykes
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Guy A M Berbers
- Center for Infectious Disease Control, Netherlands National Institute for Public Health and the Environment (RIVM), 3721 MA, Bilthoven, the Netherlands
| | - Elles Marleen Kemper
- Amsterdam UMC, University of Amsterdam, Department of Pharmacy, 1105 AZ, Amsterdam, the Netherlands
| | - Ester M M van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, 1105 AZ, Amsterdam, the Netherlands
| | - Michael Boele van Hensbroek
- Amsterdam UMC, University of Amsterdam, Department of Global Health - Amsterdam Institute for Global Health and Development (AIGHD), 1105 AZ, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Emma Children's Hospital, 1105 AZ, Amsterdam, the Netherlands
| | - Willem Joost Wiersinga
- Amsterdam UMC, University of Amsterdam, Department of Medicine, Division of Infectious Diseases and Center for Experimental and Molecular Medicine (CEMM), 1105 AZ, Amsterdam, the Netherlands
| |
Collapse
|
117
|
Behrouzi A, Vaziri F, Riazi Rad F, Amanzadeh A, Fateh A, Moshiri A, Khatami S, Siadat SD. Comparative study of pathogenic and non-pathogenic Escherichia coli outer membrane vesicles and prediction of host-interactions with TLR signaling pathways. BMC Res Notes 2018; 11:539. [PMID: 30068381 PMCID: PMC6071399 DOI: 10.1186/s13104-018-3648-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Objective The intestine is the major defensive barrier in the body by having more than 60% of the immune cells in the intestinal mucosa. The aim of this study was to evaluate the Toll like receptor (TLR) signaling pathways and immune response profiles, against outer membrane vesicles (OMVs) in pathogenic and non-pathogenic strains of Escherichia coli. Results Our results demonstrated that despite inducing inflammatory and regulatory responses to OMVs released by both strains, there is a remarkable difference in the nature and severity of these responses between the two strains. Following the production and release of OMV by the pathogenic strain, the expressions of the pro-inflammatory cytokines were significantly elevated, in comparison to the non-pathogenic strains. Eventually, our findings suggest that OMV released by the pathogen strain might be colonized, causing inflammation, eliminating the tight junctions of epithelial cells and damaging underlying cells, without the presence of IL-17 at the inflammation site. This could have happened to prevent the development of more severe inflammation, which could lead to the inhibition of colonization. The production of IL-10 is also preventing such inflammations. On the other hand, OMV released by non-pathogenic E. coli appears to influence intestinal homeostasis by causing more anti-inflammatory responses and mild inflammation. Electronic supplementary material The online version of this article (10.1186/s13104-018-3648-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi Rad
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran. .,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
118
|
Tarakhovsky A, Prinjha RK. Drawing on disorder: How viruses use histone mimicry to their advantage. J Exp Med 2018; 215:1777-1787. [PMID: 29934321 PMCID: PMC6028506 DOI: 10.1084/jem.20180099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Humans carry trillions of viruses that thrive because of their ability to exploit the host. In this exploitation, viruses promote their own replication by suppressing the host antiviral response and by inducing changes in host biosynthetic processes, often with extremely small genomes of their own. In the review, we discuss the phenomenon of histone mimicry by viral proteins and how this mimicry allows the virus to dial in to the cell's transcriptional processes and establish a cell state that promotes infection. We suggest that histone mimicry is part of a broader viral strategy to use intrinsic protein disorder as a means to overcome the size limitations of its own genome and to maximize its impact on host protein networks. In particular, we discuss how intrinsic protein disorder may enable viral proteins to interfere with phase-separated host protein condensates, including those that contribute to chromatin-mediated control of gene expression.
Collapse
Affiliation(s)
- Alexander Tarakhovsky
- Laboratory of the Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY
| | - Rab K Prinjha
- Epigenetics DPU, Oncology and Immuno-inflammation TA Units, GlaxoSmithKline Medicines Research Centre, Stevenage, England, UK
| |
Collapse
|
119
|
Harris VC. The Significance of the Intestinal Microbiome for Vaccinology: From Correlations to Therapeutic Applications. Drugs 2018; 78:1063-1072. [PMID: 29943376 PMCID: PMC6061423 DOI: 10.1007/s40265-018-0941-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite unprecedented advances in understanding the intestinal microbiome, its potential to improve fields such as vaccinology has yet to be realized. This review briefly outlines the immunologic potential of the intestinal microbiome for vaccinology and highlights areas where the microbiome holds specific promise in vaccinology. Oral rotavirus vaccine effectiveness in low-income countries is used as a case study to describe how the intestinal microbiome may be employed to improve a vaccine's immunogenicity. A top-down, evidence-based approach is proposed to identify effective microbiota-based applications for vaccine improvement. Applying evidence from field studies in pertinent populations that correlate microbiome composition with vaccine effectiveness to appropriate experimental platforms will lead to the identification of safe, vaccine-supporting microbiota targets that are relevant to populations in need of improvement in vaccine-induced immunity.
Collapse
Affiliation(s)
- Vanessa C Harris
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands.
- Department of Medicine, Division of Infectious Diseases and Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
120
|
Desselberger U. The Mammalian Intestinal Microbiome: Composition, Interaction with the Immune System, Significance for Vaccine Efficacy, and Potential for Disease Therapy. Pathogens 2018; 7:E57. [PMID: 29933546 PMCID: PMC6161280 DOI: 10.3390/pathogens7030057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
The mammalian gut is colonized by a large variety of microbes, collectively termed ‘the microbiome’. The gut microbiome undergoes rapid changes during the first few years of life and is highly variable in adulthood depending on various factors. With the gut being the largest organ of immune responses, the composition of the microbiome of the gut has been found to be correlated with qualitative and quantitative differences of mucosal and systemic immune responses. Animal models have been very useful to unravel the relationship between gut microbiome and immune responses and for the understanding of variations of immune responses to vaccination in different childhood populations. However, the molecular mechanisms underlying optimal immune responses to infection or vaccination are not fully understood. The gut virome and gut bacteria can interact, with bacteria facilitating viral infectivity by different mechanisms. Some gut bacteria, which have a beneficial effect on increasing immune responses or by overgrowing intestinal pathogens, are considered to act as probiotics and can be used for therapeutic purposes (as in the case of fecal microbiome transplantation).
Collapse
|
121
|
Bacterial RecA Protein Promotes Adenoviral Recombination during In Vitro Infection. mSphere 2018; 3:3/3/e00105-18. [PMID: 29925671 PMCID: PMC6010623 DOI: 10.1128/msphere.00105-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/03/2018] [Indexed: 12/30/2022] Open
Abstract
Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota. Adenovirus infections in humans are common and sometimes lethal. Adenovirus-derived vectors are also commonly chosen for gene therapy in human clinical trials. We have shown in previous work that homologous recombination between adenoviral genomes of human adenovirus species D (HAdV-D), the largest and fastest growing HAdV species, is responsible for the rapid evolution of this species. Because adenovirus infection initiates in mucosal epithelia, particularly at the gastrointestinal, respiratory, genitourinary, and ocular surfaces, we sought to determine a possible role for mucosal microbiota in adenovirus genome diversity. By analysis of known recombination hot spots across 38 human adenovirus genomes in species D (HAdV-D), we identified nucleotide sequence motifs similar to bacterial Chi sequences, which facilitate homologous recombination in the presence of bacterial Rec enzymes. These motifs, referred to here as ChiAD, were identified immediately 5′ to the sequence encoding penton base hypervariable loop 2, which expresses the arginine-glycine-aspartate moiety critical to adenoviral cellular entry. Coinfection with two HAdV-Ds in the presence of an Escherichia coli lysate increased recombination; this was blocked in a RecA mutant strain, E. coli DH5α, or upon RecA depletion. Recombination increased in the presence of E. coli lysate despite a general reduction in viral replication. RecA colocalized with viral DNA in HAdV-D-infected cell nuclei and was shown to bind specifically to ChiAD sequences. These results indicate that adenoviruses may repurpose bacterial recombination machinery, a sharing of evolutionary mechanisms across a diverse microbiota, and unique example of viral commensalism. IMPORTANCE Adenoviruses are common human mucosal pathogens of the gastrointestinal, respiratory, and genitourinary tracts and ocular surface. Here, we report finding Chi-like sequences in adenovirus recombination hot spots. Adenovirus coinfection in the presence of bacterial RecA protein facilitated homologous recombination between viruses. Genetic recombination led to evolution of an important external feature on the adenoviral capsid, namely, the penton base protein hypervariable loop 2, which contains the arginine-glycine-aspartic acid motif critical to viral internalization. We speculate that free Rec proteins present in gastrointestinal secretions upon bacterial cell death facilitate the evolution of human adenoviruses through homologous recombination, an example of viral commensalism and the complexity of virus-host interactions, including regional microbiota.
Collapse
|
122
|
Abstract
PURPOSE OF REVIEW The composition and diversity of the microbiota of the human gut, skin, and several other sites is severely deranged in critically ill patients on the ICU, and it is likely that these disruptions can negatively affect outcome. We here review new and ongoing studies that investigate the use of microbiota-targeted therapeutics in the ICU, and provide recommendations for future research. RECENT FINDINGS Practically every intervention in the ICU as well as the physiological effects of critical illness itself can have a profound impact on the gut microbiota. Therapeutic modulation of the microbiota, aimed at restoring the balance between 'pathogenic' and 'health-promoting' microbes is therefore of significant interest. Probiotics have shown to be effective in the treatment of ventilator-associated pneumonia, and the first fecal microbiota transplantations have recently been safely and successfully performed in the ICU. However, all-encompassing data in this vulnerable patient group remain sparse, and only a handful of novel studies that study microbiota-targeted therapies in the ICU are currently ongoing. SUMMARY Enormous strides have been made in characterizing the gut microbiome of critically ill patients in the ICU, and an increasing amount of preclinical data reveals the huge potential of microbiota-targeted therapies. Further understanding of the causes and consequences of dysbiosis on ICU-related outcomes are warranted to push the field forward.
Collapse
|
123
|
Celiberto LS, Graef FA, Healey GR, Bosman ES, Jacobson K, Sly LM, Vallance BA. Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome. Immunology 2018; 155:36-52. [PMID: 29693729 DOI: 10.1111/imm.12939] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, thought to at least in part reflect an aberrant immune response to gut bacteria. IBD is increasing in incidence, particularly in populations that have recently immigrated to western countries. This suggests that environmental factors are involved in its pathogenesis. We hypothesize that the increase in IBD rates might reflect the consumption of an unhealthy Western diet, containing excess calories and lacking in key nutritional factors, such as fibre and vitamin D. Several recent studies have determined that dietary factors can dramatically influence the activation of immune cells and the mediators they release through a process called immunonutrition. Moreover, dietary changes can profoundly affect the balance of beneficial versus pathogenic bacteria in the gut. This microbial imbalance can alter levels of microbiota-derived metabolites that in turn can influence innate and adaptive intestinal immune responses. If the diet-gut microbiome disease axis does indeed underpin much of the 'western' influence on the onset and progression of IBD, then tremendous opportunity exists for therapeutic changes in lifestyle, to modulate the gut microbiome and to correct immune imbalances in individuals with IBD. This review highlights four such therapeutic strategies - probiotics, prebiotics, vitamin D and caloric restriction - that have the potential to improve and add to current IBD treatment regimens.
Collapse
Affiliation(s)
- Larissa S Celiberto
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Franziska A Graef
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Genelle R Healey
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Else S Bosman
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kevan Jacobson
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Laura M Sly
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce A Vallance
- Department of Paediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
124
|
D'Andreano S, Sànchez Bonastre A, Francino O, Cuscó Martí A, Lecchi C, Grilli G, Giovanardi D, Ceciliani F. Gastrointestinal microbial population of turkey (Meleagris gallopavo) affected by hemorrhagic enteritis virus. Poult Sci 2018; 96:3550-3558. [PMID: 28938792 DOI: 10.3382/ps/pex139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/09/2017] [Indexed: 12/27/2022] Open
Abstract
Hemorrhagic enteritis (HE) is an acute viral disease that affects avian species, particularly turkeys, compromising their commercial production and having a negative effect on animal welfare. Turkey adenovirus 3 (TAdV-3), is the main causal agent of the disease. In this study, we considered 3 groups of turkeys to achieve 2 purposes: 1) A preliminary investigation on the microbiota content in the 4 parts of healthy turkey's intestine (group A), namely duodenum, jejunum, ileum, and ceca was done; 2) an investigation on the relationship between natural infections with TAdV-3 and the intestinal microbiota in the jejunum, where HE mostly develops, comparing group A with animals with molecular positivity for the virus and with clinical signs of HE (group B) and animals with molecular positivity for the virus but without clinical signs (group C). Massive sequencing of the hypervariable V1-V2 regions of 16S rRNA gene and QIIME 1.9.1 software analysis was performed, and operation taxonomic units (OTUs) were classified into 4 abundant phyla: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The microbial population of small intestine was distributed almost homogeneously in the healthy turkeys, and Firmicutes was the prevalent phylum (79.85% in duodenum, 89.57% in jejunum and 99.28% in ileum). As compared with small intestine, ceca microbial community was much more heterogeneous: Firmicutes (48.03%), Bacteroidetes (33.60%) and Proteobacteria (12.32%). In the natural infections of HEV, the main bacterial families were Bacteroidaceae (Bacteroidetes) and Peptostreptococcaceae (Firmicutes), uniquely detected in group B and C. Also Clostridiaceae (Firmicutes) was detected, uniquely in group B.
Collapse
Affiliation(s)
- Sara D'Andreano
- Vetgenomics, Ed Eureka, Parc de Recerca UAB, 08193 Bellaterra, Spain.,Molecular Genetics Veterinary Service, Veterinary School, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Armand Sànchez Bonastre
- Molecular Genetics Veterinary Service, Veterinary School, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Olga Francino
- Molecular Genetics Veterinary Service, Veterinary School, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Anna Cuscó Martí
- Vetgenomics, Ed Eureka, Parc de Recerca UAB, 08193 Bellaterra, Spain.,Molecular Genetics Veterinary Service, Veterinary School, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Cristina Lecchi
- Department of Veterinary Science, Università di Milano, Via Celoria 10, 20133 Milano
| | - Guido Grilli
- Department of Veterinary Science, Università di Milano, Via Celoria 10, 20133 Milano
| | - Davide Giovanardi
- Laboratorio Tre Valli, Viale A.Veronesi 5, 37132 San Michele Extra, Verona, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Science, Università di Milano, Via Celoria 10, 20133 Milano
| |
Collapse
|
125
|
Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol 2018; 40:357-370. [PMID: 29737384 PMCID: PMC6060788 DOI: 10.1007/s00281-018-0687-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract is the primary site of exposure to a multitude of microbial, environmental, and dietary challenges. As a result, immune responses in the intestine need to be tightly regulated in order to prevent inappropriate inflammatory responses to exogenous stimuli. Intestinal homeostasis and tolerance are mediated through a multitude of immune mechanisms that act to reinforce barrier integrity, maintain the segregation and balance of commensal microbes, and ensure tissue health and regeneration. Here, we discuss the role of group 3 innate lymphoid cells (ILC3) as key regulators of intestinal health and highlight how increasing evidence implicates dysregulation of this innate immune cell population in the onset or progression of a broad range of clinically relevant pathologies. Finally, we discuss how the next generation of immunotherapeutics may be utilized to target ILC3 in disease and restore gastrointestinal tolerance and tissue health.
Collapse
|
126
|
Dietrich M, Kearney T, Seamark ECJ, Paweska JT, Markotter W. Synchronized shift of oral, faecal and urinary microbiotas in bats and natural infection dynamics during seasonal reproduction. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180041. [PMID: 29892443 PMCID: PMC5990816 DOI: 10.1098/rsos.180041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
Seasonal reproduction is a period of extreme physiological and behavioural changes, yet we know little about how it may affect host microbial communities (i.e. microbiota) and pathogen transmission. Here, we investigated shifts of the bacterial microbiota in saliva, urine and faeces during the seasonal reproduction of bats in South Africa, and test for an interaction in shedding patterns of both bacterial (Leptospira) and viral (adeno- and herpesviruses) agents. Based on a comparative approach in two cave-dwelling bat species and high-throughput sequencing of the 16S rRNA gene, we demonstrated a clear signature in microbiota changes over the reproduction season, consistent across the multiple body habitats investigated, and associated with the sex, age and reproductive condition of bats. We observed in parallel highly dynamic shedding patterns for both bacteria and viruses, but did not find a significant association between viral shedding and bacterial microbiota composition. Indeed, only Leptospira shedding was associated with alterations in both the diversity and composition of the urinary microbiota. These results illustrate how seasonal reproduction in bats substantially affects microbiota composition and infection dynamics, and have broad implications for the understanding of disease ecology in important reservoir hosts, such as bats.
Collapse
Affiliation(s)
- Muriel Dietrich
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Teresa Kearney
- Ditsong National Museum of Natural History, Pretoria, South Africa
- School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa
- AfricanBats NPC, Kloofsig, South Africa
| | - Ernest C. J. Seamark
- AfricanBats NPC, Kloofsig, South Africa
- Wildlife Management, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - Janusz T. Paweska
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
127
|
Kragsnaes MS, Kjeldsen J, Horn HC, Munk HL, Pedersen FM, Holt HM, Pedersen JK, Holm DK, Glerup H, Andersen V, Fredberg U, Kristiansen K, Christensen R, Ellingsen T. Efficacy and safety of faecal microbiota transplantation in patients with psoriatic arthritis: protocol for a 6-month, double-blind, randomised, placebo-controlled trial. BMJ Open 2018; 8:e019231. [PMID: 29703851 PMCID: PMC5922473 DOI: 10.1136/bmjopen-2017-019231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION An unbalanced intestinal microbiota may mediate activation of the inflammatory pathways seen in psoriatic arthritis (PsA). A randomised, placebo-controlled trial of faecal microbiota transplantation (FMT) infused into the small intestine of patients with PsA with active peripheral disease who are non-responsive to methotrexate (MTX) treatment will be conducted. The objective is to explore clinical aspects associated with FMT performed in patients with PsA. METHODS AND ANALYSIS This trial is a randomised, two-centre stratified, double-blind (patient, care provider and outcome assessor), placebo-controlled, parallel-group study. Eighty patients will be included and randomised (1:1) to either placebo (saline) or FMT provided from an anonymous healthy donor. Throughout the study, both groups will continue the weekly self-administered subcutaneous MTX treatment, remaining on the preinclusion dosage (15-25 mg/week). The clinical measures of psoriasis and PsA disease activity used include the Short (2-page) Health Assessment Questionnaire, the Dermatology Quality of Life Index, the Spondyloarthritis Research Consortium of Canada Enthesitis Index, the Psoriasis Area Severity Index, a dactylitis digit count, a swollen/tender joint count (66/68), plasma C reactive protein as well as visual analogue scales for pain, fatigue and patient and physician global assessments. The primary end point is the proportion of patients who experience treatment failure during the 6-month trial period. The number of adverse events will be registered throughout the study. ETHICS AND DISSEMINATION This is a proof-of-concept clinical trial and will be performed in agreement with Good Clinical Practice standards. Approvals have been obtained from the local Ethics Committee (DK-S-20150080) and the Danish Data Protection Agency (15/41684). The study has commenced in May 2017. Dissemination will be through presentations at national and international conferences and through publications in international peer-reviewed journal(s). TRIAL REGISTRATION NUMBER NCT03058900; Pre-results.
Collapse
Affiliation(s)
- Maja Skov Kragsnaes
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Department of Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | | | | | | | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | | | | | - Henning Glerup
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Vibeke Andersen
- IRS-Centre Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ulrich Fredberg
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | - Robin Christensen
- Musculoskeletal Statistics Unit, Parker Institute, Frederiksberg and Bispebjerg Hospital, Copenhagen, Denmark
| | - Torkell Ellingsen
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
128
|
Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity. Viruses 2018; 10:v10040146. [PMID: 29570694 PMCID: PMC5923440 DOI: 10.3390/v10040146] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.
Collapse
|
129
|
Abstract
Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) (ME/CFS) is a disabling and debilitating disease of unknown aetiology. It is a heterogeneous disease characterized by various inflammatory, immune, viral, neurological and endocrine symptoms. Several microbiome studies have described alterations in the bacterial component of the microbiome (dysbiosis) consistent with a possible role in disease development. However, in focusing on the bacterial components of the microbiome, these studies have neglected the viral constituent known as the virome. Viruses, particularly those infecting bacteria (bacteriophages), have the potential to alter the function and structure of the microbiome via gene transfer and host lysis. Viral-induced microbiome changes can directly and indirectly influence host health and disease. The contribution of viruses towards disease pathogenesis is therefore an important area for research in ME/CFS. Recent advancements in sequencing technology and bioinformatics now allow more comprehensive and inclusive investigations of human microbiomes. However, as the number of microbiome studies increases, the need for greater consistency in study design and analysis also increases. Comparisons between different ME/CFS microbiome studies are difficult because of differences in patient selection and diagnosis criteria, sample processing, genome sequencing and downstream bioinformatics analysis. It is therefore important that microbiome studies adopt robust, reproducible and consistent study design to enable more reliable and valid comparisons and conclusions to be made between studies. This article provides a comprehensive review of the current evidence supporting microbiome alterations in ME/CFS patients. Additionally, the pitfalls and challenges associated with microbiome studies are discussed.
Collapse
|
130
|
Andermann TM, Peled JU, Ho C, Reddy P, Riches M, Storb R, Teshima T, van den Brink MRM, Alousi A, Balderman S, Chiusolo P, Clark WB, Holler E, Howard A, Kean LS, Koh AY, McCarthy PL, McCarty JM, Mohty M, Nakamura R, Rezvani K, Segal BH, Shaw BE, Shpall EJ, Sung AD, Weber D, Whangbo J, Wingard JR, Wood WA, Perales MA, Jenq RR, Bhatt AS. The Microbiome and Hematopoietic Cell Transplantation: Past, Present, and Future. Biol Blood Marrow Transplant 2018; 24:1322-1340. [PMID: 29471034 DOI: 10.1016/j.bbmt.2018.02.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Tessa M Andermann
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Christine Ho
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Pavan Reddy
- Department of Medicine, University of Michigan Cancer Center, Ann Arbor, Michigan
| | - Marcie Riches
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rainer Storb
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Marcel R M van den Brink
- Immunology Program, Sloan Kettering Institute, New York, New York; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amin Alousi
- Multidiscipline GVHD Clinic and Research Program, Department of Stem Cell Transplant and Cellular Therapies, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sophia Balderman
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Patrizia Chiusolo
- Hematology Department, Fondazione Policlinico Universitario A. Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - William B Clark
- Bone Marrow Transplant Program, Division of Hematology/Oncology and Palliative Care, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Alan Howard
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Leslie S Kean
- Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington; Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew Y Koh
- Divisions of Hematology/Oncology and Infectious Diseases, Departments of Pediatrics and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philip L McCarthy
- Blood and Marrow Transplantation, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - John M McCarty
- Bone Marrow Transplantation Program, Virginia Commonwealth University Massey Cancer, Richmond, Virginia
| | - Mohamad Mohty
- Clinical Hematology and Cellular Therapy Department, Hôpital Saint-Antoine, AP-HP, Paris, France; Sorbonne Université, Paris, France; INSERM UMRs U938, Paris, France
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Katy Rezvani
- Section of Cellular Therapy, Good Manufacturing Practices Facility, Department of Stem Cell Transplant and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brahm H Segal
- Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York; Division of Infectious Diseases, Roswell Park Comprehensive Cancer Center, Buffalo, New York; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Bronwen E Shaw
- Center for International Blood and Bone Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth J Shpall
- Cell Therapy Laboratory and Cord Blood Bank, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, Regensburg, Germany
| | - Jennifer Whangbo
- Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts
| | - John R Wingard
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Florida
| | - William A Wood
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ami S Bhatt
- Department of Genetics and Division of Hematology, Department of Medicine, Stanford University, Stanford, California.
| | | |
Collapse
|
131
|
Mahon BP, Ambadapadi S, Yaron JR, Lomelino CL, Pinard MA, Keinan S, Kurnikov I, Macaulay C, Zhang L, Reeves W, McFadden G, Tibbetts S, McKenna R, Lucas AR. Crystal Structure of Cleaved Serp-1, a Myxomavirus-Derived Immune Modulating Serpin: Structural Design of Serpin Reactive Center Loop Peptides with Improved Therapeutic Function. Biochemistry 2018; 57:1096-1107. [PMID: 29227673 DOI: 10.1021/acs.biochem.7b01171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Myxomavirus-derived protein Serp-1 has potent anti-inflammatory activity in models of vasculitis, lupus, viral sepsis, and transplant. Serp-1 has also been tested successfully in a Phase IIa clinical trial in unstable angina, representing a "first-in-class" therapeutic. Recently, peptides derived from the reactive center loop (RCL) have been developed as stand-alone therapeutics for reducing vasculitis and improving survival in MHV68-infected mice. However, both Serp-1 and the RCL peptides lose activity in MHV68-infected mice after antibiotic suppression of intestinal microbiota. Here, we utilize a structure-guided approach to design and test a series of next-generation RCL peptides with improved therapeutic potential that is not reduced when the peptides are combined with antibiotic treatments. The crystal structure of cleaved Serp-1 was determined to 2.5 Å resolution and reveals a classical serpin structure with potential for serpin-derived RCL peptides to bind and inhibit mammalian serpins, plasminogen activator inhibitor 1 (PAI-1), anti-thrombin III (ATIII), and α-1 antitrypsin (A1AT), and target proteases. Using in silico modeling of the Serp-1 RCL peptide, S-7, we designed several modified RCL peptides that were predicted to have stronger interactions with human serpins because of the larger number of stabilizing hydrogen bonds. Two of these peptides (MPS7-8 and -9) displayed extended activity, improving survival where activity was previously lost in antibiotic-treated MHV68-infected mice (P < 0.0001). Mass spectrometry and kinetic assays suggest interaction of the peptides with ATIII, A1AT, and target proteases in mouse and human plasma. In summary, we present the next step toward the development of a promising new class of anti-inflammatory serpin-based therapeutics.
Collapse
Affiliation(s)
- Brian P Mahon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States.,Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Sriram Ambadapadi
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida , Gainesville, Florida 32610-0277, United States
| | | | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Shahar Keinan
- Cloud Pharmaceuticals , 6 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Igor Kurnikov
- Cloud Pharmaceuticals , 6 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | | | | | - Westley Reeves
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida , Gainesville, Florida 32610-0277, United States
| | | | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Alexandra R Lucas
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida , Gainesville, Florida 32610-0277, United States.,Saint Joseph's Hospital, Dignity Health , Phoenix, Arizona 85013, United States
| |
Collapse
|
132
|
Moore MD, Jaykus LA. Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences. Viruses 2018; 10:E61. [PMID: 29393885 PMCID: PMC5850368 DOI: 10.3390/v10020061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic virus-bacteria interactions have recently become an emerging topic of study due to multiple significant examples related to human pathogens of clinical interest. However, such omnipresent and likely important interactions for viruses and bacteria relevant to the applied and agricultural sciences have not been reviewed or compiled. The fundamental basis of this review is that these interactions have importance and deserve more investigation, as numerous potential consequences and applications arising from their discovery are relevant to the applied sciences. The purpose of this review is to highlight and summarize eukaryotic virus-bacteria findings in the food/water, horticultural, and animal sciences. In many cases in the agricultural sciences, mechanistic understandings of the effects of virus-bacteria interactions remain unstudied, and many studies solely focus on co-infections of bacterial and viral pathogens. Given recent findings relative to human viral pathogens, further research related to virus-bacteria interactions would likely result in numerous discoveries and beneficial applications.
Collapse
Affiliation(s)
- Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
133
|
Dao MC, Clément K. Gut microbiota and obesity: Concepts relevant to clinical care. Eur J Intern Med 2018; 48:18-24. [PMID: 29110901 DOI: 10.1016/j.ejim.2017.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
The composition and function of gut microbiota play a role in obesity and metabolic disease, yet the mechanisms have not been fully described. As new discoveries and advances in the field have occurred, the relevance of gut microbiota in clinical care has become more substantial. There is promising potential for manipulation of the gut microbiota as treatment of obesity and associated health complications, both as a standalone therapy and as part of interventions such as weight loss. In this review we have compiled knowledge and concepts that are important in the consideration of gut microbiota for clinical care.
Collapse
Affiliation(s)
- Maria Carlota Dao
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMR S U1166, Nutriomics Team, Paris, France; Sorbonne Universités, UPMC University Paris 06, UMR_S 1166 I, Nutriomics Team, Paris, France.
| | - Karine Clément
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France; INSERM, UMR S U1166, Nutriomics Team, Paris, France; Sorbonne Universités, UPMC University Paris 06, UMR_S 1166 I, Nutriomics Team, Paris, France.
| |
Collapse
|
134
|
Erickson AK, Jesudhasan PR, Mayer MJ, Narbad A, Winter SE, Pfeiffer JK. Bacteria Facilitate Enteric Virus Co-infection of Mammalian Cells and Promote Genetic Recombination. Cell Host Microbe 2018; 23:77-88.e5. [PMID: 29290575 PMCID: PMC5764776 DOI: 10.1016/j.chom.2017.11.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/25/2017] [Accepted: 11/15/2017] [Indexed: 01/12/2023]
Abstract
RNA viruses exist in genetically diverse populations due to high levels of mutations, many of which reduce viral fitness. Interestingly, intestinal bacteria can promote infection of several mammalian enteric RNA viruses, but the mechanisms and consequences are unclear. We screened a panel of 41 bacterial strains as a platform to determine how different bacteria impact infection of poliovirus, a model enteric virus. Most bacterial strains, including those extracted from cecal contents of mice, bound poliovirus, with each bacterium binding multiple virions. Certain bacterial strains increased viral co-infection of mammalian cells even at a low virus-to-host cell ratio. Bacteria-mediated viral co-infection correlated with bacterial adherence to cells. Importantly, bacterial strains that induced viral co-infection facilitated genetic recombination between two different viruses, thereby removing deleterious mutations and restoring viral fitness. Thus, bacteria-virus interactions may increase viral fitness through viral recombination at initial sites of infection, potentially limiting abortive infections.
Collapse
Affiliation(s)
- Andrea K Erickson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | - Palmy R Jesudhasan
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | - Melinda J Mayer
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UA, UK
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | - Julie K Pfeiffer
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA.
| |
Collapse
|
135
|
Lazarus RP, John J, Shanmugasundaram E, Rajan AK, Thiagarajan S, Giri S, Babji S, Sarkar R, Kaliappan PS, Venugopal S, Praharaj I, Raman U, Paranjpe M, Grassly NC, Parker EPK, Parashar UD, Tate JE, Fleming JA, Steele AD, Muliyil J, Abraham AM, Kang G. The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: A randomized, factorial design, placebo-controlled study among Indian infants. Vaccine 2018; 36:273-279. [PMID: 28874323 PMCID: PMC12001858 DOI: 10.1016/j.vaccine.2017.07.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Strategies are needed to improve oral rotavirus vaccine (RV), which provides suboptimal protection in developing countries. Probiotics and zinc supplementation could improve RV immunogenicity by altering the intestinal microbiota and immune function. METHODS Infants 5weeks old living in urban Vellore, India were enrolled in a randomized, double-blind, placebo-controlled trial with a 4-arm factorial design to assess the effects of daily zinc (5mg), probiotic (1010Lactobacillus rhamnosus GG) or placebo on the immunogenicity of two doses of RV (Rotarix®, GlaxoSmithKline Biologicals) given at 6 and 10weeks of age. Infants were eligible for participation if healthy, available for the study duration and without prior receipt of RV or oral poliovirus vaccine other than the birth dose. The primary outcome was seroconversion to rotavirus at 14weeks of age based on detection of VP6-specific IgA at ≥20U/ml in previously seronegative infants or a fourfold rise in concentration. RESULTS The study took place during July 2012 to February 2013. 620 infants were randomized equally between study arms and 551 (88.9%) completed per protocol. Seroconversion was recorded in 54/137 (39.4%), 42/136 (30.9%), 40/143 (28.0%), and 37/135 (27.4%) infants receiving (1) probiotic and zinc, (2) probiotic and placebo, (3) placebo and zinc, (4) two placebos. Seroconversion showed a modest improvement among infants receiving probiotic (difference between groups 1, 2 and 3, 4 was 7.5% (97.5% Confidence Interval (CI): -1.4%, 16.2%), p=0.066) but not zinc (difference between groups 1, 3 and 2, 4 was 4.4% (97.5% CI: -4.4%, 13.2%), p=0.272). 16 serious adverse events were recorded, none related to study interventions. CONCLUSIONS Zinc or probiotic supplementation did not significantly improve the low immunogenicity of rotavirus vaccine given to infants in a poor urban community in India. A modest effect of combined supplementation deserves further investigation. TRIAL REGISTRATION The trial was registered in India (CTRI/2012/05/002677).
Collapse
Affiliation(s)
- Robin P Lazarus
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, India
| | - E Shanmugasundaram
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Anand K Rajan
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - S Thiagarajan
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Rajiv Sarkar
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | - Srinivasan Venugopal
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Ira Praharaj
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Uma Raman
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Meghana Paranjpe
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Edward P K Parker
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | | | | | | | - Jayaprakash Muliyil
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Asha M Abraham
- Department of Clinical Virology, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India.
| |
Collapse
|
136
|
Fischer N, Relman DA. Clostridium difficile, Aging, and the Gut: Can Microbiome Rejuvenation Keep Us Young and Healthy? J Infect Dis 2018; 217:174-176. [PMID: 28968708 PMCID: PMC5853914 DOI: 10.1093/infdis/jix417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Natalie Fischer
- Departments of Medicine, Veterans Affairs Palo Alto Health Care System, California
- Departments of Microbiology & Immunology, Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, California
| | - David A Relman
- Departments of Medicine, Veterans Affairs Palo Alto Health Care System, California
- Departments of Microbiology & Immunology, Stanford University School of Medicine, Veterans Affairs Palo Alto Health Care System, California
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, California
| |
Collapse
|
137
|
Parker EPK, Ramani S, Lopman BA, Church JA, Iturriza-Gómara M, Prendergast AJ, Grassly NC. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol 2018; 13:97-118. [PMID: 29218997 PMCID: PMC7026772 DOI: 10.2217/fmb-2017-0128] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Oral vaccines are less immunogenic when given to infants in low-income compared with high-income countries, limiting their potential public health impact. Here, we review factors that might contribute to this phenomenon, including transplacental antibodies, breastfeeding, histo blood group antigens, enteric pathogens, malnutrition, microbiota dysbiosis and environmental enteropathy. We highlight several clear risk factors for vaccine failure, such as the inhibitory effect of enteroviruses on oral poliovirus vaccine. We also highlight the ambiguous and at times contradictory nature of the available evidence, which undoubtedly reflects the complex and interconnected nature of the factors involved. Mechanisms responsible for diminished immunogenicity may be specific to each oral vaccine. Interventions aiming to improve vaccine performance may need to reflect the diversity of these mechanisms.
Collapse
Affiliation(s)
- Edward PK Parker
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| | | | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James A Church
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Miren Iturriza-Gómara
- Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Andrew J Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
138
|
Velasquez DE, Parashar U, Jiang B. Decreased performance of live attenuated, oral rotavirus vaccines in low-income settings: causes and contributing factors. Expert Rev Vaccines 2017; 17:145-161. [PMID: 29252042 DOI: 10.1080/14760584.2018.1418665] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Numerous studies have shown that the oral rotavirus vaccines are less effective in infants born in low income countries compared to those born in developed countries. Identifying the specific factors in developing countries that decrease and/or compromise the protection that rotavirus vaccines offer, could lead to a path for designing new strategies for the vaccines' improvement. AREAS COVERED We accessed PubMed to identify rotavirus vaccine performance studies (i.e., efficacy, effectiveness and immunogenicity) and correlated performance with several risk factors. Here, we review the factors that might contribute to the low vaccine efficacy, including passive transfer of maternal rotavirus antibodies, rotavirus seasonality, oral polio vaccine (OPV) administered concurrently, microbiome composition and concomitant enteric pathogens, malnutrition, environmental enteropathy, HIV, and histo blood group antigens. EXPERT COMMENTARY We highlight two major factors that compromise rotavirus vaccines' efficacy: the passive transfer of rotavirus IgG antibodies to infants and the co-administration of rotavirus vaccines with OPV. We also identify other potential risk factors that require further research because the data about their interference with the efficacy of rotavirus vaccines are inconclusive and at times conflicting.
Collapse
Affiliation(s)
- Daniel E Velasquez
- a Division of Viral Diseases , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Umesh Parashar
- a Division of Viral Diseases , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Baoming Jiang
- a Division of Viral Diseases , Centers for Disease Control and Prevention , Atlanta , GA , USA
| |
Collapse
|
139
|
Abstract
Since 1999, Caenorhabditis elegans has been extensively used to study microbe-host interactions due to its simple culture, genetic tractability, and susceptibility to numerous bacterial and fungal pathogens. In contrast, virus studies have been hampered by a lack of convenient virus infection models in nematodes. The recent discovery of a natural viral pathogen of C. elegans and development of diverse artificial infection models are providing new opportunities to explore virus-host interplay in this powerful model organism.
Collapse
Affiliation(s)
- Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
140
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
141
|
Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection. Vaccines (Basel) 2017; 5:vaccines5040040. [PMID: 29099809 PMCID: PMC5748607 DOI: 10.3390/vaccines5040040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs). The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory) on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics.
Collapse
|
142
|
Zárate S, Taboada B, Yocupicio-Monroy M, Arias CF. Human Virome. Arch Med Res 2017; 48:701-716. [DOI: 10.1016/j.arcmed.2018.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/22/2018] [Indexed: 12/16/2022]
|
143
|
Falcone M, Venditti M, Sanguinetti M, Posteraro B. Management of candidemia in patients with Clostridium difficile infection. Expert Rev Anti Infect Ther 2017; 14:679-85. [PMID: 27254270 DOI: 10.1080/14787210.2016.1197118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Patients with C. difficile infection (CDI) experience intestinal microflora changes that can promote the overgrowth and subsequent translocation of gut resident pathogens into the blood. Consistently, CDI due to PCR-ribotype 027 strain, severe or relapsing CDI, and treatment with high-dosage vancomycin are independent risk factors for candidemia. AREAS COVERED We review the role played by the gut microbiota during CDI and its treatment, as well as the clinical profile of CDI patients who are at risk of developing candidemia. Also, we discuss the management of these patients by focusing on pre-emptive strategies aimed at reducing the risk of candidemia, and on innovative anti-C. difficile therapies that may mitigate CDI-related effects such as the altered gut microbiota composition and prolonged intestinal mucosa damage. Expert commentary: A closer clinical and diagnostic monitoring of patients with CDI should help to limit the CDI-associated long-term consequences, including Candida infections, which worsen the outcome of hospitalized patients.
Collapse
Affiliation(s)
- Marco Falcone
- a Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| | - Mario Venditti
- a Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| | - Maurizio Sanguinetti
- b Institute of Microbiology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Brunella Posteraro
- c Institute of Public Health (Section of Hygiene) , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
144
|
Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G, Pardo-Manuel de Villena F, Yewdell JW, Rehermann B. Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 2017; 171:1015-1028.e13. [PMID: 29056339 DOI: 10.1016/j.cell.2017.09.016] [Citation(s) in RCA: 551] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/12/2017] [Accepted: 09/09/2017] [Indexed: 12/14/2022]
Abstract
Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Stephan P Rosshart
- Immunology Section, Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| | - Brian G Vassallo
- Immunology Section, Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Davide Angeletti
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Diane S Hutchinson
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew P Morgan
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993-0002, USA
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - John A McCulloch
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
145
|
Winglee K, Howard AG, Sha W, Gharaibeh RZ, Liu J, Jin D, Fodor AA, Gordon-Larsen P. Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. MICROBIOME 2017; 5:121. [PMID: 28915922 PMCID: PMC5603068 DOI: 10.1186/s40168-017-0338-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Urbanization is associated with an increased risk for a number of diseases, including obesity, diabetes, and cancer, which all also show associations with the microbiome. While microbial community composition has been shown to vary across continents and in traditional versus Westernized societies, few studies have examined urban-rural differences in neighboring communities within a single country undergoing rapid urbanization. In this study, we compared the gut microbiome, plasma metabolome, dietary habits, and health biomarkers of rural and urban people from a single Chinese province. RESULTS We identified significant differences in the microbiota and microbiota-related plasma metabolites in rural versus recently urban subjects from the Hunan province of China. Microbes with higher relative abundance in Chinese urban samples have been associated with disease in other studies and were substantially more prevalent in the Human Microbiome Project cohort of American subjects. Furthermore, using whole metagenome sequencing, we found that urbanization was associated with a loss of microbial diversity and changes in the relative abundances of Viruses, Archaea, and Bacteria. Gene diversity, however, increased with urbanization, along with the proportion of reads associated with antibiotic resistance and virulence, which were strongly correlated with the presence of Escherichia and Shigella. CONCLUSIONS Our data suggest that urbanization has produced convergent evolution of the gut microbial composition in American and urban Chinese populations, resulting in similar compositional patterns of abundant microbes through similar lifestyles on different continents, including a loss of potentially beneficial bacteria and an increase in potentially harmful genes via increased relative abundance of Escherichia and Shigella.
Collapse
Affiliation(s)
- Kathryn Winglee
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Annie Green Howard
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Wei Sha
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, 28081, USA
| | - Raad Z Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, 28081, USA
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28081, USA
- Department of Medicine, Division of Gastroenterology, University of Florida, CGRC, Gainesville, FL, 32610, USA
| | - Jiawu Liu
- Department of Nutrition and Chronic Disease Prevention, Hunan Center for Disease Control and Prevention, Changsha, Hunan Province, 410005, China
| | - Donghui Jin
- Department of Nutrition and Chronic Disease Prevention, Hunan Center for Disease Control and Prevention, Changsha, Hunan Province, 410005, China
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27516, USA.
| |
Collapse
|
146
|
Bandoro C, Runstadler JA. Bacterial Lipopolysaccharide Destabilizes Influenza Viruses. mSphere 2017; 2:e00267-17. [PMID: 29034326 PMCID: PMC5636225 DOI: 10.1128/msphere.00267-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Depending on the specific viral pathogen, commensal bacteria can promote or reduce the severity of viral infection and disease progression in their hosts. Influenza A virus (IAV) has a broad host range, comprises many subtypes, and utilizes different routes of transmission, including the fecal-oral route in wild birds. It has been previously demonstrated that commensal bacteria can interact with the host's immune system to protect against IAV pathogenesis. However, it is unclear whether bacteria and their products may be interacting directly with IAV to impact virion stability. Herein we show that gastrointestinal (GI) tract bacterial isolates in an in vitro system significantly reduce the stability of IAV. Moreover, bacterial lipopolysaccharide (LPS), found on the exterior surfaces of bacteria, was sufficient to significantly decrease the stability of both human and avian viral strains in a temperature-dependent manner, including at the relevant temperatures of their respective hosts and the external aquatic habitat. The subtype and host origin of the viruses were shown to affect the extent to which IAV was susceptible to LPS. Furthermore, using a receptor binding assay and transmission electron microscopy, we observed that LPS binds to and alters the morphology of influenza virions, suggesting that direct interaction with the viral surface contributes to the observed antiviral effect of LPS on influenza. IMPORTANCE Influenza A virus (IAV), transmitted primarily via the fecal-oral route in wild birds, encounters high concentrations of bacteria and their products. Understanding the extent to which bacteria affect the infectivity of IAV will lead to a broader understanding of viral ecology in reservoir hosts and may lead to insights for the development of therapeutics in respiratory infection. Herein we show that bacteria and lipopolysaccharide (LPS) interact with and destabilize influenza virions. Moreover, we show that LPS reduces the long-term persistence and freeze-thaw stability of IAV, which is important information for modeling the movement and emergence of novel strains from animal hosts. Our results, demonstrating that the subtype and host origin of a virus also influence its susceptibility to LPS, raise key questions about the fitness of viruses in reservoir hosts, their potential to transmit to humans, and the importance of bacterial-viral interactions in viral ecology.
Collapse
Affiliation(s)
- Christopher Bandoro
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan A. Runstadler
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
147
|
Zhou M, He J, Shen Y, Zhang C, Wang J, Chen Y. New Frontiers in Genetics, Gut Microbiota, and Immunity: A Rosetta Stone for the Pathogenesis of Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8201672. [PMID: 28831399 PMCID: PMC5558637 DOI: 10.1155/2017/8201672] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which encompasses ulcerative colitis (UC) and Crohn's disease (CD), is a complicated, uncontrolled, and multifactorial disorder characterized by chronic, relapsing, or progressive inflammatory conditions that may involve the entire gastrointestinal tract. The protracted nature has imposed enormous economic burdens on patients with IBD, and the treatment is far from optimal due to the currently limited comprehension of IBD pathogenesis. In spite of the exact etiology still remaining an enigma, four identified components, including personal genetic susceptibility, external environment, internal gut microbiota, and the host immune response, are responsible for IBD pathogenesis, and compelling evidence has suggested that IBD may be triggered by aberrant and continuing immune responses to gut microbiota in genetically susceptibility individuals. The past decade has witnessed the flourishing of research on genetics, gut microbiota, and immunity in patients with IBD. Therefore, in this review, we will comprehensively exhibit a series of novel findings and update the major advances regarding these three fields. Undoubtedly, these novel findings have opened a new horizon and shed bright light on the causality research of IBD.
Collapse
Affiliation(s)
- Mingxia Zhou
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing He
- Department of General Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yujie Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Cong Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiazheng Wang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
148
|
Role of the intestinal mucosa in acute gastrointestinal GVHD. Blood 2017; 128:2395-2402. [PMID: 27856471 DOI: 10.1182/blood-2016-06-716738] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/14/2016] [Indexed: 12/11/2022] Open
Abstract
Intestinal graft-versus-host disease (GVHD) remains a significant obstacle to the success of allogeneic hematopoietic cell transplantation. The intestinal mucosa comprises the inner lining of the intestinal tract and maintains close proximity with commensal microbes that reside within the intestinal lumen. Recent advances have significantly improved our understanding of the interactions between the intestinal mucosa and the enteric microbiota. Changes in host mucosal tissue and commensals posttransplant have been actively investigated, and provocative insights into mucosal immunity and the enteric microbiota are now being translated into clinical trials of novel approaches for preventing and treating acute GVHD. In this review, we summarize recent findings related to aspects of the intestinal mucosa during acute GVHD.
Collapse
|
149
|
Rook G, Bäckhed F, Levin BR, McFall-Ngai MJ, McLean AR. Evolution, human-microbe interactions, and life history plasticity. Lancet 2017; 390:521-530. [PMID: 28792414 DOI: 10.1016/s0140-6736(17)30566-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 02/07/2023]
Abstract
A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live).
Collapse
Affiliation(s)
- Graham Rook
- Centre for Clinical Microbiology, Department of Infection, UCL (University College London), London, UK.
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA
| | | | - Angela R McLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
150
|
Abstract
The human gastrointestinal tract is populated by a diverse, highly mutualistic microbial flora, which is known as the microbiome. Disruptions to the microbiome have been shown to be associated with severe pathologies of the host, including metabolic disease, cancer, and inflammatory bowel disease. Mood and behavior are also susceptible to alterations in the gut microbiota. A particularly striking example of the symbiotic effects of the microbiome is the immune system, whose cells depend critically on a diverse array of microbial metabolites for normal development and behavior. This includes metabolites that are produced by bacteria from dietary components, metabolites that are produced by the host and biochemically modified by gut bacteria, and metabolites that are synthesized de novo by gut microbes. In this review, we highlight the role of the intestinal microbiome in human metabolic and inflammatory diseases and focus in particular on the molecular mechanisms that govern the gut-immune axis.
Collapse
Affiliation(s)
- Thomas Siegmund Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|